
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1982

Structural optimization--past, present, and future

Vanderplaats, G.N.
AIAA

Vanderplaats, G. N. "Structural optimization--past, present, and future." AIAA Journal
20.7 (1982): 992-1000.
http://hdl.handle.net/10945/63199

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



992 AIAA JOURNAL VOL. 20, NO. 7

AIAA81-0897R

Structural Optimization—Past, Present, and Future

G. N. Vanderplaats
Naval Postgraduate School, Monterey, Calif.

' Introduction

THE concept of optimization is intrinsically tied to natural
phenomena as well as to the human desire to excel. Sir

George Cayley (1773-1857) measured the shape of a trout and
noted, without mathematical proof, that the trout was ideally
proportioned to minimize flow resistance.1 Theodore von
Kdrmdn2 observed that this is precisely the shape of a low-
drag airfoil. Oliver Wendell Holmes (1809-1894), in his classic
verse, "The Deacon's Masterpiece; or, The Wonderful One-
Hoss Shay," recorded man's desire to produce a uniformly
strong, durable product.3 In this case it was the structural
design of a shay to last a hundred years.

Perhaps the first analytical work in structural optimization
was by Maxwell in 1869,4 followed by the better-known work
of Michell in 1904.5 These works provided theoretical lower
bounds on the weight of trusses, and, although highly
idealized, offer considerable insight into the structural op-
timization problem and the design process.

The 1940s and early 1950s saw development of component
optimization in such works as Shanley's Weight-Strength
Analysis of Aircraft Structures.6 Also during this period,
availability of the digital computer led to application of linear
programming techniques to plastic design of frames, for
example, the work of Heyman.7 This early numerical work is
particularly significant in that it used mathematical
programming techniques developed in the operations research
community to solve structural design problems.

Schmit8 in 1960 was the first to offer a comprehensive
statement of the use of mathematical programming
techniques to solve the nonlinear-inequality-constrained
problem of designing elastic structures under a multiplicity of
loading conditions. This work is significant, not only in that it
ushered in an era of structural optimization, but also because
it offered a new philosophy of engineering design which is
only now beginning to be broadly applied. In Ref. 9 Schmit
provides an excellent historical review of the development of
this concept.

Although this discussion will emphasize numerical design
techniques, it is important to note that there has been an
extensive amount of research in analytical methods of design.
That work, although sometimes lacking the practicality of
being applied to realistic structures, is nonetheless of fun-
damental importance because it provides insight into the
design problem and because it often provides theoretical
lower bounds against which more practical designs may be

judged. References 10 and 11 provide an extensive review of
the state-of-the-art in analytical design techniques.

It is the use of numerical techniques in structural op-
timization that is emphasized here. The purpose is not to offer
a tutorial on optimization or a comprehensive literature
survey, although such works are referenced. Rather, it is to
look briefly at the short history of modern structural op-
timization and assess the state-of-the-art from a somewhat
more philosophical viewpoint. In this way we may begin to
understand the ramifications of this fascinating approach to
design. By learning what is now possible and what is not now
possible, we may encourage the use of these techniques by
practicing designers as well as identify research and
development needs of the future.

The Design Problem
The design task is presented here together with basic

definitions to provide a common terminology for discussion.
The problem is stated in the context of mathematical
programming because this provides the most general format
for design. Only a brief outline is given here. Reference 12
presents a more general description of mathematical
programming techniques as applied to engineering design.

Mathematically, the design task is to find the set of n design
variables contained in the vector X that will minimize

subject to:

F(X)

g j ( X ) < 0 j=l,m

hk(X)=0 k=l

i = l,n

(1)

(2)

(3)

(4)

The components Xi of X are referred to as "design
variables," and the designer is free to change their values to
improve the design. In structural optimization the design
variables are typically member dimensions, joint coordinates,
or the number of plys in a composite laminate.

The function F(X) is called the "objective." While F(X)
may be cost or some measure of performance, it is most
commonly the weight of the structure.
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Inequality constraints gj(X) are the response limits imposed
on the design. For example, the stress at some point in the
structure may be limited to the bound a so the constraint
function is written in normalized form as

(5)

Other common constraints include limits on deflection,
frequency, flutter, and local and system stability as examples.
These are one-sided limits that need not be satisfied with
precise equality.

Equality constraints hk(X) are precise requirements that
must be met for the design to be acceptable. Equality con-
straints can include the conditions of equilibrium and
compatibility. However, these are usually satisfied as a
subproblem, vis-a-vis finite element analysis, rather than
within the actual design statement. Consequently, equality
constraints are not as common in structural optimization as in
other design optimization problems.

