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ABSTRACT: In response to the computational complexity of the dynamic 
programming/backwards induction approach to the development of optimal policies for 
semi-Markov decision processes, we propose a class of heuristics which result from an 
inductive process which proceeds forwards in time. These heuristics always choose 
actions in such a way as to maximize some measure of the current cost rate. We describe a 
procedure for calculating such cost-rate heuristics. The quality of the performance of such 
policies is related to the speed of evolution (in a cost sense) of the process . These ideas 
find natural expression in a dass of Bayesian sequential decision problems. One such ( a 
simple model of preventive maintenance) is described in detail . Cost-rate heuristics for 
this problem are calculated and assessed computationally. 
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1. INTRODUCTION 

Much research in discounted Markov and semi-Markov decision pro

cesses has centered around efficient implementations of value iteration (see 

Howard (1960)). Many authors (see Porteus (1980) for an overview) have 

studied refinements to the basic scheme. This large body of work is moti-

- yated, inter alia, by the inherent computational complexity of the dynamic 

programming/backwards induction approach. See Ross (1970) for an accessi

ble account of iterative schemes for the solution of the semi-Markov decision 

processes of primary interest here. 

Gittins (1989) describes an interestingly novel approach to the construc

tion of policies for discounted semi-MarI<:ov decision processes. At time 0, a 

policy (1t1, say) and a stopping time on the process under 1t1 (t 1, say) are chosen 

to minimize a natural measure of cost rate incurred from the initial state at 0 

up to the stopping time. The forwards induction policy constructed by this 

procedure then implements 1t1 up to time 'tt, The state of the process at 'tt 

(X('t1), say) is observed and a new policy/stopping time pair (1t2, t2, say) is cho

sen to minimize the cost rate from X('t 1). Policy 11:2 is then implemented dur

ing [t1, t 1 + t2), and so on. Some strengths of this approach include the fol

lowing: 

{i) forward induction policies are optimal for a large class of models, espe

cially in stochastic resource allocation. See Gittins (1989). 

(ii) the on-line computation of such policies can often be performed in a way 

which offers considerable computational savings over conventional dynamic 

programming. See Katehakis and Veinott (1987) for a discussion. 
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(iii) the approach sometimes results in policies of simple structure (e.g., 

index-based). More generally it offers the prospect of relationships between 

model structure and policy structure which are theoretically accessible and 

(relatively) easily understood. See this illustrated in Glazebrook (1991). 

We propose a general approach to the development of heuristics for dis

counted semi-Markov decision processes which uses cost-rates in a simpler 

fashion than in forwards induction, but which retains some of that proce

dure's strengths-especially those mentioned under (ii) and (iii) above. The 

approach is quasi-myopic and offers particular advantages in situations where 

to assume a fixed stationary model over an infinite horizon would be 

hazardous. In these heuristics, a simple choice for the stopping times 'tn, ~1, 

is made a priori and cost-rate minimizations are over policies only. This class 

of cost-rate heuristics is introduced in Section 2 together with a procedure for 

their computation. Performance bounds for these heuristics are developed in 

Section 3 and are applied in Section 4 to the analysis of a class of Bayesian 

sequential decision problems. For this class of Bayesian problems, we are able 

to obtain results which elucidate the relationship between the performance of 

a cost-rate heuristic and (inter alia) the precision of initial beliefs about the 

unknown parameter as measured, for example, by the variance of a prior. 

These ideas are illustrated in Section 5 by means of computational results for 

a simple machine replacement problem. A cost-rate myopic policy is found to 

perform well much of the time. 
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(a) a state transition is observed, and 

(b) a random amount of time elapses before the next decision epoch . 

P(G I x,a;) is the probability that the state of the process at the next epoch lies in 

set Ge F conditional upon the event X(t) = x. F(H I x,y,a;) is the probability that 

the time to the next decision epoch lies in Borel set H given that a transition 

from x(=X(t)} to y occurs. P(G 1-,a;):n • [0,1] is F-measurable and 

F(H I •,•,aj):Oxll • [0,1] is FxF-measurable. We shall denote by pr,Fr the 

equivalent r-step measures-e.g., pr(G I x,1t) is the probability that the state of 

the process at the rth decision epoch after t lies in set G, given that X(t) = x and 

that policy 1t (assumed not to depend upon the history of the process before t) 

is adopted. The first decision epoch is always assumed to be 0. 

The following condition is standard in the study of semi-Markov decision 

processes (see, e.g., Ross (1970)). It guarantees (with probability 1) that we do 

not have an infinite number of decision epochs in finite time. 

Condition 1. There exist positive E, 6 such that 

f F{(o,00 )Jx,y,aj }P(dylx,aj) > E, 1 S j S N,x e fJ 
n. 

(v) Optimal policies. Denote by Cr(x,x) the total expected cost incurred from · 

the imposition of policy 1t from time O for r decision epochs when X{O) = x. If 

7t is stationary Cr(7t,·) may be recovered from the recursion : 
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Co(n,x) = O; 

00 

c;.(n,x) = c{x,n(x)}+ J J a1Cr-1(1r,y)F{dtlx,y,1r(x)}P{dylx,n(x)},r ~ l 
n t=O 

We define 

C(n,x) = lim Cr(n,x) 
r• oo 

(1) 

as the total expected cost incurred by policy 7t when X(O) = x. The above 

assumptions (in particular the boundedness of costs and Condition 1) guaran

tee not only that the limit in (1) exists, but that the convergence is uniform 

over all policies 1t, for all xe n. 
A policy ,c• is optimal if 

C(n•,x) = infC(n,x) = C(x), x e D. 
n 

The general theory (see Blackwell (1965)) asserts the existence of an optimal 

policy ,r• which is stationary and such that C(·) uniquely satisfies the recur

sion 

C(x) = ~ {c(x,a; )+ f j a1C(y)F(dtlx,y,a; )P(dylx,a; )}· (2) 
lS.JS.N n t=O 

Procedures for determining C(·) and ,c• include value iteration and polic;y _ 

iteration, as described by Ross (1970}. 

