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Abstract
Dark networks, which describe networks with covert entities and connections such as those representing illegal activities, are 
of great interest to intelligence analysts. However, before studying such a network, one must first collect appropriate network 
data. Collecting accurate network data in such a setting is a challenging task, as data collectors will make inferences, which 
may be incorrect, based on available intelligence data, which may itself be misleading. In this paper, we consider the problem 
of how to effectively sample dark networks, in which sampling queries may return incorrect information, with the specific 
goal of locating people of interest. We present RedLeaRn and RedLeaRnRS, two algorithms for crawling dark networks with 
the goal of maximizing the identification of nodes of interest, given a limited sampling budget. RedLeaRn assumes that a 
query on a node can accurately return whether a node represents a person of interest, while RedLeaRnRS dispenses with 
that assumption. We consider realistic error scenarios, which describe how individuals in a dark network may attempt to 
conceal their connections. We evaluate and present results on several real-world networks, including dark networks, as well 
as various synthetic dark network structures proposed in the criminology literature. Our analysis shows that RedLeaRn and 
RedLeaRnRS meet or outperform other sampling strategies.

Keywords Sampling · Lying scenarios · Nodes of interest · Dark networks

1 Introduction

Complex network analysis has emerged as a key component 
of a wide variety of scientific fields, but the quality of the 
network analysis depends on the quality of the underlying 
data. In certain applications, such as those involving analysis 
of so-called dark networks representing illegal, covert, or 
undisclosed activities (Raab and Milward 2003), individuals 

within the network may purposefully conceal their network 
data with the goal of misleading the data collector or analyst.

The purpose of this work is to develop algorithms for 
sampling dark networks with the intention of locating as 
many “persons of interest” (POI) as possible in the network 
given a limited query budget. Here, a POI is a node pos-
sessing a certain attribute (e.g., individuals involved in a 
particular criminal action). We assume that we begin with 
knowledge of one POI in the network, with the rest of the 
network unobserved (both in terms of topology as well as 
node attributes).

A major complicating factor in this problem is that due to 
the covert nature of the networks being studied, one cannot 
expect the observed information to be reliable. When explor-
ing a dark network, nodes may deliberately provide misin-
formation about themselves and the network structure (e.g., 
lie to an investigator), or the analyst herself may need to 
draw conclusions from multiple sources of information, with 
possible errors. This is in contrast to traditional sampling 
algorithms, which generally assume that the information 
observed is correct at the time of the query. There are thus 
major challenges in designing algorithms to sample dark net-
works: first and foremost, in order to select the next query, 
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one must draw inferences about the network structure from 
inaccurate data. Even for already-observed nodes, when pre-
dicting whether a node is or is not a POI, one can only use 
information observed so far; but because this information 
may be incorrect, one may come to a false conclusion, which 
in turn affects predictions for other nodes, potentially leading 
to a cascade of errors.

To our knowledge, we are the first to consider the prob-
lem of sampling with the goal of identifying nodes of inter-
est in a setting with misinformation.

As an example, one of the networks we consider contains 
data depicting relationships among terrorists in the “Noordin 
Top” network in Indonesia. In this network, edges represent 
that two nodes belong to the same organization, attended 
the same school or training, have a kinship relationship, and 
so on.1 In such a network, the POIs may be those individu-
als who have an attribute of interest to the analyst, such as 
involvement in a terrorist attack.

In this paper, querying a node refers to collecting data 
about the node, node’s neighbors, whether these neighbors 
are POIs and determining whether the queried node is a POI 
itself. For example, querying a node can refer to a data ana-
lyst obtaining information about the node and determining 
whether it is a POI. The role of the sampling algorithm is to 
suggest a query on the node that is most likely to be a POI.

We consider two sampling settings, corresponding to 
different types of data collection processes. In the first set-
ting, when a node is selected for query , then (1) the data 
collector accurately discovers whether or not that node is a 
POI, and (2) the data collector, possibly inaccurately, deter-
mines the identities of node’s neighbors and whether those 
neighbors are POIs. In the second setting, we remove the 
assumption that the data collector can accurately discover 
a node’s status as a POI: Instead, the query may misreport 
whether or not the node itself is a POI. In both settings, there 
may be errors in determining the queried node’s neighbors 
and whether those neighbors are POIs: for example, a POI 
node may encode communications with other POI nodes, or 
try to make these communications look innocent. The first 
setting corresponds to cases in which it is easy to determine 
whether a queried node is of interest (e.g., comparing finger-
prints to those found at a crime scene). The second setting 
corresponds to cases in which the determination of whether 
a node is a POI is difficult and may be done incorrectly (for 
example, by an analyst aggregating several sources of con-
flicting information).

We present two sampling algorithms, RedLeaRn and  
RedLeaRnRS. RedLeaRn operates under the assump-
tion that the analyst can accurately determine the queried 

node’s status. For the second sampling setting, we introduce 
RedLeaRnRS, a re-sampling algorithm that may repeatedly 
query the same node in order to update the accuracy of the 
information. We show that in cases where the POIs exhibit 
homophily (i.e., are likely to be connected to other POIs), 
a simple algorithm of choosing the node with the most POI 
neighbors works well. However, in the more realistic sce-
nario where POIs hide their connections with other POIs,  
RedLeaRn and RedLeaRnRS show outstanding performance, 
improving over the best baseline algorithm by up to 340%.

This paper is organized as follows. In Sect. 2, we formally 
introduce the two problem settings we consider. In Sect. 3, 
we discuss related research work to our problem. Section 4 
presents RedLeaRn and RedLeaRnRS algorithms to find 
nodes of interest. Sections 5 and 6 provide details of the 
datasets we use and experimental setup we use to evaluate 
monitor placement algorithms, respectively. In Sect. 7, we 
present performance of RedLeaRn and RedLeaRnRS algo-
rithms compared to baseline POI finding algorithms.

2  Problem definition

We assume that there is an unobserved, undirected, 
unweighted graph G = (V ,E) , in which each node v ∈ V  
has a color attribute, c

v
∈ {red, blue} . Red nodes represent 

the persons of interest (POIs) and blue nodes represent all 
others.

We begin with the realistic assumption that a red node 
was identified in G (e.g., arrested while committing a crime). 
We are given a budget b of queries, where each query is 
conducted by analyzing data corresponding to a node. We 
call this process placing a monitor on a node.2 In each step, 
we query an observed node v, regardless of its color, and 
the monitor reports (1) the suspected color of the node ( s

v
 ), 

(2) the neighbors of the node (N(v)), and (3) the color e
u
 of 

each of node v’s reported neighbors u. As monitors represent 
humans performing data analysis, some or all of this infor-
mation may be reported incorrectly by the monitor, due to 
analyst error or judgment.

There are four possible types of errors when retrieving 
node color and network structure information using moni-
tors: (1) A node color error, where the suspected color of 
the node is not the true color ( s

v
≠ c

v
 ) (2) an edge existence 

error, where the monitor fails to report some neighbors of 
the node, (3) an edge nonexistence error, where the moni-
tor reports false edges between nodes and (4) a neighbor 
relationship color error, where the reported colors of the 

1 The data were collected by Roberts and Everton (2011) and com-
piled into a network by Gera et al. (2017).

2 This terminology was motivated by an application in which hard-
ware devices known as monitors are placed on computers to observe 
incoming and outgoing traffic.
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queried node’s neighbors are different from their true colors 
( e

u
≠ c

u
).

For example, placing a monitor on a suspected criminal 
node could represent an analyst conducting an investigation 
to determine whether this person is a criminal (node color). 
The investigation process includes looking through his email 
and phone contacts to observe his connections (neighbor 
identities), analyzing his emails and other messages with 
these contacts to determine whether these neighbors are 
themselves criminals (neighbor relationship colors). Natu-
rally, there may be errors in this process due to nodes try-
ing to hide/fabricate their connections, criminals using code 
words in their communications, general noisy communica-
tions among all nodes, and analysis errors that can occur.3

Suppose that after exhausting the monitor budget b, 
we have a set of monitored nodes V

m
= V

r
∪ V

b
 . Here, 

V
r
= {v ∈ V

m
∶ s

v
= red} , the set of monitored nodes that 

are suspected to be red, and V
b
= {v ∈ V

m
∶ s

v
= blue} , the 

set of monitored nodes that are suspected to be blue. The 
goal of the analysis is to maximize the true set of red nodes 
detected, namely |{v ∈ V

r
∶ c

v
= red}|.

We consider two problem settings depending on whether 
the analyst can conclusively determine someone is a crimi-
nal or not.

2.1  Problem Setting 1: node color reliable

In Problem Setting 1, we assume that a monitor accu-
rately determines the color of the queried node. Therefore, 
V
r
= {v ∈ V

m
∶ s

v
= red} = {v ∈ V

m
∶ c

v
= red} ; all nodes 

that are suspected to be red are indeed red-colored nodes.
For example, suppose that there is an investigation to 

find a set of computers that are affected by some virus. The 
analyst has a hardware device which can detect whether a 
computer is affected or not. Whenever the analyst finds a 
potential-affected computer, she can place this device on the 
machine and determine the true status of the machine. In this 
example, placing the hardware equipment is equivalent to 
placing a monitor. Because the analyst has limited hardware 
equipment, she needs to carefully decide which computer to 
monitor next so that V

r
 is maximized.

