
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-06

QUANTUM COMPUTING ON A PHYSICAL
QUANTUM COMPUTER

Kasel, Jonathan D.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/59694

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

QUANTUM COMPUTING

 ON A PHYSICAL QUANTUM COMPUTER

by

Jonathan Kasel

June 2018

Thesis Advisor: Theodore D. Huffmire
Second Reader: James H. Luscombe

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of

information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE

June 2018

3. REPORT TYPE AND DATES COVERED

Master's thesis

4. TITLE AND SUBTITLE

QUANTUM COMPUTING ON A PHYSICAL QUANTUM COMPUTER

5. FUNDING NUMBERS

6. AUTHOR(S) Jonathan Kasel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

N/A

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (maximum 200 words)

Several emerging companies are making claims about their quantum computing capabilities. The
Department of Defense needs these claims evaluated against known models to objectively compare available
systems. This thesis examines the results of tests of quantum circuits on the ibmqx2 and compares them to
our own calculations. This thesis provides a bridge between the quantum circuit model as presented in
Quantum Computing for Computer Scientists and the compiled circuits provided by IBM. The study is

limited to algorithms that can be run with a maximum of five quantum bits.

14. SUBJECT TERMS

quantum computing, IBM, Qubit, cloud computing, quantum physics, superposition,

entanglement

15. NUMBER OF

PAGES 123

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

QUANTUM COMPUTING ON A PHYSICAL QUANTUM COMPUTER

Jonathan Kasel
Lieutenant, United States Navy

BS, California State University, Sacramento, 2009

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 2018

Approved by: Theodore D. Huffmire

Advisor

James H. Luscombe

Second Reader

Peter J. Denning

Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Several emerging companies are making claims about their quantum computing

capabilities. The Department of Defense needs these claims evaluated against known

models to objectively compare available systems. This thesis examines the results of tests

of quantum circuits on the ibmqx2 and compares them to our own calculations. This

thesis provides a bridge between the quantum circuit model as presented in Quantum

Computing for Computer Scientists and the compiled circuits provided by IBM. The

study is limited to algorithms that can be run with a maximum of five quantum bits.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 What is the IBM Quantum Experience? 4
1.2 Introduction to Notation . 6
1.3 Matrix Multiplication . 7
1.4 Quantum Laws . 10

2 Quantum Computing Basics 11
2.1 Quantum Gates . 11
2.2 Multiple Qubit Gates . 13
2.3 Superposition. 16
2.4 Entanglement . 19
2.5 Teleportation . 21
2.6 Bloch Sphere . 21

3 IBM Quantum Experience 23
3.1 Introduction to IBM Quantum Experience 23
3.2 Introduction to Composer . 23
3.3 Introduction to QASM . 27
3.4 Demonstrating Quantum Principles 29

4 Experimenting with Quantum Algorithms 43
4.1 Deutsch-Jozsa’s Algorithm . 43
4.2 Grover’s Algorithm . 51
4.3 Shor’s Algorithm . 57

5 Conclusion 69

6 Related Work 73

vii

7 Future Work 75
7.1 QISKit . 75
7.2 Qubiter . 75
7.3 High-Level Quantum Computing Language 75

Appendix A QASM Code 77
A.1 Experiment 3.1 . 77
A.2 Experiment 3.2 . 77
A.3 Experiment 3.3 . 78
A.4 Experiment 3.4 . 78
A.5 Experiment 3.5 . 79
A.6 Experiment 3.7 . 79
A.7 Experiment 4.1 . 80
A.8 Experiment 4.2 . 80
A.9 Experiment 4.3 . 81
A.10 Experiment 4.4 . 82
A.11 Experiment 4.5 . 83
A.12 Experiment 4.6 . 84
A.13 Experiment 4.7 . 85
A.14 Experiment 4.8 . 86
A.15 Experiment 4.9 . 87
A.16 Experiment 4.10 . 88

Appendix B Mathematica Notebooks 91
B.1 Experiment 4.1 Mathematica Notebook. 91
B.2 Computing U f in Experiment 4.2 Mathematica Notebook. 91
B.3 Experiment 4.2 Mathematica Notebook. 92
B.4 Experiment 4.3 Mathematica Notebook. 92
B.5 Experiment 4.4 Mathematica Notebook. 93
B.6 Experiment 4.5 Mathematica Notebook. 93
B.7 Experiment 4.6 Mathematica Notebook. 94
B.8 Reversing a CNOT Gate Mathematica Notebook. 94

viii

B.9 Controlled-S Gate . 95
B.10 Experiment 4.8 Mathematica Notebook. 95
B.11 Experiment 4.10 Mathematica Notebook.. 96
B.12 QFT from [1] Mathematica Notebook. 97

List of References 99

Initial Distribution List 105

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Figures

Figure 1.1 IBM Quantum Computer (ibmqx2). 3

Figure 1.2 ibmqx2 processor. 5

Figure 1.3 ibmqx2 processor connectivity 5

Figure 2.1 CNOT gate. 14

Figure 2.2 Reverse CNOT gate. 14

Figure 2.3 CNOT gate with three qubits. 15

Figure 2.4 Toffoli gate. 16

Figure 2.5 Example of Young’s double-slit experiment with bullets. 17

Figure 2.6 Example of Young’s double-slit experiment with waves. 17

Figure 2.7 Example of Young’s double-slit experiment with electrons. . . . 18

Figure 2.8 Creating the Bell state |β00
〉
. 20

Figure 2.9 Bloch sphere. 21

Figure 3.1 Composer view . 24

Figure 3.2 Placing an X gate. 25

Figure 3.3 Deleting an X gate. 26

Figure 3.4 Applying a CNOT gate . 26

Figure 3.5 QASM example. 27

Figure 3.6 Quantum circuit with default measurement. 28

Figure 3.7 Quantum circuit with custom measurement. 28

Figure 3.8 Quantum circuit processing and execution. 29

Figure 3.9 Experiment 3.1: Measuring the initial state. 30

xi

Figure 3.10 Results from Experiment 3.1: Measuring the initial state. 31

Figure 3.11 Experiment 3.2: Testing qubit flips with an X gate on q0- q4. . . . 32

Figure 3.12 Results from Experiment 3.2: Testing qubit flips with an X gate on
q0- q4. 32

Figure 3.13 Experiment 3.3: Testing superposition with q0 with a single mea-
surement of the system. 33

Figure 3.14 Results from Experiment 3.3: Testing superposition with q0 and a
single measurement of the system. 34

Figure 3.15 Experiment 3.4: q0 into superposition with five measurements. . 35

Figure 3.16 Results from Experiment 3.4: q0 in superposition with five measure-
ments. 36

Figure 3.17 Experiment 3.5: Five qubits in superposition. 37

Figure 3.18 Results from Experiment 3.5: Five qubits in superposition with five
measurements. 37

Figure 3.19 Experiment 3.5a: Testing superposition with additional shots. . . 38

Figure 3.20 Results from Experiment 3.5a with 1000, 4000, and 8000 shots on
ideal simulator. 39

Figure 3.21 Results from Experiment 3.5a with 1024, 4096, and 8192 shots on
ibmqx2. 40

Figure 3.22 Experiment 3.6: Creating Bell state |β00
〉
. 41

Figure 3.23 Results from Experiment 3.7: Creating Bell state |β00
〉
. 42

Figure 4.1 Example Deutsch-Jozsa balanced function. 43

Figure 4.2 Example Deutsch-Jozsa constant function. 43

Figure 4.3 Experiment 4.1: Deutsch-Jozsa constant equation example. . . . 45

Figure 4.4 Results from Experiment 4.1: Deutsch-Jozsa’s constant equation
example. 47

xii

Figure 4.5 An equivalent quantum score to Deutsch-Jozsa constant function
example from IBM. 48

Figure 4.6 Experiment 4.2: Deutsch-Jozsa’s constant equation example. . . 48

Figure 4.7 Results from Experiment 4.2: Deutsch-Jozsa’s balanced equation
example. 50

Figure 4.8 An unsorted array of length N. 51

Figure 4.9 Effects of Grover’s search algorithm on a vector. 52

Figure 4.10 Grover’s search algorithm. 52

Figure 4.11 Experiment 4.3: Grover’s search algorithm, where the desired answer
is 00, and N = 2. 53

Figure 4.12 Experiment 4.4: Grover’s search algorithm, where the desired answer
is 01, and N = 2. 53

Figure 4.13 Experiment 4.5: Grover’s search algorithm, where the desired answer
is 10, and N = 2. 54

Figure 4.14 Experiment 4.6: Grover’s search algorithm, where the desired answer
is 11, and N = 2. 54

Figure 4.15 Results from Experiment 4.3: Grover’s search algorithm, where the
desired answer is 00, and N = 2. 55

Figure 4.16 Results from Experiment 4.4: Grover’s search algorithm, where the
desired answer is 01, and N = 2. 55

Figure 4.17 Results from Experiment 4.5: Grover’s search algorithm, where the
desired answer is 10, and N = 2. 56

Figure 4.18 Results from Experiment 4.6: Grover’s search algorithm, where the
desired answer is 11, and N = 2. 56

Figure 4.19 Shor’s factoring algorithm. 57

Figure 4.20 Experiment 4.7: 7x13 (mod 15). 58

Figure 4.21 CNOT gate flip. 59

Figure 4.22 CNOT gate flip. 59

xiii

Figure 4.23 Swapping q0 in superposition with q1 in a |0
〉
state. 60

Figure 4.24 Experiment 4.8: Swapping q0 in a |1
〉
state and q1 a |0

〉
state. . . 61

Figure 4.25 Results from Experiment 4.8. 62

Figure 4.26 Experiment 4.9: 7x13 (mod 15) configured for the ibmqx2. . . . 63

Figure 4.27 Results from Experiment 4.7 and 4.9: 7x13 (mod 15). 63

Figure 4.28 Three-qubit QFT. 64

Figure 4.29 Experiment 4.10: Quantum Fourier Transform. 64

Figure 4.30 From lemma 5.1. 66

Figure 4.31 Constructing a controlled-S from the gates provided by IBM. . . 66

Figure 4.32 IBM QFT simplified. 67

Figure 4.33 Mathematica results for QFT, as presented by Nielsen and Chuang. 67

Figure 4.34 Mathematica results for QFT, as presented by IBM. 68

xiv

Acknowledgments

I would like to thank first and foremost my wife, Jeanna. Her support and understanding
made the process of writing this thesis possible. Her patient willingness to listen to new
concepts I grasped and be a sounding board are cherished.

I also would like to thank my advisor, Dr. Ted Huffmire, whose instruction in the field of
Quantum Computing was instrumental in writing this thesis. Thank you for the hours you
have dedicated to teaching me the fundamentals and making this product the best it could
be.

My gratitude also extends to Dr. James Luscombe, my second reader, whose experience
helped to elevate and ensure the technical accuracy of the thesis.

I also want to regonize my cohort for patiently listening as I explained what was promised
to be "a really interesting aspect of quantum computing."

I am extremely grateful for the IBM team responsible for developing and maintaining the
IBM Quantum Experience.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

On Mar 6, 2017, IBM announced the release of the IBM Quantum Experience [2]. The
system was a five-qubit quantum computer that the public could interact with through a
cloud-based interface. Although five qubits is insufficient to solve real-world problems,
it creates an opportunity for experimentation. With the IBM Quantum Experience, users
are able to run experiments on the current version of the IBM quantum chip (the latest
version as of the time of this publication being the ibmqx5 chip) or a quantum simulator.
The quantum simulator is a user-defined configuration capable of simulating up to twenty
qubits. The IBM quantum computer and simulator both have a graphical user interface,
Composer, as well as a coding language, Quantum Assembly Language (QASM)1, which
was developed for describing quantum circuits.

The concept of quantum computing was first introduced by Richard Feynman in 1982 [3].
Since then, various companies have entered the market with their version of a quantum
computer. There is yet to be a standard defined for a quantum computer or even what
tests should be used to benchmark their performance. Despite the ongoing debates on
how the physical construction of a quantum computer should proceed, scientists have
been working on developing quantum algorithms for those devices. Some of the most
well-known algorithms include Deutsch-Jozsa’s algorithm, Grover’s search algorithm, and
Shor’s factoring algorithm; we explore them using IBM’s quantum experience [4]–[6].

Current quantum computing technology is not attainable for individual consumers. One
of the largest barriers is cost. The price of the latest D-wave quantum computer is around
$15,000,000 [7]. The current size ofmost of these computers would alsomake them difficult
for consumer use. Figure 1.1 shows the size of the ibmqx2. The ibmqx2 processor chip,
which is seen suspended from the center of the support structure, is comparable in size to
the tower of a classical desktop computer. However, the shielding and structure would take
up the space of a household bathroom.

Quantum computers that can implement the quantum circuit model are approaching the

1QASM is pronounced kasm.

1

theoretical limit of what classical computers can simulate, which is around 56 qubits [8].
Evenwith a fewqubits, as in the ibmqx2, it is possible to run simple algorithms demonstrating
a quantum speed-up, but these are often limited to example cases that have little practical
utility. Boolean operations performed on a classical computer can also be implemented on
a quantum computer, but quantum speed-up does not come from the hardware’s ability to
operate at a faster speed than classical computers. The research team from IBM described
the types of problems at which a quantum computer would excel: "quantum computing
targets problems that can exploit entanglement to explore correlations in computations,
then selects the correct answer through constructive interference" [9]. The speed advantage
of a quantum computer is based on the exploitation of quantum mechanics. Purchasing a
quantum computer to replace a classical computer would be a very expensive investment
with little gain at this time. Finally, there is the issue of calibration. Quantum systems are
susceptible to many sources of interference, which makes maintaining coherence difficult.
The ibmqx2 is calibrated twice a day to ensure accuracy; this level of maintenance would
be a challenge for a regular computer user to achieve [10].

2

Figure 1.1. IBM Quantum Computer (ibmqx2). Source: [11].