Now, write 'tr(1t,x) for the random time of the rth decision epoch after 0 

when policy 7t is adopted and X(O) = x. We write Mr(n,x) = E{ a-rr(n-,x)} If 7t is 

stationary Mr(7t,·) may be recovered from the recursion 
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Mo(n,x) = 1; 
00 

M,(n,x) = J J atM,-1(n,y)F{dtlx,y,n(x)}P{dylx,1r(x)},r ~ 1. 
.Q t=O 

Note that Condition 1 guarantees that for all x,x 

1>(1-e+ea 0)' ~M,(n,x),r~1 . (3) 

The notion expressed in Definition 1 is central to the ideas explored in the 

paper. 

Definition 1. The r-stage cost rate function for policy x, rr(7t, •):il • 9t~ is given 

by 

I',(n,x) = C,(n,x){l-M,(n,x)r 1 (4) 

The rationale for calling rr(1t,x) a cost rate emerges from the identity 

[ { }]

-1 
Tr(1r,x) 

r;.(n,x) = Cr(n,x) E l atdt (-lnar 1 
I (5) 

in which the notion of averaging is an (appropriately) discounted one. 

Definition 2. Policy fr is (r,x)-optimal (r~stage cost rate optimal for state x) if 

I',(ir,x) = inf r;.(n,x) (6) 
,r 
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In order to explore the properties of r•stage cost rates (Definition 1) and 

associated optimal policies (Definition 2) we introduce the mapping 

Tr(x,•):9t~9t~ defined by 

Tr(x,u) = inf{C,.(1r,x)+uMr(1r,x)} 
1C 

(7) 

and its n•fold version Trn(x,•):9tc:o • 9t~, where 

Trn(x,u) = Tr{x,Trn-l(x,u)},n ~ 1 

Equation (7) defines a finite horizon dynamic program. We may assert the 

existence of a policy 1t:ilx{l,2, ... ,r~{a 1, a:u ... , aN} attaining the infimum in 

(7). Here 1t(x,s) is the action taken by policy 7t when in state xe n at the sth 

decision epoch. Call such a policy r•stage stationary. 

Theorem 1. For each xe n, r ~ 1, 

(a) Tr(x,•) is monotonic, non•decreasing; 

{b) TrCx,·) is a contraction mapping with respect to the Lt norm; 

(c) r = inf I',(1r,x) is the unique member of 9t~ for which 
1C 

Tr(x,I') = I'; 

(d) There exists an (r,x}•optimal policy which is r•stage stationary; 
. 

(e) For each ue 9t~ 

fun Trn(x,u) = r = inf r;.(1r,x), 
n• oo TC 

this convergence being geometrical and uniform over x. 

Proof. 

(a) It is trivial from (7) that ~v~TrCx ,u)~Tr(x,v}. 
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(b) Suppose that ~v. Write n:(u) for an r-stage stationary policy attaining 

the infimum in (7). It is plain that 

0 s T,(x,u)-T,(x,v) s M,{ n(u),x}(u-v) ~ (1-e+ ea 0)' (u-v), 

from (3). This establishes (b). 

(c) The contraction mapping fixed point theorem guarantees the existence 

of a unique fixed point for Tr(x,•). Call the fixed pointy. Write 

r = T,(x, r) = inf{C,(1r,x)+ ,M',(n,x)} = Cr{ n(r),x}+ ,M',{n(r),x} (8) 
,r 

where we write n:(y) for a policy attaining the infimum in (8). It now 

follows that 

r = Cr{ n(r),x}[l-Mr{ n(y),x}r
1 

= r,.{n(y),x}:?: I'. 

Suppose that pr, and obtain a contradiction. We now have a policy fr, 

say, such that 

r > Cr(i,x){l-M,(n,x)}- 1 

from which it follows that 

r > c,(i,x}+ ,M"r(i,x) 

~ inf{C,(n,x)+ rM,(n,x)} • r > T,(x, r), 
,r 

from which we conclude that y is not a fixed point of Tr(x,•), a con

tradiction. Hence y=r, and we have established (c). 
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(d) It is now plain that any policy 1t(r) attaining the infimum in (7) with 

u=r is (r,x)-optimal. We have already noted that there is one such 

which is r-stage stationary. We have proved the result. 

(e) This is a standard consequence of (b) and (c). 

The above result plainly yields a value iteration approach to the computa

tion of minimal cost rates and hence of (r ,x}-optimal policies. We now 

describe the class of cost-rate heuristics for semi-Markov decision processes of 

primary interest to us. In Definition 3, r = [{rn(-):.Q • z + },n e z +] is a 

sequence of F-measurable functions taking values in the positive integers. 

Definition 3. A cost-rate heuristic determined by r is denoted fr(r) and is a 

policy which operates as follows: 

(a) If X(O) = x, fr(!) takes the first r1 (x) decisions according to an (r1 (x), x}

optimal policy; 

(b) Suppose that the state of the process following the first L~=1rm(Xm-1) 

decisions and transitions {i.e., follow the first n stages) under policy 

ir{r)_ is Xn, ~l, where Xo=X(O). Policy fr(!.) takes the next rn+t (Xn) 

decisions according to an (rn+t (Xn), Xn}-optimal policy, ~1. 

Comments. 

1. Hence policy fr(!) implements an (r1 (x),x}-optimal policy from time 0 

when X(O)=x as a procedure for determining the first r1 (x} decisions. The state 

10 



is then updated to X1. The number of decisions to be taken in the second stage 

if r2(X1) and is allowed to depend upon X1, An lr2CX1), X1}-optimal policy is 

computed and implemented from state X1, and so on. 