The lower and upper bounds, X\ an'd'A^, respectively, on
the design variables are referred to as "side constraints."
These could be included in the general-inequality-constraint
set g(X) but are usually treated separately because they
directly limit the region of search for the optimum. The most
common side constraint is the minimum-gage limit. Note that,
although the constraints g(X) and h(X) may not be satisfied at
some point in the design process, it is often essential for the
side constraints to be satisfied at all times in order to evaluate
the other constraints. For example, if the analysis of a
structure is attempted with a negative member thickness
(violation of the minimum-gage constraint), the calculated
response quantities, such as stress and displacement, are not
meaningful and indeed may not be computationally ob-
tainable due to matrix singularity in the analysis.

The design statement given here is general, and,.at this
point, no restrictions have been placed on the nature of the
problem. The design variables may be continuous, discrete, or
integer. Similarly, the objective and constraint functions may
be discontinuous and have discontinuous derivatives. There
may be only one unique optimum or there may.be many
relative optima. How many, and the nature, of the restrictions
that must be imposed on the design problem to make its
solution tractable will determine the value of any proposed
design technique.

The quest for a general, efficient, and reliable method for
structural design optimization is the subject here. In the in-
troduction, a historical narrative leading to the age of
computers was offered. In the following sections, the concept
developments of the 1960s and subsequent refinements of the
1970s are reviewed to provide an understanding of the state-
of-the-art. This review leads naturally to an indication of the
needs and expectations of the future in structural op-
timization.

The Magnificent '60's
The setting of the late 1950's was in many ways ideal for

major advances in structural design. The space race was well
under way, creating a strong demand for lightweight struc-
tures and providing the research funds necessary to develop
new design techniques. Digital computers were becoming
commonly available, and the finite element method was
offering the designer a tool for analysis of increasingly
complex structures. It is not surprising that Schmit's land-
mark paper of I9608 was the beginning of a remarkable era of
research in computer-based design. This work was of par-
ticular importance in two respects. First, using a simple
example, Schmit demonstrated that the least-weight design
may not be fully stressed, where a fully stressed design is one
in which each member is stressed to its allowable limit under
at least one loading condition. This result was counterintuitive
and indeed was a startling departure from the simultaneous-

failure-mode approach in common use at the time. Second,
through the use of nonlinear programming techniques, he
offered a means of obtaining this optimum on the computer.
This new method did not require a priori selection of the
failure modes, thus offering the designer the freedom to
include many possible failure modes, allowing the computer
to select those that would influence the design.

This author became involved in structural optimization in
the late 1960's and so brings the perspective of one who was
not involved in, and indeed was not aware of, the vast
research in the field up to that time. The review papers of that
period,13"17 listing references in the hundreds, attest to the
dynamic state-of-the-art in this field.

Much of the interest in these new techniques clearly resulted
from the fact that the problem statement required little
modification for application to structures of general interest.
Nonlinear programming techniques of the time usually
required that one work with continuous variables and
assumed mathematical convexity, but, most important, did
not require linearization of what was fundamentally a
nonlinear problem. Convexity implies that there are no
relative minima, an assumption that had been tacitly accepted
before this time anyway. Although for many problems it was
desirable to work with discrete variables so that the design
could be chosen from available gage sizes, or an integer
number of stiffeners could be specified for a cylinder, in most
cases an acceptable solution could be achieved by treating the
design parameters as continuous variables. Finally, there
appeared to be a natural marriage between mathematical
programming and finite element methods for linear analysis
because gradient (sensitivity) information could be readily
obtained. This allowed the use of many of the more powerful
gradient-based mathematical programming algorithms.
Therefore, the variety and sophistication of design problems
that could be pursued appeared inexhaustible.

Mathematical programming techniques were shown to be
an effective tool for design of numerous civil, aeronautical,
and space structures. Design variables primarily were truss
member dimensions, shell thicknesses, and ring and stringer
dimensions. These were traditional design variables, but now
several could be considered simultaneously. More important,
the structure was designed to satisfy multiple and often
complex constraints including strength, deflection, stability,
frequency, flutter, and postbuckling response limits under a
variety of loading conditions.

It is not surprising that many researchers considered these
structural synthesis concepts to be a revolutionary change in
our approach to design. Because this promising tool was so
new, with so much development required to establish the
methodology, it was enthusiastically pursued.