2.2  Problem Setting 2: node color misreported

In Problem Setting 2, we consider the setting where a moni-
tor may misreport the color of the monitored node. For 
example, suppose there is an investigation to find terrorists 
who were involved in a specific attack. The analyst has to 
determine whether someone is a terrorist solely based on 

his contacts, messages, and whereabouts. In the absence of 
conclusive evidence to prove that a person is a terrorist, the 
analyst has to make a judgment based on available informa-
tion. This can lead to identifying a terrorist as not guilty if 
there is not enough evidence, and conversely may lead to 
identifying an innocent individual as guilty.

In this problem setting, placing a single monitor on a 
node may not reveal the true color of a node. In this case, 
we allow for repeated monitor placement to re-query pre-
viously monitored nodes. In the example above, repeated 
monitor placement would allow the analyst to gather more 
information about the criminal by considering other types of 
communication channels, spending more time and resources 
on the analysis which can lead to better judgment.

3  Related work

3.1  Criminal network analysis

A dark network is a social network representing illegal and 
covert activities, whose members are actively trying to 
conceal network information even at the expense of effi-
ciency (Baker and Faulkner 1993; Raab and Milward 2003). 
Because dark networks are deceptive by nature, there are 
many errors involved in collecting and analyzing data from 
these networks.

Criminal networks are a common example of dark net-
work (Baker and Faulkner 1993). Some researchers have 
used social network analysis techniques such as identifying 
key players, community detection, and network visualization 
techniques to identify leaders of criminal networks, iden-
tify subgroups in criminal networks, and visualize criminal 
networks, respectively (Chen et al. 2004; Lu et al. 2010; 
Koschade 2006). Some other researchers have considered 
using social network analysis to disrupt criminal networks 
(Sparrow (1991); Schwartz and Rouselle (2009)). These 
analysis techniques generally assume that the complete net-
work structure information is available.

In this work, we introduce a methodology to identify 
POIs in dark networks while examining various error sce-
narios based on the terrorist actively trying conceal their true 
status and connections. Uncovering these networks amid 
concealed and misinformation require advanced network 
sampling techniques.

3.2  Network sampling algorithms

In general, network sampling algorithms can be divided into 
two categories: downsampling algorithms and crawling-
based sampling algorithms. Downsampling algorithms begin 
with knowledge of the entire graph, but due to computational 
issues (e.g., time or space), must find an appropriately sized 

3 We consider realistic types of errors to represent analysis errors; 
these are described in Sect. 6.5.
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subgraph that is representative of the larger graph (Leskovec 
and Faloutsos (2006)). Crawling-based algorithms on the 
other hand start with knowledge of few nodes and explore 
the network through querying observed nodes. In our prob-
lem, we use crawling to explore the network structure by 
placing monitors.

There are a multitude of sampling techniques for crawl-
ing-based network exploration, including random walks 
(Asztalos and Toroczkai 2010; Hughes 1995; Noh and 
Rieger 2004), biased random walks (Fronczak and Fronczak 
(2009)), and walks combined with reversible Markov chains 
(Aldous and Fill (2002)), Bayesian methods (Friedman and 
Koller 2003), or standard exhaustive search algorithms like 
depth-first or breadth-first searches, such as Adamic et al. 
(2001), Biernacki and Waldorf (1981), Bliss et al. (2014), 
Davis et al. (2016), and Leskovec and Faloutsos (2006). 
However, these methods do not use all discovered informa-
tion, such as node attributes of the discovered part of net-
work, and are not designed for sampling networks in which 
queries return inaccurate information.

Various researchers have considered the problem of 
sampling for specific goals. For example, Avrachenkov 
et al. (2014) present an algorithm to sample the node with 
the highest estimated unobserved degree. Hanneke and 
Xing (2009) and Maiya and Berger-Wolf (2010) exam-
ine online sampling for centrality measures. Macskassy 
and Provost (2005) develop a guilt-by-association method 
to identify suspicious individuals in a partially known 
network.

Some researchers have considered the problem of sam-
pling to locate targeted nodes. Bnaya et al. (2013) pre-
sent a volatile multi-arm bandit-based algorithm to crawl 
for targeted nodes. Their approach tries to find a balance 
between exploring the network and exploiting targeted 
nodes at the time of crawling. However, this work does 
not address potential inaccuracies in the sampling pro-
cess (and additionally, using an explore–exploit method 
for sampling dark networks would present significant 
ethical problems, as it would require investigating non-
suspects for the sake of exploration). Stern et al. (2013) 
present the TONIC problem for finding targeted nodes and 
propose a method for finding nodes that can lead to the 
targeted nodes. Unlike our problem setting, these works 
do not consider the case where queried nodes can provide 
information about their neighbors, and also do not account 
for possibly inaccurate information and errors. Gera et al. 
(2017) consider identifying a target community from par-
tial information, by taking a different approach one what 
part of the network has been discovered. They assumed 
that the information of one layer (one type of relationship) 
of network was known and tried to identify a group in the 
whole network.

3.3  Node classification algorithms

A natural approach for the problem posed in this paper is to 
use a node classification algorithm to predict whether observed 
nodes are red or blue. Traditional data classification algorithms 
assume that data instances are independent from each other. 
In contrast, node classification algorithms study the problem, 
how to conduct a classification in network or relational data. 
These algorithms work with partially labeled network data to 
predict labels for unlabeled data instances. Node classification 
algorithms generally achieve better performance by exploiting 
relational information between classification data instances.

There are many applications of node classification algo-
rithms. Xiang et al. (2010) showed applications of collective 
classification in classifying gender, political views, religious 
views, and relationship status using Facebook data. Zheleva 
and Getoor (2009) showed that privacy in social media sites 
can be exploited with a few public accounts using collective 
classification. Burfoot et al. (2011) used node classification 
algorithms to improve performance of sentiment classification 
in congressional floor debates. Carvalho and Cohen (2005) 
showed that collective classification approach can be success-
fully used to classify whether an email has an action request 
based on sequence of emails in a thread.

There are two main categories of node classification algo-
rithms (Bhagat et al. 2011). The first category uses a local 
classifier trained using known labels and network structure 
information to predict node labels. Iterative classification 
algorithm (ICA) (Neville and Jensen 2000) and structured 
logistic regression model are such examples, and both use 
local information and links (Lu and Getoor 2003). Gallagher 
et al. (2008) proposed to use dummy edges to allow informa-
tion flow in networks and looking at second neighborhood of 
a node instead of first neighbors to improve ICA performance.

The second type of node classification algorithms is the 
label propagation-based algorithms (Zhu et al. 2003; Lin 
and Cohen 2010). These algorithms use random walks to 
learn a global labeling function. Label propagation-based 
algorithms do not require neighborhood-based features to 
predict labels. They tend to explore the inherent link struc-
ture. Both types of algorithms assume some type of associa-
tion between nodes with same labels.

In our problem setting, we have incorporated node colors, 
potential colors of neighbors as well as link structure to iden-
tify POIs. Label propagation-based algorithms only explore 
the link structure, and so are not capable of using neighbor 
color information given by monitored nodes. ICA is the most 
widely used algorithm among local classifier-based node 
classification algorithms. ICA uses a traditional classifica-
tion algorithm as the local classifier, which is trained using 
the labeled nodes in the network. The unlabeled nodes are 
labeled according to the predictions from this local classi-
fier. ICA then iteratively recalculates features for nodes, using 
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these predicted labels, and predicts labels again. This process 
continues until the predicted labels converge. In Sect. 7.1, we 
present how ICA performs in finding POIs.

4  Proposed method

We propose algorithms RedLeaRn and RedLeaRnRS for 
Problem Settings 1 and 2, respectively. In Sect. 4.1, we 
present RedLeaRn, a novel re-sampling-based algorithm to 
find POIs, where the node colors reported by the queries are 
accurate. In Sect. 4.2, we present RedLeaRnRS, an extension 
of RedLeaRn for the more general Problem Setting 2, where 
the node colors returned by queries can be wrong. These two 
algorithms use features that include node color information, 
estimated neighbor color information, as well as network 
topology. Both of these algorithms operate under possible 
edge existence errors and neighbor color errors.

4.1  RedLeaRn: a learning‑based monitor placement 
algorithm

We introduce RedLeaRn, a learning-based sampling algorithm 
for finding nodes of interest under Problem Setting 1 (i.e., the 
reported node color is the true node color). RedLeaRn uses 
nodes’ structural features and stated attributes to predict labels 
for unmonitored nodes, as described in Table 1.

To understand the use of network structural features in 
predicting node labels, consider the following: Intuitively, 
if the original network displays node color homophily, the 
probability of node v being a red node is higher if it has 
many red neighbors. However, if the network displays low 
or even anti-homophily, using this measure will naturally 
result in poor performance.