Although the field of quantum computing is not yet at a state where individuals can ex-
periment with their own personal quantum computer, endeavors like the IBM Quantum
Experience provide accessibility to anyone with an Internet connection. This is, however,
an exciting time for large organizations to begin experimenting and investing in quantum
information science. Moore’s law, which describes the rate of increase in the number of
transistors that can fit onto an integrated circuit, has held true for decades. Some spec-
ulate that this law has a limited time for being a reliable indicator of advancement in
processors [12]. There are many alternatives to increasing the capability of CPUs; parallel
computing is one well-documented approach. Quantum computing provides an alternative

3

type of parallelism. The difficulty of factoring large integers is a cornerstone of asymmet-
ric encryption. Shor’s algorithm makes it possible to factor large integers in polynomial
time [13]. If Shor’s algorithm were implemented on a large enough fault-tolerant quantum
computer, it could make some asymmetric ciphers no longer a viable option for protecting
confidential communications.

The Department of Defense should continue to invest in quantum computing. The DoD is
entering a new age where its military advantages are being contested by other nations; it
is vital that the U.S. maintains its technological advantage. The Chinese government has
ten billion dollars to construct new research facilities for quantum information science [14].
Quantum computing has the ability to be another "Sputnik moment" for the United States.
The DoD must continue engaging with academia and industry to develop scalable quantum
computers. Whether it is to stay in front of cryptographic challenges or to pursue solutions
to computational problems previously unrealistic to compute, the DoD needs to maintain a
notable presence in the field of quantum computing.

1.1 What is the IBM Quantum Experience?
The IBM Quantum Experience was designed as an open and interactive platform, providing
tools for experimentation and process refinement [10]. After signing up for an account, a
user is given a set of currency units which allow for experimentation. When experiments are
run on one of the available quantum processors, the user’s units are reduced by an amount
dependent on the complexity of the experiment. Once the experiment has gone through
the queue and been performed, the units are again available to the user to run additional
experiments.

The ibmqx2went online on January 24, 2017 [10]. The quantum chip is constructed of fixed-
frequency superconducting transmon.2 The chip is stored inside a dilution refrigerator that
keeps the processor at approximately 15 milli-Kelvin. The chip is shielded from external
variables such as light, heat, and magnetic interference. Not all qubits are fully connected,
meaning that when a user applies a Controlled-NOT (CNOT) to qubit a as the control
qubit and to qubit b as the target qubit, the choices for qubit b are limited by the physical

2A transmon is "a transmission-line shunted plasma oscillation qubit" [15]. This form of qubit aims to
increase decoherence times by operating at an optimal working point [15].

4

implementation of the specific processor. The connectivity of the ibmqx2, achieved by two
coplanar waveguides, is depicted in Figure 1.2.

Figure 1.2. ibmqx2 processor. Source: [16].

The arrows in Figure 1.3 point from the control qubit to the available targets. For example,
q0 is able to target both q1 and q2, but is not able to be the target of any qubits.

q0 q1

q2

q3q4
Figure 1.3. ibmqx2 processor connectivity. Adapted from [16].

5

The specific configuration of control and target qubits is not consistent between all versions
of IBM’s quantum processors. The quantum scores generated are not directly backward-
compatible. It is possible, as shown in Chapter 3, to use swap gates to adapt a circuit
developed for one version of the processor to another. We recommend the development
of a higher-level programming language to map between specific versions of the quantum
processors. This concept is further developed in Chapter 7.

1.2 Introduction to Notation
The IBM Quantum Experience uses multiple different forms of notation to represent the
quantum algorithms, states, and results. It is helpful to first represent a quantum bit in an
arbitrary state of superposition. From this foundation it is possible to develop more specific
examples.

|Ψ
〉
= α |0

〉
+ β|1

〉
(1.1)

The form above is known as Dirac notation or bra-ket notation. The latter refers to the
recommendation by Paul Dirac that the ’

〈
’ symbol be called a bra and the ’

〉
’ called a

ket [17]. The coefficients α and β are complex numbers know as probability amplitudes
for the qubit taking on the discrete state of |0

〉
or |1

〉
, respectively. They are defined by

Equation 1.2.

|α2 | + |β2 | = 1 (1.2)

Equation 1.2 shows that the sum of the probabilities must equal 1. With this background
it is helpful to examine a discrete ground state of a qubit. A qubit in a |0

〉
state would be

represented in Dirac notation as shown Equation 1.3.

|0
〉
= 1|0

〉
+ 0|1

〉
(1.3)

This means the qubit will be in a |0
〉
state with a probability of 1 when measured.

6

Another common notation to represent a qubit is through the use of a column vector. This
is particularly helpful when examining the effect a particular transformation will have as
represented by a unit circle or Bloch sphere; see Chapter 2. To represent the arbitrary state
from Equation 1.1 as a column vector, simply take α to be the first element and β to be the

second:

[
α

β

]
. The same is done to represent |0

〉
as a column vector, with a result of

[
0
1

]
.

1.3 Matrix Multiplication
This thesis evaluates several well-known quantum algorithms on the specific IBM architec-
ture. One way to evaluate two different algorithms is to compile the various transformations
into a single unitary matrix. This process involves matrix multiplication. There are many
software packages readily available to perform this calculation, but a basic understanding
is helpful for understanding the concept and with troubleshooting.

We are given matrices A and B, where A is a 2-by-3 matrix, and B is a 3-by-2 matrix as
defined in Equation 1.4.

A =

[
a b c

d e f

]
, B =


g h

i j

k l

 (1.4)

The product of the two matrices is C = AB, where Ci j =
∑

h AihBh j .

AB =

[
(ag + bi + ck) (ah + bj + cl)

(dg + ei + f k) (dh + e j + f l)

]
(1.5)

It is important to note that the number of columns of matrix A must be equal to the number
of rows of matrix B. Matrix multiplication is not a commutative operation, i.e., AB , BA.
This can be seen in Equation 1.5, where matrix AB is a 2-by-2 matrix, and BA is a 3-by-3
matrix; therefore AA would be undefined in this example. Scalar multiplication is similar
to the distributive property of multiplication. In this case it is helpful to look at our first
single-qubit quantum gate, the Hadamard gate, or H gate. The Hadamard matrix is defined
in Equation 1.6 [1], [18].

7

H = 1
√

2

[
1 1
1 −1

]
(1.6)

Using scalar multiplication, the 1√
2
can be distributed to each coefficient in the matrix

resulting in Equation 1.7.

H =
[1√

2
1√
2

1√
2
−1√

2

]
(1.7)

1.3.1 Tensor Products
A tensor product can be used to construct a vector of higher dimensions, for example, the
two bit state |10

〉
. This notation is most frequently written in base two. Throughout this

thesis, only base two will be used in conjunction with Dirac notation. The tensor product is
frequently denoted by the ⊗ symbol. Equation 1.8 shows the column vector for |10

〉
. This

column vector will also conform to Equation 1.2.

|1
〉
⊗ |0

〉
= |1

〉
|0
〉
= |10

〉
=


0
0
1
0


(1.8)

In Equation 1.8, there were two qubits in the system: the first, q0, in a |1
〉
state and the

second, q1, in a |0
〉
state. Equation 1.9 changes the number of qubits in the system to three.

This shifts the qubit from Equation 1.8, which is in a |1
〉
state, from q0 to q1 and adds a

third qubit, q2, which is in a |0
〉
state.

8

|010
〉
= |0

〉
⊗ |1

〉
⊗ |0

〉
= |0

〉
|1
〉
|0
〉
= |010

〉
=



0
0
1
0
0
0
0
0



(1.9)

1.3.2 Kronecker Product
With a basic understanding of tensor products, matrix multiplication, and scalar multipli-
cation, it is possible to understand the Kronecker product. This is simply a more specific
example of the tensor product discussed in Section 1.3.1. The notation used in a Kronecker
product is the same as a tensor product. The Kronecker product, also known as the outer
product, of two matrices A and B is written as A ⊗ B. Equation 1.11 demonstrates how to
take the Kronecker product. One way to think of this operation is apply each coefficient
from matrix A to matrix B through scalar multiplication.

A =

[
a0,0 a0,1

a1,0 a1,1

]
B =

[
b0,0 b0,1

b1,0 b1,1

]
(1.10)

9

A ⊗ B =


a0,0

[
b0,0 b0,1

b1,0 b1,1

]
a0,1

[
b0,0 b0,1

b1,0 b1,1

]
a1,0

[
b0,0 b0,1

b1,0 b1,1

]
a1,1

[
b0,0 b0,1

b1,0 b1,1

]


=


(a0,0 × b0,0) (a0,0 × b0,1) (a0,1 × b0,0) (a0,1 × b0,1)

(a0,1 × b1,0) (a0,1 × b1,1) (a0,1 × b1,0) (a0,1 × b1,1)

(a1,0 × b0,0) (a1,0 × b0,1) (a1,1 × b0,0) (a1,1 × b0,1)

(a1,0 × b1,0) (a1,0 × b1,1) (a1,1 × b1,0) (a1,1 × b1,1)



(1.11)

By taking the Kronecker product and using matrix multiplication it is possible to represent a
quantum circuit as a singlematrix. This concept is one of the primary techniques used in this
thesis to compare the examples of well-known algorithms provided in the IBM User Guide
to those as presented in Quantum Computing for Computer Scientists [18]. The results of
this examination should provide an additional indicator to confirm that the ibmqx2 follows
the quantum circuit model.

1.4 Quantum Laws
The IBM User Guide describes many of the concepts related to quantum computing [10]. It
also provides example experiments to demonstrate many of these concepts on their physical
hardware. IBM lists five key laws that help to define quantum physics:

• Quantum is a system like everything else.
• A quantum state is a configuration of the system.
• A quantum state changes; it naturally wants to evolve, (i.e., quantum gates must be
reversible)

• Scaling - how parts make a whole.
• Quantum measurements are probabilistic. [10]

10

CHAPTER 2:
Quantum Computing Basics

2.1 Quantum Gates
Chapter 1 provided the necessary background to begin constructing mathematical repre-
sentations of quantum gates as a matrix. Quantum gates must have the property of being
reversible [18]. Gates such as the AND gate lose information, i.e., by Landauer’s principle,
they dissipate energy (see Equation 2.2). This principle unites information to the second
law of thermodynamics and is an established concept in quantum computing [19]. For ad-
ditional reading on the subject, see Chapter 5 of [18]. The important concept for a computer
scientist to understand is that quantum gates must be logically reversible: "A device is said
to be logically irreversible if its input cannot be uniquely determined from its output" [20].

AND =
[
1 1 1 0
0 0 0 1

]
(2.1)

AND|10
〉
=

[
1 1 1 0
0 0 0 1

] 
0
0
1
0


=

[
1
0

]
(2.2)

It is clear from Equation 2.2 that information was lost. The previous state of the system
could have been |00

〉
, |01

〉
, or |10

〉
. There is no way to determine what state the two-qubit

system was in prior to the AND gate being applied.

We have already seen one example of a single-qubit quantum gate, the Hadamard gate, in
Section 1.3. The Hadamard gate will be further discussed in Section 2.3.

11

2.1.1 Identity Gate
The next single-qubit gate is the Identity gate, or I gate. The gate, as expected, returns the
original state of the system prior to the gate being applied.

I =
[
1 0
0 1

]
(2.3)

I|0
〉
=

[
1 0
0 1

] [
1
0

]
=

[
1
0

]
(2.4)

I|1
〉
=

[
1 0
0 1

] [
0
1

]
=

[
0
1

]
(2.5)

The I gate is useful when compiling a quantum circuit. It is common in quantum algorithms
to only apply a quantum gate to a few qubits at a time. It is not necessary to show the I
gate, as it is understood that applying the I gate is functionally equivalent to not applying
any gate.

2.1.2 Pauli Gates
The Pauli matrices are named after Wolfgang Pauli and are commonly used in quantum
computing [1]. Each of the three gates below performs a rotation around a different spin
axis. The three gates are the X, Y, and Z gates. The I gate is occasionally included with
these gates due to the shared mathematical properties, and may be referenced as σ0. The
X gate performs a bit flip on a qubit, and is equivalent to a classical NOT gate. Each of
the Pauli matrices performs a similar flip, or 180 degree rotation, of the qubit about its
respective axis.

X =
[
0 1
1 0

]
(2.6)

Y =
[
0 −i

i 0

]
(2.7)

12

Z =
[
1 0
0 −1

]
(2.8)

2.1.3 Clifford and Non-Clifford Gates
The Pauli matrices listed above are part of a special group of gates known as the Clifford
group. This group is covered under the Gottesman-Knill theorem of gates that can be effi-
ciently simulated with a classical computer [21]. The theorem also includes the Hadamard
gate, Controlled-NOT (CNOT) gate, and a phase shift gate as a part of the Clifford Group.
The Hadamard gate will be covered in Section 2.3 and the CNOT in Section 2.2. The phase
shift gate is also called the S gate.

S =
[
1 0
0 i

]
(2.9)

The Non-Clifford Gates are needed to make the ibmqx2 universal [10], [22]. IBM imple-
mented the T gate for this purpose.

T =
[
1 0
0 eiπ/4

]
(2.10)

2.2 Multiple Qubit Gates

Controlled-NOT
Up to this point, only single-qubit gates have been introduced. In order to construct
interesting algorithms, it is necessary to implement conditional logic. The CNOT gate
enables this. The basic CNOT operates on two qubits, q0 and q1. The CNOT gate applies
an X gate to the target qubit, q1, if the control qubit, q0, is |1

〉
. In Figure 2.1, the target qubit

can be identified by the small solid circle, and the target qubit may be identified by the ⊕
symbol. When reading a quantum circuit in this form, pay close attention to the location
of these symbols. A reverse CNOT, shown in Figure 2.2, is not the equivalent to a CNOT,
shown in Figure 2.1.

13

Figure 2.1. CNOT gate.

Figure 2.2. Reverse CNOT gate.

The matrix for the CNOT gate from Figure 2.1 is shown below. Because the qubits are
directly adjacent to each other, the matrix defining this gate is a 2-by-2 matrix. This is not
the case if the target bit is separated from the control by another bit.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(2.11)

An example CNOT circuit with a control bit q0 and a target bit q2 is shown in Figure 2.3.
This implements the same logic as that in Figure 2.1, but has changed the target qubit.