By the late 1960's, however, it was becoming apparent that
structural synthesis was not being embraced by the
professional community, as many people, including this new
convert, expected it would be. Some plausible explanations
can be offered. First, design is far more complex than
analysis, and at that time the finite element method was just
becoming generally accepted after approximately fifteen years
of development. A new design methodology takes longer to
gain general acceptance. Second, structural synthesis
represents an integration of engineering and operations
research disciplines. Because mathematical programming
methods were unknown to the vast majority of engineering
researchers, educators, and practitioners, it was unreasonable
to expect immediate and widespread acceptance, particularly
since 'nonlinear programming was itself not a mature
discipline.

Each explanation was reasonable and required only time
and patience to overcome. It was also becoming recognized,
however, that there might be a fundamental limit of this new
technology. The simplest problem often needed to be analyzed
hundreds of times during optimization. If this analysis were
time-consuming, as is often the case for large finite element
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models, the cost of optimization quickly became prohibitive.
Even if the efficiency of the optimization algorithms could

be improved to an acceptable level, there were good
theoretical arguments to indicate that the cost of optimization
was not constant and did not even increase linearly as the
number of design variables increased, but instead increased at
a quadratic or in some cases exponential rate.

If the structure was to be analyzed using the finite element
method, it was commonly accepted that hundreds or even
thousands of design variables would be desirable to provide
complete design freedom. In other words, it was expected that
one or more design variables would be associated with each
finite element in the model.

By this time, enough computational experience had been
documented to indicate that mathematical programming
techniques applied to structural design were limited to
perhaps 50 design variables.18 In view of the need (or at least
the desire) to design structures modeled with many more
variables than this, it was clear that an impasse had been
reached. It appeared that, although the generality of
mathematical programming made this a most attractive
design tool, practicality dictated that it was limited to
problems defined by only a few design variables.

Growing Pains of the 1970's
In 1970, structural synthesis as defined and presented by

Schmit was a decade old. There had been time to investigate
many concepts within this framework and to begin to un-
derstand its limitations. The realization of these limitations
was most graphically depicted in 1971 by Gellatly, Berke, and
Gibson19 when they referred to the '60's as a "period of
triumph and tragedy" for structural optimization. In view of
the growing disenchantment with the use of mathematical
programming techniques, this was indeed an accurate and
insightful statement!

Furthermore, an alternative approach was offered, and was
presented in 1968 in analytical form by Prager and co-
workers20'21 and in numerical form by Venkayya, Khot, and
Reddy.22 This concept became popularly known as the
* 'optimality criteria' ' approach.

The optimality criteria approach begins with the same
general statement of the design problem; however, rather than
working directly to minimize the objective function (weight,
for example), one specifies a criterion such that if it is
satisfied, subject to the constraints, then the design is defined
as optimum. A common criterion is that the strain energy
density in each member of the structure will be the same.
Mathematically this leads to the problem of finding the design
variables X such that

f(Xl ) =f(X2 )=f(X3)... =f(Xn ) = const (6)

subject to:

gj(X)<0 j=l,m (7)

i = l,n (8)

where the equality constraints are omitted for brevity.
Now the Kuhn-Tucker necessary conditions for op-

timality23 require that

(9)

(10)

(11)

\j>0 j=l,m

\ j g j ( X ) = 0 j=l,m

where V is the gradient operator.

The Lagrange multiplier Xy is positive only if constraint
gj(X) is critical [gj(X) = Q]. Therefore, using Eqs. (9) and
(11), we can create a set of simultaneous nonlinear equations
to solve for X and X, subject to the nonnegativity
requirements on Xy.

The essence of the optimality criteria approach is first to
establish the criterion that defines the optimum and then
devise a recursive formula that leads, iteratively, to the
desired solution. The problem is simplified somewhat if we
can identify which constraints will be critical at the optimum
because we know that these will have positive Lagrange
multipliers. In practice, a priori knowledge of which con-
straints will be critical at the optimum is not essential, and
these constraints may instead be identified during the iterative
process.24

A special case is the design of statically determinate
structures subject to stress limits only. Here it is known that
each member will be fully stressed under at least one loading
condition (or will be at its minimum gage), so for isotropic
materials the uniform strain energy density assumption is
clearly valid. Furthermore, it can be demonstrated that the
fully stressed design of a statically determinate structure is
also minimum-weight. Therefore, even though weight was not
directly part of the optimality criterion, it was indirectly
minimized. In the more general case, the problem of iden-
tifying which constraint would be critical at the optimum
presented, at least theoretically, a limitation to this concept.