For example, some monitor placement algorithms, such 
as selecting the node that was reported as red by the greatest 

number of monitors, depend on information retrieved from 
neighbors. The performance of such monitor placement cri-
teria thus heavily depends on neighbor color errors and edge 
existence errors.

To overcome these dependencies, the proposed RedLeaRn 
algorithm models this as a two-class classification problem, 
but rather than predicting whether a node v is red or blue, 
we instead predict P(c

v
= R).

Features Table 1 describes the set of features used by 
RedLeaRn. There are two types of features: (a) network 
structure-based features (1, 2, 3, 4, 5) and (b) neighbor-
reported color-based features (6, 7, 8, 9, 10, 11).

Network structure-based features are used to learn the 
patterns of connections between red nodes (e.g., homophily 
vs. anti-homophily), as previous work shows that algorithms 
perform differently based on the network studied (Wijeguna-
wardana et al. 2017). Neighbor-reported color-based features 
are intended to learn the relationship between what a moni-
tor reports about its neighbors’ colors and the true colors of 
those neighbors. The second-hop features (4, 5) are used to 
better estimate the red nodes that do not show homophily 
(Gallagher et al. 2008).

Inferred probability of being red We formulate four differ-
ent probabilities to measure how likely it is that an unmon-
itored node is red, based on the neighbor color estimates 
given by differently colored monitors. We use the observed 
neighbor color error information to calculate these prob-
abilities (i.e., once we monitor a node and confirm its color, 
we can determine whether monitored neighbors of this node 
have misreported its color). These four probabilities provide 
us information about whether there is a general pattern of 
neighbor color misreporting behavior. For example, we may 
learn whether monitors placed on red-colored nodes tend to 
misreport neighbor colors more frequently. In Eq. 1, we find 
the proportion of truly red nodes, when other red nodes have 
estimated them to be red.

Table 1  Classification features 
used by RedLeaRn for a node v 
with neighbor set N(v)

Here, c
v
 is the true color of v, s

v
 is the suspected color of v, and e

uv
 is u’s estimate of v’s color

Feature Description

(1) Number of red neighbors |{u ∈ N(v)|s
u
= R}|

(2) Number of blue neighbors |{u ∈ N(v)|s
u
= B}|

(3) Number of red triangles if v is red |{u,w ∈ N(v)| (u ∈ N(w)) ∧ s
u
= s

w
= R}|

(4) Number of second-hop red neighbors |{w ∈ N(N(u))|s
w
= R}|

(5) Number of second-hop blue neighbors |{w ∈ N(N(u))|s
w
= B}|

(6) Number of neighbors estimate red |{u ∈ N(v)|(e
uv
= R)}|

(6) Number of neighbors estimate blue |{u ∈ N(v)|(e
uv
= B)}|

(7) Number of red neighbors estimate red |{u ∈ N(v)|(e
uv
= R) ∧ s

u
= R}|

(8) Number of red neighbors estimate blue |{u ∈ N(v)|(e
uv
= B) ∧ s

u
= R}|

(9) Number of blue neighbors estimate red |{u ∈ N(v)|(e
uv
= R) ∧ s

u
= B}|

(10) Number of blue neighbors estimate blue |{u ∈ N(v)|(e
uv
= B) ∧ s

u
= B}|

(11) Inferred probability of being red P
I(s

v
= R)
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Next, we present how we compute the probability of a 
node v being red/blue given the choices of that neighbor u 
is either red or blue.

For each unmonitored node v, we infer the probability that it 
is red PI(s

v
= R) , based on colors of its monitored neighbors 

and color estimates these monitored neighbors have given 
about v, using Eq. 1:

Training data Suppose that we have placed n monitors so 
far. The training set then consists of the (correctly) reported 
colors of the n monitored nodes along with their respective 
feature values. We use each of the n networks obtained after 
placing each monitor to train the learning model, to deter-
mine where to place the (n + 1)st monitor.

Classification algorithm RedLeaRn determines P(c
v
= R) 

for each unmonitored node v. Because it predicts a prob-
ability rather than a binary label, RedLeaRn uses a logis-
tic regression classifier. Furthermore, because the learning 
model must be updated frequently, this classifier gives an 
added advantage of faster training.

Placing the next monitor (prediction) Given the place-
ment of n monitors and deciding to place the (n + 1)st 
monitor,  RedLeaRn calculates a feature vectors for each 
unmonitored node and applies the classifier to these feature 
vectors, giving the probability that each unmonitored node 
is red. RedLeaRn selects the node with the highest probabil-
ity for placing the next monitor. Algorithm 1 summarizes 
RedLeaRn.

P(s
v
= R|(s

u
= R) ∧ (e

uv
= R)) =

|{u, v ∈ V
m
|(s

u
= R) ∧ (e

uv
= R) ∧ (s

v
= R)}|

|{u, v ∈ V
m
|(s

u
= R) ∧ (e

uv
= R)}|

,

P(s
v
= R|(s

u
= R) ∧ (e

uv
= B)) =

|{u, v ∈ V
m
|(s

u
= R) ∧ (e

uv
= B) ∧ (s

v
= R)}|

|{u, v ∈ V
m
|(s

u
= R) ∧ (e

uv
= B)}|

,

P(s
v
= R|(s

u
= B) ∧ (e

uv
= R)) =

|{u, v ∈ V
m
|(s

u
= B) ∧ (e

uv
= R) ∧ (s

v
= R)}|

|{u, v ∈ V
m
|(s

u
= B) ∧ (e

uv
= R)}|

,

P(s
v
= R|(s

u
= B) ∧ (e

uv
= B)) =

|{u, v ∈ V
m
|(s

u
= B) ∧ (e

uv
= B) ∧ (s

v
= R)}|

|{u, v ∈ V
m
|(s

u
= R) ∧ (e

uv
= R)}|

.

(1)
P
I(s

v
= R) =

∑
u∈N(v) P(sv = R�(s

u
= R∕B) ∧ (e

uv
= R∕B))

�N(v)�
.

4.2  RedLeaRn Re‑sampLing (RedLeaRnRs) algorithm

For the second problem setting, we introduce RedLeaRnRS 
by adapting RedLeaRn. In this problem setting, we assume 
that a monitor may be incorrect when reporting the color of 
the monitored node. For example, this setting corresponds 
to criminal investigations, where an analyst needs to make a 
judgment as to whether an individual is a criminal based on 
available information. RedLeaRnRS assumes that such judg-
ment errors occur primarily on red nodes, who may report to 
the investigator that they are actually innocent blue nodes, 
while blue nodes are unlikely to claim that they are actually 
red.

Due to the potential for node color errors, RedLeaRnRS 
is a re-sampling algorithm, which may place monitors on 
already-monitored blue nodes in order to better identify their 
true colors. Re-sampling an already-monitored node indi-
cates that the analyst spends more resources looking at other 
types of communication channels or obtaining additional 
evidence, which in turn can provide a different judgment of 
the node’s color.

RedLeaRnRS uses a two-step cycle. In the first step, 
RedLeaRnRS identifies monitored nodes with likely node 
color errors, which are considered for re-query. Addition-
ally, RedLeaRnRS removes these nodes from the training 
data to help establish better ground truth labels for training 
data. The re-sampling step is viewed as an outlier detec-
tion problem: Because only red nodes may report node color 
errors, all nodes with node color errors are among the set of 
suspected blue nodes and can be viewed as outliers within 
this set. Identified outliers are added back to prediction set, 
which now contains all observed unmonitored nodes and 
re-sampled monitored nodes.

The second step of RedLeaRnRS is similar to RedLeaRn. 
Once the outlier blue nodes are identified and moved to pre-
diction set, the learning algorithm is applied to predict the 
probability of each node in the prediction set being red. The 
node with the highest probability of being red is selected as 
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the next node to be monitored. This node may be either an 
observed unmonitored node or a previously monitored out-
lier node. RedLeaRnRS’s flow is depicted in Fig. 1.

New Features Table 2 shows the new features introduced 
to the learning algorithm to identify node color errors. The 
first feature is the number of used monitors. The more times 
a node has been monitored, while still being reported as 
blue, the more likely it is that it is actually blue. The next 
two features quantify whether the monitor placed on this 
node tends to report neighbor color errors more often as an 
indication concealing information.

Since RedLeaRnRS selects nodes among the set of 
reported blue nodes to re-monitor, there is a potential risk 
of monitoring innocent blue nodes repeatedly. Re-sampling 
does not necessarily mean that the monitored node will be 
arrested and interrogated, but rather indicates that an analyst 
takes further steps to identify true color of a node. How-
ever, we need to take measures to prevent infringing privacy 
of innocent nodes. In this regard, RedLeaRnRS limits the 
number of monitors that can be placed on a single node to 
prevent excessively monitoring the same node.

Repeated Monitor Threshold  One can view this limit 
using optimal stopping criteria, which use prior probability 
information to calculate success or failure of placing another 
monitor.4 However, in our case, we would need to repeat-
edly monitor blue nodes to estimate the priors required to 
calculate the optimal stopping point. Instead, RedLeaRnRS 
uses a simple numerical method to threshold the number of 
monitors placed on the same node as shown in Eq. 2.