14

Figure 2.3. CNOT gate with three qubits.

The resulting matrix must account for q1, which is not changed in applying this opera-
tion. Yanofsky explains the general procedure for determining matrices such as the one in
Equation 2.12.

CNOT02 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



(2.12)

Toffoli Gate
The gates defined thus far make the ibmqx2 universal but not yet functionally complete [10].
The Toffoli gate provides the last component for functional completeness. The Toffoli gate
can be used to construct reversible AND, NAND, and OR gates [1], [18]. The logic of a
Toffoli gate is similar to that of a CNOT, but instead of one control qubit, there are two.
Figure 2.4 shows a Toffoli gate with q0 and q1 as the two control qubits and q2 as the target
qubit. Equation 2.13 shows the matrix that represent the Toffoli gate.

15

Figure 2.4. Toffoli gate.

To f f oli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



(2.13)

IBM does not provide a compiled Toffoli gate as an option for use on the ibmqx2. The gate
can be implemented by decomposing the single-qubit gates and CNOT gates as shown in
the IBM User’s Guide [10] or through the use of QASM code, shown as an example in [23].

2.3 Superposition
To begin to understand the concept of superposition, it is helpful to review Thomas Young’s
double-slit experiment [18]. His experiment has been recreated many times since he
presented his results in 1803. Young’s experiment demonstrated the wave nature of light.
The experiment has two walls: one is a sensor, and the other has two slits in it. A wave is
then sent towards the wall with slits; as it passes through, it moves towards the sensor. The
wave refracts and then constructively and destructively interferes with itself. This creates a
unique pattern on the sensor that is predictable given the features of the wave.

Richard Feynman introduces the double-slit experiment in two primary ways as a basis for
comparison with conducting the experiment with electrons, one using waves and another

16

example with bullets [24]. He first describes the experiment as using a large particle, bullets.
The distribution of where the bullet strikes the backstop is shown as a smooth curve after
the process is repeated multiple times; Figure 2.7 depicts the experiment and results. There
is no evidence of the bullet interfering with itself as it passes through the slit. Figure 2.6
illustrates the double-slit experiment with a wave. This experiment clearly shows the impact
the interference has on the probability of the wave’s height when it is detected.

Figure 2.5. Example of Young’s double-slit experiment with bullets. Source:
[24].

Figure 2.6. Example of Young’s double-slit experiment with waves. Source:
[24].

Light was first accurately described by Einstein in 1905 [25]. Taking the same initial setup,

17

but using individual photons shot through the slits, the same interference pattern as seen
with a waves is observed with single photos. Feynman describes conducting this experiment
in theoretical terms and advised that you "should not try to set up this experiment...The
trouble is that the apparatus would have to be made on an impossibly small scale" [24].
Figure 2.7 illustrates his description of the double-slit experiment using electrons. Since
Feynman’s lecture series, technological advances have encouraged several variations of
this experiment to be performed in a laboratory environment [26], [27]. These results
experimentally demonstrate superposition in naturally occurring systems. The only way to
explain the distribution is that each single photon is passing through both slits simultaneously
and interfering with itself: the photon is in a state of superposition.

Figure 2.7. Example of Young’s double-slit experiment with electrons.
Source: [24].

The concept of superposition is one of the fundamental properties of quantum computing.
Yanofsky describes superposition as a "haziness" of the physical properties. "Rather than
an object’s being in one position or another, we say that it is in a ‘superposition,’ i.e., in
some sense, it is simultaneously in more than one location at the same time [18]." This
superposition also applies to the spin of a quantum bit. The spin is measured along a certain
axis and then interpreted to be in a state of |0

〉
or |1

〉
.

This concept may not immediately seem all that powerful, but when you begin to examine
larger systems, it becomes clear that a superposition of a system with N qubits would have
2N possible states. The H gate from Chapter 1 and the S gate from Section 2.1.3 are both

18

able to place a qubit into superposition. It is simple to see this in Equation 2.14.

H |0
〉
=

[1√
2

1√
2

1√
2
−1√

2

] [
1
0

]
=

[1√
2

1√
2

]
(2.14)

If we apply Equation 1.2 to Equation 2.14, it is clear that there is a 50% probability that this
qubit will be in a |0

〉
state and a 50% probability that this qubit will be in a |1

〉
state after

measurement. Observation of the quantum state collapses the superposition, causing each
qubit to behave classically. Each qubit will be in a definite state of |0

〉
or |1

〉
.

2.4 Entanglement
The topic of entanglement has an interesting history in the field of physics. Einstein
wrestled with this concept, and his discourse on the subject spawned his famous description
of entanglement as "spooky action at a distance" [28]. IBM describes this concept as
follows: "two systems that appear too far apart to influence each other can nevertheless
behave in ways that, though individually random, are too strongly correlated to be described
by any classical local theory" [10]. Entangled states are often referred to as an EPR pair,
referencing Einstein, Podolsky, and Rosen’s paper released in 1935 which describes what
they viewed as a paradox created by entanglement [29]. The paper proposed that there were
hidden variables which would account for the correlation between the two states. Quantum
mechanics refutes this, as stated by Greenberger, Horne, and Zeilinger:

"If one measures the spin of particle 1, far from the decay point, and finds spin up, say,
then one knows with certainty that particle 2, which is far away, has spin down. According
to the EPR argument, since one has in no way disturbed particle 2, then this feature, spin
down, must be an element of physical reality. Therefore having spin down is a property
of the particle itself, and cannot have been produced by any measurement we made on
particle 1. It must have come away from the point of interaction, the decay point, with spin
down. Quantum mechanics denies this simple point. It says that the spin of particle 2 is
indeterminate until the spin of particle 1 is measured" [30].

Equation 2.15 shows the vector which describes an EPR or Bell state. The term Bell state
comes from the Bell inequality, originally proposed by John Bell in 1964 [31] and later

19

refined in [32]. An example Bell state is |β00
〉
. The state |β00

〉
can be created by initializing

two qubits in a |0
〉
state. An H gate is applied to the first qubit, placing it into superposition.

A CNOT is applied to the system as a whole, as shown in Figure 2.8, creating an entangled
state.

|00
〉
+ |11

〉
√

2
=


1√
2

0
0
1√
2


= |β00

〉
(2.15)

Figure 2.8. Creating the Bell state |β00
〉
.

Bell’s theorem demonstrated a violation of an inequality, but there is a stronger proof in
the GHZ states [10], [30], [33]. "Instead of a probabilistic violation of an inequality, the
GHZ states lead to a deterministic violation of an equality" [10]. An example GHZ state is
1√
2
(|000

〉
− |111

〉
) [10]. The problem solved by the GHZ state is to find the values satisfying

the identities shown below [10].

1. XXY = 1.
2. YXY = 1.
3. YYX = 1.
4. XXX = -1.

The possible values for X and Y are either +1 or -1. After reviewing [30], Mermin recanted
his statement that "no set of experiments, real or gedanken, was known that could produce
such an all-or-nothing demolition of the elements of reality" [33].

20

2.5 Teleportation
Teleportation in quantum computing "is the process by which the state of an arbitrary qubit
is transferred from one location to another" [18]. This might sound like a topic better left
for science fiction, but the concept has been demonstrated in laboratory experiments [18].
The key concepts to retain from quantum teleportation are:

• Quantum teleportation can transfer information; it does not make a copy [18].
• Quantum teleportation requires a classical communication channel [1].
• Because of the classical communication channel, teleportation is constrained by the
speed of light [1].

• Particles themselves do not move in quantum teleportation, but the state which is
created is indistinguishable from the original [18].

At the time of publishing this thesis, the conditional IF gate had not been implemented on
the ibmqx2. A simulation of quantum teleportation on the ibmqx2 is provided in [23].

2.6 Bloch Sphere
Quantum physics frequently uses a Bloch sphere to represent the state of a qubit. The Bloch
sphere shown in Figure 2.9 can be used to visualize the state of a qubit.

Figure 2.9. Bloch sphere. Adapted from [1].

21

With the Bloch sphere, it is possible to describe a qubit with only the two parameters θ and
φ. The x, y, and z values can then be described by Equations 2.16 through 2.18 [18].

x = cos φ sin 2θ (2.16)

y = sin 2θ sin φ (2.17)

z = cos 2θ (2.18)

22

CHAPTER 3:
IBM Quantum Experience

3.1 Introduction to IBM Quantum Experience
The ibmqx2 is located in the IBM Headquarters at Thomas J. Watson Research Center,
Yorktown NY [11]. Standard users have access to two separate quantum processors, the
ibmqx2 and the ibmqx4, as well as two quantum simulators. There are currently two
additional quantum computers, the ibmqx5 (16-qubits) and the QS1_1 (20-qubits). These
are available to researchers through special request3, and through joining the commercial
IBM Q network, respectively.

As mentioned in Chapter 1, the IBM Quantum Experience has several elements, including
a GUI for programming the ibmqx2, a text editor to program quantum circuits using QASM,
a Beginner’s guide, a Full User Guide, a community forum page, instructional videos, and
a well-established GitHub page of resources.

3.2 Introduction to Composer
Composer is the GUI which enables a user to drag and drop quantum gates to experiment
with a quantum computer. IBM refers to the series of gates applied to the qubits as a
quantum score because of its resemblance to a sheet of music [10]. Figure 3.1 shows a
blank quantum score after navigating to the Composer tab.

3Access to the 16-qubit ibmqx5 was requested while conducting research for this thesis and granted by
IBM. Use of the ibmqx5 is only available through the QISKIT used with Python. The ibmqx5 was not
experimented with in this thesis.

23

Figure 3.1. IBM Quantum Experience composer view. Source: [34].

The Composer view shows which processor has been selected; ibmqx2 in this instance,
as noted in the Backend field at the top of the score. The next two fields, My Units and
Experiment Units, show the units available to the user and the unit cost for the experiment
currently being worked on. In experimenting with the ibmqx2, even with the maximum
number of gates being applied, the experiment cost remained constant at three units. The
maximum number of gates that can be applied in a given quantum score is 85, which
includes five measurements at the end of the score for each qubit. The number of units
does increase with the number of shots; this is the number of times a given circuit is run.
The default parameter for shots is 1024, but it can be increased to 4096 and 8192, as well
as lowered to a single shot. Both 4096 and 8192 shot parameters increase the units per
experiment to five.

Most of the gates on the right hand side of the composer view were discussed in Chapter
2. The five gates not mentioned are the U gates, the S† gate, and the T† gate. The †
symbol denotes the transposed conjugate of a quantum gate. Equations 3.1 and 3.2 show
thematrices for these gates. The threeU gates are the only physically implemented gates and
are used to construct the additional gates supported by the IBM Quantum Experience [23].
These gates, along with CNOT, form a universal set for defining the rest of the quantum
logic gates, such as the X, Y, and Z, in Chapter 2. These gates are only visible if the
Advanced box is checked. The gates are provided to permit additional user-defined gates.

24

S† =

[
1 0
0 −i

]
(3.1)

T† =

[
1 0
0 e−iπ/4

]
(3.2)

3.2.1 Building a Quantum Score
To build a quantum score from the Composer GUI, click and drag the desired gate to the
necessary position on the quantum score. While moving the gate, dots appear on the score
highlighting the available locations where the gate can be applied (see Figure 3.3).

Figure 3.2. Placing an X gate.

When the mouse is released, the gate will snap to the closest available position. If a gate
was incorrectly placed, the process can be repeated by selecting the gate from within the
quantum score and dragging it to the correct location. Selecting a gate within the quantum
score will adjust the information available on the right hand side, providing specifics about
the highlighted gate. To remove a gate, click and drag the gate to the red delete box which
appears while moving a gate within the quantum score.

25

Figure 3.3. Deleting an X gate.

Adding a CNOT gate is performed in a similar fashion. The blue ⊕ can be selected and
dragged to the desired location, but is only able to be applied to qubits q1, q2, and q4. The
Composer will highlight the score for the qubits which may be designated as targets, as
shown in Figure 3.4. The specifics for which qubit may be a target and control is determined
by the physical configuration of the qubits, as shown in Figure 1.34. Once the target qubit
has been selected by placing the ⊕, a small vertical blue bar may be dragged to any of the
available control qubits.

Figure 3.4. Applying a CNOT gate.

4The decision forwhich qubitswere to be targets or controlswasmade by comparing the relative frequencies
of the qubits. "This interaction [when applying a CNOT] is stronger when choosing the qubit with higher
frequency to be the control qubit, and the lower frequency qubit to be the target" [16].

26

3.3 Introduction to QASM
As an alternative to using Composer to build quantum circuits, IBM developed QASM to
allow programming a quantum processor. As the name suggests, QASM is similar to a
standard low-level programming language. The IBM Full User Guide focuses primarily
on building quantum circuits through the Composer menu. Full documentation on using
QASM is provided in [23].

The code shown below describes the same circuit shown in Figure 3.5. The QASM appears
on the left, and the corresponding score on the right. The quantum score is automatically
generated while using QASM and cannot be manipulated, as described in Section 3.2. The
first three lines of the code form the header for the source code. Line one includes the
necessary library for the computer to compile the circuit. The next two lines define the
number of qubits in the system or the quantum register, qreg[], and the number of classical
bits required for the measurement, creg[]. Lines five and six instruct the compiler to first
apply an X gate to q[0] and then apply a CNOT gate to q[0] as the control and q[1] as
the target.

Figure 3.5. QASM example. Source: [34].

This code is not yet ready to run on the ibmqx2. Every quantum score requires at least one
measurement to run. The measurement can be dragged and dropped like all other gates
in the Composer or by using QASM construct measure q[] -> c[];. The default when
applying the measurement to a qubit from Composer is to map to resulting |0

〉
or |1

〉
state

from q[0] to c[0], q[1] to q[1], and so on. This standard format interprets q[0] as the
least significant bit and q[4] as the most significant bit. The default measurement on the

27

ibmqx2 is shown in Figure 3.6, and a customized measurement is shown in Figure 3.7.

