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Abstract

Despite the fact that there has been a surge of publications in verification and validation of knowledge-based systems and expert systems in
the past decade, there are still gaps in the study of verification and validation (V&V) of expert systems, not the least of which is the lack of
appropriate semantics for expert system programming languages. Without a semantics, it is hard to formally define and analyze knowledge
base anomalies such as inconsistency and redundancy, and it is hard to assess the effectiveness of V&V tools, methods and techniques the
have been developed or proposed. In this paper, we develop an approximate declarative semantics for rule-based knowledge bases an
provide a formal definition and analysis of knowledge base inconsistency, redundancy, circularity and incompleteness in terms of theories in
the first order predicate logic. In the paper, we offer classifications of commonly found cases of inconsistency, redundancy, circularity and

incompleteness. Finally, general guidelines on how to remedy knowledge base anomalies a@ §88hElsevier Science B.V. All rights
reserved.

Keywords:Knowledge base anomalies; Inconsistency; Redundancy; Circularity; Incompleteness; Knowledge base verification

1. Introduction V&V of expert systems in general and V&V of KB in
particular need to be based on a sound theoretical founda-
The last decade has witnessed a surge of publications intion. However, the reality is that “the construction of either
verification and validation (V&V) of expert systems and declarative or Hoare-style semantics for current rule-based
knowledge-based systems which resulted in several bookdanguages is a hopeless task” [31]. In the long run, concern
[1,2], and special issues of several journals [3—6]. Major Al for verifiability and reliability should lead to the develop-
conferences have had workshops and special sessions thanent of programming languages with tractable semantics
were devoted to the issue. A sample of additional publica- for expert system applications. In the meantime, some
tions can be found in Refs. [7—40]. Many V&V methods, approximate semantics (declarative or imperative) is needed
techniques and tools have been proposed, developed oto enable a formal analysis of properties of expert system
implemented for expert system applications. On the other components (such as a KB). For example, sketches of an
hand, advances in knowledge engineering have resulted inapproximate declarative semantics, which is based on a
better methodologies and practice that aim at reducing logical interpretation of a rule base, and an approximate
errors and faults during system development and mainte-imperative semantics, which is based on axiomatic logic
nance [41-44]. Despite all these activities, there are still and invariants, for the current rule-based programming
gaps in the study of V&V of expert systems, not the least languages were proposed in Ref. [31].
of which is the lack of appropriate semantics for expert  Adopting a declarative semantics for a rule-based
system programming languages. Without a semantics, it islanguage has some potential difficulties: (a) It is hard to
hard to formally define and analyze knowledge base (KB) provide a purely declarative interpretation of rules, because
anomalies such as inconsistency and redundancy, and it ighey often behave in an imperative manner with the intended
hard to assess the effectiveness of V&V tools, methods andside effects of updating a working memory. Simply treating
techniques that have been developed or proposed. a rule base as a logical theory may result in an excessively
conservative semantics. (b) Due to the fact that consistency
in the first order logic is semi-decidable, there does not exist
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Table 1 2. Preliminaries
Typesetting conventions

We assume that the reader is familiar with the basic

Symbol Meaning . . . . .
concepts and terminology in the first order predicate logic
b A nonempty domain of elements [45-47]. We usenff to denote thevell-formed formulasn
g » et Ars‘ "t‘tefrprﬁet;"_‘t“onl i the predicate logic. Aatomic formulaor atom) refers to an
oldlace capital letter etofwit (literals), or set of rules n-place predicate symbol and itserms. Agroundatom is
Ordinary capital letter Individual wif (literal) . . . . .
Lower-case ordinary letter Constant one npt contammg any vangbles.l;@eral is an atom or |ts.
Lower-case italic letter(s) Predicate negation. To avoid confusion, we adopt the typesetting
T Rule label conventions as given in Table 1.
fj Fact label
LHS () Set of literals in the left-hand
side of ¢ Lo . . .
RHS (r) Set of literals in the right-hand Definition 1. An interpretationof a wff consists of a non-
side of ¢ empty domain B, and an assignment of “values” to each
true, false Logical values constant, function symbol and predicate symbol appearing
xy,zx,y,7 Variable

in the wiff according to the following: (a) assigning an
element of B to each constant; (b) assigning a mapping
from D" to D to eachn-ary function symbol; and (c) assign-

There have been several efforts toward providing a ing a mapping from Bto {true, false to eachn-ary predi-
precise characterization of the logical nature of a rule- cate symbol.

based KB [11,31,35]. An algorithm to detect all inconsis-
tencies and redundancies in “a certain well-defined,

reasonably expressive, subset of all quasi-first-order-logic pefinition 2. A wff H (or a setC of wff) is satisfiable
KB is presented in [11]. The results in [35] indicate thata  (consistent)if and only if there exists an interpretatiah
rule-based language is still amenable to Iog|<_:al analysis.  gych that H (or every wff irC) is evaluated tdrue for all
The purposes of this paper are to (&) Provide an approx-yariable assignmertsinderZ, which is denoted=; H (&,
imate declarative semantics for rule-based KB so that c) s said to be anodelof H (C) and¢ satisfiesH (C). H
various KB anomalies can be formally defined and correctly (c) is inconsistentf and only if there exists no model for H
understood. We go beyond the results of [11,31,35] by deal- (¢). H is said to bevalid (tautologous if and only if every
ing with not only KB inconsistencies and redundancies, but possible interpretation satisfies H. H islagical conse-

anomaly analysis procedures using theories in the first ordermode| of H. This is denoted &3 F H.

