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Regular Singular Points
Euler studied series solutions of second order linear ODEs.

Recall from Boyce and DiPrima, the ODE

0 = P (x)y′′ +Q(x)y′ +R(x)y

has a regular singular point at x = 0 if xQ(x)
P (x)

and x2R(x)
P (x)

have

finite limits as x→ 0.

The usual way this happens is that P (x), Q(x), R(x) are real
analytic and

P (x) = x2
∞∑
n=0

pnx
n

Q(x) = x

∞∑
n=0

qnx
n

R(x) =

∞∑
n=0

rnx
n
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Regular Singular Points

Euler assumed that for some ρ the solution had a series
expansion of the form

y(x) =

∞∑
m=0

amx
ρ+m

then

y′(x) =

∞∑
m=0

(ρ+m)amx
ρ+m−1

y′′(x) =
∞∑
m=0

(ρ+m)(ρ+m− 1)amx
ρ+m−2



Regular Singular Points

He plugged these expressions into the ODE and obtained

0 =

( ∞∑
n=0

pnx
n

)( ∞∑
m=0

(ρ+m)(ρ+m− 1)amx
ρ+m

)

+

( ∞∑
n=0

qnx
n

)( ∞∑
m=0

(ρ+m)amx
ρ+m

)

+

( ∞∑
n=0

rnx
n

)( ∞∑
m=0

amx
ρ+m

)

He collected the coefficient of xρ and obtained the so-called
indicial equation

0 = p0ρ(ρ− 1) + q0ρ+ r0

which has two possibly complex roots ρ1, ρ2.
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Regular Singular Points

For each root by setting the coefficients of xρ+m+1 to zero he
obtained a recurrence relation am+1 in terms of am, . . . , a0.

In this way he got two linearly independent solutions each
determined by their first coefficient a0 .

Hence he had found the general solution to the second order
linear ODE.
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Regular Singular Points

Why did Euler’s method work?

• Was it because it was a second order linear ODE?

• No!

• Was it because it was an linear ODE?

• No!

• Was it because it was an ODE?

• No!

It worked because the coefficient of the second derivative was
O(x)2 and the coefficient of the first derivative was O(x).

Differentiation lowers the degree of a monomial by 1 and
multiplying it by x restores it to its original degree.

Twice differentiation lowers the degree of a monomial by 2 and
multiplying it by x2 restores it to its original degree.
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Deterministic Optimal Control Problem

min
u(·)

∫ ∞
0

l(x, u)

subject to

ẋ = f(x, u)

x(0) = x0

If the optimal cost π(x0) and optimal feedback u = κ(x) exist
and are smooth they satisfy the Hamilton-Jacobi-Bellman PDEs
(HJB)

0 = minu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
κ(x) = argminu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
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Deterministic Optimal Control Problem

If the quantity to be minimized is smooth with respect to u
then the HJB equations imply the simplified
Hamilton-Jacobi-Bellman PDEs (sHJB)

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

0 =
∂π

∂x
(x)

∂f

∂u
(x, κ(x)) +

∂l

∂u
(x, κ(x))

If the quantity to be minimized is also strictly convex with
respect to u then sHJB implies HJB.
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Deterministic Optimal Control Problem

If we can solve the second simplified Hamilton-Jacobi-Bellman
PDE for κ(x) in terms of ∂π

∂x
(x) then we plug it into the first

simplified Hamilton-Jacobi-Bellman PDE and get a single first
order nonlinear PDE for ∂π

∂x
(x)

Around 1960 E. G. Al’brekht (a student of N. N. Krasovski)
realized that, under mild assumptions, the HJB PDEs have a
regular singular point at x = 0.

I not sure Al’brekht thought of his work in terms of regular
points.
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Al’brekht’s Method

Al’brekht’s assumptions:
1. For some d ≥ 1 , f, l are smooth around x = 0, u = 0 and
have Taylor polynomial expansions

l(x, u) =
1

2

(
x′Qx+ 2x′Su+ u′Ru

)
+ l[3](x, u)

+ . . .+ l[d+1](x, u) + O(x, u)d+2

f(x, u) = Fx+Gu+ f [2](x, u)

+ . . .+ f [d](x, u) + O(x, u)d+1

where [d] indicates a homogeneous polynomial of degree d in
x, u.