2. Apart from any possibility there might be of obtaining (r,x)-optimal 

policies of special structure, a major opportunity for cost-rate heuristics to 

reduce computational requirements (as compared with the application of 

standard dynamic programming) arises from the fact that value iteration for 

(r,x)-optimal policies based on Theorem 1 only needs to look at states which 

are accessible in r steps from state x. In the Bayesian sequential problems to 

which these ideas will be especially applied, considerable savings are often 

possible. Another instance is where state variable x is enhanced to include 

(for example) the number of decisions taken to date as a means of 

accommodating non-stationarity. 

3. If each function rn(·) is a constant (i.e., the number of decisions in each 

stage is fixed at the outset), fr(!) is called a fixed sequence cost-rate heuristic. 

We shall often be interested in fixed sequence policies for which rn(·)=l, ~

In relation to such a choice note that (1,x)-optimal policies are often trivial to 

compute. Cost-rate heuristics for which rn(·)=l, ~1, will be called cost-rate 

myopic . 

We now explore further the rationale for considering such heuristics. 

3. GENERAL PERFORMANCE BOUNDS FOR COST-RA TE HEURISTICS 

Write 
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6-(x,y) = C(y)-C(x}s C(x*,x}-C(x*,y) 

for the change in minimal costs which occurs upon a transition from x to y. 

As before, write 'tr(1t,x) for the random time of the rth decision epoch after 0 

when policy 1t is adopted and X(O)=x. The subscript in the notation Ex indi

cates that an expectation is to be taken over realisations of the system condi

tional upon implementation of the policy x. 

C{ fr(r),t }-C(n*,t) ~ Efr(!)( I,[ 'Prn+l (frn+t,Un)- Y'rn+l (n*,Un) 
n=O 

x{t-M, •• , (fr.+1,u.)}{t-M,.+1 (r,u.Jr1)a:i:~t~JymlT1 = 1) 

Definition 4. The r-decision speed function for policy 1t, Ar(1t,•):Q• 9t is given 

by 

Ar(n,x) = En{ a -rr(n,x)A[x,X{ -rr(1r,x)}]}{1-Mr(1r,x)}-l 

= [ {1 J:1C(y)F'(*,y,x)P' (dylr, x)}- M,(,r,r)C(r)]rt-M,(x,r)r 
1 

(9) 

See (5). Ar(1t,x) represents a (discounted) rate at which future prospects (as_ .. ~ 

measured by C(•)) change during an r-decision implementation of policy n. It -~ 

will emerge that we can go some way toward analysing policies in terms of a 

combination of cost rate and speed functions. The following result is an 

example . 

Lem.ma 2. For each xe n, r ~ 1, 
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C(x) = T,.(,r*,x) + L1r (1r*,x) 

Proof. 

By standard results, C(·} satisfies the recursion 

00 

C(x) = C(n*,x) = C,(n"',x)+ J J atc(y)Fr(dtlx,y,n*)Pr(dylx,n*) 
n t=O 

= r,.(n*,x){1-Mr(n*,x)} + L1,(1r*,x){ 1- M,(n*,x)} + Mr( n*,x)C(x), 

from (4) and (9). Invoking (3), the result follows trivially. 

Lemma 3. For each 7t and xe n 

lim L1,(n,x) = 0 
r • -

the convergence in (10) being uniform over all policies 1t and states x. 

Proof. 

From (3) and (9) 

(10) 

1,i,(ir,xll,; fo:_gc(xl}(1-e+ea6
)' {1-(1-e+ea•)'r. (nJ 

The result follows trivially. 

Lemmas 2 and 3 create the expectation that (crudely speaking) should -a 

decision pr ocess have uniformly small r-decision speed functions then an 

analysis in terms of r-decision cost rates could be successful. Lemma 3 tells us 

that we can always force the speed functions to be small by choosing r large 

enough . However , we note that the larger r is, the more computationally 

demanding is the development of (r,x)-optimal policies. We make these 
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ideas more explicit as follows: Suppose that fr is an (r,x)-optimal policy (see 

Theorem l(d)). Write 

00 

C'(x) = C'(fr,x)+ J J atc(y}F'(dtlx,y,fr)P'(dylx,fr) (12) 
D t=O 

for the total expected cost from implementing fr for r decisions, thereafter fol

lowed by an optimal policy. Theorem 4 bounds how much is lost by pursuing 

fr instead of an optimal policy for these first r decisions. 

Theorem 4. For each xe 0,r:2:1, 

C'(x)-C(x) s {L1,(fr,x}-L1,(,r*,x)}{1-M,(fr,x)} • 0, as r • 00 , (13) 

uniformly over all states x. 

Proof. 

From (9) and (12), 

00 

C'(x) = C,(fr,x}+ J J a1[L1(x,y)+{c(x)-C'(x)}+c'(x)]F'(dtlx,y,fr)P'(dylx,fr) 
fl t=O 

= C,(fr,x)+ L1,(fr,x){1-M,(fr,x)} + {c(x)-C' (x)}M,(fr,x) + C' (x)M,(fr,x). 

Hence we deduce that 

C'tx) = I',(fr,x) + L1,(fr,x}+ {c(x)-C'(x)}M,{fr,x){t-M,(fr,x)}-
1

. 

Now, from Lemma 2 

C' (x)-C(x) = { r;.(fr,x)-r;.(,r*,x)}+{ L1,(fr,x)-L1,(,r*,x)} 

+{ C(x)- C' (x) }M,( fr,x ){ 1- M,( fr,x) r1 

s L1,(fr,x)-L1,(,r•,x)+ {c(x)-C' (x)}M,(ii-,x){l-M,{fr,x)}-1
, 
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since fr is (r,x)-optimal and so I',.(fr,x) S I',.(1r*,x). Inequality (13) now follows 

trivially. The convergence result is a simple consequence of Lemma 3. 