predicate logic (such as timodel theorysatisfiability,and

derivability of certain tautologous well-formed formulas

[45—47]). This may serve as the theoretical underpinnings Theorem 1. Given a set of wiC = {P, ..., Q} and a wif H,
of practical V&V tools. (c) Offer classifications for cases of C E Hifand only if PA ... AQ— His valid.
inconsistency, redundancy, circularity and incompleteness

commonly found in rule-based KB. (d) Propose guidelines

on how to remedy the anomalies once they are identified. Definition 3. LetC andC' be sets of wifC = C’ denotes

The rest of the paper is organized as follows: Section 2 that C is satisfiable if and only i€’ is satisfiable [45].
briefly reviews the terms and concepts to be used throughout

the paper. Definitions, classifications and analyses of KB
inconsistency, redundancy, circularity and incompleteness
are provided in Sections 3—6, respectively. Some possible
remedial measures for KB anomalies are discussed in
Section 7. Section 8 concludes with remarks about future
work.

This paper focuses on rule-based knowledge bases. A
rule-based KB can be divided into a setfatts which is
stored in avorking memorfWM) and a set ofulesstored
in a rule base(RB). Rules represent general knowledge
about an application domain. They are entered into a RB
during initial knowledge acquisition or subsequent KB
updates. Facts in a WM provide specific information

! The key step in the algorithm is the subsumption tests which must be about the problems at hand and may be elicited either dyna-
Qecida_ble for a given KB in order for the KB to b(_e completel)_/ analyzeq for mically from the user during each problem-solving session,
inconsistency and redundancy. The subsumption tests will be deudableor statically from the domain expert during knowledge

only when the expressions to be tested satisfy ghantifier decoupled L derived th h rule deducti
(g-decoupled) property [11]. In general, one does not know in advance if acquisition process, or derived through rule deduction.

a given KB will generate any non g-decoupled expressions because there
does not exist a syntactic test for determining the g-decoupleability of the 2 A variable assignment is a mapping from variables in a wff to elements
KB. in B.
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Table 2
Same, synonymous, complementary, mutual exclusive, incompatible, and conflict literals

Semantics Syntax
Identical Different
Equivalent Same:denoted as L= L,% L, and L, are syntactically Synonymousdenoted L = L,° L; and Ly are
identical (same predicate symbol, same arity, and same syntactically different, but logically equivalent
terms at corresponding positions)
Conflict® Complementarydenoted L#L,. L, and L, are an atom Mutual exclusivedenoted I, © L,. L; and L, are
and its negation syntactically different and semantically have opposite

truth values
Incompatible:denoted L. #% L,. L; and L, are
complementary pair of synonymous literals

2Given two rules rand g, if LHS(r;) = {P1, ..., Pn} and LHSr,) = {PZ, ..., Pn’}, then LHSr;) = LHS(riff Vi € [1,n]Pi = Pi’.
P Given two rulesrand g, if LHS(r)) = {P1 ..., Pn} and LHSr,) = {PY, ..., Pn'}, then LHSr;) = LHS(r) iff Vi € [1,n] Pi = Pi’.
°L, and Ly, are conflict literals, denoted; | L,, if (L1#L,) V (L1PLy)V(L1#~Ly).

Definition 4. Rules in a KB have the format:;;A ... A Definition 9. Ifrjis arule and P is a literal, the expression
P, — R, where Ps are the conditions (collectively, tHeft- r, - P is used to indicate arbitrary length derivation of P from
hand side LHS, of a rule), R is the conclusion (@ight- r; in terms of some inference methotis.

hand side RHS, of a rule), and the symbol= " is under-
stood as the logical implication. The$and R arditerals.

If the conditions of a rule instance are satisfied by facts in Usinglogical equivalencewe can always convert a logi-

WM, then its conclusion is deposited into WM. cal implication into a disjunction of literals. We further
simplify the notation by dropping the logical connective
“ v ” from such a disjunction. For instance, the set of wif

Definition 5. A fact is represented as a ground atom. It {PAQ— R, UA =V — W} has the following logically

specifies an instance of a relationship among particular equivalent short representatiof:P ~QR, ~UVW} where

objects in the problem domain. WM contains a collection each element in the set is a disjunction of literals.

of positive ground atoms, which are deposited through

either assertion (initial or dynamic), or rule deduction.

Definition 10. The concepts of thesame synonymous
o N _ complementary mutual exclusive, incompatibleand
Definition 6. A negated conditior-p(x) in the LHS of a  ¢onflict literals are defined in Table 2 in terms of syntax
rule is satisfied ifp(x) is not in WM for anyx. A negated and semantics considerations.

ground atom~p(a) in the LHS of a rule is satisfied f(a) is

not in WM. A negated conclusiorR in the RHS of a rule
results in the removal of R from WM, when the LHS of the
rule is satisfied. Rule instances and negated literals can be
utilized by the inference system, but are never deposited

Example 1. Given the following literalsfather(x, john),
male paren(x, john), animalsea_cucumber)yvegetable
(sea_cucumber)ird(fred), —bird(fred), sent_tgx, emer-

into WM [11]. gency_room), sent_tdx, waiting_room), expensivé),
high_pricedx), we have:

Definition 7. Given two sets of literalk andL’, L’ is said father(x, john) = father(x, john);

to be aspecializatiorof L, denoted.’ <I L, if there exists a father(x, john) = male_parer(k, john);

nonempty set ofubstitutionsé, such thatL’ = (L)6. In bird(fred)# —bird(fred);

particular, a literal Pis a specialization of P, denoted as ~ @nimalsea_cucumberp vegetablésea_cucumber);

P’ < P if there exists a nonempty set of substitutsuch sent_tgx, emergency_room)® sent_t¢x, waiting_

that P = (P)6. room);

expensivé) ¥* —high_pricedx);
father(x, john) 1| —male_paren(tx, john).
Definition 8. Given a set. of n literals, p(L) represents
the set of all literal permutations in.