2. The quadratic part of l and the linear part of f constitute a
nice LQR.
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Al’brekht’s Method

He assumed that the optimal cost and optimal feedback had
similar Taylor polynomial expansions

π(x) =
1

2
x′Px+ π[3](x) + . . .+ π[d+1](x) + O(x)d+2

κ(x) = Kx+ κ[2](x) + . . .+ κ[d](x) + O(x)d+1

Then he plugged these expansions into the HJB equations and
solved the resulting equations degree by degree.

At the lowest degrees he got the familiar LQR equations.
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Al’brekht’s Method

The HJB equations are nonlinear because the second HJB
equation can be solved for κ(x) in terms of ∂π

∂x
(x) and so the

first HJB equation has terms quadratic in ∂π
∂x

(x).

This fixes the leading degree of π(x) at 2 because then the
leading degree of ∂π

∂x
(x) is 1 and so the leading degree of the

quadratic terms are 2.

If the leading degree of π(x) is 2 then the leading degree of
∂π
∂x

(x)f(x, κ(x)) is also 2.

This is the analog of Euler’s indicial equation.
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Al’brekht’s Method in Discrete Time
Al’brekht’s method readily extends to discrete time optimal
control problems of the form

min
u(·)

∞∑
t=0

l(x, u)

subject to

x+ = f(x, u)

x(0) = x0

If they exist the optimal cost π(x) and optimal feedback
u = κ(x) satisfy the Dynamic Programming Equations (DPE)

0 = minu {π(f(x, u)) + l(x, u)}
κ(x) = argminu {π(f(x, u)) + l(x, u)}
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Al’brekht’s Method in Discrete Time
If we differentiate the quantity to be minimized with respect to
u and set the result equal to zero we get the simplified Dynamic
Programming Equations (sDPE)

0 = π(f(x, κ(x))) + l(x, κ(x))

0 =
∂π

∂x
(f(x, κ(x)))

∂f

∂u
(x, κ(x)) + l(x, κ(x))

As before we assume that
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1
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Al’brekht’s Method in Discrete Time

If one plugs these expansions into the sDPE at the lowest
degrees one obtains the equations of a discrete Linear Quadratic
Regulator.

At higher degrees one obtains a sequence of linear algebraic
equations for the higher degree terms.

We have written MATLAB code to solve these equations in any
dimensions to any degrees.
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Model Predictive Control
Why is Al’brekht’s Method important today?

It is impossible to approximately solve off-line the HJB or DPE
equations on a large domain in the state space if n ≥ 3 .

Because the Optimization Community has developed fast and
robust Nonlinear Program Solvers we can use MPC techniques
to solve on-line finite horizon discrete time optimal control
problems given the current state x(t1) = x1.

min
u(·)

t1+T−1∑
s=t1

l(x(s), u(s)) + πT (t1 + T )

subject to

x(s+ 1) = f(x(s), u(s))

x(t1) = x1
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Model Predictive Control

This is a nonlinear program in the decision variables u(s) for
s = t1, . . . , t1 + T − 1 .

But in order to control fast processes we need to keep the
horizon length T as short as possible so we need to add a
terminal cost to the criterion of the NLP.

An ideal terminal cost is the optimal cost of the corresponding
infinite horizon discrete time optimal control problem.

Al’brekht’s method, extended to such discrete time problems,
supplies a reasonable terminal cost that is valid in some domain
around x = 0.
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Adaptive Horizon Model Predictive Control

But how big is that domain where the Taylor polynomial
approximation to the optimal cost is a valid control Lyapunov
function?

We might expect that increasing the degree d we might increase
the size of the domain but that is not always the case. It would
be very expensive to compute off line the domain of Lyapunov
validity and verify that the end of an optimal trajectory returned
by the solver is in this domain.

Instead we on-line verify that the end of the optimal trajectory
returned by the solver is in this domain by projecting it an
additional number of time steps using the Taylor polynomial
approximation to the optimal feedback supplied by the discrete
time version of Al’brekht’s method.
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Adaptive Horizon Model Predictive Control

x(s+ 1) = f(x(s), κ(x(s))

x(T ) = x∗(T )

for s = t1 + T, . . . , t1 + T + S − 1 where x∗(T ) is the end of
the optimal trajectory computed by the solver

We verify that the Lyapunov conditions and any feasibility
constraints are satisfied on the extension.

Then we adjust the horizon T as needed.
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Stochastic Optimal Control Problem

min
u(·)

E

{∫ ∞
0

l(x, u) dt

}
subject to the Ito equation

dx = f(x, u)dt+

r∑
k=1

γk(x, u)dwk

where w = [w1;w2; . . . ;wr] is a standard r dimensional Wiener
process.