From Theorem 4, we may deduce a bound on the suboptimality of cost

rate heuristic fr(r) expressed in terms of speed functions. Recall the notation 

Xn in Definition 3(b) for the state of the process following the first 

L,:=t'm(Xm-1) decisions and transitions under policy fr(!). We also write 

frn+l for the {rn+1CXn), Xn}-optimal policy adopted at that stage. For notational 

simplicity, rn+l (Xn) is abbreviated to rn+l in the statement and proof of 

Corollary 5. 

Corollary 5. For any fr(r) and xe n 

c{ i(!),x }-C(x) ,;; Eil(r{ jJ "'•+l ( x •• 1,x.)- "'•+l ( n•,x.)} 

L "rm (im,Xm-1) 
xam=l {1-Mrn+l (i'n+1,Xn)}lx(o) = X 

n ] (14) 

• 0 as r1(x) • 00 (with other rn(·),~2, fixed). For fixed sequence cost-rate - ··-
, 

heuristics this convergence is uniform over all states x. 

Proof. 

Denote by i'(r,n) a policy which follows i'(r) for the first L,:= 1rm(Xm-1) 

decisions and which thereafter chooses actions optimally. We may think of 

fr(!:,n) as a cost-rate heuristic determined by a sequence which agrees with r up 
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to the nth term and which chooses rn+l = 00 • By a simple argument condition

ing upon Xn and the time of completion of the first n stages under ,r(r) we 

deduce from Theorem 4 that 

C{ n(r,n+ 1),x}-c{ n{r,n),x} s 

I "'rm ( im,Xm-1) 

[ 

n ] 
En(!) am•l {L1rn+l{in+1,Xn)-L1rn+1{n't,Xn)}{l-Mrn+1('1n+1,Xn)}IX(O)=x. 

(15) 

To obtain (14) we now take r;=O over both sides in (15) and note that 

ir(r,0)=7t*, an optimal policy, and 

lim c{ ir(r,n ),x} = c{ ir(?::),x }, 
n• oo 

(16) 

the (uniform) convergence in (16) being guaranteed by the boundedness of 

costs and Condition 1. 

To consider the convergence of the right-hand side of (14) we easily 

derive from (3) 

{L1ri (ir1,x}-L1ri (n•,x)}{l-Mri (n-1,x)} 

+2M"1 (n-1,x){ e(1-a0}}-t supl.i:ir(x,x)I 
r ,:c,,r 

(17) 

as an upper bound for it. We now invoke (3), Lemma 3 and (11) to deduce

that the expression (17) converges to Oas r1(x)• oo, This convergence is plainly . . 

uniform for a fixed-sequence policy with r1(x)=r1, 

Comment 

1. Consider Comment 3 at the conclusion of Section 2. H we make the 

computationally simple choice rn(·)=l,n~, we know (from Corollary 5) that 
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for any given y>O we can choose r 1 (x) large enough to ensure that the cost-rate 

heuristic ir(r) is y-optimal . The question of interest (from the computational 

complexity point of view) concerns what is the smallest value of r1 (x) to 

achieve this? 

2. From Corollary 5, it is not difficult to show that an alternative way of 

guaranteeing y-optimality is to choose rn(·)=r(•),n::?l, in the heuristic fr(r) 

where r( •) is such that 

ls~pL1,(x)(n,x)I ~ re(1-a0){2(1-e+ea 0
)}-

1
,x en.. 

Lemma 3 guarantees that this is achievable for any y>O. 

3. Plainly, in order to implement the suggestions contained in the 
. 

previous two comments, we need to be able to characterize and/or obtain 

bounds on the speed functions of concern to us. To that end, in Section 4 we 

consider a class of problems where some progress is possible. 

4. A CLASS OF BAYESIAN SEQUENTIAL DEOSI0N PROBLEMS 

Bayesian sequential decision problems seem natural candidates for the 

application of cost-rate heuristics . Suppose that in such a problem the current 

posterior distribution for the unknown parameter (or some summary of it) is -, .. .. 

the state of the process. It would seem intuitive that speed functions for poli-

cies should be related to the spread {loosely defined) of the current posterior. 

In particular the posterior distribution with a unit atom of probability at one 

parameter value (i.e., the case of known parameter) will have all speed func

tions equal to zero. 
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The following class of Bayesian sequential decision problems include the 

replacement problem to be considered in Section 5 as a special case. The ele

ments of each decision problem are as follows: 

(i) X1, X2, ... , a sequence of independent and identically distributed 9td-valued 

random variables with distribution Fe, known apart from the value of 

parameter 8e e. The support of Fe does not depend upon 0. 

(ii) 0'., a space of probability distributions over a fixed c.;-algebra of subsets of 

e . Gee• is the prior distribution for 8. 

(iii) a1, a2, ... , aN, a set of actions available at each decision epoch. 

(iv) Y1, Y2, ... , a sequence of 9t+-valued random variables available to the deci

sion-maker for observation. Should action aj be taken at the nth decision 

epoch then Yn=<I>(Xn, aj), where <I> is a measurable function. Yn would then 

have distribution ~8• 

(v) T1, T2, ... , a sufficient sequence for 8 (see Ferguson (1967)). For each ~1, 

Tn is sufficient for 0 based on Y1, Y2, ... , Yn-1 and the actions taken at the first 

n-1 decision epochs. The posterior distribution at the nth decision epoch is 

written Gn=G(• ITn), ~1. Should action aj be taken at the nth decision epoch 

then : 

(a) Y n=<l>(Xn, aj) is observed; 
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(b) a (discounted) bounded non-negative cost c(Yn, aj) is incurred. 