In Eq. 2, m
u
 represents the number of monitors placed on 

node u. Equation 2 increases the monitor threshold by one 
whenever the algorithm exceeds the current threshold num-
ber of monitors required to notice a node color change. If 
node color errors are less likely, we spend fewer monitors on 
each node, and vice versa if node errors are more common. 
We set the initial monitor threshold to 3 to avoid scenarios 
when all monitored red nodes may misreport their color in 
first round.

(2)Monitor Threshold = max
u∈Vr

(m
u
+ 1),

Fig. 1  RedLeaRnRS algorithm flow. This is a re-sampling-based 
algorithm to identify nodes of interest in a network where node colors 
reported by monitors may contain errors

▸

4 The optimal stopping problem studies when to take an action in 
order to maximize some reward. The optimal stopping problem is 
applicable to many disciplines including stock trading (Tsitsiklis and 
Roy 1999), oil drilling (Benkherouf and Bather 1988), and determin-
ing when to stop a random walk (Novikov and Shiryaev 2005). The 
solutions to the optimal stopping problem generally make assump-
tions about prior probability distribution of success and failure. Since 
we have a limited budget of monitors, calculating these priors is not 
feasible.
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5  Datasets

5.1  Noordin Top network

The first network studied is the Noordin Top dataset, a real 
terrorist network with 139 nodes and 1042 edges (“Noor-
din Top” is the name of the leader of this network) (Gera 
et al. 2017). Its edges depict several types of relationships, 
including familial relationships, communications, and co-
attendance at meetings.5 In this network, every node is a 
terrorist, and we are interested in identifying those individu-
als that communicate using a certain medium. We consider 
5 versions of this network. In NoordinComs1, the POI (red 
nodes) are those communicating using a general computer 
medium; in NoordinComs2, the red nodes are those who 
communicate using print media; in NoordinComs3, the red 

nodes are those who communicate using support materials; 
in NoordinComs4, the red nodes are those who communi-
cate using unknown media; and in NoordinComs5, the red 
nodes are those who communicate using video (Table 3).

5.2  Pokec network

The Pokec network is part of a Slovakian online social 
network.6 The nodes in the network are users of the social 
network and edges depict friendship relations. Each node 
has some number of associated user attributes (e.g., age, 
region, gender, interests, and height). We use a sample of 
this network containing all nodes in the region “kosicky kraj, 
michalovce” and edges among them. This sampled network 
contains 26, 220 nodes and 241, 600 edges. Although this 
is not a dark network dataset, we include it for purposes 
of performing more comprehensive experiments and to 

Table 2  Additional features 
used by RedLeaRnRS for a node 
v with neighbor set N(v)

Here, s
u
 represents the suspected color of u and e

vu
 represents the node color that a monitor on node v 

reports u to be

Feature Description

(1) Number of monitors placed m
v

(2) Number of blue nodes lied about |{u ∈ N(v)|(e
vu
= R) ∧ s

u
= B}|

(3) Number of red nodes lied about |{u ∈ N(v)|(e
vu
= B) ∧ s

u
= R}|

Table 3  Summary of datasets 
and node attributes we have 
used to assign node colors

Dataset Nodes Edges Attribute Red Nodes No. of Red 
Nodes

Color Assort.

NoordinTop 139 1042 Communi. Type1 9 0.23
Type2 11 0.62
Type3 9 0.11
Type4 18 0.63
Type5 5 0.06

Pokec 26059 241514 Age Age=28-32 1725 0.11
Height Height 160cm 1663 0.06

Amherst46 2235 90954 Year Year=2008 380 0.58
Year=2009 377 0.85
Year=2007 363 0.34

Major Major=99 200 0.04
Major=100 174 0.03
Major=114 161 0.03

Colgate88 3482 155043 Year Year=2008 641 0.63
Year=2009 641 0.86
Year=2007 589 0.47

Major Major=277 283 0.04
Major=247 279 0.03
Major=249 253 0.05

6 Obtained from http://snap.stanf ord.edu/data/.
5 Obtained from https ://sites .googl e.com/site/sfeve rton1 8/resea rch/
appen dix-1.

http://snap.stanford.edu/data/
https://sites.google.com/site/sfeverton18/research/appendix-1
https://sites.google.com/site/sfeverton18/research/appendix-1
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evaluate how monitor placement algorithms perform on 
larger networks.

We assign node colors based on two different node attrib-
utes (Table 3): age (a node with age in the range 28–32 is 
marked red, and blue otherwise, giving 1736 red nodes) and 
height (a user of height less than 160 cm is marked red, giv-
ing 1668 red nodes).

5.3  Facebook100 networks

Facebook100 is a collection of early Facebook networks, 
from when Facebook was only available to college students, 
and each college had its own network.7 This is a collection of 
attributed social networks, containing node attributes such as 
gender, student major, year of matriculation, and dormitory 
of residence. In our experiments, we use select Major and 
Year attributes to assign node colors. Major has low attribute 
assortivity (homophily), whereas Year has high assortivity in 
these networks, and so we can evaluate the performance of 
monitor placement algorithms in different attribute homoph-
ily scenarios.

For each attribute, the top three most frequent (non-null) 
attribute values are selected to define red–blue nodes. For 
example, if we consider the year attribute, one set of red 
nodes would be all nodes that joined in year 2008 (while all 
others are blue). This results in six different red node and 
blue node assignments for each Facebook100 network. We 
have considered two Facebook100 college networks for our 
analysis resulting 12 different red-–blue node assignments 
altogether. Table 3 shows selected attribute values and num-
ber of red nodes in each network.

5.4  Synthetic terrorist networks

To simulate dark networks embedded into civilian net-
works, we generate synthetic terrorist network structures 
corresponding to the four criminal network typologies 

described by Le (2012), which we then embed into larger 
real social networks. We label the nodes in the criminal net-
works as red, and the nodes in the larger social networks as 
blue. Through experiments on these networks, we gain a 
better understanding of how the various monitor placement 
algorithms perform when locating individuals from differ-
ent structural categories of criminal networks. Le describes 
these typologies in informal terms, but they can be directly 
mapped to concrete network structures. The network struc-
tures that we consider and the processes that we used to 
generate them are described below:

– Standard:  Standard criminal networks follow the chain 
of command and can be modeled using a tree structure 
as shown in Fig. 2a.

  Network Generation We generate this network as a 
random power-law tree with power-law exponent 38.

– Regional:  Regional criminal networks contain regional 
cells, each of which has a clear chain of command, with 
all regional leaders reporting to a central node. This net-
work structure is similar to a collection of trees, where all 
root nodes are connected to the same central node. This 
network structure is shown in Fig. 2b.

  Network Generation We generate this network as a set 
of four random power-law trees. We create a single cen-
tral node and connect that node to a randomly selected 
root node from each of the regional trees.

– Clustered: Clustered criminal networks contain multiple 
tightly knitted groups of criminals, with a central coordi-
nation body. An example clustered network structure is 
shown in Fig. 2c.

  Network Generation We generate this network as a set 
of five clusters of nodes, where each cluster is generated 
using a power-law cluster generating algorithm (Holme 

(a) Standard (b) Regional (c) Clustered (d) Core group

Fig. 2  Criminal network typologies described by Le (2012). a Stand-
ard hierarchy with a chain of commands. b Regional hierarchy with 
multiple chains of commands and a central controlling body. c Clus-

tered hierarchy with tight knit groups. d Core group hierarchy, which 
doesn’t exhibit clear structure

7 Obtained from https ://archi ve.org/downl oad/oxfor d-2005-faceb ook-
matri x.

8 Available at https ://netwo rkx.githu b.io/docum entat ion/netwo rkx-
1.10/refer ence/gener ated/netwo rkx.gener ators .rando m_graph s.rando 
m_power law_tree.html#netwo rkx.gener ators .rando m_graph s.rando 
m_power law_tree.

https://archive.org/download/oxford-2005-facebook-matrix
https://archive.org/download/oxford-2005-facebook-matrix
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html#networkx.generators.random_graphs.random_powerlaw_tree
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html#networkx.generators.random_graphs.random_powerlaw_tree
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html#networkx.generators.random_graphs.random_powerlaw_tree
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html#networkx.generators.random_graphs.random_powerlaw_tree
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and Kim 2002)9. A node is connected to 80% of the same 
cluster. We create a triangle with probability 0.8 when-
ever a new node is added. Nodes from non-coordinating 
clusters are connected to the coordinating cluster nodes 
randomly with 0.05 probability.

– Core group: Core group networks are unstructured, with 
a loose, flat hierarchy. An example of core group struc-
ture is shown in Fig. 2d.

  Network Generation We use an Erdős–Rényi random 
network with edge probability 0.1 to generate this struc-
ture (Erdos and Rényi 1960)10.