Figure 3.6. Quantum circuit with default measurement. Source: [34].

Figure 3.7. Quantum circuit with custom measurement. Source: [34].

The classical bit to which a qubit is mapped at the time of measurement does not impact its
state, but the user must be aware of how the results are represented for comparison. Figure
3.6 would result in 00011 in the computational basis, and Figure 3.7 would result in 11000.
The quantum score provides an easy method to verify where each qubit is mapped by the
measurement. The small integer below the line adjacent to the classical register corresponds
to the classical bit to which the qubit will be mapped.

3.3.1 Quantum Circuit Execution
IBMdivides the process bywhich a quantum circuit is executed into four distinct phases [23].
The phases are:

28

• Compilation
• Circuit Generation
• Circuit Execution
• Post-Processing

A diagram of the processing a quantum circuit undergoes is provided in Figure 3.8. The
"dashed vertical lines separate offline, online, and real-time processes" [23]. The user
requesting a circuit to be run is in the left-hand side of Figure 3.8; the center portion is
completed by the IBM computer to optimize the circuit and provide necessary run-time
parameters. The code is then placed into the appropriate queue by the resource manager
until execution which takes place in the right-hand side of the figure.

Figure 3.8. Quantum circuit processing and execution. Source: [23].

3.4 Demonstrating Quantum Principles
Before exploring the ability of the ibmqx2 to demonstrate quantum principles, we will begin
with some classical operations to use as benchmarks. The experiments are compared to the
ideal simulator, which computes the expected result of the score. As stated in Chapter 1,
the ibmqx2 is calibrated twice daily; the most recent calibration results are provided with
each result for download. The necessity for these frequent calibrations will be evident in
the first two experiments with the ibmqx2. The experiments performed all use a standard
number of shots for both the ibmqx2 and the ideal simulator, 1024 and 1000, respectively.

29

Any deviation from this will be specifically mentioned.

Experiment 3.1: Measuring the Initial State
The first quantum score will measure the qubits with no gates applied. This gives a starting
point to understand the error levels of each qubit. The quantum score in Figure 3.9 shows
the measurement on each qubit with no additional gates. The expectation is that because
each qubit is initially in a |0

〉
state, it would remain in a |0

〉
state upon measurement.

Figure 3.9. Experiment 3.1: Measuring the initial state.

When the circuit from Figure 3.9 was run on the ideal simulator, the results were as
expected, measuring 00000 for each of the 1000 instances the simulation was completed.
Each qubit was measured in the same |0

〉
state from when it was initialized. The results of

this experiment are found in Figure 3.10. The same circuit was also run on the ibmqx2 on 20
April 2017, and the results are also shown in Figure 3.10. Of the 1024 shots on the ibmqx2,
996 were measured with the correct state of the system being 00000. This corresponds to an
overall error rate of 2.73%. With each experiment on the ibmqx2, IBM provides the results
from the most recent calibration. The readout error provided by included the following
values in IBM Experiment 3.1:

• q0- 2.2 × 10−2

• q1- 3.2 × 10−2

• q2- 3.2 × 10−2

• q3- 5.0 × 10−2

30

• q4- 2.2 × 10−2

The average readout error rate across all five qubits was 3.16 × 10−2. The experimental
results slightly outperform the reported error rate from the provided calibration results.
There were no instances where more than one qubit at at time was measured in a |1

〉
state.

From this simple experiment it is easy to see not only how susceptible quantum computers
are to errors, but also how it is possible to easily verify the correct final state. A scan of
the results shown in Figure 3.10 makes it clear which result has the greatest probability of
being the correct answer, and checking those results classically can be accomplished in a
reasonable time-frame.

1000

0 0 0 0

996

11 5 3 9

00000 00001 00010 00100 10000

Nu
m
be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 3.10. Results from Experiment 3.1: Measuring the initial state of the
system with no additional gates applied.

Experiment 3.2: Qubit flips
The next test applies a single rotation gate to each qubit. This is accomplished by applying
an X gate to each of the qubits and then taking a measurement of the each qubit, as shown
in Figure 3.11.

31

Figure 3.11. Experiment 3.2: Testing qubit flips with an X gate on q0- q4.

The expected result for this experiment would be that all qubits are in a |1
〉
state at the

final measurement. The results of this experiment when performed on the simulator indeed
match the expectation. The results from running this circuit on the ideal simulator and the
ibmqx2 can be seen in Figure 3.12. The results show a decrease in the number of times
the correct state was measured from Experiment 3.1. The experimental error rate in this
instance was was 22.5%.

0 0 0 0 0 0 0 0 0 0 0

1000

6 2 40 2 3
64

2 5 30 40 36

794

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 3.12. Results from Experiment 3.2: Testing qubit flips with an X
gate on q0- q4.

32

The results from Experiment 3.2 on the ibmqx2 again show a limited number of errors, but
they have increased from the number of errors found in Experiment 3.1 on the ibmqx2. The
X gate, although an abstraction of the physical gates implemented by IBM, has a specific
error rate for each qubit. These error rates are provided in the results from IBM; the last
time a calibration was completed on the ibmqx2 showed a reasonably small error rate5.
There were no instances of more than three qubits being measured in the incorrect state of
|0
〉
in a single run. Furthermore, of the instances where an incorrect state was measured,

those with only one qubit in a |0
〉
state were significantly more likely than those with two

qubits in an incorrect state.

3.4.1 Superposition

Experiment 3.3: q0 in Superposition with a Single Measurement
This next test on the ibmqx2 will demonstrate the property of superposition by applying an
H gate to q0 and then taking a measurement. The score for placing q0 into superposition is
shown in Figure 3.13.

Figure 3.13. Experiment 3.3: Testing superposition with q0 with a single
measurement of the system.

A single measurement is added to this experiment. The expected result in an ideal situation
would find 50% of the measurements of q0 in a |1

〉
state and 50% of the measurements q0

5The gate error rate on the ibmqx2 from the calibration performed on April 13th, 2018 at 08:53:48 for q0
was 1.37x10−3.

33

in a |0
〉
state.

The results in Figure 3.14 are close to an even distribution of q0 being in a |0
〉
or |1

〉
state,

as predicted. The results when Experiement 3.3 was run on the ibmqx2 were similar to
those on the ideal simulator and are shown in Figure 3.14.

507

493

543

481

00000 00001

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 3.14. Results from Experiment 3.3: Testing superposition with q0
and a single measurement of the system.

One reason for the limited noise seen in the results from Figure 3.14, specifically when
implemented on the ibmqx2, is the single measurement. The lack of read errors resulting
from the measurements of q1 through q4 indicates that they were not measured and assumed
to remain in a |0

〉
state. The actual state of the system will have similar variation, as seen

in the first experiment, where a measurement of the system was taken with no additional
gates applied.

34

Experiment 3.4: q0 in Superposition with Five Measurements
To demonstrate the effect multiple measurements have on the results, wemodify Experiment
3.3. Starting with the score from Figure 3.13, additional measurements are added to the
remaining qubits q1 through q4, as shown in Figure 3.15.

Figure 3.15. Experiment 3.4: q0 into superposition with five measurements.

Experiment 3.4 is run on the ideal simulator to validate the hypothesis. The results from
Experiment 3.4 on the ideal simulator should be consistent with those from Experiment
3.3 on the ideal simulator. Since no artificial noise is injected into the ideal simulator,
the additional measurement gates should not find any unexpected states. The results from
Experiment 3.4 on the ideal simulator, shown in Figure 3.16, are nearly identical to both
the expected results and the results of Experiment 3.3 on the ideal simulator. The results
show an even distribution of the the final states 00000 and 00001, with no error states being
computed.

35

496 504

0 0 0 0 0 0

513
466

17 19 1 3 3 2

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 3.16. Results from Experiment 3.4: q0 in superposition with five
measurements.

The results from running Experiment 3.4 on the ibmqx2 show expected error levels which
were absent in Experiment 3.3. The results in Figure 3.16 show the additional noise not
present when the only measurement of the system was taken on q0. The results shown in
Figure 3.16 reflect the full state of the system after q0 is placed into superposition. Although
the noise shown in this experiment is small, and the distribution between the correct states
00000 and 00001 is still within our expectations, it is a significant deviation from classical
computing. You must account for noise in a quantum computer.

Experiment 3.5: Five Qubits in Superposition with Five Measurements
A similar experiment can be performed by placing all five qubits into superposition and
then taking a measurement. The expected results are an even distribution of all 2N states of
the system, where N is the number of qubits of the system. On the ibmqx2, this would be
25 (32) states, ranging from |00000

〉
to |11111

〉
. Figure 3.17 shows the quantum score used

36

to create this state.

Figure 3.17. Experiment 3.5: Five qubits in superposition.

Running Experiment 5 a total of 1000 times on the ideal simulator, a perfect result would
measure each state 31.25 times. The observed results from testing Experiment 3.5 on the
ideal simulator are Figure 3.18. The results show an even distribution of occurrences of the
32 possible final states. The results on both the ideal simulator and the ibmqx2 both appear
to have a normal distribution about the expected mean.

0

10

20

30

40

50

60

Nu
m
be
r	o

f	O
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 3.18. Results from Experiment 3.5: Five qubits in superposition with
five measurements.

37

Experiment 3.5a: Testing Superposition with Additional Shots
As mentioned at the start of this section, the previous experiments have used the default
shot number (1024) for the ibmqx2 and 1000 shots for the ideal simulator to make the
results comparable. The IBM Quantum Experience allows users to select two additional
settings for the real processors, 4096 and 8192 shots, and the shots for the ideal simulator
are user-defined. Increasing the number of shots for an experiment, either real or simulated,
should move the distribution of results closer to the expected values. Figure 3.20 shows
the results from three separate instances of running the experiment from Figure 3.19 on the
simulator. Experiment 3.5a uses the same score as Experiment 3.5.

Figure 3.19. Experiment 3.5a: Testing superposition with additional shots.

The only difference expected in running Experiment 3.5 three separate times would be a
change in the number times each state is observed with the relative distribution of those
states remaining constant. The probability of each state should remain at 3.125% of the
number of shots. Figure 3.20 shows the results of running the experiment with the shot
parameter set to 1000, 4000, and 8000. The results scale with the increased number of shots
when this experiment is executed on the ideal simulator.

38

0

50

100

150

200

250

300

350

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Simulator	- 1000	Shots Simulator	- 4000	Shots Simlator	- 8000	Shots

Figure 3.20. Results from Experiment 3.5a with 1000, 4000, and 8000 shots
on ideal simulator .

Figure 3.21 shows the results for the same quantum score, run on the ibmqx2 with 1024,
4096, and 8192 shots. The results from Experiment 3.5a with 1024 and 4096 shots appear to
have a similar distribution of results as shown in simulation. When the results of Experiment
3.5a with 8192 shots are examined there emerges a clear pattern. This same pattern can be
found in the other iterations on the ibmqx2, but with fewer shots, the error patterns are more
difficult to distinguish from a random distribution.

39

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

ibmqx2	- 1024	Shots ibmqx2	- 4096	Shots ibmqx2	- 8192	Shots

Figure 3.21. Results from Experiment 3.5a with 1024, 4096, and 8192 shots
on ibmqx2 .

3.4.2 Entanglement

Experiment 3.6: Creating Bell State |β00
〉

The final experiment in this section is to demonstrate entanglement. We will create the Bell
state |β00

〉
from Figure 2.8. The quantum score in Figure 3.22 creates this entangled state

between q0 and q1.

40

Figure 3.22. Experiment 3.6: Creating Bell state |β00
〉
.

When creating the Bell state for Experiment 3.6, we expect that there will be an even
distribution of the states 00000 and 00011. The results from Experiment 3.6 are shown
in Figure 3.23. The results from the ideal simulator and ibmqx2 show an even distribution
of the correct states, as expected. The error rates shown are consistent with previous
experiments.

41

509

0 0

491

0 0 0 0

492

44 39

422

1 13 2 11

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 3.23. Results from Experiment 3.6: Creating Bell state |β00
〉
.

42

CHAPTER 4:
Experimenting with Quantum Algorithms

4.1 Deutsch-Jozsa’s Algorithm
The first algorithm to test on the ibmqx2 is the Deutsch-Jozsa algorithm. The algorithm
is admittedly a contrived example, but does demonstrate the quantum speed-up that the
algorithm achieves over any known classical algorithm. Deutsch-Jozsa’s algorithm deter-
mines whether a function f(x) is balanced or constant. Balanced means that exactly half
of the inputs x map to f(x)=0, and the other half map to f(x)=1; constant meaning that all
inputs map to either 0 or 1 [1], [4], [18]. Figures 4.1 and 4.2 show examples of balanced
and constant functions, respectively. In Deutsch-Jozsa’s algorithm, it is guaranteed that the
function will be constant or balanced.

00

01

10

11

0

1

Figure 4.1. Example Deutsch-Jozsa
balanced function. Adapted from
[18].

00

01

10

11

0

1

Figure 4.2. Example Deutsch-Jozsa
constant function.

With a classical algorithm, the worst case would require checking 2n−1 + 1 inputs to know
that the function is constant. Deutsch-Jozsa’s algorithm can outperform these classical
algorithms through the use of an oracle. The steps described by Yanofsky and Nielsen and

43

Chuang for Deutsch-Jozsa’s can be broken down into five discrete steps.

1. Initialize the state of the system to |0
〉⊗n|1

〉
.

2. Apply H gates to the system to place it into superposition.
3. Apply U f .
4. Reapply H gates to the system.
5. Measure the state of the system. [1], [18].

The matrix that corresponds to Figure 4.1 is shown in Equation 4.1.



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



(4.1)

IBM describes the steps almost identically, but the first step does not include initializing the
last qubit as |1

〉
. The first step for IBM is shown below. The remaining four states remain

consistent with those described in [1], [18].