At first glance this problem seems ill-posed because the
expected cost will probably be infinite as the horizon is infinite.

This is probably true if γk(x, u) = O(1) or, in other words, if
γk(0, 0) 6= 0.

But what happens if γk(x, u) = O(x, u) or, in other words, if
γk(0, 0) = 0.
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ISS Example
Here is an example where γk(0, 0) = 0.

Consider a pendulum of length 1 m and mass 1 kg orbiting
approximately 400 kilometers above Earth on the International
Space Station (ISS). The ”gravity constant” at this height is
approximately g = 8.7 m/sec2 . The pendulum can be
controlled by a torque u that can be applied at the pivot and
there is damping at the pivot with linear damping constant
c1 = 0.1 kg/sec and cubic damping constant
c3 = 0.05 kg sec/m2.

Let x1 denote the angle of pendulum measured counter
clockwise from the outward pointing ray from the center of the
Earth and let x2 denote its angular velocity. The determistic
equations of motion are

ẋ1 = x2

ẋ2 = lg sinx1 − c1x2 − c3x3
2 + u
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Example

But the shape of the earth is not a perfect sphere and its density
is not uniform so there are fluctuations in the ”gravity constant”.
We set these fluctuations at around one percent although they
are probably smaller. There might also be fluctuations in the
damping constants of around one percent. Further assume that
the commanded torque is not always realized and the relative
error of the actual torque fluctuates around one percent.

We model these stochastically by three white noises

dx1 = x2 dt

dx2 =
(
lg sinx1 − c1x2 − c3x3

2 + u
)
dt

+0.01lg sinx1 dw1 − 0.01(c1x2 + c3x
3
2) dw2

+0.01u dw3
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Example

This is an example about how stochastic models with noise
coefficients of order O(x, u) can arise.

If the noise is modeling an uncertain environment then its
coefficients are likely to be O(1).

But if it is the model that is uncertain then noise coefficients are
likely to be O(x, u).
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Example

The goal is to find a feedback u = κ(x) that stabilizes the
pendulum to straight up in spite of the noises so we take the
criterion to be

min
u

E

{
1

2

∫ ∞
0
‖x‖2 + u2 dt

}
subject to

dx1 = x2 dt

dx2 =
(
lg sinx1 − c1x2 − c3x3

2 + u
)
dt

+0.01lg sinx1 dw1 − 0.01(c1x2 + c3x
3
2) dw2 + 0.01u dw3

We shall return to this example in a moment but first we
consider the general case.



Stochastic Optimal Control Problem

min
u(·)

E

{∫ ∞
0

l(x, u) dt

}
subject to the Ito equation

dx = f(x, u) dt+

r∑
k=0

γk(x, u) dwk

x(0) = x0

If the optimal cost π(x0) and optimal feedback u = κ(x) exist
and are smooth then they satisfies the simplified stochastic
Hamilton-Jacobi-Bellman PDEs (sSHJB)

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

+
1

2

∑
k

γ′k(x, u)
∂2π

∂x2
(x)γk(x, u)

0 =
∂π

∂x
(x)

∂f

∂u
(x, κ(x)) +

∂l

∂u
(x, κ(x))
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LQR with Bilinear Noise
Let’s look at a simple case.

min
u(·)

E

{
1

2

∫ ∞
0

x′Qx+ 2x′Su+ u′Ru dt

}
subject to the Ito equation

dx = (Fx+Gu) dt+

r∑
k=1

(Ckx+Dku) dwk

x(0) = x0

We suspect that optimal cost and optimal feedback are of the
form

π(x) =
1

2
x′Px

κ(x) = Kx

and plug these expressions into the sSHJB equations.
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Stochastic Algebraic Riccati Equations (SARE)

0 = PF + F ′P +Q−K′RK

+

r∑
k=1

(
C′k +K′D′k

)
P (Ck +DkK)

K = −
(
R+

r∑
k=1

D′kPDk

)−1(
G′P + S′ +

r∑
k=1

D′kPCk

)

Does SARE have a nonnegative definite solution P and how do
we find it?