- 4 Strictly speaking, the expression should beyr WM} + P because
® There would be no effect on WM if R is not in WM whe#R is derived. facts in WM will be used during the derivation.
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Table 3
Types of inconsistency

Type Description Pattern

-1 Rules with the same LHS result HS(r;) = LHS(r,) and r - P

in complementary conclusions and g - Q, where P#Q

Rules with shared condition(s) LHS(r;) N LHS(r,) # & and

result in complementary r, = Pand g+ Q, where P#Q

conclusions

Rules with the same LHS result HS(r;) = LHS(r,) and r - P

in mutual exclusive conclusionsand i - Q, where PP Q

Rules with shared condition(s) LHS(r;) N LHS(r,) # & and

result in mutual exclusive ri=PandgF Q, where PP Q

conclusions

Rules with the same LHS result HS(r;) = LHS(r,) and r - P

in incompatible conclusions  and g - Q, where P# Q

Rules with shared condition(s) LHS(r;) N LHS(r,) # & and

result in incompatible r,- P and gk Q, where P4 Q

conclusions

Rules with synonymous LHS  LHS(r;) = LHS(r)) and ¢ + P

result in complementary and g - Q, where P#Q

conclusions

Rules with shared synonymousL C LHS(r;) andL’ C LHS(ry)

conditions result in andL =L’ and { P and

complementary conclusions 1, - Q, where P#Q

Rules with synonymous LHS  LHS(r;) = LHS(ry) and ¢+ P

result in mutual exclusive and g - Q, where PP Q

conclusions

Rules with shared synonymousl. C LHS(r;) andL’' C LHS(r,)

conditions result in mutual andL =L’ andf+ P and

exclusive conclusions e+ Q, where PP Q

Rules with synonymous LHS LHS(r;) = LHS(r,) and f - P

result in incompatible and g - Q, where P~ Q

conclusions

Rules with shared synonymousL. C LHS(r;) andL’' C LHS(r,)

conditions result in incompatiblendL = L’ and { - P and

conclusions rF Q, where P~ Q

Rules with consistent LHS result= ; {LHS(r;), LHS(r)} A

in complementary conclusions LHS(r) N LHS(r) = A - P
and g F Q, where P#Q

Rules with consistent LHS result= ; {LHS(r;), LHS(r)} A

in mutual exclusive conclusiond HS(r) N LHS(r) = A FP
and g - Q, where PP Q

Rules with consistent LHS result= ; {LHS(r;), LHS(r)} A

in incompatible conclusions  LHS(r) NLHS(h) = A1 P
and g - Q, where P# Q

Rules with a condition result in r; - Q, where PE LHS(r) A

complementary literal P#Q

Rules with a certain condition r; - Q, where PE LHS(r) A

result in incompatible literal P % Q

Rules with a condition P resultirr; - Q, where PE LHS(r) A

mutual exclusive literal P®Q

-2

I-10

I-11

I-12

I-13

I-14

I-15

-1

11-2

11-3

In this paper, we do not consider the situation in which
rules are augmented wittertainty factors Because of the
way they are defined, rules and facts are subsets of wff.
Therefore, the terms “rule” and “fact” can be freely replaced
by the term “wff” throughout the rest of the paper.

3. KB inconsistency
3.1. Definition of inconsistency

The root cause of KB inconsistency is due to rules in RB,

D. Zhang, Lugi/ Knowledge-Based Systems 12 (1999) 341353

but its manifestation is through WM. For instance, the
inconsistency of a RB containing a pair of rulgxx) —

gx), p(x) ——q(x)} is not apparent until a facp(a) is
asserted into WM. In general, although the rules in a RB
may be consistent on their own (because there exists a
model for them), they can form an inconsistent theory
when combined with certain facts in WM. In order for a
KB to be consistent, there needs to be a model for both RB
and WM.

On the other hand, facts in WM are changing over time due
to dynamic assertions and retractions. If we use subscripts to
denote states of WM at different times, RB may be consis-
tent with WM, but inconsistent with WiMwherei # .
Thus, relying on a particular WM state in verifying the
consistency of RB may not produce an accurate result.

Definition 11. Let WMy and R(WMgy) denote the
initial state for WM and the reachability set of all
possible WM states from W) respectively. Let
WM denote all legitimate factsfor an application.
WM = U{WM;|WM; € R(WM)}.

Definition 12. Given two interpretationg and{j, ¢ is an
extension of;, denoted ag; ¢, if the domain and assign-
ments ing are retained inj.

Definition 13. Let ¢, be a model forWM.® A KB is
inconsistenif and only if =3¢ [{o = { A F RB].

During problem solving process, inconsistent rules in RB
allow derivations of conflicting (complementary, mutual
exclusive and incompatible) outcomes from the same,
synonymous or consistent conditions, thus, seriously
compromising the reliability and correctness of knowl-
edge-based systems.