1. Initialize the state of the system to |0
〉⊗n. [10]

All three sources agree that if f is constant, the probability is one that the final measured
state will be 0n, and if f is balanced, the probability is zero that the final state will be
0n. Therefore, a single evaluation of the function will determine whether it is constant or
balanced. IBM presents two examples in the User Guide of Deutsch-Jozsa’s algorithm, one
example of a constant function and one example of a balanced function.

4.1.1 Experiment 4.1: Deutsch-Jozsa Constant Function
The example of a constant function provided by IBM is essentially f (x) = x; in this case,
theU f is described in Equation 4.2. Although no gates are applied to the qubits between the

44

set of H gates, an implicit I gate is applied to each qubit, resulting in the matrix in Equation
4.2.



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



(4.2)

The quantum score used for the constant function example from IBM is shown in Figure
4.3. The example here is simplistic, but it does follow the five steps described previously.
The first step was to initialize the starting state of the system. The default initial state of
ibmqx2 is |00000

〉
, so no additional action is necessary to complete step one. The three H

gates place the system into superposition, as required by step two. U f is implicitly applied
to the system after the first set of H gates6. This fulfills step three. Three H gates are again
applied to the system fulfilling step four of the process. The fifth and final step is applying
measurement gates to q0, q1, and q2.

Figure 4.3. Experiment 4.1: Deutsch-Jozsa constant equation example.
Source: [10].

6Not applying a gate is equivalent to applying the I

45

This algorithm is simple enough that the expected result can be determined prior to running
it in simulation or on the ibmqx2. Chapter 1 provided the necessary background to compute
H ⊗ H ⊗ H; the result is shown in Equation 4.3.

H ⊗ H ⊗ H = 1
√

2



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1



(4.3)

The H gate has several interesting properties, one of which is that the H is its own inverse.
This property is shown in Equation 4.4. This can be repeated with the 8-by-8 H matrix,
where (H ⊗ H ⊗ H).(H ⊗ H ⊗ H) results in the matrix from Equation 4.3.

H.H =
[1√

2
1√
2

1√
2
−1√

2

] [1√
2

1√
2

1√
2
−1√

2

]
=

[
1
2 +

1
2

1
2 −

1
2

1
2 −

1
2

1
2 +

1
2

]
=

[
1 0
0 1

]
= I

(4.4)

The quantum score from Figure 4.3 effectively does nothing. Therefore, after execution, the
initial state, |000

〉
, should be the final measured state. The results from running Experiment

4.1 on the ideal simulator are shown in Figure 4.4, and are consistent with the Mathematica
calculations shown in Appendix B. The results of this simulation support the hypothesis
whichwas determined previously, that the function,U f , defined by Equation 4.2, is constant.

46

1000

0 0 0 0 0

1012

3 5 1 1 2

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 4.4. Results from Experiment 4.1: Deutsch-Jozsa’s constant equation
example.

This experiment was also run on the ibmqx2; the results are shown in Figure 4.4. Theo-
retically, this experiment only needs to evaluate U f once to determine whether function f
is constant. The error rate for this circuit is comparable to Experiment 3.1, where all five
qubits were measured with no other gates applied.

This could be an indication of the way in which the quantum scores are compiled prior to
running on a quantum processor. If the H gates were applied to each of the three qubits two
separate times as shown in the quantum score for this circuit, there should be an increase in
the error rate observed relative to Experiment 3.1. If, however, the pre-processing of this
circuit determined that it is functionally equivalent to Figure 4.5, it may have compiled it as
such prior to execution. The available documentation on the QASM compiler process does
not have sufficient information to determine the validity of this claim, but the experimental
results do support this hypothesis.

47

Figure 4.5. An equivalent quantum score to Deutsch-Jozsa constant function
example from IBM.

4.1.2 Experiment 4.2: Deutsch-Josza Balanced Function
The example circuit for a balanced function is shown in Figure 4.6. The U f in this score
is between the two sets of H gates. This function is f (x) = x0 ⊕ x1x2 [10]. Equation 4.5
was computed using Mathematica to show the matrix which implements this function, the
Mathematica for computing is found in Appendix B. The expectation is that the result will
never be |000

〉
.

Figure 4.6. Experiment 4.2: Deutsch-Jozsa’s balanced equation example.
Adapted from [10].

48

U f = (I ⊗ I ⊗ H).(Z ⊗ CNOT).(I ⊗ I ⊗ H) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1



(4.5)

As a requirement of the Deutsch-Jozsa algorithm, this function is required to be either
balanced or constant. We can check the function classically, which will take at most
2n−1 + 1 inputs, which would be five in this example. By starting with the state |000

〉
and

incrementing through the possibilities, we find for state |011
〉
that f (x) = 1, as shown in

Equation 4.6. We know that the function is indeed balanced, but it took four evaluations of
f (x) to make that determination. Deutsch-Jozsa will yield the same conclusion in a single
evaluation of U f .

f (000) = 0 ⊕ 0 ∧ 0 = 0

f (001) = 0 ⊕ 0 ∧ 1 = 0

f (010) = 0 ⊕ 1 ∧ 0 = 0

f (011) = 0 ⊕ 1 ∧ 1 = 1

f (100) = 1 ⊕ 0 ∧ 0 = 1

f (101) = 1 ⊕ 0 ∧ 1 = 1

f (110) = 1 ⊕ 1 ∧ 0 = 1

f (111) = 1 ⊕ 1 ∧ 1 = 0

(4.6)

The quantum circuit provided by IBM, shown in Figure 4.6, follows the same five steps as
described previously. The system is initialized by default to the state |000

〉
at |ψ0

〉
. At state

|ψ1
〉
, the system is in a state of superposition. Once the oracle U f has been applied, the

49

system is in state |ψ2
〉
. Again, the H gates are applied, resulting in state |ψ3

〉
, followed by

the measurement, which results in the final state |ψ4
〉
.

The results from simulation and real-world execution of this circuit on the ibmqx2 are found
in Figures 4.7. Both sets of results do not show, as expected, the state |000

〉
. They show an

equal distribution of states |100
〉
, |101

〉
, |110

〉
and |111

〉
7. Since this circuit, excluding the

errors, does not return the state |000
〉
, a single evaluation of the function has determined

that it is balanced. As with the constant function example of Deutsch-Jozsa’s algorithm, we
have demonstrated a speed-up over a classical system, which would have required as many
as 2n−1 + 1 function evaluations.

0

238

0

218

0

269

0

275

22

296

14

202

15

157

13

305

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 4.7. Results from Experiment 4.2: Deutsch-Jozsa’s balanced equation
example.

7The default output of from the IBM quantum processors inverts the bits after measurement. The state
|100

〉
is therefore represented in the classical register as 00001.

50

4.2 Grover’s Algorithm
Although Deutsch-Jozsa’s algorithm provides an exponential speed-up over classical algo-
rithms, it is a purposefully contrived example to demonstrate this possibility. The range of
applications of their algorithm is limited. Grover’s search algorithm achieves a quantum
speed-up of for search and several related problems. Decreasing storage costs and the pro-
liferation of devices that generate large amounts of data, i.e. IOT devices, have motivated
the emerging field of Big Data. CERN reported a record level of data stored in October of
2017 with 12.3 petabytes [35]. Searching through data at that scale is a computationally
costly.

We can frame the problem by describing an array of length N that stores unsorted data, as
shown in Figure 4.8. In the worst case, it would takeN array accesses to find the data needed,
N
2 on average. Grover’s algorithm will accomplish the same task in O

√
N queries [5].

arr[0]

arr[1]

arr[N-1]

arr[N-2]

…

1001

1111

0000

0110

Figure 4.8. An unsorted array of length N.

Grover’s algorithm uses the amplitude amplification technique to achieve quadratic speed up
over classical search [10]. This technique can be broken down into two distinct processes:
phase inversion and inversion about the mean [18]. Grover’s algorithm starts by placing the
system into a state of superposition by applying H⊗n. The oracle U f is applied to invert
the phase of the answer sought. The state of the system is then inverted about the mean.
Step two is then repeated O

√
N times, and then the system is measured. To understand this

algorithm, a geometric explanation based on vectors is helpful. Figure 4.9 shows how this

51

process increases the probability amplitudes of the desired answer.

Figure 4.9. Effects of Grover’s search algorithm on a vector. Source: [1].

There are four basic steps for Grover’s algorithm:

1. Initialize the state of the system to |0
〉⊗n.

2. Place the system into superposition.
3. Repeat O

√
N times:

Phase inversion.
Inversion about the mean.

4. Measure the state of the system. [18]

These steps are shown in a Figure 4.10, which shows the quantum score for Grover’s
algorithm on a system of size n.

|0⟩
n

𝑈% 𝐻⊗(𝐻⊗(𝐻⊗(𝑈) = −𝐼 + 2𝐴

Repeat 2(� times

Figure 4.10. An arbitrary example of Grover’s search algorithm. Adapted
from [10], [18].

52

There are four possible examples of Grover’s search algorithm when using two qubits.
Each one looks for a different answer, 00, 01, 10, and 11, respectively. For each of the
four possibilities, a new function U f must be constructed to implement Grover’s algorithm.
Constructing the matrix for these functions is a tedious but trivial process. The process of
creating that matrix from single qubit gates is not. This topic will be further discussed in
Chapter 7. For now we will examine the functions as provided by IBM.

The four circuits are shown in Figures 4.11 through 4.14. The double H gates in each score
provide a convenient comparison point for each implementation. As expected, U f varies
across the four circuits, but Us remains constant. Though the construction of the functions
is as expected, the circuits do not repeat phase inversion and inversion about the mean.

Figure 4.11. Experiment 4.3: Grover’s search algorithm, where the desired
answer is 00, and N = 2. Adapted from [10].

Figure 4.12. Experiment 4.4: Grover’s search algorithm, where the desired
answer is 01, and N = 2. Adapted from [10].

53

Figure 4.13. Experiment 4.5: Grover’s search algorithm, where the desired
answer is 10, and N = 2. Adapted from [10].

Figure 4.14. Experiment 4.6: Grover’s search algorithm, where the desired
answer is 11, and N = 2. Adapted from [10].

The results from each Experiments 4.3 - 4.6 are shown in Figures 4.15 - 4.18, respectively.
The results from each experiment on the ibmqx2 compared to the ideal simulator demon-
strate a reasonable performance level of the system, with the exception of Experiment 4.4.
Experiment 4.4 searches for 01, which should be 00100. The simulation of this experi-
ment shows this result, but the results on the ibmqx2 significantly deviate from this. The
Mathematica notebooks for Experiments 4.3 - 4.5 are found in Appendix B.

54

1000

0 0 0

949

39 13 23

00000 00010 00100 00110

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 4.15. Results from Experiment 4.3: Grover’s search algorithm, where
the desired answer is 00, and N = 2.

0 0

1000

0
54 27

524
419

00000 00010 00100 00110

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 4.16. Results from Experiment 4.4: Grover’s search algorithm, where
the desired answer is 01, and N = 2.

55

0

1000

0 0
81

915

5 23

00000 00010 00100 00110

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 4.17. Results from Experiment 4.5: Grover’s search algorithm, where
the desired answer is 10, and N = 2.

0 0 0

1000

17
68 50

889

00000 00010 00100 00110

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator qxtwo

Figure 4.18. Results from Experiment 4.6: Grover’s search algorithm, where
the desired answer is 11, and N = 2.

56

4.3 Shor’s Algorithm
Peter Shor’s factoring algorithm presents an interesting case study for quantum algorithms.
His algorithm is deceptively simple when distilled down into its discrete steps, but imple-
menting each of those steps presents significant practical challenges. Yanofsky describes
the steps of Shor’s algorithm as such:

1. Determine if N is prime or a power of prime.
2. Randomly choose an integer a, where 1 < a < N .
3. Use the circuit depicted in Figure 4.19 to find the period of N.
4. If r is odd, go back to step 2, where r is described in Equation 4.7.
5. Use Euclid’s algorithm to compute greatest common denominator and return a non-

trivial solution [18].

Of the steps described above, only the third step is performed on a quantum computer.
In step three, Shor’s algorithm takes the problem of integer factorization and changes it
into the problem of period finding. As Shor states it, "the key idea of a quantum factoring
algorithm is the use of a Fourier transform to find the period of the sequence ui = xi(modN),
from which period a factorization of N can be obtained" [36]. An example of how Shor’s
algorithm could be implemented is shown in Figure 4.19.

Figure 4.19. Shor’s factoring algorithm. Adapted from [18].

Beauregard claims that you can implement a minimized version of Shor’s algorithm needing
only 2n+3 qubits to factor an n-bit number [37]. This, however, leads to a trivial case when
experimenting with a five-qubit system. There are two core elements of Shor’s algorithm

57

that can be implemented directly on the ibmqx2 directly: modular multiplication and the
Quantum Fourier Transform (QFT).

IBM presents the topic of modular multiplication in the Full User Guide and provides the
background as to how this is used in Shor’s to find the period. The purpose of the modular
multiplication here is to find the smallest possible r, such that:

ar = 1(modN) (4.7)

IBM provides the score shown in Figure 4.26 as an instance of Equation 4.7. In a full im-
plementation of Shor’s algorithm, you evaluate additional values of r. This score represents
a part of U f , from which the additional iterations could be implemented. The equation that
the score in Figure 4.26 is solving is shown Equation 4.8. See Markov and Saeedi for the
construction of their circuits for modular multiplication and exponentiation [10], [38]. IBM
uses the same circuit construction as shown in [38] to build their modular multiplication
gate. From [38] you can see that state |ψ0

〉
determines r, state |ψ1

〉
determines N, and state

|ψ3
〉
determines a8.

74 = 1(mod15) (4.8)

|𝜓#⟩ |𝜓%⟩ |𝜓&⟩

𝐴% 𝐴& 𝐴(

Figure 4.20. Experiment 4.7: 7x13 (mod 15). Adapted from [10].

8In contrast to most other situations, IBM uses q[4] to represent the least significant bit in this circuit.
State |ψ0

〉
should then be read 1310 or 11012.