Taking an expectation with respect to the current posterior for 8 we write the 

expected cost incurred as 

c(Tn,a;) = f f e(y,a; )FJ(dy)G(dBITn)i 
8 9t+ 

(c) the time between the nth and (n+l) st decision epochs is Yn. We 

shall ensure that Condition 1 holds by requiring that 

Fj{(o,oo)} > e, 1 S j S N,8 e 8, 

for some choice of positive E,o. We shall also suppose that if we take Tn for 

the state of the process at the nth decision epoch, the measurability require

ments described in Section 2 are met. Our goal is to develop Bayes optimal 

(and good Bayes suboptimal) decision rules. li we suppose that 1tn is the 

action taken by policy x at the nth decision epoch, we write the Bayes cost for 1t 

from initial state t (a value of T1) as 

C(x,t) = Et{C(,r,8)} (18) 

where 

{ 

~n-1 Y. } oo -"m=I m 

C(n,8) = En,8 I,a c(Yn,nn) 
n=l 

(19) 

, . 
In (18) Et denotes an expectation taken over 0 with respect to the prior G(- 1 t) · · 

and in (19) En:,e is, for fixed 0e e, an expectation taken over realisations of the 

system conditional upon implementation of the policy x. An optimal policy 

,c* satisfies 

C(,r*,t) = infC(n,t) = C(t) 
1C 
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for all choices of t. Denote specifically by ni a policy which chooses actions in 

an identical fashion to an optimal policy beginning in state t-i.e., for 

assumed prior G(· 1 t). 

We have here a semi-Markov decision process to which the results of 

Sections 2 and 3 apply. In order to evaluate cost-rate heuristics we shall 

develop bounds on the r-stage speed functions as follows: 

Theorem 6. For any r~l, policy 1t and initial state t 

.<1,( ,r,t){ 1-M, ( ,r,t)} ,; 1/var1,,,,e( ar~, Ym )~var,{ c( ,r; , 8)} = fl,( ,r,t) 

Proof. 

For any two states t, t' 

L1(t,t') = C(t')-c(t) s c( n; ,t')-c( n; ,t) 
= Et1{c( n; ,e)}-Et{c(n; ,e)} (20) 

• 
since 1tt is a suboptimal policy from initial state t'. Now, by Definition 4 

I.Ym 
L1r (n,t){l- Mr(n,t)} = Et,n,8 am==l L\(t, T,+1) 

{ 

r } 

,; ft,,,,{ amtim[ Er,., {C( 1r;,o)}-E1{C(1r;,o)}]) (21t 

= Ei,,,,+mtim C( ,.; , o) }- E1,,.,e( aiim} { C( ,.; , o)} (22) 
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Inequality (21) is a consequence of (20) while (22) follows from standard 

results on conditional exp~tation. The result now follows from the fact that 

IYm "'( • ) the correlation between am=l and C 1rt , 6 cannot exceed one. 

Theorem 7. For any r~l, policy 1t and initial state t 

Ll,(,,,t){t-M,(",t)};;, E1,,,iamkm )Et,n,o{ C( "~ .. ,, e)-c( "t,., ,1)} 

- "var1,xi a .. trm) f ar,,,,,o{ C( "~r+l , 9) -c( "~ .. , ,t)} 

= V'r(n,t) 

Proof. 

For any two states t, t' 

L1(t,t') ~ c( n;, ,t')-c( n;, ,t) 

since n;, is a suboptimal policy from initial state t. We now proceed along the 

lines of the proof of Theorem 6. 

Comments. 

Observe from Theorems 6 and 7 that each of the terms of the expressions -

for cj,r(1t,t) and 'lfr(1t,t) is in itself a product of two quantities. The first of these 
T 

IYm 
is either the expectation or standard deviation of am=l and relates to the 

amount of discounting from the implementation of policy 7t for r stages. Each 

of these terms must converge to O as r• oo uniformly over 1t and t which in 

turn ensures the same for both <l>r(1t,t) and 'lfr(1t,t). 
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The second quantity in each term relates to the spread of C( fr, 8) for some 

policy fr where 8 is sampled from G(· It). It is reasonably clear that such quan

tities will usually be related to the spread of G(-1 t) itself. Consider now two 

special cases: 

Case 1. Ge 9* is a two-point prior. This property must be shared by each 

posterior G(· It). We write 

G(81lt) = p = l-G(82lt) where 81,82 e B. 
t 

If B c; 9t it is well known that the variance of this posterior is (81-0:z)2pt(1-pt), 

For the second quantity in the expression for <1>rC1t,t) it is easy to show that 

vart{c( n; ,e)} = lc(n;, ei)-c(n; ,82)l✓Pt(1-pt), 

which is hence proportional to the standard deviation of the posterior. 

It is not difficult to show that the second quantities in the two terms in 

'lfr(7t,t) are proportional to Pt(l-pt) and ✓PtCl-pt) respectively . 

Case 2. We shall now assume that B c; 9t together with sufficient regularity 

so that we can 

(a) expand C(fr,8) as a Taylor series in 0 about the mean of the posterior · 

distribution G(· I t) for appropriately chosen policies fr; 

(b) take expectations term by term in the series. 

Denoting the mean of G(-1 t) by ~, we write 

00 

c(n; ,e) = c(n; ,µt )+ I,cn(t)(8-µt)". 
n=l 
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Inserting this expression into (22) and taking expectations term by term we 

deduce that 

'1,( ,r,t){ 1 - M,(,r, t)} ,; i c.(1)Jvar1,,r,+irm ]~var1{ ( 8 - µJ} = ~,(,r, t). 

In the expression for ¢,(n,t) the dependence upon the spread of G( • It) is now 

explicit. (Note that, if c( n;, (}) is close to linear at ~ then the n = 1 term in 

¢,(n,t) may be an approximate upper bound for L1,(n,t){1-M,(n,t)}.) 