To simulate a criminal network hidden within a larger 
social network, we embed these synthetic networks into the 
Facebook100-Amherst41 network. We set the size of the 
generated criminal network to be equal to 111, which is 5% 
of the nodes in the base social network. The number of edges 
in the synthetic networks varies based on the network typol-
ogy, as described above. We use the network embedding 
process proposed by Yan (2013), which randomly connects 
nodes in the criminal network to nodes in the social network. 
This process first selects a degree d for each node in criminal 
network, where d is drawn from the original degree distribu-
tion of the larger network, and then connects this node to d 
randomly chosen nodes from the larger social network.

6  Experimental setup

In this section, we describe our experimental setup. To 
evaluate the performance of RedLeaRn and RedLeaRnRS, 
we compare them to several meaningful baseline monitor 
placement strategies, over a variety of network settings. In 
Sect. 6.1, we describe these baseline monitor placement 
strategies.

To perform a comprehensive evaluation of how the moni-
tor placement algorithms perform across different error 
settings, we consider three categories of errors: (1) Node 
color errors: how monitors on red nodes report incorrect 
node colors, (2) Edge existence errors: how monitors on 
red nodes fail to report connections to other red nodes, and 
(3) Neighbor color errors: how node monitors may misre-
port neighbors’ colors. These error behaviors are modeled 
by a variety of “error scenarios,” which we describe in, 

respectively, Sects. 6.3, 6.5, and 6.2. Finally, we describe 
our experimental setup in Sect. 6.6.

Using these experiments, we answer the following 
questions:

– How do the various monitor placement algorithms per-
form when red nodes conceal some or all of their con-
nections to other red nodes?

– How do the various monitor placement algorithms per-
form when incorrect noisy edges are present?

– How do the various monitor placement algorithms per-
form when the monitors misreport nodes’ true color or 
wrongly estimate the colors of their neighbors?

– How do the various monitor placement algorithms per-
form on different criminal network typologies?

– Do RedLeaRn and RedLeaRnRS consistently, across a 
variety of misreporting scenarios, outperform the base-
line monitor placement algorithms at the task of locating 
as many red nodes as possible?

6.1  Baseline monitor placement algorithms

We now describe several baseline monitor placement 
algorithms.

In Problem Setting 1, these baseline algorithms consider 
all observed but unmonitored nodes to select the next node 
to monitor. In Problem Setting 2, when monitors on red 
nodes may report wrong node color, baseline algorithms 
consider all blue nodes for repeated monitor placement. 
The node with the highest score among all blue nodes and 
unmonitored observed nodes is selected as the next node to 
monitor. The same repeated monitor thresholding mecha-
nism is used as in Sect. 4.2.

Smart Random Sampling  (SR) In each step, the smart 
random placement algorithm places a monitor on a random 
node, modeling chance.

Red Score  (RS) The red score algorithm is guided by the 
colors reported by neighbors of a node. If a node v reports 
its neighbor u as red, the score associated with node u is 
increased by one, making it more suspicious. This algorithm 
selects the node with highest red score to place the next 
monitor. For this method, the red score is highly impacted by 
the accuracy of information given by the neighboring node. 
Additionally, due to its use of both red and blue node infor-
mation, this algorithm uses the most amount of information 
as compared to the other baseline algorithms.

Most Red Say Red  (MRSR ) The MRSR algorithm places 
a monitor on the node with the greatest number of red neigh-
bors who estimate it as a red node. It does not factor in blue 
node information and is dependent solely on the accuracy 
of the information given by neighboring red nodes. Blue 
nodes are essentially useless in this algorithm, mimicking 

9 Availabe at https ://netwo rkx.githu b.io/docum entat ion/netwo rkx-
1.10/refer ence/gener ated/netwo rkx.gener ators .rando m_graph s.power 
law_clust er_graph .html#netwo rkx.gener ators .rando m_graph s.power 
law_clust er_graph .
10 Available at https ://netwo rkx.githu b.io/docum entat ion/netwo rkx-
1.10/refer ence/gener ated/netwo rkx.gener ators .rando m_graph s.erdos 
_renyi _graph .html#netwo rkx.gener ators .rando m_graph s.erdos _renyi 
_graph .

https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html#networkx.generators.random_graphs.powerlaw_cluster_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html#networkx.generators.random_graphs.powerlaw_cluster_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html#networkx.generators.random_graphs.powerlaw_cluster_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html#networkx.generators.random_graphs.powerlaw_cluster_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.generators.random_graphs.erdos_renyi_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.generators.random_graphs.erdos_renyi_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.generators.random_graphs.erdos_renyi_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.generators.random_graphs.erdos_renyi_graph
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the reality when they might not know who the POIs are. This 
placement algorithm would result in a red node with no red 
neighbors being impossible to discover except by chance.

Most Red Neighbors ( MRn ) The MRn placement algo-
rithm places a monitor on the node with the most known 
red neighbors. As such, it is highly dependent on network’s 
homophily. Similar to the MRSR algorithm, blue neighbors 
are unimportant in determining the likelihood of a given 
node being red.

6.2  Node color errors

In the case of monitors misreporting the neighbors’ colors 
(representing, e.g., a guilty individual shielding himself from 
detection), we allow a red node to report itself as blue with 
some predefined probability, drawn from a normal distri-
bution,  (0.5, 0.125) . We conducted experiments in which 
blue nodes have a small probability of reporting themselves 
as red, and obtained similar results. For the sake of brevity, 
we do not include these results.

6.3  Edge existence errors

In a dark network, red nodes actively try to hide their pres-
ence as well as the existence of some or all connections with 
other red nodes (for example, instead of using their normal 
cell phone to make calls to other red nodes, a red node might 
use a burner phone for such calls). To account for this, we 
consider versions of the datasets where some connections 
between red nodes are hidden uniformly at random. We have 
evaluated performance of monitor placement strategies con-
sidering how robust an algorithm is to hiding red connec-
tions. Note that this type of network presents a much more 
challenging setting, as one cannot simply rely on homophily 
to find red nodes.

6.4  Edge nonexistence errors

Any network that has been created using the data collected 
from node interactions and connections is prone to noisy 
edges that are not necessarily a part of the actual social 
network. We test the performance of proposed algorithms 
against noisy edges by adding random edges between dis-
connected node pairs in the original network.

There is another type of edge nonexistence errors, where 
criminals fabricate new edges to deceive POI detection algo-
rithms. Michalak et al. (2017) presents how criminals can 
add new edges to attack network centrality measures such 
that leaders of criminal organizations are not the highest 
central nodes while keeping influence in the network. This 
work is not in scope for this paper.

6.5  Neighbor color errors

We assume the existence of a hierarchy among the nodes, 
and that nodes are more likely to conceal interactions with 
those above them in the hierarchy. (In the Noordin Top and 
synthetic terrorist networks, this hierarchy is known; in 
other networks, we infer it using node degree.) We assume 
that the red nodes are fully aware of the hierarchy, but blue 
nodes may or may not be aware of it, depending on the error 
scenario.

Consider nodes u and v, where v ∈ N(u) . The probability 
that a monitor on node u estimates v’s color incorrectly is 
given by P(e

uv
≠ c

v
) , which depends on:

– The color of u ( c
u
 ) and color of v ( c

v
),

– The hierarchical position of u ( L
u
 ) relative to the position 

of v ( L
v
),

– The inherent investigation error E
u
 based on available 

information at node u.

We simulate the effort that a red node u would conceal its 
interactions with another criminal node v as Lv

Lu

 : i.e., crimi-

nals are more likely to conceal interactions with higher-
ranking neighbors due to possible consequences of leaking 
information.

Case 1: Suppose u is a red node. The neighbor color error 
of a red neighbor v ∈ N(u) is determined based on Eq. 3.

Equation 4 defines the probability u will estimate the wrong 
color of a blue node. This depends on inherent estimation 
error, E

u

Case 2: Suppose that uis a blue node. Whether or not u is 
even aware of red nodes depends largely on the domain, and 
in particular, whether the blue nodes are part of the same 
organization as the red nodes (blue and red nodes are all part 
of the dark network, and red nodes represent a subset of inter-
est), or if the blue nodes represent individuals who are not part 
of the same organization as the red nodes (e.g., the red nodes 
represent dark nodes in a sea of blue node civilians).

– Neighbor color error type 1 (All nodes aware of red 
nodes).

  Here, P(e
uv
≠ c

v
|c

u
= blue, c

v
= red) is determined 

using Eq. 3, since blue nodes know about red nodes 
and their hierarchy. Additionally, monitors which are 
placed on blue nodes may misreport colors of blue nodes 
depending on inherent analysts’ error as mentioned in 
Eq. 4.

(3)P(e
uv
≠ c

v
|c

v
= red) = min

{
E
u
∗
L
v

L
u

, 1

}
.

(4)P(e
uv
≠ c

v
|c

v
= blue) = E

u
.
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– Neighbor color error type 2 (only red nodes aware of 
other red nodes).

  In this case, it is not possible to distinguish whether 
a neighbor is red/blue by looking at their emails, mes-
sages, etc., because blue nodes don’t know that their 
red neighbors are red. Here, blue nodes will sim-
ply report that all their neighbors are blue. Because 
o f  t h i s ,  P(e

uv
≠ c

v
|c

u
= blue, c

v
= blue) = 0  and 

P(e
uv
≠ c

v
|u = blue, v = red) = 1.