58

This circuit, however, cannot be run on the ibmqx2. IBM has constructed this gate using a
fully connected ideal simulator, which is not constrained by the physical implementation of
CNOT gates like the ibmqx2. There are three swap gates that used in this circuit, A1, A2, A3.
These swap gates use a series of CNOT gates to implement the swap. We will first examine
the CNOT gates that are not supported on the ibmqx2; and then the swap gate itself. The
second CNOT gate in the A1 swap is not supported by the ibmqx2, refer to Figure 1.3. IBM
provides a simple way to construct the necessary CNOT gate with the control and target
qubits flipped. Figures 4.22 and 4.21 demonstrate this process. The circuit in Figure 4.21
was validated using Mathematica as shown in Appendix B.8.

H

H

H

H

Figure 4.21. CNOT gate flip. Adapted
from [10].

H

H

H

H

Figure 4.22. CNOT gate flip.

With the ability to alter the control and target qubit of the provided CNOT gates using the
examples in Figures 4.21 and 4.22, we turn our attention to the swap gates. IBM provides
a score to experiment with swap gates to see how they can be constructed even if a CNOT
gate is not supported between the qubits that need to be swapped. This example is shown in
Figure 4.23. This circuit swaps the state of q0 in superposition with the q1 in a state of |0

〉
.

Although this is a contrived example, the necessary CNOT to swap directly between q0 to
q1 is supported on the ibmqx2; it is a useful example of how to demonstrate swap gates and
how they can be linked together.

8IBM provides example of a direct swap between q0 and q1 in the Full User Guide.

59

Figure 4.23. Swapping q0 in superposition with q1 in a |0
〉
state. Source:

[10].

One way to examine how the swaps work is to implement psuedo-code which steps through
the logic. The code in Listing 4.1 implements the A1 swap from Figure 4.26. The starting
states of q2 and q3 are |1

〉
and |0

〉
, respectively.

Listing 4.1: Swap gate psuedo-code

i n t main () {

i n t q_2 = 1 ;
i n t q_3 = 0 ;

i f (q_3 == 1){ / / CNOT, c t r l = q_3 , t r g t = q_2
i f (q_2 == 1){

q_2 = 0 / / F l i p q u b i t from 1 t o 0
} e l s e {

q_2 = 1 / / F l i p q u b i t from 0 t o 1
}

}

i f (q_2 == 1){ / / CNOT, c t r l = q_2 , t r g t = q_3
i f (q_3 == 1){

q_3 = 0 / / F l i p q u b i t from 1 t o 0
} e l s e {

q_3 = 1 / / F l i p q u b i t from 0 t o 1

60

}
}

i f (q_3 == 1){ / / CNOT, c t r l = q_3 , t r g t = q_2
i f (q_2 == 1){

q_2 = 0 / / F l i p q u b i t from 1 t o 0
} e l s e {

q_2 = 1 / / F l i p q u b i t from 0 t o 1
}

}
p r i n t f (" q_2␣=␣\%d , ␣q_3␣=␣\%d " , q_2 , q_3) ;
r e t u r n 0 ;

}

If the logic of this codewere executed, the resulting print statementwould output "q_2 = 0,
q_3 = 1." The three alternate starting states can easily be verified by walking them through
the example to understand how this process works. The score provided by IBM, shown in
Figure 4.23, works as intended, but a more straightforward example can be constructed. By
replacing the leading H gate applied to q0 with an X gate, we can examine the circuit as it
swaps a |1

〉
state rather than swapping a state of superposition. This new example is shown

in Figure 4.24.

Figure 4.24. Experiment 4.8: Swapping q0 in a |1
〉
state and q1 a |0

〉
state.

As in the example provided in IBM, Figure 4.24 swaps the states of q0 and q1. This is
accomplished in three separate swaps. The first swap is between q0 and q2, the next between

61

q1 and q2, and finally between q0 and q2. With q0 being initialized to |1
〉
, this state will

be transferred to q1. The other qubit, q2, is treated almost like a local variable that can be
accessed by both q0 and q1. The results from running the score from Figure 4.24 on the
ideal simulator are shown in Figure 4.25. These results match the testing conducting using
Mathematica as shown in Appendix B.

1000

00010

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	
measurement

Ideal	Simulator

Figure 4.25. Results from Experiment 4.8.

With the CNOT and swap gates verified, it is now possible to build a circuit for modular
multiplication that could be implemented directly on the ibmqx2. Such a circuit is shown in
Figure 4.26. To modify the swap gates A1 and A2 of Figure 4.26, the second CNOT gate of
each must substituted with CNOT gate shown in Figure 4.22. Swap gate A3 is implemented
by linking multiple swap gates together. Figure 1.3 shows that there is no CNOT between
q1 and q4, so a swap between the two cannot be directly achieved. To circumvent this, we
need to find a qubit for which both q1 and q4 have a CNOT gate implemented. The qubit,
q2, meets this requirement. The desired swap, A3, is accomplished with three intermediate
swaps, a1, a2, and a3. This series of three swaps provides the desired effect of swapping q2

and q4. Figure 4.26 shows the full circuit capable of being run on the ibmqx2.

62

𝐴" 𝐴# 𝐴$

𝑎" 𝑎# 𝑎$

Figure 4.26. Experiment 4.9: 7x13 (mod 15) configured for the ibmqx2 .

The two scores for modular multiplication, Experiment 4.7 and 4.9, were simulated using
a fully connected simulator and on a simulator with the same connectivity as the ibmqx2,
respectively. The results of these experiments are shown in Figure 4.27.

1000 1000

N
um

be
r	o

f	o
cc
ur
re
nc
es

State	of	the	system	after	measurement

Ideal	Simulator Ideal	Simulator	(qxtwoconfiguration)

Figure 4.27. Results from Experiment 4.7 and 4.9: 7x13 (mod 15).

4.3.1 Quantum Fourier Transform
The final piece to be evaluated for Shor’s algorithm is the QFT. This is the only score not
found in the Full User Guide evaluated in this thesis. It is unclear why IBM choose to
exclude the QFT from their user guide while providing a discussion of Shor’s algorithm.
The QASM for this code was found in [23] and is available in Appendix A. The purpose of
applying the QFT is to return the period of the system [18]. Nielsen and Chuang provide a

63

general circuit for a QFT using n qubits. A specific example for a three-qubit QFT is shown
in Figure 4.28. The QFT provided by IBM is shown in Figure 4.29.

H 𝑅" 𝑅#

𝑅"

H

H

Figure 4.28. Three-qubit QFT.

Rk =

[
1 0
0 e2πi/2k

]
(4.9)

Figure 4.29. Experiment 4.10: Quantum Fourier Transform. Source: [23].

With Figure 4.28 and Equation 4.9, we can begin to construct the the necessary matrix to
represent the controlled-R gates. The R2 and R3 gates are defined in Equations 4.10 and
4.11, respectively. Euler’s formula, eiθ = cos θ + i sin θ, is used to simplify the R2 gate.

R2 =

[
1 o

0 e2πi/22

]
=

[
1 o

0 i

] (4.10)

64

R3 =

[
1 o

0 e2πi/23

]
=

[
1 o

0 eπi/4

] (4.11)

These two R gates need to then be applied to the target qubit when the control-qubit is |1
〉
.

The matrices for these are defined in Equations 4.12 and 4.13, but those matrices must be
defined in terms of the gates supplied by IBM. They cannot be implemented directly on
ibmqx2 to compare the QFT provided by Nielsen and Chuang with that from IBM.


1 0 0 0
0 1 0 0
0 0 0 1
0 0 i 0


(4.12)



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 e

iπ
4 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 e

iπ
4



(4.13)

The scores from Figure 4.28 and 4.29 do not immediately look similar, but, as will be
shown, actually represent the same circuit. The main difference between these two scores is
the way in which the controlled-R gates are implemented. The only four-by-four matrix that
IBM has implemented on the ibmqx2 is the CNOT gate. The controlled-R gates must be
therefore be composed of two-by-two matrices and the available CNOT. Lemma 5.1 of [22]

65

states that "for a unitary 2x2 matrix W, a ∧1W gate9 can be simulated by a network of the
form

A CBW

Figure 4.30. From lemma 5.1. Adapted from [22].

where A, B, and C ε SU(2) if and only if W ε SU(2)." The SU(2) matrices referred to are a
special unitary group of 2-by-2 matrices [39]. Further A, B, and C must be defined such that
ABC = i [10]. With this formula, it is possible to construct any necessary control gate from
the basis provided. Note that the R2 gate is equal to an S gate, as shown in Equation 2.9,
and the R3 gate is equal to a T gate, as shown in Equation 2.10. A controlled-S gate can be
constructed with Lemma 5.1 within the basis provided by IBM. Figure 4.31 shows how a
controlled-S gate or R2 gate can be constructed. This was verified using Mathematica and
is shown in Appendix B.

T𝑇"S

T

Figure 4.31. Constructing a controlled-S from the gates provided by IBM.

This can be similarly done for a control-T gate. With this method the circuit for the IBM
QFT can be rewritten in a simplified form as shown in Figure 4.32. This should now follow
the form exactly from Nielsen and Chuang, and when examined using Mathematica, the
resulting matrices of the two QFTs are found to be the same.

9The notation ∧1 is used to identify a control gate with one control qubit. A CNOT gate in this form would
be written as ∧1X, and the Toffoli gate as ∧2X.

66

H

H

H

S

S

T

Figure 4.32. IBM QFT simplified.

The results from comparing the score from Figure 4.28 and Experiment 4.10 are shown
in Figure 4.33 and 4.34, respectively. The full notebooks for these circuits are found in
Appendix B.

Figure 4.33. Mathematica results for QFT, as presented by Nielsen and
Chuang.

67

Figure 4.34. Mathematica results for QFT, as presented by IBM.

68

CHAPTER 5:
Conclusion

This thesis has conducted a variety of experiments using the architecture of the ibmqx2.
Experiments 3.3 - 3.6 were able to demonstrate that the ibmqx2 creates a reliable state of
superposition. The results from Experiment 3.6 demonstrated an unexpected periodicity.
There could be several explanations for the unexpected results when the score from Figure
3.19 was run with 4096 and 8192 shots. This could have been a result of the error rates
compounding over multiple experiments and were less noticeable with a lower shot count.

The second major quantum principle demonstrated was entanglement. Experiment 3.7
demonstrated this through creating the Bell state |β00

〉
. These two capabilities form the

building blocks of many quantum algorithms. This thesis does not address in sufficient
detail the quality of the qubits implemented by IBM, but the initial results are promising.

The limited number of gates implemented by IBM is sufficient to build any additional gates
(i.e., control-Z gates) with the basis provided, within reason. For example, it would be
unreasonable to expect the ibmqx2 to support a six-by-six unitary matrix. The approach
by IBM to construct a limited number of physical quantum gates that can be manipulated
to construct any arbitrary gate seems a logical starting point. The published information
evaluated in writing this thesis did not uncover a reason why IBM chose to abstract certain
quantum gates instead of creating dedicated gates. Their approach would likely scale well
with additional qubits. It would potentially reduce the number of gates that would have to
be constructed and the possible vectors for failures.

Experimenting with the ibmqx2 presented some interesting challenges. One of the most
interesting was the decomposition of a unitary matrix into elementary quantum gates. This
was the motivation for the use of Mathematica in this thesis. While texts like Quantum
Computing for Computer Scientists are helpful for understanding the theory, they frequently
use compiled gates. These cannot be directly implemented, as in Mathematica, but must
be constructed using the basis as implemented by the architecture. The use of tools such
as Qubiter to accomplish this is further discussed in Chapter 7. Similarly, the ability to
construct CNOT gates in the reversed direction and swap gates provides a great deal of

69

flexibility. The level of control the user has on this experimental system is comparable to
that achieved when programming in assembly language. There are some constructs, like
loops, that are not directly available in a single assembly instruction, but can be supported
through the correct use of the available instructions.

The results returned from IBM do conform with the expected error rates on a physical
quantum computer. However, there is no way to confirm that these results are from the
ibmqx2 and not a simulator that has artificial noise injected to provide more realistic results.
This question has been asked on the IBM Quantum Experience community forum, but has
not yet been responded to. For the purpose of this thesis, this is not necessary. Testing how
to program circuits and validating that those circuits perform as expected does not need to
be conducted on a real processor. For future work and investing in quantum technology,
the DoD will need to validate that these results are being measured from a real quantum
processor. There are several ways in which this could be reasonably accomplished. One
such method would be to sign the results from the quantum computer before they are
exported. Additionally, after reliable quantum computers break the 50-qubit threshold, they
will begin to exceed the processing power supercomputers are able to simulate. In 2007,
testing was done using parallel computers to simulate "up to a 36 qubits, using up to 4096
processors and up to 1 TB of memory" [40]. IBM announced in 2017 that they were able to
simulate a 56-qubit quantum computer using the Vulcan supercomputer [41]. The ability
to simulate quantum results of smaller quantum computers should make it possible for false
results to be returned. This is a short-term problem, though. Increasing the number of
qubits by one doubles the potential number of computations that is necessary, and even
the most advanced supercomputers will have difficulties simulating those algorithms. At
that point users could be reasonably assured that their results are not being returned from a
simulation.

The error rates, particularly in Experiments 3.5a and 4.4, show that there is still room for
improvement with the ibmqx2. There are techniques for error correction that IBM provides
in the Full User Guide, to compensate for some of these errors. This would increase the
overhead of running any particular circuit. Even with this limitation, there are still many
positive aspects of the design of the IBM Quantum Experience. The Beginner’s Guide and
Full User Guide provide an excellent reference for understanding the basics of quantum
computing. The explanations and examples provided closely follow the quantum circuit

70

model, as presented by Yanofsky in [18]. With the exception of the IF, necessary to
demonstrate teleportation, the ibmqx2 was able to adequately execute all tested circuits.
After many months of research and experimentation, we feel confident that the IBM ibmqx2
is exploiting quantum mechanics during runtime. Further, the IBM ibmqx2 and more
broadly the IBM Quantum Experience provide a user-friendly environment which is helpful
in entering the field of quantum computing. While theNaval Postgraduate School is working
to establish a formal quantum information science program, the tools and information
provided by IBM provide an excellent open-source option for computer science students
wishing to explore quantum computing.