The equivalent analysis applied to Theorem 7 yields 

- l:Ym 

[ 

T ] '1,( n,t){l - M,.( ,r,t)};;, ,!i Jvar 1,1r,e c.(T,+1Jam=1 var,{( B -µ, )}· V',(,r,t). 

and similar comments apply. 

Now we draw together Corollary 5 with Theorems 6 and 7 to yield an 

evaluation of cost-rate heuristic fr(r) in terms of the functions <h and 'V r • 

Before doing so, we write Un as the state of the process following L,:=l rm 

decisions and transitions under policy fr(r)-i.e., 

n 

Un= TN(n)+1,whereN(n) = L'm· 
m=l 

Otherwise, the notation is as established in Sections 2 and 3. 

Theorem 8. For each sequencer and initial state t 
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C{fr{r),t}-C(,r*,t) S En(!)(f [4'rn+l (frn+1,Un)- 'l'rn+l (,r*,Un) 
n=O 

-1 l:Ym 
x{l-Mrn+l (frn+1,Un)}{l-Mrn+l (,r*,Un)} ]am=l IT1 = t 

N(n) ) 

Recall Theorem 4, Corollary 5 and the comments thereafter. Making the 

computationally simple choice rn = 1, n ~ 2, the question raised there 

concerned how large r 1 needed to be for cost-rate heuristic ft(!) to be close to 

optimal for some initial state t. In view of Theorems 6 and 7 and the above 

comments, it is clear that for the class of Bayesian sequential decision 

problems under discussion the answer to that question will be related to the 

spread of G(-1 t). The proof of Theorem 9 (which asserts the asymptotic 

optimality of all fixed sequence cost-rate heuristics as the variance of G(-1 t) 

goes to zero) contains calculations which shed light on such matters. 

Theorem 9. If 

(i) B ~ 9t; 

(ii) X1,,X2, ... have density f(x,8) such that :e f(x,8) exists and is continuo1:~- .. ~J\3 
everywhere, and _______ ~ .'"";, "'°"-er 

(iii) [
a 2 ,_aC. ~CJ..,, 

Eel ae {ln/(X1,8)} is bounded for 8~ ~ for any fixed ~ 

~" sequence cost-rate heuristic ft(r) 

c{ fr(!:),t}-C(,r*,t) • 0, as var1(0) • O. 
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Proof. 

See Theorem 8. Under the stated conditions we will show that the first 

term in the upper bound given there is 

Efr(r) }:'Prn+l {frn+1,Un){1-Mrn+l (frn+1,Un)}{1-Mrn+1 (1r*,Un)r1 X am:;mlT1 = t ( ~~ ] 
n=O 

= q,{ fr{r},t} (23) 

goes to zero as vart(8) goes to zero. The analysis for the second term is very 

similar. 

Utilizing the definition of <1>rC1t,t) in the statement of Theorem 6 we 

deduce that 

1/1{ ir(r},I} = E,;(!'.ii,!Jaru.,lr.+1,9 a-Ji!":i ✓vaiu. { C( "~• , 6)} 
[ 

N(n+l) l 
I~ ~ 

xam=l {1-Mr
11
+/frn+1,Un}}{l-Mr

11
+t (n*,Un)} IT1 = t 

~~ ] 
oa ... ,. I Ym N(n+1)-N(n) 

[ 

N(n) ] 
~k1Ei(r) 1 varun{c(1run,0)}-am=l ·{1-e+eaB} 2 IT1 =t (24). -

where k1 depends neither upon r nor t. To achieve inequality (24) we simply 

note that 
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N(n+l) 

l:Ym I varu -ir Bl am=N(n)+l < {1 o}N(n+l)-N(n) 
n,••n+l, - -E+ea 

and, from (3) that for all choices of r, 1t and x 

M,(1r,x) s (1-e + ea0 ) < 1. 

In order to bound (24) we shall require a Taylor series expansion for 

C(,r,8) for suitably chosen Jt. To that end we note from (19) that for general 

,r,0 we can write 

oo I:Ym 

{ 

n-1 } 

C(1r,8)-E1r,6 ~am=1 c(Yn,1tn) 

n-1 
°'" l: <f>(xm,7rm) n 

= }:J ... J am=l c{ tP(x11,1r11),1r11}ITf(xi,8)dx, 
11=1 i=1 

invoking the boundaries of costs. Upon making use of assumption (ii) above 

and standard arguments we deduce that 

n-1 a ){ } a A QG I:<f>(xm,nm) 71 -f(xi,e 11 

aeC(,r,8)= Il·••Iam=1 c{<1>(xn,1tn),1rn}x~ a~(x· 8) pt(xj,e) dx 
n=1 i=1 " J=l 

from which it follows immediately that 

{ 

n~ } a A 00 I:Ym 11 a 
l
aC(,r,8)1 s }:E,r,8 am=1 c(Yn,,rn)~l-t(Xj,8)1 

B n=1 i=1 ae 

and therefore, utilizing the boundedness of costs we infer that 
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l:/c n, e~ ,. k2 f;E+:~~ !10°81n f(X;, e~} (25) 
where Zn= min tP(Xm,a;) and k2 depends upon neither 1t and 8. 