Although the optimality criteria approach was largely
intuitive, it was shown to be quite effective as a design tool.
Its principal attraction was that the method was easily
programmed for the computer, was relatively independent of
problem size, and usually provided a near-optimum design
with as few as 15 detailed structural analyses. This last feature
represented a remarkable improvement over the number of
analyses required for mathematical programming methods to
reach a solution.

Because of this vast improvement in efficiency, con-
siderable research effort was devoted to optimality criteria
concepts in the early and mid-1970's. An excellent description
of the concepts is provided by Kiusalaas.25 The works of
Prager,26 Venkayya et al.,27 Berke and Khot,28 and Isakson et
al.29 are indicative of the capabilities of that time.

The two competing design concepts of this period provided
a choice that was less than desirable since neither concept was
clearly superior for application to problems of practical in-
terest. Mathematical programming offered an extremely
general tool. Also, it was attractive from a theoretical
viewpoint in that no assumptions were required about the
nature of the optimum. One could simply approach the design
process as a general nonlinear-constraint-minimization
problem and let the ''optimizer" lead where it would. On the
other hand, optimality criteria had no clear theoretical basis.
It was known that these techniques would, on occasion, lead
to nonoptimum designs and would even diverge from the
solution. However, this behavior was usually associated with
specially constructed test problems and appeared to be an
academic more than a practical concern. Most important,
optimality criteria offered a solution for more practical design
problems, a feature that often overshadowed the limitations
of the method.

The strengths of the two methods suggested a natural
separation of the design problem, where optimality criteria
would deal with a large number of system variables and
mathematical programming would solve the component-
design problem. This approach was pursued with success by
Sobieszczanski (Sobieski) and Leondoff30 in the design of
fuselage structures. This work is important, not only because
it combined both methods, but also because it seemed to build
a common ground where researchers in both areas began to
look more closely for a fundamental relationship between the
methods. This is not to suggest that there was no cross flow of
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information before this. Indeed, about 1970, Berke*
suggested to this author the desirability of looking for a
theoretical link between the two approaches. The motivation
for such an effort would be to understand when optimality
criteria would and would not provide a theoretical optimum.
Similarly, in that same time period, Schmitt was encouraging
his graduate students, including this author, to investigate
"approximation concepts" as a mechanism to improve the
efficiency of using mathematical programming techniques.

In 1973 Schmit and Farshi presented a concise statement of
the approximation concept approach to structural synthesis
using mathematical programming.31 Several concepts are
presented in Ref. 31, but perhaps the most far-reaching is the
use of intermediate variables to provide high-quality, explicit
approximations to the original problem. The principal
technique was use of the reciprocal of the member sizes as
design variables; for example, given a bar element, the
elongation d = PL/AE is inversely proportional to the cross-
sectional area. The gradient of the elongation with respect to
the design variable A is

dd/dA=-PL/A2E (12)

Replace the design variable A by its reciprocal B = 11A. Now

b = PLB/E (13)

and

dd/dB = PL/E=const (14)

Because displacement (or stress, which is linearly related to
displacement) is a constraint on the design, this simple change
of variables has converted a nonlinear constraint to a linear
constraint. In general, when this bar is a part of an in-
determinate structure, there is coupling between the design
variables, and the reciprocal formulation is approximate,
being precise only in the case of statically determinate
structures. . \

* Note that, if the objective to be minimized is weight,
W=pAL, the change of variables leads to a nonlinear, but
still explicit, objective W=pL/B. Therefore, an ap-
proximation is created which has a nonlinear objective
function with linear constraints, all of which are explicit
functions of the intermediate variables B and are easily and
economically evaluated.

The approximation to the original problem having been
created, the approximating functions are used in the op-
timization. Once the optimum solution to the approximate
problem is found, a precise finite element analysis is per-
formed and a new approximation is created. In this fashion,
the final optimum is obtained iteratively. Thus a technique is
provided in which all the features of the original problem are
retained in such a way that a sequence of approximate op-
timizations leads to a precise solution. Because the ap-
proximate problem requires little effort for function and
gradient evaluation, mathematical programming techniques
can be used for this subproblem.