Here is an iterative method for solving SARE. Let P(0) and K(0)

be be the solutions of the deterministic ARE

0 = P(0)F + F ′P(0) +Q−K′(0)RK(0)

K(0) = −R−1(G′P + S′)
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SARE Iteration
Given P(τ−1) define

Q(τ) = Q+

r∑
k=1

C′kP(τ−1)Ck

R(τ) = R+

r∑
k=1

D′kP(τ−1)Dk

S(τ) = S +

r∑
k=1

C′kP(τ−1)Dk

Let P(τ) and K(τ) be the solutions of the ARE

0 = P(τ)F + F ′P(τ) +Q(τ) −K′(τ)R(τ)K(τ)

K(τ) = −R−1
(τ)

(
G′P(τ) + S′(τ)

)
We have found using MATLAB’s are.m, that if matrices Ck and
Dk are not too big then the iteration conveges. But it can
diverge if Ck and Dk are large. Further study of this is needed.
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Stochastic Nonlinear Optimal Control
Suppose the problem is not linear-quadratic, the dynamics is
given by an Ito equation

dx = f(x, u) dt+

r∑
k=1

γk(x, u) dwk

and the criterion to be minimized is

min
u(·)

E

∫ ∞
0

l(x, u) dt

We assume that f(x, u), γk(x, u), l(x, u) are smooth functions
that have Taylor polynomial expansions around x = 0, u = 0 ,

f(x, u) = Fx+Gu+ f [2](x, u) + . . .+ f [d](x, u) + O(x, u)d+1

γk(x, u) = Ckx+Dku+ γ
[2]
k (x, u) + . . .+ γ

[d]
k (x, u) + O(x)d+1

l(x, u) =
1

2

(
x′Qx+ 2x′Su+ u′Ru

)
+ l[3](x, u) + . . .+ l[d+1](x, u) + O(x, u)d+2
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Stochastic HJB Equations

The sSHJB equations are

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

+
1

2

r∑
k=1

γ′k(x, κ(x))
∂2π

∂x2
(x)γk(x, κ(x))

0 =
∂π

∂x
(x)

∂f

∂u
(x, κ(x)) +

∂l

∂u
(x, κ(x))

+

r∑
k=1

γ′k(x, κ(x))
∂2π

∂x2
(x)

∂γk

∂u
(x, κ(x))

The simplified Stochastic HJB equations are second order and
have a regular singular point at x = 0.
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Stochastic HJB Equations
Following Euler and Al’brekht we assume that the optimal cost
and the optimal feedback have Taylor polynomial expansions

π(x) =
1

2
x′Px+ π[3](x) + . . .+ π[d+1](x) + O(x)d+2

κ(x) = Kx+ κ[2](x) + . . .+ κ[d](x) + O(x)d+1

We plug all these expansions into the simplified SHJB equations
At lowest degrees, we get the familiar SARE.

0 = PF + F ′P +Q−K′RK

+

r∑
k=1

(
C′k +K′D′k

)
P (Ck +DkK)

K = −
(
R+

r∑
k=1

D′kPDk

)−1(
G′P + S′ +

r∑
k=1

D′kPCk

)



Stochastic HJB Equations
If SARE are solvable then we may proceed to the next degrees

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′Pf [2](x,Kx) + l[3](x,Kx)

+
1

2

∑
k

x′(C′k +K′D′k)
∂2π[3]

∂x2
(x)(Ck +DkK)x

+
∑
k

x′(C′k +K′Dk)Pγ
[2]
k (x,Kx)

0 =
∂π[3]

∂x
(x)G+ x′P

∂f [2]

∂u
(x,Kx) +

∂l[3]

∂u
(x,Kx)

+
∑
k

x′(Ck +DkK)′

(
P
∂γ

[2]
k

∂u
(x,Kx) +

∂2π[3]

∂x2
(x)Dk

)

+
∑
k

γ
[2]
k (x,Kx)PDk + (κ[2](x))′

(
R+

∑
k

D′kPDk

)



Stochastic HJB Equations
The unknowns in these linear equations are π[3](x) and κ[2](x)
nt Notice that the first equation does not contain κ[2](x) and
π[3](x) appears twice.

The eigenvalues of the linear operator

π[3](x) 7→
∂π[3]

∂x
(x)(F +GK)x

are sums of three eigenvalues of F +GK in the open left half
plane and hence never zero.

The eigenvalues of the linear operator

π[3](x) 7→ (C′k +K′D′k)
∂2π[3]

∂x2
(x)(Ck +DkK)

are sums of three products of two eigenvalues of Ck +DkK and
are small if Ck +DkK is small.
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Stochastic HJB Equations
The unknowns in these linear equations are π[3](x) and κ[2](x)
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Stochastic HJB Equations

We have found that these equations are solvable if Ck and Dk

are not too big.