3.2. Classification of inconsistency

Two types of inconsistency are classified in Table 3. Each
type consists of a set of patterns and each pattern encom-
passes different cases. Type | contains anomalous situations
where rules with the same or synonymous conditions result
in conflict (complementary, mutual exclusive and incompa-
tible) conclusions. Type Il captures the scenarios where a
chain of deduction involves a condition and a conclusion (at
two ends of the chain) which are either complementary, or
mutual exclusive, or incompatible. It is very important to
recognize the types of inconsistency for several reasons: (a)

® Facts that satisfy the validity constraints of the application domain.
8 |f there are validity constraints on facts\iM , then the models consid-
ered are restricted to those that satisfy the constraints.
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so that effective detection algorithms can be developed; (b) can be automated using tihesolution principlewhere the
the completeness of the V&V tools can be measured. derivation of an empty clause amounts to the failure of

The exhaustive nature of the classification can be consid-finding a model (or the presence of inconsistency in the
ered by enumerating all cases that result in an unsatisfiableKB). In practice, we can use the structure of the derivation
RB (Definition 13). The clue is the derivation of conflict generated by the resolution principle to extract a set of
literals by a RB or a derived literal being in conflict with a inconsistent rules.

fact in WM. Due to space limit, we will skip a formal proof. The above example demonstrates an inconsistency in the
current state of a KB. There is, however, another scenario in
3.3. Analysis which the proof procedure yields a model for a KB, but there

exists the potential of inconsistency in a possible future state

Given a RB and a WM containing a set of rules and a set of the KB. Consider the situation where fagifa legitimate
of facts, respectively, we can show that the KB is consistent input but is not present in the WM at the time of checking,
by trying to find a model for it. The way we try to find @ the proof procedure will find a model for (KB- f5) and
model for the KB is through considering an arbitrary inter- conclude that it is consistent. (This coincides with the intui-
pretation. If { satisfies the KB (i.e{ satisfies RB and  tjye explanation that the conflicting conclusionD is not
WM), then { is a model for it; otherwise, there is no geducible because the LHS of cannot be satisfié)l
model for the KB. If a model is found, then the KB is However, inconsistency arises when fagisfasserted into

consistent; otherwise, it is inconsistent. We show the analy- . This phenomenon confirms our early arguments that:
sis through some examples. ] )
e The cause of inconsistency stems from rules, but facts

will help expose the inconsistency. Thus the inconsis-
Example 2. Given a KB consistng of a tency checking should involve both RB and WM.

RB = {ry, 1, I3, I, Is} and a WM= {f,, f,, fs} shown below ¢ KB consistency can be either temporary or persistent. For
instance, KB— f3 is temporarily consistent untikfis

rn:PAQ—A f1:P asserted. Such a transient consistency is not a reliable

L:RAQ—B f,:Q indicator. What is needed _is an uIti_mate consistenc_y
that guarantees that a KB will be consistent for all possi-

rs:AAB—W f3:R ble states.

r,:A—D e The set of all legitimate facts in an application domain
usually changes with time. Given a time period, it is

rs:B——-D important to identify the set of all legitimate facts during

the period in order to conclude whether a KB will be

we can show that there is no model for the KB, thus, it is ) ) . )
persistently consistent during the period.

inconsistent.
Operationally, when a pair of conflicting conclusions is
derived, it amounts to a fact retraction in WM. In a rule-

Proof. We convert the KB into the set below based programming language, there are two types of fact
_ retraction:explicit one through a language construct such as
= {~P=QA,~R~QB,~A —BW, retract andmplicit one through derivation of a negated fact

~AD,-B -D,P,Q,R} and negation as absence rule for WM. The implicit fact
’ Y retraction would be an indicator for RB inconsistency, but
Let £ be any interpretation fof),. it is not a necessary condition for RB inconsistency. The

reason is that in general, a rule-based system may not have
the Church—Rosseproperty® therefore the derived facts by
RB for the same initial facts in WM may not be unique. For
instance, when both, and g are enabled, depending on the
conflict resolution strategy used by the control component
of the system,sand g can be fired in different order. As a
result, different sets of output (derived facts) will be
produced.

e If {is a model forQ),, then = P, = Q, and & R;

e According to the first two elements i,, there must be
F, Aand K B;

e Since F; Aand F; B, there must be=; D and =, =D in
order for —AD and —B —D to be true. But this is
impossible. As a result, one of the rules efAD and
—-B —D must befalseunder/.

e Since{ cannot satisfy all rules if),, it is not a model for
),. Becauseg is an arbitrary interpretation, there is no

model for(},. Thus, the given KB is inconsistentL] "1ff4is not a legal input, then rule can never be enabled because of the

unsatisfiability of its LHS. As a result, the rule will be picked up by the

. . . . _ incompleteness checking and classified as an incomplete case.
The Inconsistency in Example 2is of type I-13 because r 8 The Church—Rosser property of a rule-based system refers to the fact

and 5 _have diﬁer?m but consistent LHS and result in  inat the order in which rules are fired does not affect the final values
conflicting conclusions D and—D. The proof procedure  produced [31].
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Example 3. Given a KB containing the following rules
and facts

rn:PAQ—R f:P
rh,h:R—W fo:Q
r;: W—A
ry: A——-P

we can show that there is no model for the KB, thus, the KB
is inconsistent.

Proof. We convert the KB into the set
O, ={-P-0QR —-RW,-WA,-A =P,P,Q}

Let £ be any interpretation fof,.

If ¢ is a model for(),, then =, P and F; Q;

There mustbé= .—A, E,~WandF ;—R, respectively, in
order for —A =P, =WA, and —=RW to betrue under¢;
However, there must beF; R according to the first
element in(),. R and —R cannot be botlrue under/.
As a result, one of the clauses 6fP —QR and —RW
must befalseunder{.