A detailed description of approximation concepts together
with numerous examples was presented by Schmit and Miura
in 1976.32 The techniques were applied to structures made of
bar and membrane, elements and subjected to strength and
displacement constraints under multiple loading conditions.
Using these methods, the optimum design of a statically
determinate structure is obtained with only one detailed

*Dr. Laszlo Berke, Head, Structures Branch, Structures and
Mechanical Technology Division, NASA Lewis Research Center,
Cleveland, Ohio.

fProfessor Lucien Schmit Jr., Dept. of Mechanics and Structures,
University of California, Los Angeles, Calif.

analysis. For the design of indeterminate structures, the
number of detailed analyses reported in Ref. 32 is typically
10. However, the reported results, viewed in the context of
practical applications, show that a very near optimum design
(optimum within machining tolerances) is obtained in as few
as 3 detailed analyses, even for highly redundant structures.
Furthermore, this efficiency appears to be independent of
problem size. This was a major development that allows the
designer to retain the generality of mathematical program-
ming while solving problems of practical size.

During the late 1970's, development continued in both
optimality criteria and mathematical programming ap-
proaches to structural optimization. In terms of un-
derstanding the automated design process, perhaps the most
significant work was in the area of reconciling the
mathematics of the two basic concepts. The definitive work of
Fleury33'35 and Fleury and ^Sander36 offers fundamental in-
sight into the mathematical basis of both approaches and, in
fact, shows a common basis in the duality of the original
problem statement. This work principally shows that op-
timality criteria are valid for a mathematically separable
problem and, as such, may be viewed as a special case of
mathematical programming.

Indeed, it appears that the combination of approximation
concepts and dual methods37"39 has provided the "best of both
worlds" for a large class of design problems.

The Present
The discussion thus far has'dealt with development of the

state-of-the-art in structural optimization using numerical
techniques. Particularly significant contributions have in-
cluded the initial nonlinear programming approach to
structural synthesis, development of optimality criteria,
approximation concepts, and, most recently, the coalescence
of ideas through the combining of approximation concepts
and dual methods.

Although there has been major progress, much remains to
be done. The purpose of this section is twofold. The first is to
briefly identify the state-of-the-art as it relates to the
disciplines incorporated in the synthesis. These include the
optimization techniques, an analysis procedure (typically the
finite element method), and the mechanism through which
these disciplines are combined. The second purpose here is to
identify the state-of-the-art as it applies to practical ap-
plications and the potential for future applications of these
techniques to structural design.

Mathematical programming (where optimality criteria are
now considered as a special case) has matured significantly in
the last 20 years even though most of the basic algorithms
were known in some form in the early 1960's. Although these
algorithms were developed primarily by the operations
research community, major modifications have often been
made to provide an efficient and reliable tool for structural
design. There are two reasons for these modifications.

First, there is a subtle but fundamental difference between
developing a mathematical algorithm, together with proofs of
convergence indicating its efficiency, and actually making this
algorithm usable for engineering design on a digital computer.
An excellent recent example of the practicalities of using
mathematical programming in design is found in Khachian's
algorithm for solving linear programming problems.40 This
algorithm was highly publicized in the press as a method that
would converge for the worst-case problem at a polynomial
rate, as compared with Dantzig's time-honored Simplex
method,41 which had a much less desirable exponential
convergence rate. Yet the solution to the trivial problem of
maximizing the single variable X subject to the limit that X
not exceed unity requires 1 iteration using the Simplex method
and 82 iterations using Khachian's method.42 Furthermore,
with Khachian's algorithm, many significant figures must be
retained in the computer for the solution of problems of even
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996 G. N. VANDERPLAATS AIAA JOURNAL

modest size. The message here is that the theoretically more
attractive method may not be best in practice. In engineering
design, it is often necessary to take liberties with the
mathematical properties of the problem in order to devise a
workable algorithm. For example, although an inequality
constraint g(X)<Q is mathematically "active" only when
g(X) is precisely zero, in an engineering sense the value
g(X)=-0.05 may be considered critical. This is because
material properties, failure criteria, and loading environments
are virtually never known with greater precision. Con-
sequently, from an engineering viewpoint, a mathematically
precise optimum is seldom meaningful.

The second reason is that the cost of one analysis of a
proposed design can be very high; therefore, the rate of
convergence of the optimization algorithm is important. A
method that converges quickly to a near optimum is usually
preferred to one that converges slowly to a precise optimum.
This argument is somewhat less important when ap-
proximation concepts are used because the problem solved by
the optimization code is computationally efficient. As will be
seen in the following paragraphs, however, approximation
concepts do not apply to all structural optimization problems,
and so there remains a need for optimization algorithms with
rapid-convergence characteristics.