In all cases, if P(u lie v) is greater than 1, it is rounded down 
to 1.

6.6  Experimental settings

Because our error types are probabilistic and the inherent 
neighbor color error E

u
 of each node u may also change, for 

each network and lying scenario, we perform 25 runs of each 
monitor placement algorithm. For a fair comparison across 
different monitor placement strategies, we run each monitor 
placement algorithm with the same settings (including the 
same red starting node).

Monitor Budget In each run, we consider budgets of up 
to half the number of nodes in the network. We do this to 
illustrate the behavior of the algorithm over both small and 
large budgets, even though in practice it is unlikely that fully 
half of the nodes can be queried.

Training Learning Algorithms The Noordin Top network 
is small, and so we retrain RedLeaRn and RedLeaRnRS after 
each monitor is placed. The Pokec, Facebook, and Synthetic 
networks are larger, so for the sake of efficiency, we train the 
learning model once per every 20 monitors placed.

Node color errors A monitored red node misreports its 
color with some probability drawn from a normal distribu-
tion,  (0.5, 0.125) . We consider this to be an error in the 
node color determination mechanism. Therefore, all moni-
tored red nodes misreport their colors with the same prob-
ability as described in Sect. 6.2.

Edge existence errors In a given network, we consider 
that only red nodes try to conceal their connections with 
other red nodes with a fixed probability. We present results 
when red nodes hide their connections with probability 0 
(original network), 0.5 (hiding half of red edges), and 1.0 
(hide all red connections).

Edge nonexistence errors We evaluate monitor placement 
algorithm performance in the presence of noise (incorrect 
edges) by adding edges with a probability of 0.01, between 
any two disconnected nodes in the original network.

Neighbor color errors In these experiments, the inherent 
neighbor color error at each node is drawn from a normal 
distribution, E ∼  (0.5, 0.125) . For the Noordin Top net-
work, ground truth hierarchy scores are known, as shown 
in Table 4. In the Pokec and Facebook100 networks, we set 

the hierarchy score to be the degree of the node.11 For the 
synthetic networks, hierarchy assignments are as follows: In 
the standard and regional typologies, the hierarchy score of a 
node is equal to the number of descendant nodes that it has; 
and in the other typologies, the hierarchy score of a node is 
equal to its degree. Given some error type, a monitored node 
u, misreports neighbor v’s color with probability P(e

uv
≠ c

v
) 

as mentioned in Sect. 6.5.

7  Results and analysis

This section is organized as follows: Because node classi-
fication algorithms appear to be a natural approach to this 
problem, we begin by presenting a comparison of RedLeaRn 
against the ICA node classification algorithm in Sect. 7.1. 
Next, we consider Problem Setting 1, in which monitors 
accurately report the color of the occupied node. We com-
pare RedLeaRn to the baseline monitor strategies discussed 
in Sect. 6.1. We examine how the performances of these 
monitor placement algorithms are affected by (1) red nodes 
concealing their connections with other red nodes with prob-
ability 0, 0.5, and 1.0, (2) the neighbor color error type used 
by the nodes, and (3) the monitor placement budget.

We next move to Problem Setting 2, where monitors may 
misreport the color of the occupied node. In Sect. 7.3, we 
evaluate the performance of RedLeaRnRS as compared to 
baseline algorithms.

In Sect. 7.4, we evaluate performance of monitor place-
ment algorithms when nodes report incorrect edges. We 
then conduct a feature importance analysis in Sect. 7.5 to 
determine the most important features for RedLeaRn and 
RedLeaRnRS under different neighbor color error types 
and edge existence errors. Finally, in Sect. 7.6, we evalu-
ate RedLeaRnRS on the various dark network typologies 
discussed in Sect. 5.4

Table 4  Noordin Top network hierarchy assignment

Role Hierarchy score No. of nodes

Strategist 5 10
Commander; religious leader 4 23
Trainer/instructor; bomb maker; 

facilitator; propagandist; recruiter
3 33

Bomber/fighter; suicide bomber; 
courier; recon/surveillance

2 33

Unknown 1 40

11 Results were similar for different types of centrality, including 
eigenvector and betweenness centrality.
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7.1  Node classification algorithms

In this section, we compare performance of the node clas-
sification algorithm (ICA) to RedLeaRn. Figure 3 compares 
the performance of ICA to RedLeaRn on several networks, 
under Problem Setting 1, for the two neighbor color error 
settings. In both algorithms, we used logistic regression as 
the base classifier with the same set of features. RedLeaRn 
outperforms ICA in both error types in all networks we have 
considered. A similar trend is followed even when we intro-
duce edge existence errors by concealing edges among red 
nodes.

ICA performs poorly because the training is performed 
on a sampled network, and complete information about net-
work topology is necessary to provide accurate predictions. 
Prediction errors are propagated throughout the predictions 
in ICA, because ICA uses predicted labels to calculate fea-
tures. Even though ICA performs well in node classification 
problems when complete information is present, it exhibits 
poor performance in partial information scenario.

On the other hand, RedLeaRn uses both node colors that 
are reported by the monitors and connections in making 
accurate predictions about node colors. RedLeaRn does not 
give priority to network’s topology while making the predic-
tions, whereas ICA heavily depends on topology to calculate 
neighborhood-based features.

7.2  Problem Setting 1: node color reliable

In this section, we present results for the monitor placement 
algorithms for Problem Setting 1. Figure 4 shows the per-
formance of RedLeaRn on the NoordinComs4 network for 
(a) when no edge existence errors are present, (b) red edges 
are concealed with probability 0.5, and (c) all red edges are 
concealed. When all edges between red nodes are available, 
the problem becomes easy, and the simple algorithm of 
monitoring the node with the most red neighbors (MRn) is 
best (because the red nodes exist in a near-clique). However, 
note that in both lying scenarios, even when all red edges are 
revealed, RedLeaRn is second to MRn.

However, we see that as edges between red nodes are 
increasingly concealed, the MRn performance worsens. In 
such cases, RedLeaRn performs much better than all com-
parison methods: It is able to learn the patterns of reporting 
and structural characteristics of red nodes, achieving the 
highest performance.

We present the average performance of monitor place-
ment algorithms on different attributed social networks in 
Figs. 5 and 6. Figure 5 shows monitor placement algorithm 
performances for neighbor color error type 1, and Figure 6 
shows average performance of neighbor color error type 2.

The NoordinTop and Facebook100-Year networks 
have very high node color homophily, and so all monitor 

placement algorithms perform well compared to random 
placement. However, in Facebook100-Major and Pokec net-
works, node color homophily is very low, and we observe 
overall lower performance of the various strategies. MRn 
and RedLeaRn perform equally well when there are no edge 
existence errors, and all red edges are correctly reported, 
but as before, when red edges are concealed, RedLeaRn is 
generally the best.

We see similar patterns across all networks: Edges 
between red nodes help select the node with the most red 
neighbors, and MRn outperforms all algorithms closely fol-
lowed by RedLeaRn; but when these edges are concealed, 
RedLeaRn is the clear winner.

7.3  Problem Setting 2: node colors misreported

In this section, we evaluate the performance of monitor 
placement algorithms, including RedLeaRnRS, when node 
colors are misreported by monitors.

Figure 7 shows that the results on the NoordinComs4 
network follow a similar pattern as in Problem Setting 1: 
When reported edges are reliable, MRn performs well, with 
RedLeaRnRS close behind; as we introduce edge existence 
errors by hiding edges among red nodes, RedLeaRnRS 
becomes the clear winner.

All monitor placement strategies are affected by node 
color errors, because they must expend greater amounts 
of budget to repeatedly monitor the same node. Thus, the 
performance of the baseline algorithms is reduced in this 
problem setting, since they do not employ a mechanism to 
find possible node color inaccuracies. In placing the next 
monitor, they have to consider all believed-blue nodes and 
unmonitored nodes. In contrast, RedLeaRnRS identifies pos-
sible node color errors among blue nodes using the outlier 
detection algorithm and only considers these error nodes 
and unmonitored nodes when placing the next monitor. 
RedLeaRnRS performs similarly across the different neigh-
bor color error types considered.

We summarize the average performance of monitor 
placement algorithms across all networks in Figs. 8 (NCE1) 
and 9 (NCE2). In all networks where attribute assortivity 
(homophily) is low (Pokec, Facebook100-Major networks), 
RedLeaRnRS out performs all other monitor placement 
strategies. When attributes show homophily, RedLeaRnRS 
performs quite similar to the best monitor placement algo-
rithm (MRn).