The higher degree terms are found in a similar fashion.

We have written general purpose MATLAB code to solve these
equations to any degree in any dimensions.

The code is fast but in high degrees and/or high dimensions
requires considerable memory.
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ISS Example Revisited
We return to the example of the noisy inverted pendulum on the
ISS.

Because the Lagrangian is an even function and the dynamics is
an odd function of x, u, we know that π(x) is an even function
and κ(x) is an odd function.

π(x) = 26.7042x2
1 + 17.4701x1x2 + 2.9488x2

2
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1 − 2.9012x3

1x2 − 0.5535x2
1x

2
2
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3
2 − 0.0157x4

2

0.3361x6
1 + 0.1468x5

1x2 − 0.0015x4
1x

2
2 − 0.0077x3

1x
3
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−0.0022x2
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4
2 − 0.0003x1x

5
2 + 0.0000x6

2 + . . .

κ(x) = −17.4598x1 − 5.8941x2

+2.9012x3
1 + 1.1071x2

1x2 + 0.2405x1x
2
2 + 0.0628x3

2

−0.1468x5
1 + 0.0031x4

1x2 + 0.0232x3
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2 − 0.0002x5
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ISS Example Revisited
We return to the example of the noisy inverted pendulum on the
ISS.

Because the Lagrangian is an even function and the dynamics is
an odd function of x, u, we know that π(x) is an even function
and κ(x) is an odd function.

π(x) = 26.7042x2
1 + 17.4701x1x2 + 2.9488x2

2

−4.6153x4
1 − 2.9012x3

1x2 − 0.5535x2
1x

2
2

−0.0802x1x
3
2 − 0.0157x4

2

0.3361x6
1 + 0.1468x5

1x2 − 0.0015x4
1x

2
2 − 0.0077x3

1x
3
2

−0.0022x2
1x

4
2 − 0.0003x1x

5
2 + 0.0000x6

2 + . . .

κ(x) = −17.4598x1 − 5.8941x2

+2.9012x3
1 + 1.1071x2

1x2 + 0.2405x1x
2
2 + 0.0628x3

2

−0.1468x5
1 + 0.0031x4

1x2 + 0.0232x3
1x

2
2

+0.0089x2
1x

3
2 + 0.0014x1x

4
2 − 0.0002x5

2 + . . .



ISS Example Revisited
Notice the some of quartic terms have negative signs. Why?

Figure: Taylor approximations of sin(x)
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Finite Horizon Continuous Time Extension

This method readily extends to finite horizon stochastic optimal
control problems.

min
u(·)

E

{∫ T

0
l(t, x, u)dt+ πT (x(T ))

}
subject to

dx = f(t, x, u)dt+

r∑
k=1

γk(t, x, u)dwk

x(0) = x0

We assume that f, l, γk, πT are smooth and γk(t, 0, 0) = 0.



Finite Horizon Continuous Time Extension

At the lowest degrees we get a stochastic differential Riccati
equation that is well-known.

0 = Ṗ (t) + P (t)F (t) + F ′(t)P (t) +Q(t)−K′(t)R(t)K(t)

+
∑
k

(
C′k(t) +K′(t)D′k(t)

)
P (t) (Ck(t) +Dk(t)K(t))

K(t) = −
(
R(t) +

r∑
k=1

D′k(t)P (t)Dk(t)

)−1

(G′(t)P (t) + S(t))

P (T ) = PT

What is new is that we can find the higher degree terms of the
optimal cost and the optimal feedback by solving a series of
time varying linear differential equations.
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Finite Horizon Continuous Time Extension

0 =
∂π[3]

∂t
(t, x) +

∂π[3]

∂x
(t, x)(F (t) +G(t)K(t))x

+x
′
P (t)f

[2]
(t, x,K(t)x) + l

[3]
(t, x,Kx)

+
1

2

∑
k

x
′
C
′
k(t)

∂2π[3]

∂x2
(t, x) (Ck +Dk(t)K(t)) (t)x

+
∑
k

x
′
(
C
′
k(t) +K

′
(t)D

′
k(t)

)
P (t)γ

[2]
k

(t, x)

0 =
∂π[3]

∂x
(t, x)G(t) + x

′
P (t)