The state-of-the-art in mathematical programming is such
that the optimization algorithm is usually not a critical issue
so long as a modern algorithm is used. For example, the
steepest-descent method should never be used for un^
constrained minimization because very little additional effort
is required for the use of conjugate direction methods, with
their improved convergence characteristics. A general
overview of mathematical programming methods is presented
in Ref. 43. References 44-48 present comparative studies of
nonlinear programming codes and attempt to rank several
available programs. In reviewing this literature, a word of
caution is in order. The problems solved in these studies are
often quite trivial in terms of computer time for one analysis.
Also, they often bear no relationship to engineering design,
and those studies that do include "engineering" problems

' consider examples that do not require significant resources for
analysis. The figure of merit used to rank the codes is usually
a combination of CPU time, preparation time,1 ease of use,
etc., in addition to the number of function evaluations
required. Consequently a program may appear quite good
while requiring hundreds of function evaluations to solve a
problem of only three or four variables. If, however, one
function evaluation consists of solving a complex analysis
problem, for example, flutter or postbuckling analysis, the
cost of optimization using such a program would be
prohibitive. This suggests that, for practical design, only two
criteria are meaningful. First, does the program reliably
achieve a near-optimum design (as noted earlier, a precise
optimum is seldom meaningful) and second, does the
program use few enough function (and gradient) evaluations
to be economically usable for the design task at hand? The
manner in which the optimization and analysis programs are
coupled together to create the design program will determine
the ultimate utility of these techniques, and the engineer's
ability to match the optimization algorithm to the design
problem usually has the most important impact on the overall
result.

Most large computer installations maintain one or more
nonlinear programming codes. The designer should begin by
experimenting with these, remembering an additional word of
caution. The same algorithm programmed by two different
people will often differ in reliability and computational ef-

1 ficiency by more than an order of magnitude. This is because
we are attempting to numerically model on the computer
much of the judgment, experience, and intuition of a good
design engineer. A numerical optimization code, although
based on a particular algorithm, will reflect the ability of the
person who programmed the code to model this highly

complex decision process. If the locally available
mathematical programming codes are not satisfactory, Refs.
12 and 44-49 identify numerous additional sources. Any cost
to obtain a particular code is usually nominal compared with
the cost of developing a new optimization code.

To summarize, the state-of-the-art in mathematical
programming is such that engineers should no longer find it
necessary to develop their own programs. It should be ex-
pected, however, that with experience, they may wish to tailor
an existing code to solve their particular design problem more
efficiently.

The second essential ingredient to structural synthesis is the
analysis capability. It is assumed that the engineer is familiar
with and will use a finite element program in design, although
for specific cases other analysis techniques may be employed.
The state-of-the-art in finite element analysis is becoming
quite advanced, probably the most widely used program being
NASTRAN.50 Here, however, there is a missing ingredient,
namely, the ability to obtain gradient (sensitivity) information
as part of the analysis, even though the technology for
calculating this information is well in hand.31'51'52 Although
sensitivity information was obtained using NASTRAN as
early as 1974,53 obtaining this information is not an integral
part of the program, with the efficiency that would result if it
were. Several other programs exist that do provide gradient
information and in most cases also include optimization in an
integrated analysis/design code. These include, as examples, a
general programming framework,54 and programs AC-
CESS,55 ASOP,56 EAL,57 PARS,58 SAVES,59 SPAR,60

STARS,61 and TSO.62 .Although providing a remarkable
design capability, these programs have not gained wide ac-
ceptance in the design community at this time.

The final and most critical ingredient to structural synthesis
is the mechanism by which the analysis and optimization
programs communicate. The most direct approach is to
simply couple the optimization code to the analysis code and
treat the problem in the form originally presented by the
engineer. Any gradient information would be calculated by
finite difference, and each function evaluation required by the
optimization program would be a completely new analysis of
the structure. This "black box" approach is actually quite
reasonable for a large percentage of design tasks. If one is
designing a structural component, and the analysis is not
expensive but several design variables are used and multiple
loading and constraint conditions are imposed, this direct
approach is particularly useful.

For the design of more complex structural systems, the cost
of repeated analyses usually precludes the black box ap-
proach. Here the first step is to incorporate gradient com-
putations into the finite-element-analysis code. It is con-
ceptually straightforward to provide this information for
stress, displacement, frequency,63'64 and flutter65 constraints.
Having done this, there remains considerable effort to
develop an efficient and reliable design program. It is here
that the approximation concepts of Refs. 31 and 32 play a
fundamental role. By generating the approximate problem,
one drastically reduces the computational resources needed to
reach the solution. Furthermore, through the use of dual
methods37'39 it is now possible to treat discrete variables in the
automated design process, allowing as design variables the
number of plies in a composite laminate or the selection of
panels from available gage sizes. These recent developments
are not universally applicable, however, and it is important to
understand their limitations.