Since{ cannot satisfy all rules if,, it is not a model for
Q,. Because is an arbitrary interpretation, there is no
model for(),. Thus, the given KB is inconsistent[]

The inconsistency in Example 3 is of type II-1 because r
has a condition P and results in the derivation-ét. Type Il
inconsistency not only introduces the logical contradiction
into the inference process, it also has other pragmatic
ramifications:

e In Example 3, the inconsistency involves a pair of
complementary literals. When is fired, it causes P to
be removed from WM, thus either preventing those rules
that rely on P as input from being enabled or deactivating
those rules that are enabled as a result of P.

A list of synonymous literals and a list of mutual exclu-
sive literals must be declared and maintained as a KB is
being built and modified. In addition to Definition 6, the
following should be used to maintain the validity of WM:

If (P @ Q) A (Qe WM), then KBF P would result in

(WM - {Q}) U {P}.
If (P# Q) A(Qe& WM), then KB+ P would resultin

(WM —{Q}).

Computationally, when—P is a derived fact, the infer-
ence engine will check not only for the presence of P in
WM but also the presence of some literal synonymous to
P2 Alternatively, before a derived fact P gets deposited
into WM, the inference system also need to check for the
presence of Q in WM that is mutually exclusive to P.

® Definition 6 now needs to be modified to reflect the impact of synon-
ymous literals on the occurrence 6fP in LHS or RHS of a rule.

D. Zhang, Lugi/ Knowledge-Based Systems 12 (1999) 341353

Though the use of synonymous and mutual exclusive
literals may aid the expressive power of the language,
their potential complications in system correctness should
never be underestimated and their computational cost
should not be ignored. Therefore, the use of those literals,
especially synonymous literals, should be judicious.

4. KB redundancy
4.1. Definition of redundancy

Though redundancy may not cause logical problems (i.e.
with no effect on the set of deducible literals), it may lead to
following situations where potential problems may arise:

¢ During KB maintenance or evolution, if one of the redun-
dant rules is modified and the others remain unchanged,
then the updated KB will not correspond to the intended
change, and inconsistencies can be introduced as well;
For a KB where no certainty factors are utilized, redun-
dant rules may be enabled under a given state, thus
resulting in performance slow down because all the
enabled redundant rules may be fired, even though the
firings of those redundant rules will yield the same set of
literals (conclusions);

For a KB containing certainty factors, redundancy will
become a serious problem, the reason being that each
redundant rule may be fired, resulting in multiple count-
ings of the same information, which, in turn, erroneously
increases the level of confidence assigned to the derived
literals (conclusions). This may ultimately impact the set
of deducible literals.

If redundancy is introduced by design to speed up some
classes of frequent deductions, then it is usually confined to
a subset of the cases (e.g. types I-2, 1-3, I-5 in Table 4). We
can always isolate those “useful” redundant rules, and weed
out redundancy from the KB where there is supposed to be

none.

Definition 14. For a setS of rules, we define a functios
which returns the number of distinct literals 8 If both

L and—L are in S, they will be counted as two different
literals.

Definition 15. Given a seS of rules, if we can construct a
setS' of rules such thag = S’ and

(a) eitherS' = S— A, whereA # JandA C S;

(b) or S’ = ¢(S), where¢ is a transformation o such
that|S'| = |S| and¥(S') < y«S); then there is redundancy
in S.
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Table 4
Types of redundancy

Type Description Pattern
-1 Rules having the same conclusion but different (RHSr;)) = RHS1)) A (LHS(r) € p(L)) A (LHS(r) € p(L)),
permutations of the same set of conditions whereL is a set of literals
1-2 A rule r, which can be deduced from a set of rules i{r, 6} F e where(RHS(r) = LHS(..)) A ... A(RHS(...) =
LHS(rj)) A (LHS(r;) = LHS(ry)) A (RHS(Tj) = RHS(ry))
1-3 A rule r, which is a specialization of another rule r (LHS(r) < LHS(r)) A (RHS(F) < RHS(K)), where LHS() and
RHS(r) are specializations based on the same set of substitutions
-4 A rule r, which is subsumed by another rule (LHS(r;) C LHS(rp)) A (RHST;) = RHS1))
-5 Generalized subsumed rulgig subsumed by and ) (RHS(rj) C LHS(rj) A (RHS(rj) = RHS(ry)) A (LHS(ry) =
(LHS(rj) U LHS(rj) — RHS(1))))
1-6 Rules with same condition(s) and synonymous (RHSr;) = RHS(ry)) A (LHS(rj) = LHS(ry))
conclusions
-7 Rules with synonymous conditions and same (RHSr)) = RHS(ry ) A (LHS(r;) = LHS(ry))
conclusion
1-8 Rules with synonymous conditions and synonymous (RHS(r) = RHS(ry)) A (LHS(rj) = LHS(ry))
conclusion
11-1 Two rules which have the same or synonymous ((RHEr) = RHY1))) vV (RHIT) = RHS1))) A (LHS(r;) =
conclusion but contain pair(s) of conflict literals in L U{P}H A (LHS(r)) = L U {Q}), whereL is set of literals and
their conditions PTlQ
11-2 A rule with redundant condition(s) (P € LHS(r) A (P € LHS(r) A
(P=P)vP=P)vPaP)
11-3 Two rules sharing the same conclusion, and one rule (RHS(rj) = RHS1j) A (LHS(r) = L U {P}) A (LHS(r)) =
having a singleton condition that is in conflict with a {Q}), whereL is set of literals and B| Q

condition of another rule

4.2. Commonly found types of redundancy Example 4. Given the following seS of rules
If either of the conditions in Definition 15 holds for a i PAQ—R

given RB, then the RB is said to contain redundancy. rz: AAB—U

Thus, in essence, all types of redundancy are captured byfs: UAV —-W

Definition 15. However, in practice, there are sets of rla RAW—D

commonly found types of redundancy. What are included 's: PAQAAABAV—D

in Table 4 are the frequently encountered types of redun-

dancy. Type | redundancy in Table 4 involves redundant | ;g —g_ {rs}. We can show thaS =~ S and & is
rule(s) and Type Il involves redundant (or unnecessary) raqundant.

literal(s). Each type encompasses a set of specific cases.