∂f [2]

∂u
(t, x,K(t)x) +

∂l[3]

∂u
(t, x,K(t)x)

+
∑
k

x
′
(Ck(t) +Dk(t)K(t))

′

P (t)
∂γ

[2]
k

∂u
(x,K(t)x) +

∂2π[3]

∂x2
(x)Dk(t)


+

∑
k

γ
[2]
k

(x,K(t)x)P (t)Dk(t) + (κ
[2]

(t, x))
′

R(t) +
∑
k

D
′
k(t)PDk(t)





Infinite Horizon Discrete Time Extension

This method readily extends to infinite horizon stochastic
optimal control problems in discrete time.

min
u(·)

E

{ ∞∑
t=0

l(x, u)

}

subject to

x+ = f(x, u) +

r∑
k=1

γk(x, u)wk

x(0) = x0

where w(t) = [w1(t);w2(t); . . . ;wr(t)] is a sequence of
independent standard normal r vectors.
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Infinite Horizon Discrete Time Extension

At the lowest degrees we get new Stochastic Discrete Time
Algebraic Riccati Equation (SDARE)

P = Q+K′RK + (F +GK)′P (F +GK)

+
∑
k=1r

(Ck +DkK)′P (Ck +DkK)

K = −
(
R+G′PG+

r∑
k=1

D′kPDk

)−1

×
(
G′PF + S′ +

r∑
k=1

D′kPCk

)



Infinite Horizon Discrete Time Extension

At degrees three and two we get the square linear equations

π
[3]

(x) = E

π[3]

(F +GK)x+
∑
k

wk(Ck +DkK)x


+x
′
(F +GK)

′
Pf

[2]
(x,Kx) +

∑
k

x
′
(Ck +DkK)

′
Pγ

[2]
k

(x,Kx) + l
[3]

(x,Kx)

0 = E

∂π
[3]

∂x

(F +GK)x+
∑
k

wk(Ck +DkK)x

G+
∑
k

wkDk


+x
′
P
∂f [2]

∂u
(x,Kx) +

∂l[3]

∂u
(x,Kx) + (κ

[2]
(x))
′

R+G
′
PG+

∑
k

D
′
kPDk





Finite Horizon Discrete Time Extension

This method readily extends to finite horizon stochastic optimal
control problems in discrete time.

min
u(·)

E

{
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Finite Horizon Discrete Time Extension

At the lowest degrees we get a familiar Stochastic Discrete
Time Riccati Difference Equation (SDRDE)

P (t) = Q(t) +K
′
(t)S(t) + S(t)K

′
(t) +K

′
(t)R(t)K(t)

+(F (t) +G(t)K(t))
′
P (t+ 1)(F (t) +G(t)K(t))

+
∑

k=1r

(Ck(t) +Dk(t)K(t))
′
P (t+ 1)(Ck(t) +Dk(t)K(t))

K(t) = −

R(t) +G
′
(t)P (t+ 1)G(t) +

r∑
k=1

D
′
k(t)P (t+ 1)Dk(t)

−1

×

G′(t)P (t+ 1)F (t) + S
′
(t) +

r∑
k=1

D
′
k(t)P (t+ 1)Ck(t)


P (T ) = PT



Finite Horizon Discrete Time Extension
At the next degrees we get the linear difference equations

π
[3]

(t, x) = E
{
π

[3]
(t+ 1, z(t, x, w))

}
+x
′
(F (t) +G(t)K(t))

′
P (t+ 1)f

[2]
(t, x,Kx)

+
∑
k

x
′
(Ck(t) +Dk(t)K(t))

′
P (t+ 1)γ

[2]
k

(t, x,Kx) + l
[3]

(t, x,Kx)

0 = E

∂π
[3]

∂x
(t, z(t, x, w))

G(t) +
∑
k

wkDk(t)


+x
′
P (t+ 1)

∂f [2]

∂u
(t, x,K(t)x) +

∂l[3]

∂u
(t, x,K(t)x)

+(κ
[2]

(t, x))
′

R(t) +G
′
(t)P (t+ 1)G(t) +

∑
k

D
′
k(t)P (t+ 1)Dk(t)


π

[3]
(T, x) = π

[3]
T (x)

where

z(t, x, w) = F (t) +G(t)K(t))x+
∑
k

wk(Ck(t) +Dk(t)K(t)x

We are in the process of writing MATLAB code to solve these
equations to any degree in any dimensions.
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