Our conclusion is that as we conceal red edges, 
RedLeaRnRS is the best performing monitor placement algo-
rithm. While it comes in second in a few cases in which all 
the original edges between red nodes are known, it closely 
follows the performance of MRn, and it outperforms it in 
some cases. Also, the situation of all the existing edges being 
known is not realistic, so the performance of RedLeaRnRS 
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Fig. 3  Comparison of aver-
age performance of ICA and 
RedLeaRn on the NoordinTop 
terrorist network and Face-
book100 networks. RedLearn 
outperforms ICA in all networks 
for both neighbor color error 
types considered. Noordin Top 
(Noordin Comms 1–5). Face-
book100-Amherst Major (Major 
99,100, and 114). Facebook100-
Amherst Year (Year 2007, 
2008, and 2009). Facebook100-
Colgate Major (Major 247, 249, 
and 277). Facebook100-Colgate 
Year (Year 2007, 2008, and 
2009). NCE1: All nodes aware 
of red nodes. NCE2: Only red 
nodes aware of other red nodes
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in the cases when some or all of these edges are missing is 
most relevant to dark networks.

7.4  Edge nonexistence error analysis

In this section, we evaluate performance of monitor place-
ment algorithms when the monitors report incorrect edges. 
This case is the most realistic one, incorporating noise that 
is normally present in real data collection. We included 
random edges between disconnected nodes in the original 
network with probability 0.01 to evaluate this phenomenon.

Figures 10 and 11 present average results for NoordinTop 
networks. The performance of all monitor placement algo-
rithms is not drastically affected by the incorrect edges that 
were added to the network.

We observe a similar pattern of results for all networks 
and all error scenarios we have considered in this paper.

7.5  Feature importance analysis

In this section, we determine the most important features 
for good performance for RedLeaRn and RedLeaRnRS. We 
look at how feature importance changes when red nodes do 
or do not show homophily, as well as when node colors are 
misreported. We examine the NoordinTop terrorist networks 
and Facebook100-Amherst Major networks for our analysis, 
since these networks show high and low color assortivity, 
respectively.

We have divided features in to four different categories to 
better explain feature importance: (1) Neighbor based: Num-
ber of blue/red neighbors (2) Tight knit groups: Number 

NoordinTop Comms 4: NCE1 (All nodes aware of red nodes)
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(a) Original Network (b) Hide red edges 0.5 (c) Hide all red edges

Fig. 4  Comparison of monitor placement algorithms on the Noordin-
Coms4 network when reported node colors are reliable (Problem Set-
ting 1). MostRedNeighbors (MRn) performs well when there are no 
edge existence errors. RedLeaRn performs consistently well across 

all edge existence error scenarios. NoordinTop Comms 4: NCE1 
(All nodes aware of red nodes). NoordinTop Comms 4: NCE2 (Only 
red nodes aware of other red nodes). a Original Network. b Hide red 
edges 0.5. c Hide all red edges
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Fig. 5  Monitor placement 
algorithm average performance 
when reported node color is 
reliable (Problem Setting 1). 
Neighbor color error type 1 
(NCE1: All nodes aware of 
red nodes) is considered here. 
MostRedNeighbors (MRn) 
and RedLeaRn algorithms 
perform similarly when 
there are no edge existence 
errors. As we introduce these 
errors,RedLeaRn becomes the 
clear winner across all monitor 
placement algorithms. Noordin 
Top (Noordin Comms 1–5). 
Pokec (Pokec age and height). 
Facebook100-Amherst Major 
(Major 99, 100, and 114). 
Facebook100-Amherst Year 
(Year 2007, 2008, and 2009). 
Facebook100-Colgate Major 
(Major 247, 249, and 277). 
Facebook100-Colgate Year 
(Year 2007, 2008, and 2009). 
a Original network. b Hide red 
edge 0.5. c Hide all red edges
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Fig. 6  Monitor placement 
algorithm average performance 
when reported node colors are 
reliable (Problem Setting 1). 
Neighbor color error type 2 
(NCE2: Only red nodes aware 
of other red nodes) is con-
sidered here. RedLeaRn has 
matched the performance of 
MostRedNeighbors (MRn), in 
most networks when there are 
no edge existence errors. As red 
nodes hide their connections 
with other red nodes, RedLeaRn 
becomes the clear winner. 
Noordin Top (Noordin Comms 
1–5). Pokec (Pokec age and 
height). Facebook100-Amherst 
Major (Major 99, 100, and 114). 
Facebook100-Amherst Year 
(Year 2007, 2008, and 2009). 
Facebook100-Colgate Major 
(Major 247, 249, and 277). 
Facebook100-Colgate Year 
(Year 2007, 2008, and 2009). 
a Original network. b Hide red 
edge 0.5. c Hide all red edges
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(a) Original network (b) Hide red edge 0.5 (c) Hide all red edges
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of red triangles, (3) Neighbor estimates based: Number of 
red/blue neighbors estimate red/blue, red score and inferred 
probability of red, and (4) Second-hop neighbors: Second-
hop red/blue neighbors. When node colors are misreported 
(Problem Setting 2), we consider an additional repeated 
monitor category, the number of monitors placed that blue/
red nodes lied about.

We evaluate feature importance using absolute values 
of the coefficients of each feature at the logistic regression 
decision boundary. The average feature importance of each 
category is reported.

Problem Setting 1: node color reliable
Figure 12 presents average feature importance scores for 

NoordinTop terrorist networks and Facebook100-Amherst 
Major networks. Tight knit groups are the most important 
feature group for RedLeaRn in NoordinTop networks. This 

agrees with our intuition, as in NoordinTop networks red 
nodes are mutually adjacent. Neighbor estimates do not 
have a high importance in NoordinTop networks, since red 
nodes can be easily identified using neighborhood features. 
In Facebook100-Amherst Major networks neighbor color 
estimates, neighbors and tight knit groups are equally impor-
tant since red nodes are much difficult to distinguish from 
blue nodes.

Feature importance changes as we introduce differ-
ent types of errors into the problem. When we introduce 
edge existence type of errors (by hiding edges between red 
nodes), the neighbor feature category improves importance 
in both network types. This is primarily due to RedLeaRn 
learning that red nodes tend to have fewer red neighbors, 
and it obtains outstanding performance when we remove 
edges among red nodes. Other neighborhood-based monitor 

NoordinTop Comms 4: NCE1 (All nodes aware of red nodes)
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(a) Original Network (b) Hide red edges 0.5 (c) Hide all red edges

Fig. 7  Comparison of monitor placement algorithms on the Noordin-
Coms4 network when monitors misreport node colors (Problem Set-
ting 2). Even though MostRedNeighbors (MRn) performs well in the 
original network, its performance worsens when edge existence errors 
are introduced. RedLeaRn performs consistently well across all neigh-

bor color error types and edge existence error scenarios. Noordin-
Top Comms 4: NCE1 (All nodes aware of red nodes). NoordinTop 
Comms 4: NCE2 (Only red nodes aware of other red nodes). a Origi-
nal network. b Hide red edges 0.5. c Hide all red edges
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Fig. 8  Monitor placement 
algorithm average performance 
when node colors are misre-
ported by monitors (Problem 
Setting 2), under neighbor 
color error type 1 (NCE1: All 
nodes are aware of red nodes). 
MostRedNeighbors (MRn) 
performs well when there are 
no edge existence errors, but 
worsens as we introduce such 
errors. RedLeaRn performs 
consistently well across all 
edge existence error scenarios. 
Noordin Top (Noordin Comms 
1–5). Pokec (Pokec age and 
height). Facebook100-Amherst 
Major (Major 99, 100, and 114). 
Facebook100-Amherst Year 
(Year 2007, 2008, and 2009). 
Facebook100-Colgate Major 
(Major 247, 249, and 277). 
Facebook100-Colgate Year 
(Year 2007, 2008, and 2009). 
a Original network. b Hide red 
edge 0.5. c Hide all red edges
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Fig. 9  Average performance 
of monitor placement algo-
rithms when node colors are 
misreported (Problem Set-
ting 2), under neighbor color 
error type 2 (NCE2: Only red 
nodes are aware of other red 
nodes). RedLeaRn performs 
consistently well across all 
edge existence error scenarios, 
when other monitor placement 
algorithms are affected heav-
ily by concealing red edges. 
Noordin Top (Noordin Comms 
1–5). Pokec (Pokec age and 
height). Facebook100-Amherst 
Major (Major 99, 100, and 114). 
Facebook100-Amherst Year 
(Year 2007, 2008, and 2009). 
Facebook100-Colgate Major 
(Major 247, 249, and 277). 
Facebook100-Colgate Year 
(Year 2007, 2008, and 2009). 
a Original network. b Hide red 
edge 0.5. c Hide all red edges
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placement algorithms are not capable of learning this phe-
nomenon. Feature importance scores remain quite similar 
across different neighbor color error types considered.

Problem Setting 2: node color misreported
Figure 13 shows average feature importance scores for 

RedLeaRnRS. We add the repeated monitor feature category, 
which was introduced to determine whether to place a moni-
tor on an already-monitored node. This feature category has 
high importance in both networks considered. Other feature 
categories have similar importance scores as Problem Set-
ting 1 as seen in Fig. 12.

7.6  Network structure analysis

In this section, we discuss how monitor placement algo-
rithms perform for several real network structures observed 
in terrorist networks. Recall that we create these networks by 
embedding different synthetically created terrorist network 

hierarchies into the Facebook100-Amherst social network, 
as discussed in Sect. 5.4.