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

CHAPTER 6:
Related Work

The field of quantum computing is at an exciting stage. Companies like IBM are investing in
quantum technologies and disrupting the field with unique approaches. One such company,
which has made a significant impact on the quantum industry, is D-Wave.

D-Wave has been involved in the field of quantum computing for nearly 20 years. They have
released several commercial quantum computers. Their most recent quantum computer was
announced in late 2017, the D-Wave 2000Q system [42]. The D-Wave quantum computing
systems are based on the quantum annealing computational model, which contrasts with
the quantum circuit computation model presented in this thesis. In one of their trade
publications, D-Wave describes quantum annealing as follows: "it harnesses the natural
tendency of real-world quantum systems to find low-energy states" [43]. The computer is
initialized into a starting state and then is annealed "toward the problem to be solved such
that it remains in a low energy state throughout the process" [43]. The final resting state of
the system would then be interpreted as the solution being sought. D-Wave has attracted
much attention for its progress in quantum computing.

Not all of that attention has been positive. Aaronson points out several of the critiques
of the claims from D-Wave, including their methods for calculating quantum speed-up
and the algorithms they compared their quantum computer against [44]. There has been
much debate about how to evaluate the claims of quantum speed-up that D-Wave has
announced over the years [45], [46]. Even with the controversies over the "quantum-ness"
and performance of the D-Wave systems, they are exploring technologies which could be
used to help advance the quantum industry. These kinds of advances are what Preskill might
call Noisy Intermediate-Scale Quantum (NISQ) technologies [47]. His coining of the term
comes as word of caution and of optimism. Technologies like the D-Wave 2000Q or the
IBM ibmqx2 have issues that will need to be addressed; however, they provide opportunities
as well. Preskill emphasizes the need for "progress in the near term by developing better
methods and hardware for implementing quantum error correction" as a means to provide
improved utility of current quantum systems [47].

73

Excluding D-Wave, most other companies developing quantum computers have fewer than
50 qubits. One of the numerous challenges with creating larger quantum computers is
maintaining coherence across those qubits. One way to address scalability challenges is
through distributed computing. With the development of quantum communication channels,
it is possible to create a distributed quantum computing network. Researchers have been
able to create entangled states between atoms and photons [48]. There are challenges with
working with distributed computers, but until large fault-tolerant quantum computers are
readily available, they can provide a valuable intermediate solution for quantum computing.

This thesis is one of several works that has attempted to baseline the quantum computers
released by IBM. Michielsen et al. uses four separate classes, entanglement, two-qubit +
two-qubit adder, identity operations, and error correction, to test the IBM Quantum Expe-
rience [49]. They encountered errors with their results, some of which they were able to
attribute to a specific calibration, and others were unexplained. They also note the impor-
tance of benchmarking additional quantum computers, especially against those which have
chosen a different qubit implementation. Devitt similarly conducts a series of experiments
on the IBM Quantum Experience [50]. He uses "quantum error correction, quantum arith-
metic, quantum graph theory, and fault-tolerant quantum computation....While the results
are subject to significant noise, the correct results are returned" [50]. These results do
concur with those observed in Experiments 3.5a and 4.4. Both agree that even with the
current limitations and issues with error rates, the IBM Quantum Experience provides a
valuable experience and is a necessary data point for future benchmarking.

74

CHAPTER 7:
Future Work

7.1 QISKit
Beyond the Composer and QASM editor, IBM has provided a Python toolkit to program
the quantum processors. This toolkit, called QISKit, is the only current means to access the
16-qubit processor. With a familiarization of the QISKit and access to the 16-qubit, it would
be possible to construct an implementation of Shor’s algorithm. An interesting experiment
would be a comparison of the different implementations of Shor’s algorithm.

7.2 Qubiter
There are multiple challenges with implementing quantum algorithms. One such challenge
is developing the necessary unitary matrices from elementary quantum gates. Defining the
matrix is not a particularly difficult task; however, it does become tedious when dealing with
large matrices. This process could easily be accomplished with automation. In researching
this thesis, a product was uncovered that assists with the decomposition. Qubiter is able to
decompose a given unitary matrix into elementary quantum gates compatible with a defined
connectivity. This could be a valuable tool for experimentation with algorithms and finding
more efficient means of constructing the necessary unitary matrices used.

7.3 High-Level Quantum Computing Language
The QASM language used by IBM is comparable to other low-level assembly languages. It
allows near complete control of how the circuit executes. This puts the burden of efficiency
on the programmer. Many high-level languages abstract away low-level processes and
permit the programmer to focus on the program at a higher level. Quantum computing
could benefit from additional research in this field. Just as 64-bit x86 code does not run
on a 32-bit x86 processor, the QASM code in Appendix A cannot be transferred directly to
ibmqx4 or other chips unless the exact CNOT gates from the ibmqx2 are supported. This
lack of backward compatibility could be overcome by developing a higher-level coding

75

language. As discussed in Section 4.3, there are efficient ways to create swap gates and
CNOT gates. These types of techniques could be implemented in a high-level language,
freeing the programmer from the need to consider the physical architecture of the processor
until compile time. There are established quantum programming languages [51]. An
example of how to program a quantum computer using Quantum Programming Language
(QPL) is demonstrated in [52]. Developing a set of libraries that adopt the existing functions
of QPL to a specific quantum processor’s configuration could allow the code to be easily
portable. When switching from one quantum processor to another, the programmer would
only need to adjust the libraries that are called to conform to the new processor.

76

APPENDIX A:
QASM Code

A.1 Experiment 3.1
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

measure q[3] -> c[3];

measure q[4] -> c[4];

A.2 Experiment 3.2
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

x q[0];

x q[1];

x q[2];

x q[3];

77

x q[4];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

measure q[3] -> c[3];

measure q[4] -> c[4];

A.3 Experiment 3.3
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[0];

measure q[0] -> c[0];

A.4 Experiment 3.4
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[0];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

measure q[3] -> c[3];

78

measure q[4] -> c[4];

A.5 Experiment 3.5
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[0];

h q[1];

h q[2];

h q[3];

h q[4];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

measure q[3] -> c[3];

measure q[4] -> c[4];

A.5.1 Experiment 3.5a
This experiment uses the same QASM code as in Experiment 3.5. The shot parameters for
this experiment are adjusted through the settings options for the ’run’, ibmqx2, or ’simulate’,
ideal simulator.

A.6 Experiment 3.7
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

79

qreg q[5];

creg c[5];

h q[0];

cx q[0],q[1];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

measure q[3] -> c[3];

measure q[4] -> c[4];

A.7 Experiment 4.1
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[0];

h q[1];

h q[2];

h q[0];

h q[1];

h q[2];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

A.8 Experiment 4.2

80

//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[0];

h q[1];

h q[2];

h q[2];

z q[0];

cx q[1],q[2];

h q[2];

h q[0];

h q[1];

h q[2];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

A.9 Experiment 4.3
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[1];

h q[2];

s q[1];

81

s q[2];

h q[2];

cx q[1],q[2];

h q[2];

s q[1];

s q[2];

h q[1];

h q[2];

x q[1];

x q[2];

h q[2];

cx q[1],q[2];

h q[2];

x q[1];

x q[2];

h q[1];

h q[2];

measure q[1] -> c[1];

measure q[2] -> c[2];

A.10 Experiment 4.4
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[1];

h q[2];

s q[2];

h q[2];

cx q[1],q[2];

82

h q[2];

s q[2];

h q[1];

h q[2];

x q[1];

x q[2];

h q[2];

cx q[1],q[2];

h q[2];

x q[1];

x q[2];

h q[1];

h q[2];

measure q[1] -> c[1];

measure q[2] -> c[2];

A.11 Experiment 4.5
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[1];

h q[2];

s q[1];

h q[2];

cx q[1],q[2];

h q[2];

s q[1];

h q[1];

h q[2];

83

x q[1];

x q[2];

h q[2];

cx q[1],q[2];

h q[2];

x q[1];

x q[2];

h q[1];

h q[2];

measure q[1] -> c[1];

measure q[2] -> c[2];

A.12 Experiment 4.6
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

h q[1];

h q[2];

h q[2];

cx q[1],q[2];

h q[2];

h q[1];

h q[2];

x q[1];

x q[2];

h q[2];

cx q[1],q[2];

h q[2];

x q[1];

84

x q[2];

h q[1];

h q[2];

measure q[1] -> c[1];

measure q[2] -> c[2];

A.13 Experiment 4.7
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

x q[1];

x q[2];

x q[4];

x q[1];

x q[2];

x q[3];

x q[4];

cx q[3],q[2];

cx q[2],q[3];

cx q[3],q[2];

cx q[2],q[1];

cx q[1],q[2];

cx q[2],q[1];

cx q[4],q[1];

cx q[1],q[4];

cx q[4],q[1];

measure q[1] -> c[1];

measure q[2] -> c[2];

measure q[3] -> c[3];

85

measure q[4] -> c[4];

*This code cannot be executed on the ibmqx2, it is only compatible with the ideal simulator.

A.14 Experiment 4.8
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

x q[0];

cx q[0],q[2];

h q[0];

h q[2];

cx q[0],q[2];

h q[0];

h q[2];

cx q[0],q[2];

cx q[1],q[2];

h q[1];

h q[2];

cx q[1],q[2];

h q[1];

h q[2];

cx q[1],q[2];

cx q[0],q[2];

h q[0];

h q[2];

cx q[0],q[2];

h q[0];

h q[2];

86

cx q[0],q[2];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

A.15 Experiment 4.9
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

creg c[5];

x q[1];

x q[2];

x q[4];

x q[1];

x q[2];

x q[3];

x q[4];

cx q[3],q[2];

h q[2];

h q[3];

cx q[3],q[2];

h q[2];

h q[3];

cx q[3],q[2];

cx q[1],q[2];

h q[1];

h q[2];

cx q[1],q[2];

h q[1];

h q[2];

87

cx q[1],q[2];

cx q[1],q[2];

h q[1];

h q[2];

cx q[1],q[2];

h q[1];

h q[2];

cx q[1],q[2];

cx q[4],q[2];

h q[2];

h q[4];

cx q[4],q[2];

h q[2];

h q[4];

cx q[4],q[2];

cx q[1],q[2];

h q[1];

h q[2];

cx q[1],q[2];

h q[1];

h q[2];

cx q[1],q[2];

measure q[1] -> c[1];

measure q[2] -> c[2];

measure q[3] -> c[3];

measure q[4] -> c[4];

A.16 Experiment 4.10
//OPENQASM 2.0

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5];

88

creg c[5];

h q[0];

// cu1(pi/2) q[0],q[1];

u1(pi/4) q[0];

cx q[0],q[1];

u1(-pi/4) q[1];

cx q[0],q[1];

u1(pi/4) q[1];

// end cu1

h q[1];

// cu1(pi/4) q[0],q[2];

u1(pi/8) q[0];

cx q[0],q[2];

u1(-pi/8) q[2];

cx q[0],q[2];

u1(pi/8) q[2];

// end cu1

// cu1(pi/2) q[1],q[2];

u1(pi/4) q[1];

cx q[1],q[2];

u1(pi/4) q[2];

cx q[1],q[2];

u1(-pi/4) q[2];

// end cu1

h q[2];

measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

APPENDIX B:
Mathematica Notebooks

B.1 Experiment 4.1 Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

Z = {{1,0}, {0,-1}

A0 = {1,0,0,0,0,0,0,0}

T1 = KroneckerProduct[ID,ID,H]

T2 = KroneckerProduct[Z,CNOT]

T0 = KroneckerProduct[H,H,H]

T0.T0.A0

Out =
{
1,0,0,0,0,0,0,0

}
B.2 Computing U f in Experiment 4.2 Mathematica Note-

book.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

Z = {{1,0}, {0,-1}

T1 = KroneckerProduct[ID,ID,H]

T2 = KroneckerProduct[Z,CNOT]

T1.T2.T1

Out= {{1, 0, 0, 0, 0, 0, 0, 0},

{0, 1, 0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0, 0},

91

{0, 0, 0, -1, 0, 0, 0, 0},

{0, 0, 0, 0, -1, 0, 0, 0},

{0, 0, 0, 0, 0, -1, 0, 0},

{0, 0, 0, 0, 0, 0, -1, 0},

{0, 0, 0, 0, 0, 0, 0, 1}}

B.3 Experiment 4.2 Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

Z = {{1,0}, {0,-1}

A0 = {1,0,0,0,0,0,0,0}

T1 = KroneckerProduct[ID,ID,H]

T2 = KroneckerProduct[Z,CNOT]

T0 = KroneckerProduct[H,H,H]

T0.T1.T2.T1.T0.A0

Out =
{
0,0,0,0,1

2,
1
2,

1
2,-

1
2
}

B.4 Experiment 4.3 Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

S = {{1,0}, {0,I}}

X = {{0,1}, {1,0}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

HH = KroneckerProduct[H,H]

SS = KronekcerProduct[S,S]

IH = KroneckerProduct[ID,H]

CT = CNOT

XX = KroneckerProduct[X,X]

Phi0 = {1,0,0,0}

92

HH.XX.IH.CT.IH.XX.HH.SS.IH.CT.IH.SS.HH.Phi0

Out =
{
1,0,0,0

}
B.5 Experiment 4.4 Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

S = {{1,0}, {0,I}}

X = {{0,1}, {1,0}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

HH = KroneckerProduct[H,H]

IS = KronekcerProduct[I,S]

IH = KroneckerProduct[ID,H]

CT = CNOT

XX = KroneckerProduct[X,X]

Phi0 = {1,0,0,0}

HH.XX.IH.CT.IH.XX.HH.IS.IH.CT.IH.IS.HH.Phi0

Out =
{
0,-1,0,0

}
B.6 Experiment 4.5 Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

S = {{1,0}, {0,I}}

X = {{0,1}, {1,0}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

HH = KroneckerProduct[H,H]

SI = KronekcerProduct[S,I]

IH = KroneckerProduct[ID,H]

CT = CNOT

XX = KroneckerProduct[X,X]