First consider the approximation concepts. The quality of
the approximation is directly dependent on the analysis model
or, more precisely, on the choice of intermediate design
variables. For example, in designing structures made of bar or
membrane elements, the basic design variables are the cross-
sectional area A and the member thickness t. By picking the
intermediate design variable B=\/A or B=l/t, the first-
order Taylor series approximation to the displacement with
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respect to this variable is precise for statically determinate
structures and is a good approximation for indeterminate
structures. This is because the element stiffness matrix is the
product of the original scalar variable, A or t, and an in-
variant matrix that depends only on the material properties
and geometry of the structure. Similarly, if the structure is
composed of plate bending elements, a good intermediate
variable would be B = 1 /t3.

Now consider the design of a rectangular frame element,
where the design variables are the width and height of the
element. Because the element stiffness matrix contains the
moments of inertia, the design variables are interdependent
even at the element level. This suggests that the first-order
Taylor series expansion will not be as accurate a represen-
tation of the structural response as before, and consequently
the applicability of approximation concepts begins to break
down. This difficulty is compounded with geometric design
variables, whether they be joint locations for truss structures
or the shape of a solid, modeled by three-dimensional
isoparametric elements.

This same difficulty is associated with the use of dual
methods as an optimization technique. These methods
theoretically require that the design problem be
mathematically separable. Separability requires that F(X)
= f 1 ( X ] ) + f 2 ( X 2 ) + . . . f n ( X n ) , where /,.(*,.) may be a
complex function but does not depend on Xjs j^i. In the case
of bar and membrane elements, this relation exists with
respect to the objective function and is approximated for the
constraints by virtue of the first-order approximation.

The limitations of these newest techniques preclude their
direct application to many design situations, but, it is
sometimes possible to utilize them in a multilevel optimization
approach. In Refs. 66 and 67, the approximation concepts are
used for system-level variables, whereas component-level
optimization is performed as a direct optimization sub-
problem. In another form of the multilevel concept this
approach is reversed. Reference 68 offers an approach to
configuration optimization in which the nodal coordinates are
treated as system design variables using a direct optimization
approach. For each proposed configuration, the member sizes
are updated as a subproblem using approximation techniques.
The fundamental issue, however, remains to be resolved. That
is, for a given design problem in which each member is
described by more than one design variable, or where
geometric variables are considered, what is the best choice of
intermediate variables to provide a high-quality ap-
proximation to the problem?

In summary, the state-of-the-art provides a remarkable
capability for automated structural synthesis. The technology
now exists to efficiently design structures defined by several
hundred design variables under multiple loading conditions
and subject to sizing, stress, displacement, stability,
frequency, and flutter constraints. References 69-80,
reviewing the recent developments in this field, attest to the
maturing state-of-the-art in this discipline. Indeed, as stated
by Schmit in Ref. 81, structural synthesis has matured from
an "abstract concept to [a] practical tool."

The degree to which structural synthesis has become a
practical tool is apparent in such capabilities as the PASCO
program for composite-panel design.82 This program is
capable of designing a wide variety of stiffened panels under
multiple loading conditions, and the validity of the results is
supported by an extensive experimental study.83 An example
optimization of a problem of significant size and complexity
is found in Ref. 84, which reports the preliminary design of an
advanced transport aircraft, including strength, stiffness, and
aeroelastic constraints. Both these capabilities were developed
or supported by NASA. Despite the demonstrated success of
this technology, it remains difficult to identify industrial
organizations that utilize formal optimization techniques to a
significant and continuing degree. It must be a source of

frustration to developers of this technology that millions of
dollars is currently being invested in computer graphics and
computer-aided design, while the opportunity to fully
automate major portions of the design process is being vir-
tually ignored. In his Wright Brothers lecture,85 Ashley is able
to identify numerous applications of optimization to
aerospace problems and references several design studies.
Despite difficulty in identifying concrete examples of the use
of optimization in the design of aircraft that have actually
been built, he makes a compelling argument for the use of

• formal optimization techniques and compiles enough
evidence to conclude by stating that this technology offers a
"cosmic opportunity" for the future.