Figure 14 depicts the performance of monitor placement 
algorithms when node colors reported by monitors are relia-
ble (Problem Setting 1). We see that in standard and regional 
hierarchies, RedLeaRn outperforms the other monitor place-
ment strategies, and the MRn method performs poorly. This 
occurs because standard and regional hierarchies have a 
chain of command and follows a tree structure, so each node 
will be connected to very limited number of red nodes. In 
such a structure, RedLeaRn is able to learn the neighborhood 
characteristics of a red node.

In neighbor color error type 2, the performance is affected 
by only red nodes’ knowing colors of other red nodes. 
Because each red node is connected to a very limited number 
of other red nodes, neighbor color estimates do not reveal 
much information.
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(a) Original Network (b) Hide red edges 0.5 (c) Hide all red edges

Fig. 10  Average performance of monitor placement algorithms on the 
NoordinTop networks when monitors report incorrect edges. Problem 
Setting 1: Node colors are reliable is considered here. Performance of 
monitor placement algorithms is not heavily affected by noisy edges. 

NoordinTop (Noordin Comms 1–5): NCE1 (All nodes aware of red 
nodes). NoordinTop (Noordin Comms 1–5): NCE2 (Only red nodes 
aware of other red nodes). a Original network. b Hide red edges 0.5. c 
Hide all red edges
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In clustered and core group hierarchies, most red neigh-
bors (MRn) perform well because red nodes are connected 
to many other red nodes. Overall, RedLeaRn performs con-
sistently well across all types of terrorist network structures.

Figure 15 shows monitor placement algorithm perfor-
mance when the colors of monitored nodes may be mis-
reported (Problem Setting 2). In this setting, RedLeaRnRS 
outperforms all monitor placement strategies in all network 
hierarchies and neighbor color error types. In the clustered 
hierarchy and core group hierarchy, MRn performs quite 
well, but it is not able to beat RedLeaRn. Overall, the base-
line algorithms perform worse than random monitor place-
ment in most network hierarchies, because they cannot iden-
tify blue nodes with color errors.

8  Discussion and conclusion

Members of dark networks conceal information by nature, 
and while these networks are deceptive and sparse, they are 
still structured. Based on these properties, we created and 
analyzed the results of several methods of sampling the net-
works to identify people of interest (POI or “red nodes”). We 
tested these methods on a small real terrorist network, larger 
social networks, and synthetic terrorist networks embedded 
into real social networks. As our monitors represent analysts 
that may misreport findings, we used several error scenario 
models, including node color errors, neighbor color errors, 
neighbor existence error, and neighbor nonexistence errors.

We created RedLeaRn, a learning-based method for locat-
ing POI in dark networks when reported node colors are 
reliable (Problem Setting 1).  RedLeaRn uses features from 
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(a)Original Network (b)Hide red edges 0.5 (c)Hide all red edges

Fig. 11  Average performance of monitor placement algorithms on 
the NoordinTop networks when monitors report incorrect edge. Prob-
lem Setting 2: Node colors are misreported is considered here. Per-
formance of monitor placement algorithms remains quite similar to 

when there are no noisy edges. NoordinTop (Noordin Comms 1–5): 
NCE1 (All nodes aware of red nodes). NoordinTop (Noordin Comms 
1–5): NCE2 (Only red nodes aware of other red nodes). a Original 
network. b Hide red edges 0.5. c Hide all red edges
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the simpler baseline algorithms and learns how to identify 
red nodes in networks. Results show that RedLeaRn outper-
forms the other methods in cases where one cannot rely on 
nodes to reveal all their connections (edge existence errors). 
RedLeaRn performed well across the different neighbor 
color error types we considered.

We then introduced Problem Setting 2, where node 
colors may be reported with errors. In this setting, we 
used RedLeaRnRS, a re-sampling algorithm that extends 
RedLeaRn to identify POIs. All monitor placement algo-
rithm performances were affected in this case since multiple 
monitors needed to be placed on a single node to uncover 
the true color; however, RedLeaRnRS outperformed other 
baseline monitor placement algorithms by successfully iden-
tifying POIs that were initially misreported.

RedLeaRnRS assumes that only red nodes will misreport 
their color. Therefore, it is necessary to re-monitor nodes 

that are reported to be blue to identify potential node color 
errors. This might lead to the risk of repeatedly monitor-
ing innocent blue nodes. We introduced repeated monitor 
threshold in RedLeaRnRS to minimize number of times a 
blue node will be monitored. Our analysis shows that the 
RedLeaRnRS algorithm re-samples a blue node 1.61 times 
on average with a standard deviation of 1.2 compared to 
1.68 average and 1.03 standard deviation of re-sampling a 
red node. This shows that RedLeaRnRS does not excessively 
monitor the same blue node. Another important fact is that 
when we refer to “monitoring” some node, it doesn’t neces-
sarily mean that the node will be arrested and questioned. 
It is rather an analyst will spend more time and resources 
determining the true color of a node.

In general, all monitor placement algorithms performed 
well in networks where red nodes tend to have direct connec-
tions with other red nodes (high color assortivity present in 
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Fig. 12  Average feature importance scores of NoordinTop and Face-
book100-Amherst Major networks when reported node colors are 
reliable (Problem Setting 1). Tight knit groups are the most important 
feature category in NoordinTop networks, since red nodes tend to be 

clustered together. The importance of the neighbor feature category 
increases when we hide red edges. NoordinTop (Noordin Comms 
1–5). Facebook100-Amherst Major (Major 99, 100, and 114). a Orig-
inal network. b Hide red edges 0.5. c Hide all red edges
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Noordin Top, Facebook100-Year attribute); and vice versa 
when red node assortivity is low (Facebook100-Major attrib-
ute and Pokec networks). The MostRedNeighbors (MRn) 
monitor placement algorithm performed the best in highly 
color assortative networks since red nodes tend to have 
many red neighbors. The performance of MRn was drasti-
cally affected by edge existence errors . On the other hand, 
RedLeaRn performed well across all network types and error 
types. All monitor placement algorithms are not affected by 
small edge nonexistence errors

RedLeaRn and RedLeaRnRS use several network struc-
ture-based features and neighbor color estimate-based 
features to identify nodes of interest in social networks. 
We conducted a feature importance analysis to determine 
most important features in different network structures and 
problem settings. Tight knit groups were seen to be most 
important feature group when red node assortivity is high 
(NoordinTop networks). For other networks, neighbors, 
neighbor color estimates, and tight knit groups showed to 

be equally important. Repeated monitors feature category 
was the most important feature category in Problem Setting 
2, when node colors are reported with errors.

We generated several criminal network hierarchies in 
accordance with the criminology literature and embed-
ded these synthetic criminal network structures into Face-
book100-Amherst network to determine which algorithms 
perform well across different criminal hierarchies. Our 
results showed that MRn monitor placement works well 
when criminals are clustered together in groups. In all other 
hierarchies, RedLeaRn and RedLeaRnRS outperform base-
line monitor placement algorithms across two problem set-
tings and error types we have considered.

For future work, one interesting direction to consider is 
the dynamicity of the network (both on the edge and node 
rate of birth and retirement). Another interesting future 
direction would be to consider this problem from a crimi-
nal’s perspective to analyze how criminals can deceive 
these learning algorithms. This analysis can then be used 
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(a) Original Network (b) Hide red edges 0.5 (c) Hide all red edges

Fig. 13  Average feature importance scores of NoordinTop and Face-
book100-Amherst Major networks when node colors may be misre-
ported by monitors. Repeated monitor feature group has the highest 
importance in most networks since this feature category determines 

whether to place a monitor on an already-monitored node. Noordin-
Top (Noordin Comms 1–5). Facebook100-Amherst Major (Major 99, 
100, and 114). a Original network. b Hide red edges 0.5. c Hide all 
red edges
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Fig. 14  Comparison of monitor 
placement algorithm perfor-
mance for different criminal 
network hierarchies when 
reported node colors are reliable 
(Problem Setting 1). RedLeaRn 
performs the best in all network 
hierarchies in NCE 1. When 
red nodes are clustered and/
or connected to lot of other 
red nodes (core group), MRn 
tends to perform well. Standard 
hierarchy criminal network. 
Regional hierarchy criminal 
network. Clustered hierarchy 
criminal network. Core group 
hierarchy criminal network. 
NCE1: All nodes aware of red 
nodes. NCE2: Only red nodes 
aware of other red nodes

Standard hierarchy criminal network
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Fig. 15  Comparison of monitor 
placement algorithm perfor-
mance for different criminal 
network hierarchies when node 
colors may be misreported 
by monitors (Problem Setting 
2). RedLeaRnRS outperforms 
all other monitor placement 
strategies. Standard hierarchy 
criminal network. Regional 
hierarchy criminal network. 
Clustered hierarchy criminal 
network. Core group hierar-
chy criminal network. NCE1: 
All nodes aware of red nodes. 
NCE2: Only red nodes aware of 
other red nodes
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to develop algorithms that are robust to deceptive criminal 
behavior.
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