~j~N 
It follows from the independence of the Xi's that Zi is independent of Zj 

and X;, i:;t:j, and hence we have that 

LZm n a 
{ 

,z-1 } 

Ee am=1 tilaelnf(X;,8)1 = 

n-1 

l:Zm a n-1 m=1 a 
( 

n-1 ] LZm 

Ee am=l Ee{laelnf(X;,8)1}+ tiEe a""'' Ee{a2ilaelnf(X;,8~} 

= ( Eeaz, t\e{l:e In f(X;, e~} + (n - tX Eea21 r-2 
Ee{ aZi 1:e In f(X;, e~} 

,; n( Eea2
1 r2

[ ( Eea
2

1 )Ee{lai Inf (Xi, e~} + Ee{ a2
1 lai Inf (X1, e~}] 

fl" I ,; n(Eea2' r-2 {✓Ee(a221) Ee[ {a°
8
1nf(x,,ei}2 ]} 

by Cauchy-Schwarz. We now recall assumption (iii) and conclude upon -
• 

substitution into (25) that 

laa8 C(n,8)1 ~ k3 

where k3 depends neither upon 1t nor 8. 
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Recall (24). Taking a Taylor series expansion of c( 1run ,8) about µull, the 

mean of G(- IUn), we obtain 

v"'ll. { C( xU., B)} = f 'l\J• ( 8- µu. ){:/( x, B) 8 = 8} 

S./Eu.[(B-µu.){ :/(x,B) B = e}],;; k3✓v"'l!• (B) 

Since in the above iJ always has been 0 and µu11. Upon substitution into (24) 

and use of standard arguments we deduce that 

[ 

N(n) ] 00 ___ IYm N(n+l)-N(n) 

k4Efr(r) I✓varun(B)•am=l ·{1-e+ea 0} 2 
n=O T1 =t 

~ k4 }: "Ei(r)[{ varun ( 8) }]T1 = t] · 
n=O 

IYm 

{ 

N(n) } 

Efr(r) a m=1 ITi = t 

. _J N(n+l)-N(n) 

~~ ~ x{1-e+ea 0} 2 J 4 oo ___ N(n+l) 

l.j'<Y Sk4 ~✓vart(8)·{1-e+ea0} 2 (26) 

• 0, as var1(8) • 0 since~ depends upon neither r nor t. Please note that 

inequality (26) is obtained by means of standard conditioning arguments. 

A similar argument for the second term in the upper bound of Theorem 

8 completes the proof. 
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Comments. 

In part answer to the question raised in the paragraph preceding the 

statement of Theorem 9 concerning the size of r1 needed (when, say , 

In= 1, n ~ 2) for ft(!) to perform well, consider the bound (26). Since in this 

case N(n+l) = r1 + n, n ~ 0, we obtain a bound of the form 

k{1-e+ea 0}'l/l ✓vart(0) 

where k depends upon neither r1 nor t. Plainly the larger the value of vart(8) 

the larger the value of r1 needed to make this expression small. In general we 

may regard the bound obtained at the end of the above proof as representing a 

trade-off between the amount of discounting available from the choice of 

sequence r. and the amount of prior information about 8. 

5. A SIMPLE MODEL OF PREVENTATIVE MAINTENANCE 

A system is subject to random deterioration and failure. A new system is 

installed at time 0 and (in the absence of intervention) its time to failure has 

distribution F 8 where 0 e B is unknown. Replacing a failed system is 

expensive. At time t the cost is atc1 where as usual a e [0,1) is a discount rate . 

Alternatively, a (less expensive) planned replacement can be made in-
~ 

advance of system failure -here the cost at tis afc2. 

Hence at time 0, one of N possible (planned) replacement times 0 < a1 < a2 

< ... < aN must be chosen. Note that we might have aN = oo, i.e., the choice of 

such an aN implies that the system is left to fail with no planned replacement 

in anticipation of failure. We have X1, X2, ... a sequence of i.i.d. system failure 

times with Xi- F6• H action ai is taken at 0, a planned replacement occurs at ai if 
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X1 > ai and otherwise the system is replaced at failure . At time Y1 = min(X1, ai) 

one of the N replacement times {ai, 1 S j s; N) is chosen for the new system. 

We proceed in this fashion. Choosing replacement times which are too small 

incurs unnecessary costs from a surfeit of planned replacements. 

Replacement times which are too large carry the risk of large numbers of 

expensive replacements upon failure of the system. We suppose that 8 has a 

prior distribution G and look for a Bayes sequential decision rule for this 

problem. 

Our replacement problem is a simple instance of the class discussed in the 

previous section. We shall assume (i) - (v) of Section 4 along with the 

additional measurability requirements of Section 2, together with Condition 

1. This problem also (in common with, say, bandit problems) presents in a 

simple way the tension between taking decisions whose prime purpose is to 

gain information (and hence improve the quality of future decisions) and 

taking decisions which exploit the information already available. 

More elaborate versions of this problem are discussed for models with 

known stochastic structure (i.e., known 8) by Aven (1983) and Chen and 

Savits (1988). For example, Aven (1983) studies a system whose failure rate is 

a nonnegative, progressively measurable stochastic process. Further, all costs _ 

are random variables. Now, for our model with 0 known it is clear that cost 

rate myopic policies are optimal. To see this, take r = 1 in Theorem 4 and note 

that all speed functions are zero. Hence an optimal policy for known 8 always 

chooses ai to minimize 

[! a1c1Fo(dt)+a"'c2F9{(a;,-]}I1-! a1Fo(dt)-a"'Fo{[a;,-]}r (27) 
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Indeed both Aven (result Rl, 1983} and Chen and Savits (Theorem 3.9, 1988) 

analyze their systems according to cost rates. Aven is able to proceed to 

recover opimal policies of simple structure. A later paper by A ven and 

Bergman (1986} presents some results which draw together the discounted 

cost case with that incorporating average cost per unit time. 

Attempts at learning about such a system have usually been structured 

according to partially observable Markov Decision Processes. See Albright 

(1978) and White (1979) for important contributions along these lines. In 

models with the average cost per unit time criterion, Bather (1977), Frees and 

Ruppert (1985) and Aras and Whitaker (1990) have taken non-Bayesian and 

nonparametric approaches to learning about the underlying system. 