4.3. Analysis Proof. We first convertS and S’ into the abbreviated
format:
Given a setS of rules, S + C indicates the seC of
conclusions derivable frorB. If we can construct a s& S={-P-QR—-A —-BU,-U =VW,
of rules fromS such that Property (a) in Definition 15 is
satisfied, we further divid€ into C’ andC” whereS' + C’ -R-WD,-P-Q—~A -B —VD}

and A + C”. We can prove that i§' = S, thenS' E A.

According to Theorem 1, for every rule® A, S'— P is S ={-P-QR —A —BU,-~U =VW,—~R =WD}

valid, thusC” C C’ andC = C'. Therefore, rules im\ are ’ '

redundant. During the analysis process we can select a Let { be an interpretation. Two situations need to be

model for S’ with regard to the enabling facts and obtain considered:

C' from S/, and then obtaif€” from A to showC” C C'.
WhenS' is constructed with Property (b) of Definition 15,

the number of literals ir§' is reduced, even though the

number of rules remain the same. Similar analysis can be

carried out to prove that = C'. SinceS' either contains

fewer rules or has fewer literals, we can ®do replaces. Casel: If F, D, then F; s,

Examples 4 and 5 are used to demonstrate the analysis Case2: If F, —R,then F, =P or F;, —Q because

process. F, .. Hence, =, I3,

1. If F; S, then , S'is obvious. This is a trivial case.

2. If i, S', we need to show that; Salso holds. This boils
down to proving thati, rs. Since , ryin S, we must
have =, Dor = —Ror F, -W
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Case3: If F; =W, then F;, -U or F; =V because
':{ I3

if F, =V, then F s
if F, —=U,then either=;, —A or , —B because=, r;.
Thus, F ; Is.

Therefore, if Sis satisfied undet, so isS. S’ = S.

If we choose a mode], for S’ in which F:o{P, Q A, B,
V}, {ois also a model forst The set of derivable facts from
S and g are C' ={R,U,W, D} and C" = {D}, respec-
tively. Obviously,C” C C/, therefore g is redundant. O

Sis of redundancy type of I-5. Removingwill eliminate
the redundancy.

Example 5. Given the following se6 of rules

PAQAW—=R
-Q—R

ry
Iy

Let ¢, be a transformation that results in a rulé by
eliminating the literal Q from and letS' = {r,, r,}. We
can show thatS' = S and the literal Q is redundant (or
unnecessary).

Proof. We first convertS andS' into the format below:

S={-P-Q-WR,QR}, S ={-P-WR,QR}
Let £ be an interpretation. Two cases need to be con-
sidered:

1. If F; S, then i, Sis trivial.

2. If &, S, we need to show that; S’ also holds. This boils
down to proving that whenevéis satisfied by, I ry'.
Since K, r, in S, we must haveF, Q or £, R

Casel: If F; R, then F;ry;
Case2: If F, Qand ¥, R,°then £, =P or &£, =W
must betrue becausel, r;. Hence, =, 1y’

Therefore S’ = S, the literal Q in § is redundant. O

Sis of redundancy type of II-3. Correcting Type Il redun-
dancy involves removing the literal(s) in question. For
instance, for Type II-3, when RB contains a rule &et
matching the pattern, it can be replaced by the

19 g, R indicates that R evaluates to false under
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corresponding rule s&' as shown below:

S: rgPIA---APKAQ—R k=1
r. -Q—R

S: rP1IA--APK—R
r. —Q—R

5. KB circularity
5.1. Definition of circularity

Circularity in a KB has been informally defined as a set of
rules forming a cycle [7,24,30]. What exactly a circularity
entails semantically is not that clear in the literature. In this
section, we provide a definition of the KB circularity in
terms of the derivation of tautologous rules and argue that
the phenomenon reflects an anomalous situation in a KB and
has both operational and semantic ramifications.

Definition 16. A rule E istautologous denoted as Hf it
contains a complementary or an incompatible pair of
literals.

Example 6. Following are two tautologous rules:

e PAQ— P, where =P and P are a complementary pair
(in=-PVv-QVP)

e high_pricedx) A spaciougx) — expensiv&), where
—high_pricedx) and expensiv&) are an incompatible
pair (in—high_pricedx) Vv —spaciou$x) V expensivi)).

Definition 17. A nonempty sef of rules iscircular if we
can deduce a tautologous rule fr&n

Definition 18. A nonempty setS of rules is minimally
circular, denoted as$, if Sis circular and no proper subset
of Sis circular.

GivenS, rules inS are said to be forming a cycle. The
deduction of a tautologous rule is trivial §is a singleton
set satisfying the aforementioned condition. In a gi&n
there may be more than one tautologous rule deducible from
it that involves different pairs of (complementary or incom-
patible) literals.