Phi0 = {1,0,0,0}

93

HH.XX.IH.CT.IH.XX.HH.SI.IH.CT.IH.SI.HH.Phi0

Out =
{
0,0,-1,0

}
B.7 Experiment 4.6 Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

S = {{1,0}, {0,I}}

X = {{0,1}, {1,0}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

HH = KroneckerProduct[H,H]

IH = KroneckerProduct[ID,H]

CT = CNOT

XX = KroneckerProduct[X,X]

Phi0 = {1,0,0,0}

HH.XX.IH.CT.IH.XX.HH.IH.CT.IH.HH.Phi0

Out =
{
0,0,0,-1

}
B.8 Reversing a CNOT Gate Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

Phi0 = {0,1,0,0}

T1 = KroneckerProduct[H,H]

UCNOT = {{1,0,0,0}, {0,0,0,1}, {0,0,1,0}, {0,1,0,0}}

T1.CNOT.T1.Phi0

Out = {0,0,0,1}

UCNOT.Phi0

Out = {0,0,0,1}

94

B.9 Controlled-S Gate
T = {{1,0}, {0,e^(I*PI/4)}}

TA = {{1,0}, {0,e^(-I*PI/4)}}

ID = {{1,0}, {0,1}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

T1 = KroneckerProduct[T,ID]

T2 = CNOT

T3 = KroneckerProduct[ID,TA]

T4 = CNOT

T5 = KroneckerProduct[ID,T]

T5.T4.T3.T2.T1

Out =
{
{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,e iπ

2 }
}

B.10 Experiment 4.8 Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

CNOT3 = {{1,0,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0}, {0,0,1,0,0,0,0,0},

{0,0,0,1,0,0,0,0}, {0,0,0,0,0,1,0,0}, {0,0,0,0,1,0,0,0}, {0,0,0,0,0,0,0,1},

{0,0,0,0,0,0,1,0}}

Phi0 = {1,0,0,0,0,0,0,0}

T1 = KroneckerProduct[X,ID,ID]

T2 = CNOT3

T3 = KroneckerProduct[H,ID,H]

T4 = CNOT3

T5 = T4

T6 = CNOT3

T7 = KroneckerProduct[ID, CNOT]

T8 = KroneckerProduct[ID,H,H]

T9 = T8

T10 = T9

T11 = T10

95

T12 = CNOT3

T13 = T4

T14 = CNOT3

T15 = T4

T16 = CNOT3

T16.T15.T14.T13.T12.T11.T10.T9.T8.T7.T6.T5.T4.T3.T2.T1.Phi0

Out =
{
0,0,1,0,0,0,0,0

}
B.11 Experiment 4.10 Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

CNOT3 = {{1,0,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0}, {0,0,1,0,0,0,0,0},

{0,0,0,1,0,0,0,0}, {0,0,0,0,0,1,0,0}, {0,0,0,0,1,0,0,0}, {0,0,0,0,0,0,0,1},

{0,0,0,0,0,0,1,0}}

U1 = {{1,0}, {0, e^(I*PI/4}}

NU1 = {{1,0}, {0, e^(-I*PI/4}}

U2 = {{1,0}, {0, e^(I*PI/8}}

NU2 = {{1,0}, {0, e^(-I*PI/8}}

T1 = KroneckerProduct[H,ID,ID]

T2 = KroneckerProduct[U1,ID,ID]

T3 = KroneckerProduct[CNOT,ID]

T4 = KroneckerProduct[ID,NU1,ID]

T5 = T3

T6 = KroneckerProduct[ID,U1,ID

T7 = KroneckerProduct[ID,H,ID]

T8 = KroneckerProduct[U2,ID,ID]

T9 = CNOT3

T10 = KroneckerProduct[ID,ID,NU2]

T11 = T9

T12 = KroneckerProduct[ID,ID,U2]

T13 = KroneckerProduct[ID,U1,ID]

96

T14 = KroneckerProduct[ID,CNOT]

T15 = KroneckerProduct[ID,ID,NU1]

T16 = T14

T17 = KroneckerProduct[ID,ID,U1]

T18 = KroneckerProduct[ID,ID,H]

B.12 QFT from [1] Mathematica Notebook.
H = 1/(2^(1/2))*{{1,1}, {1,-1}}

ID = {{1,0}, {0,1}}

CNOT = {{1,0,0,0}, {0,1,0,0}, {0,0,0,1}, {0,0,1,0}}

CR2 = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,I}}

CR3 = {{1,0,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0}, {0,0,1,0,0,0,0,0},

97

{0,0,0,1,0,0,0,0}, {0,0,0,0,1,0,0,0}, {0,0,0,0,0,e^((PI*I)/4),0,0},

{0,0,0,0,0,0,1,0}, {0,0,0,0,0,0,0,e^((PI*I)/4)}}

SWAP = {{1,0,0,0,0,0,0,0}, {0,0,0,0,1,0,0,0}, {0,0,1,0,0,0,0,0}

{0,0,0,0,0,0,1,0}, {0,1,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0},

{0,0,0,1,0,0,0,0}, {0,0,0,0,0,0,0,1}}

T1 = KroneckerProduct[H,ID,ID]

T2 = KroneckerProduct[CR2,ID]

T3 = CR3

T4 = KroneckerProduct[ID,H,ID]

T5 = KroneckerProduct[ID,CR2]

T6 = KroneckerProduct[ID,ID,H]

98

List of References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2015.

[2] “IBM unveils roadmap for commercial ’IBM Q’ quantum systems,” Mar 2017.
Available: http://www-03.ibm.com/press/us/en/pressrelease/51740.wss

[3] R. Feynman, “Simulating physics with computers,” International Journal of Theo-
retical Physics, vol. 21, no. 6, pp. 467,488, 1982.

[4] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,”
Proceedings: Mathematical and Physical Sciences, vol. 439, no. 1907, pp. 553–558,
1992. Available: http://www.jstor.org/stable/52182

[5] L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,”
Phys. Rev. Lett., vol. 79, pp. 325–328, Jul 1997. Available: https://link.aps.org/doi/
10.1103/PhysRevLett.79.325

[6] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factor-
ing,” in Proceedings 35th Annual Symposium on Foundations of Computer Science,
Nov 1994, pp. 124–134.

[7] J. Temperton, “Got a spare $15 million? Why not buy your very own D-Wave quan-
tum computer,” Jan 2017. Available: http://www.wired.co.uk/article/d-wave-2000q-
quantum-computer

[8] C. Q. Choi, “IBM simulates a 56-qubit machine,” Oct 2017. Available: https:
//spectrum.ieee.org/tech-talk/computing/hardware/ibms-quantum-leap-simulates-
56qubit-machine

[9] J. M. Gambetta, J. M. Chow, and M. Steffen, “Building logical qubits in a supercon-
ducting quantum computing system,” Jan 2017. Available: https://www.nature.com/
articles/s41534-016-0004-0

[10] IBM, “IBM Quantum Experience - Full User Guide.” Available: https://
quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&page=
introduction

[11] S. Shankland, “IBM quantum computers will unleash weird science on busi-
ness,” Mar 2017. Available: https://www.cnet.com/news/ibm-quantum-computers-
business-moores-law-qubit/

99

[12] T. Simonite, “Moore’s law is dead. Now what?” Feb 2017. Available: https://www.
technologyreview.com/s/601441/moores-law-is-dead-now-what/

[13] D. J. Bernstein, Post-Quantum Cryptography (Lecture notes in computer science
Post-quantum cryptography). Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[14] C. M. Nikias, “This is the most important tech contest since the space race, and
America is losing,” May 2018. Available: https://www.washingtonpost.com/
opinions/this-is-the-most-important-tech-contest-since-the-space-race-and-
america-is-losing/2018/05/11/7a4a4772-4e21-11e8-b725-92c89fe3ca4c_story.html

[15] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,
M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, and et al., “Charge-insensitive qubit
design derived from the Cooper pair box,” Physical Review A, vol. 76, no. 4, Dec
2007.

[16] QISKit, “QISKit/IBMqx-backend-information.” Available: https://github.com/
QISKit/ibmqx-backend-information/blob/master/backends/ibmqx2/README.md

[17] P. A. M. Dirac, “A new notation for quantum mechanics,” Mathematical Proceed-
ings of the Cambridge Philosophical Society, vol. 35, no. 3, pp. 416–418, 1939.

[18] N. S. Yanofsky and M. A. Mannucci, Quantum computing for computer scientists.
Cambridge University Press, 2013.

[19] J. H. Luscombe, Thermodynamics. CRC Press, Taylor Francis Group, 2018.

[20] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz,
“Experimental verification of Landauer’s principle linking information and ther-
modynamics,” Nature, vol. 483, no. 7388, pp. 187–9, Mar 08 2012. Available:
http://libproxy.nps.edu/login?url=https://search.proquest.com/docview/963550044?
accountid=12702

[21] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Physi-
cal Review A, vol. 70, no. 5, 2004.

[22] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum com-
putation,” Phys. Rev. A, vol. 52, pp. 3457–3467, Nov 1995. Available: https://link.
aps.org/doi/10.1103/PhysRevA.52.3457

[23] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open quantum as-
sembly language,” arXiv preprint arXiv:1707.03429, 2017.

[24] R. P. Feynman, The Feynman lectures on physics. Addison-Wesley, 1989 - 1963.

100

[25] A. Einstein, “On a heuristic point of view concerning the production and transforma-
tion of light,” Annalen der Physik, pp. 1–18, 1905.

[26] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and
A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit
interferometer,” Science, vol. 332, no. 6034, pp. 1170–1173, 2011.

[27] R. Bach, D. Pope, S.-H. Liou, and H. Batelaan, “Controlled double-slit electron
diffraction,” New Journal of Physics, vol. 15, no. 3, p. 033018, 2013.

[28] A. Einstein, M. Born, and H. Born, The Born-Einstein letters: Friendship, politics
and physics in uncertain times. Macmillan, 2005.

[29] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description
of physical reality be considered complete?” Physical Review, vol. 47, no. 10, p.
777–780, 1935.

[30] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell’s theorem,”
in Bell’s theorem, quantum theory and conceptions of the universe. Springer, 1989,
pp. 69–72.

[31] J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics, vol. 1, pp. 195–200,
1964.

[32] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to
test local hidden-variable theories,” Phys. Rev. Lett., vol. 23, pp. 880–884, Oct 1969.
Available: https://link.aps.org/doi/10.1103/PhysRevLett.23.880

[33] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experi-
mental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger
entanglement,” Nature, vol. 403, no. 6769, p. 515, 2000.

[34] IBM, “IBM Q Composer.” Available: https://quantumexperience.ng.bluemix.net/qx/
editor

[35] H. Jarlett, “Breaking data records bit by bit,” Dec 2017. Available: https://home.
cern/about/updates/2017/12/breaking-data-records-bit-bit

[36] P. W. Shor, “Introduction to quantum algorithms,” in Proceedings of Symposia in
Applied Mathematics, 2002, vol. 58, pp. 143–160.

[37] S. Beauregard, “Circuit for Shor’s algorithm using 2n+ 3 qubits,” arXiv preprint
quant-ph/0205095, 2002.

[38] I. L. Markov and M. Saeedi, “Constant-optimized quantum circuits for modular mul-
tiplication and exponentiation,” arXiv preprint arXiv:1202.6614, 2012.

101

[39] “Pauli matrices,” May 2018. Available: https://en.wikipedia.org/wiki/Pauli_
matrices#The_group_composition_law_of_SU(2)

[40] “Massively parallel quantum computer simulator,” Computer physics communica-
tions, vol. 176, no. 2, pp. 121,136, 2007.

[41] C. Q. Choi, “IBM simulates a 56-qubit machine,” Oct 2017. Available: https:
//spectrum.ieee.org/tech-talk/computing/hardware/ibms-quantum-leap-simulates-
56qubit-machine

[42] “D-Wave announces upgrades to D-Wave 2000Q quantum computer,” Nov 2017.
Available: https://www.dwavesys.com/press-releases/d-wave-announcesupgrades-d-
wave-2000q-quantum-computer

[43] “The D-Wave 2000Q quantum computer technology overview.” Available: https:
//www.dwavesys.com/sites/default/files/D-Wave2000QTechCollateral_0117F.pdf

[44] S. Aaronson, “Insert D-Wave post here,” Mar 2017. Available: https://www.
scottaaronson.com/blog/?p=3192

[45] S. W. Shin, G. Smith, J. A. Smolin, and U. Vazirani, “How "quantum" is the D-Wave
machine?” arXiv preprint arXiv:1401.7087, 2014.

[46] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis,
D. A. Lidar, and M. Troyer, “Defining and detecting quantum speedup,” Science, vol.
345, no. 6195, pp. 420–424, 2014.

[47] J. Preskill, “Quantum computing in the NISQ era and beyond,” arXiv preprint
arXiv:1801.00862, 2018.

[48] T. Curcic, M. E. Filipkowski, A. Chtchelkanova, P. A. D’Ambrosio, S. A. Wolf,
M. Foster, and D. Cochran, “Quantum networks: from quantum cryptography to
quantum architecture,” ACM SIGCOMM Computer Communication Review, vol. 34,
no. 5, pp. 3–8, 2004.

[49] K. Michielsen, M. Nocon, D. Willsch, F. Jin, T. Lippert, and H. D. Raedt, “Bench-
marking gate-based quantum computers,” Computer Physics Communications, vol.
220, pp. 44 – 55, 2017. Available: http://www.sciencedirect.com/science/article/pii/
S0010465517301935

[50] S. J. Devitt, “Performing quantum computing experiments in the cloud,” Phys.
Rev. A, vol. 94, p. 032329, Sep 2016. Available: https://link.aps.org/doi/10.1103/
PhysRevA.94.032329

102

[51] Anonymous, “Quantum Programming Language,” Dec 2015. Available: https:
//www.quantiki.org/wiki/quantum-programming-language

[52] B. Omer, “Quantum programming in QCL,” Master’s thesis, Institute of Information
Systems Technical University of Viennna, 2000.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

105