The Future
Any attempt to predict the future in such a dynamic

discipline can only be futile. It is perhaps sufficient to be able
to claim with some certainty that there is a future for struc-
tural synthesis. This has resulted from a simultaneous
maturing of three distinct parts, numerical optimization,
finite element analysis, and the general concepts underlying
design synthesis. In addition, the need for lightweight,
economical structures is greater than ever before, now
principally motivated by energy and finite resource con-
siderations.

Although it is unreasonable to predict the precise form of
the structural synthesis discipline of the future, it is,possible to
identify some needs, recognizing that this prediction, too, is
speculative and incomplete. To this end, the three components
of structural synthesis will be addressed individually.

In the mathematical programming discipline, two clear
needs must be addressed. First is the need for public
availability of well written and documented computer codes
incorporating a variety of today's state-of-the-art algorithms.
Whether by government edict, by professional society
guideline, or by simple evolution, a clear set of guidelines
needs to be accepted by developers of mathematical
programming software for the coding, testing, and
documenting of this capability. These guidelines will go far to
eliminate the frustration experienced by practitioners who
obtain mathematical programming codes, at'some effort and
expense, only to find them totally unsatisfactory for practical
engineering design.

The second 6bvious need is for development of algorithms
that are efficient for the solution of large-scale nonlinear
programming problems. This will alleviate to a degree the
need for high-quality approximations in structural synthesis.
Recent literature in mathematical programming suggests that
significant progress can be expected in the future.86

In the area of finite element analysis, it has already been
pointed out that linear elastic analysis is well developed in
such programs as NASTRAN, but that gradient information
is often unavailable. Providing gradient information as part
of the analysis must be the first priority if structural synthesis
is to become widely used by practicing engineers. This is,
however, primarily an economic issue rather than a
technology question, and the capability will undoubtedly be
provided in one or more of the large-scale finite element codes
when the market demands it strongly enough or when far-
sighted code developers emerge who are willing to risk the
necessary development of this advanced design capability. As
regards development of methodology, analysis of composite
materials (particularly failure criteria) remains an important
issue. Both time-dependent and large-deformation nonlinear
analysis, for use within the structural synthesis framework,
may well become another important research area. As another
example, the questions of stochastic loading and time-
parametric constraints need to be addressed within the
structural analysis/synthesis context far more than in the
past. Finally, efficient reanalysis techniques need to be
pursued, particularly as related to damaged structures, and
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these aspects need to be incorporated into the design process.
The means by which mathematical programming and ,

analysis codes are integrated into a structural synthesis
capability will surely continue to be an area of intense
research and development. Several areas are identifiable
where significant progress may be expected. First is a means
of dealing effectively with such problems as frame elements
defined by more than one design variable, either directly
through the proper choice of intermediate variables, or in a
multilevel design approach. Progress here may lead to an
effective means of dealing with configuration variables, an
area of immense payoff because of the potentially large design
improvements possible. The combinatorial, or topological,
problem is another intriguing research area, where, in ad-
dition to treating member sizes and nodal coordinates in the
structure as variable, one determines the actual element-node
connectivity. Another area of fruitful research is the design of
structures from a reliability viewpoint. Considerable work has
already been reported,87 yet much remains to be done. This is
an especially interesting subject in the sense that it may offer
fundamental insight into the stochastic loading and
parametric constraint problems. Finally, the need to design
structures for survivability when damaged is only beginning
to be addressed.88 In view of increasing emphasis on sur-
vivability, this topic deserves high priority.

This short list of possible future developments in structural
synthesis is by no means complete, but it does indicate the
phenomenal amount of effort that lies ahead. Contrary to the
sometimes expressed view that the computer will eliminate
engineering jobs, it appears that there is ample work for the
future!

As pointed out in the introduction, the concept of struc-
tural synthesis using mathematical programming offered a
new design philosophy that only today is beginning to be
broadly applied. The works referenced here cannot do justice
to the many researchers who have contributed to this
technology (see Refs. 69-80 for an extensive list of works in
the 1970-1980 time frame). In addition to applications in
structures, this work has contributed to advancement in other
engineering design. References 12 and 89-91 offer an in-
dication of the breadth of applications that has resulted, to a
very large degree, from the leadership of researchers in
structural synthesis. Indeed, Refs. 92 and 93 are examples of
an almost direct application, to an unrelated design discipline,
of concepts presented in Refs. 31 and 32. This expansion may
be expected to continue and grow, and as researchers from
various disciplines discover common ground, the ultimate
design goal of integrated system synthesis may begin to
evolve.
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