Operationally speaking, circular rules may result in
infinite loops (if an exiting condition is not properly defined)
during inference, thus hampering the problem solving
process. Semantically speaking, the fact that a tautologous
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wif is derivable indicates that the circular rule set encom- ry: RAB—Q

passes knowledge that is always true regardless of anyrs: UADAEAG—P
problem specific information. In general, tautologous wffs
are those that are true by virtue of their logical form and thus
provide no useful information about the domain being
described [47]. Therefore, circular rules prove to be less
useful in the problem solving process. What is needed, as
evidenced in many real KB systems, are consistent rules that

are triggered by problem specific information (facts) rather Proof. We convertS into the following format
than tautologous rules that are true regardless of the problem

Using theresolutionmethod, we can derive a tautologous
rule from S. SinceS is the smallest set that yields such a
tautologous rule, it is thus minimally circular.

to be solved. S={-WU,-P-AR,—-Q—-CW,—-R -BQ,
5.2. Types of circularity -U-D—-E-GP}.
Circularity primarily stems from the definitions of rules in Itis not difficult to see that the following rule is derivable

RB. However, control strategies deployed (in places such asfrom S by using the resolution method

the. njt_achanisms of agendas,.rule s_aliencg or priority level _\y _.p -E -G —=A =B =CW.

definitions and module selections) in the inference system _ _ _

may also be cause for the infinite looping of certain rules. In ~ Since—W and W are a pair of complementary literals, the
this paper, we focus on the types of circularity that are derived rule is tautologous. Therefor& is minimally

confined in the RB. circular. O

Definition 19. Given a minimally circular rule se$, we Incidentally, there are four other tautologous rules

define two sets of literal§, andSk as follows: involving =P and P, —Q and Q, =R and R, and—-U

. . and U, respectively. This example exhibits Type II-1 circu-

S ={LIL ELHS(N ATE S} larity.

. . Once a circularity is detected, the circular rule set needs
S ={L|L ERHSnH AT € S} to be syntactically redefined to break up the circularity.

Semantically, information about a problem domain needs
to be reorganized so that it will contribute to the problem
solving process. Some of the possible remedial measures for

The types of circularity in a rule base, as summarized ~, ! . .
P y circularity can be found in Section 7.

in Table 5, are classified based on enumerating possible
relationships betweel®, and Sz and the nature of the
tautology. Type | circularity indicates cycles in which 6 KB incompleteness

S = Sk. Type Il describes cycles with additional condi-

tions involved in the rules, thereforess is a proper Informally speaking, a KB is incomplete when it does not
subset ofS,. If Cz is a cycle formed out of a minimally  have all the necessary information to answer a question of
circular rule setS, the girth g of Cg can be defined as interest in an intended application [16,31]. Thus, complete-
9(Cy =1|9. Cycles in these types can have a girth ness represents a query-centric measure for the quality of a
ranging from one to some integer MAX where MAX KB. KB incompleteness is a real issue to be reckoned with
is bounded by the cardinality of the rule ba&B| of a for at least the following reasons: (a) In many applications,

given KB. the KB is built in an incremental and piecemeal fashion and
) it undergoes a continual evolution. The information
5.3. Analysis acquired at each stage of the evolution may be vague or

indefinite in nature. (b) The deployment of a KB system
cannot just wait for the KB to be stabilized in some final
and complete form since this may never happen.

Despite the fact that a practical KB can never
completely capture all aspects of a real problem
domain, it is still possible for a KB to be complete
for a specific area in the domain. The boundaries of
this specific area may be defined in terms ofralevant
ry wW—Uu gueriesto be asked during problem solving process. If a
ry PAA—R KB has all the information to answer those relevant
rs: QAC—-W gueriesdefinitely then the KB is complete with regard

The analysis of KB circularity amounts to deriving
from a given rule base a tautologous rule r that satisfies
the conditions in Definition 16, using some inference
method.

Example 7. Below is a rule bas& containing five rules
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Table 5

Types of circularity in a rule base

Type Description Pattern

I-1 § = & for Sand tautologous rule involves G =5)0AGBFE AL -LeEE)A(L#-L)
complementary pair of literals

-2 § = & for S and tautologous rule involves pair of S =%RAGFEA(L-LEEA(L=-L)
incompatible literals

-1 §; C § for Sand tautologous rule involves (RCS)ASFE AL, -LEB) A (L#-L)
complementary pair of literals

-2 & C § for Sand tautologous rule involves pair of (RCSASFEAWL -LEBA(L= -L)

incompatible literals

to those queries. In what follows, we base our

introduce a set of predicate symbd®(p) on which p

discussions of completeness on the concepts of relevantdirectly or indirectly dependsi(p) can be obtained using

queries and the ability of a KB to answer those queries.

6.1. Definition of query-based incompleteness

Definition 20. Given a KB, we defind?«z andP, as sets

of all predicate symbols andskablepredicate symbols in
the KB, respectively. An askable predicate symbol is one
that can appear in a query. Usually it is the case that
Pw D Pa.t* A query Q containing predicate symbols
Pi, ... P € Pa is denoted as

Q = Q(pi’ e pj)l2

Definition 21. A set@Q of relevant queriess now defined
as follows:

Q = {Q|Q appears in some query sessian

Q: Q(pi’ 7pj)/\ Bis ’pJ [ PA}

Definition 22. Given a queryQ € Q, the answer toQ,
denoted asx(Q), can be eithedefinite or unknown a(Q)
is definite if either KBF Q or KB - —=Q; a(Q) is unknown if
neither KB Q nor KB+ —=Q.

Definition 23. A KB is completewith regard to a relevant
query set if YQ € Q [«(Q) is definite].