In our Bayesian model a cost rate myopic policy will no longer usually 

take a single fixed action at all decision epochs, in contrast to (27). If the 

current posterior for 8 is G a cost rate myopic policy chooses a; to minimize 

[ r[l a
1
c1Fo(dt) + a"ic2Fo{[a; ,-)} f (d9)] 

+-!( ! a
1
c1F8(dt) + alli c2Fo{[ a;,-)} f (d9) r (28) 

Hence cost rate myopic policies are adaptive, depending as they do upon the

current posterior for 0. Executing the minimization in (28) is usually 

computationally trivial, rendering this class of policies attractive as heuristics . 

In the Bayesian context cost rate myopic policies are no longer optimal in 

general. Results in Section 4 give us guidance concerning when they are 

guaranteed to perform well. In particular this happens when the spread of 

31 



prior G is small and/ or when substantial discounting takes place from one 

decision to the next. When these conditions are not satisfied we may need to 

consider a cost-rate heuristic it(!) with r1> 1, Tn = 1, n ~ 2. Corollary 5 assures 

us that this class is rich enough. We now present some computational results 

bearing upon these phenomena. 

Consider a replacement problem with c1 = 10, c2 = 1 and a= 0.99. Failure 

times are assumed to be independent Weibull (n, 0.4) random variables, i.e., 

having density 

f(x; n, :l) = :lnxn-1 exp(-h"), x > 0 

with :l = 0.4. G is a two point prior with 

G(n1) = p = 1 - G(n2) (29) 

where n1 = 1 and n2 = 8. At each decision epoch we are faced with a choice 

between N = 50 planned replacement times given by 

aj = 1.0 + (j - 1)0.04, 1 ~ j ~ 50. 

We restrict discussion to fixed sequence cost-rate heuristics fr(r) with Tn = 1, 

n ~ 2. The discussion following Theorems 6 and 7 in Section 4 (see especially 

Comment 1, Case 1) leads us to expect that most is to be gained by choosing a 

heuristic with large r1 when the prior variance is large. 

For siinplicitiy of notation, denote by C(p) the Bayes cost incurred when 

adopting an optimal policy with prior distribution (29) and Cm(p) the 

equivalent cost from adopting ft(!) with r 1 = m ; r n = 1, n ~ 2. The 

(m, p)-optimal policy which constitutes the first stage of ir(r) is calculated 

according to the computational procedure derived from Theorem 1. It may be 

of interest to note that in this procedure the number of calculations per 
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iteration grows linearly in m. The computation of (1, p)-optimal policies is 

trivial. The costs C(p), Cm(p) are computed by value iteration or some simple 

variant of it. 

In Tables 1 and 2 find values of the absolute differences C,n(p) - C(p), 

m = 1, 2, 3 and the relative differences {Cm(p) - C(p)} (C(p)}- 1, form = 1, 2, 3, 

and p = 0(0.1)1. Figures 1 and 2 present these data graphically. 

,, 
0.0 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

TABLE 1. ABSOLUTE DIFFERENCES BETWEEN THE COST FROM 
HEURISTIC lt(r) AND AN OPTIMAL POLICY 

C1(11)-C(11) C2(11)- C(11) C3(11)- C(11) 

0.000 0.000 0.000 

1.097 0.693 0.404 

1.941 1.225 0.716 

2.650 1.672 0.978 

3.232 2.037 1.195 

3.714 2.338 1.376 

4.023 2.536 1.487 

4.073 2.579 1.494 

3.772 2.396 1.376 

2.686 1.736 0.950 

0.000 0.000 0.000 
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.,, 
0.0 

0.1 
0.2 

0.3 
0.4 

0.5 
0.6 

0.7 

0.8 
0.9 

1.0 

TABLE 2. RELATIVE PERCENTAGE DIFFERENCES BETWEEN THE 
COST FROM HEURISTIC l(rl AND AN OPTIMAL POLICY 

l00(C,(-,,) - C(-,,)){C-,,))-1 l00(C2(v) - C(-,,)}{Cp))-1 100[C3fo) - C(v)){Cv))- 1 

0.000 0.000 0.000 

1.022 0.646 0.377 

1.396 0.881 0.515 

1.551 0.978 0.572 

1.593 1.004 0.589 

1.581 0.995 0.586 

1.506 0.949 0.557 

1.360 0.861 0.499 

1.136 0.721 0.414 

0.735 0.475 0.260 

0.000 0.000 0.000 

~ 

Figure 1. Absolute Differences between the Cost from Heuristiclr(z:) and 
an Optimal Policy 
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Figure 2. Relative Differences between the Cost from Heuristicft(z:) and an 
Optimal Policy 

If, for example, we wished to choose a heuristic mr) whose Bayes' cost is 

within 1 % of the optimum then, from Table 2, choosing r1 = 1 would suffice 

for p = 0, 0.9, 1.0; choosing r1 = 2 would suffice for p = 0.1, 0.2, 0.3, 0.5, 0.6, 0.7 

and 0.8 but we would need r1 = 3 to attain this level of performance when 

p = 0.4. This pattern of behavior is what Section 4 would lead us to expect. 

One striking feature of our numerical study of this replacement problem is 

the consistently strong performance of the cost-rate myopic policy with r1 = 1. -

In Figures 3 and 4 find values of C1(p) - C(p) for the problem described above · . 

but with discount rate now taken to be a= 0.95 and a range of repair costs 

c1 = 5(1)10. Figure 3 is for a case with small prior variance (p = 0.1) and Figure 

4 for large prior variance (p = 0.5). It seems that the simple cost-rate myopic 

policy will deliver adequate performance for our replacement problem much 

of the time. 
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Figure 3. Absolute differences between the cost from the cost-rate myopic 
policy and an optimal policy when p = 0.1 

.. 

Figure 4. Absolute differences between the cost from the cost-rate myopic 
policy and an optimal policy when p = 0.5 
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