6.2. Types of incompleteness

Let P = Pyg U P,. For a predicate symbgl € P, we

"\When there is incompleteness in a KB, this may not be true, as
evidenced in Table 6.

2\\e assume that the que®is a conjunction of the literals containing
predicate symbols;P..., P,

the following procedure.

INPUT: peP
OUTPUT: R(p)
R(p) := &,
while 3r € KB
LHS(r);
while JIreKB 3dJqe P [QERHSNAQE
R(p) A LHS(r) € R(p)] do R(p) := R(p) U LHS(1);

[p ERHSN] do R(p) :=R(pU

If a literal containing a predicate symbpl cannot be
satisfied by either a given fact or a derived fact, then it is
denoted asl* p. Three types of incompleteness are defined
in Table 6. Types | and Il reveal KB incompleteness from
the perspective of relevant queries, i.e., lack of necessary
information to answer queries, and Type Il indicates the
potential incompleteness of the relevant query@erom
the perspective of known information (rules/facts).

Though the classification in Table 6 is exhaustive with
regard to Definition 23, there are pragmatic and application
specific considerations that will help determine the validity
of incompleteness cases.

6.3. Analysis

The analysis of KB incompleteness depends critically on
the availability of information regarding the relevant query
set in a problem domain. Prototyping often serves as a
means to ascertain the relevant query set. If the relevant
query set is available, the analysis amounts to finding out
if all queries can be answered definitely. Checking for the
presence or absence of the aforementioned syntactic symp-
toms is an integral and necessary part of the analysis
process. However, there are other considerations in the
analysis process that are semantic, pragmatic, or problem
specific. The analysis process is really an iterative one,
because as KB continually evolves, so will the relevant
query set.
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Table 6 ¢ Avoid using synonymous literals if possible.
Types of incompleteness  Delete one of the offending rules that derives the conflict
Type Descriptions [7,24,37] Pattern conclusion.
e Modify the conditions (e.g. predicate symbols) of the
[ Dangling conditions, g€ P 3p € Palg € R(p) A rules involved such that they no longer have or share
unreachable conclusions qJ* the same or synonymous conditions.
1] Missing initial facts, Fp EPA[RP) =T A . . .
missing rules 0 & Pys] e Modify the conclusions (e.g. predicate symbols) of the
n Useless conclusions, 3q € Pys Yp € P [q € R(P)] rules involved such that they are no longer in conflict.
unused initial facts, e Move one of the offending rules to a different rule
isolated rules module such that the derivation of conflict conclusions

@Because the criterion for the completeness issue is domain-specific, it is cannot take p_Iace in the same problem-solvmg Session or
possible thaig in [q € R(p)A I g] may be useless structure in the KB. at the same time.
Ultimately, the domain expert or knowledge engineer has to determine

the nature of the anomaly. Actions to eliminate redundancy may include:
e Delete redundant rule(s).

Example 8. For the following KB, e Merge or collapse rules into one.

r i hOGY) AT(Y,2) = pa(x.2)  fy 2 m(d) For example, AQ—» R, -PAQ—R=Q— R

F2 1 W(Y) A U(X) = 1(xy) fa:v@ « Delete condition(s) of certain rule(s).

3 1 V(X) — W(X) f3: u(b) For example, RQ—R -Q—-R=P—-R,

Fa s M) — Ps(X) fa:u© “Q—R

we have ¢ Modify the conditions or conclusions of the redundant

rules such that they no longer are the same or synony-

Pa = {p1, p2} mous.
Pxg = {p1. ps. 1, U, v, w, h, m} . : : :
R(py) = {h, 1, u, v, w} To resolve circularity, the following remedial measures
R(p,) = 2. may be taken:

e Remove a rule from a circular rule set.

For example, P Q, Q—R, R—=P=P—Q,
Q—R
Since p, € P4 and [R(py) = T A p, & Pygl, there _ _ _ .
exists Type Il incompleteness. No rules and facts could be ® Redefine a conclusion of a rule in the set such that it no

used to answer queries involvipg In addition,h € R(p,) longer serves as a condition of another rule in the set.
and I# h. So Type | incompleteness also exists. Finally, the For example, P~ Q, Q— R, R—P=P—Q,
presence of the rule and the fact f may indicate thaps Q— R’,R— P where Rand R are no longer unifiable.

should have been an askable predicate. In other wBds, ] N ) )
incomplete, and there is reason to believe that the relevant® Redefine a condition of a rule in the set such that it no

query set is incomplete also] longer matches a conclusion of another rule in the set.
To plug holes in an incomplete KB, we could

7. Remedial measures e Add new rules and/or facts to make all relevant queries
definite.

Once KB anomalies are identified, the next issue is how
to correct the situations in which the quality of a KB has
been compromised. Though it is of pivotal importance, the
issue has not been adequately addressed in the literature. To e Modify the initial facts to patch up holes.

a certain extent, this is due to the fact that the issue of howto e Modify the conditions and/or conclusions of rules
mend a KB relies on a whole host of considerations, many of involved in an incompleteness case so that they will
which are problem or application specific. In the rest of this be “connected” with the rest of RB.

section, we would like to address the issue in terms of some
general principles and provide some example remedial
measures for the cases dealt with in the previous four
sections.

For correcting inconsistency, we suggest the following
actions:

For example, new rules and facts can be added to make
h(x, y) satisfiable in Example 8.

Though it is beyond the scope of this paper, we would like
to point out that in a KB where certainty factors (CF) are
used, there are additional actions to be considered. For
instance, add or modify CF values for rules or facts, or
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