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ABSTRACT 

 In 2019, the Naval Facilities Engineering Command (NAVFAC) deployed the 

Navy smart grid across multiple bases in the United States. The smart grid can improve 

the reliability, availability, and efficiency of electricity supply. While this brings about 

immense benefit, placing the grid on a network connected to the internet increases the 

threat of cyberattacks aimed at intelligence collection, disruption, and destruction. In this 

thesis, we propose an Intrusion Detection System (IDS) for the NAVFAC smart grid. 

This IDS comprises a feature extractor, classifier, anomaly detector, and response 

manager. We use the K-Nearest Neighbors machine learning algorithm to show that 

various attacks (web attacks, FTP/SSH attacks, DOS, DDOS and port scanning) can be 

grouped into broader attack classes of Active, Denial, and Probe for appropriate response 

management. We also show that in order to reduce the load on the security operations 

center (SOC), the accuracy of the classifier can be maximized by optimizing the value of 

k, which is the number of data points nearest to the sample under consideration that 

decides the class assigned. 
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I. INTRODUCTION 

The 4th Industrial Revolution, a term introduced in 2016 by Professor Klaus 

Schwab, founder and executive chairman of the World Economic Forum, describes the 

world’s move into cyber-physical systems and promises a myriad of technological  

advancements [1]. Nine technologies that enable this cyber-physical revolution are 

described in Figure 1. A combination of these technologies gave rise to the idea of a Smart 

Grid. 

 
Figure 1. 4th Industrial Revolution Technologies. Source: [2]. 

A. WHAT IS A SMART GRID? 

A smart grid is described by the U.S. Department of Energy (DOE) [3] as a rebuild 

of the existing power grid, and one that allows two-way communication between the user 

and the supplier. The smart grid is envisioned to improve reliability, availability, and 



 

2 

efficiency of the electricity supply. The benefits of the smart grid as given by the DOE are 

as follows: 

 More efficient transmission of electricity 
 Quicker restoration of electricity after power disturbances 
 Reduced operations and management costs for utilities, and ultimately 

lower power costs for consumers 
 Reduced peak demand, which will also help lower electricity rates 
 Increased integration of large-scale renewable energy systems 
 Better integration of customer-owner power generation systems, 

including renewable energy systems 
 Improved security [3] 

Figure 2 illustrates the evolution from the traditional power grid to the smart grid. 

In a traditional grid, the power generated flows in one direction from supplier to consumer. 

In a smart grid, there is a two-way flow of power and more importantly, information such 

as current and predicted power demand, current state of the grid, and consumer information 

is transmitted efficiently. 

  
Figure 2. The Evolution of the Electric Utility System. Source: [4]. 
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The concept of the smart grid introduces a whole new paradigm in power supply. 

New sources of energy can be added to the grid, more efficient power generation can be 

achieved by better demand estimation, and losses and anomalies can be detected and 

analyzed. 

The smart grid is enabled by the addition of a sophisticated communications 

infrastructure that enhances the traditional grid. This communication infrastructure is 

shown in Figure 3. Internet of Things (IoT) devices such as sensors and smart meters record 

and transmit data (usually wirelessly) to an aggregator or a hub, which then forwards it via 

a wide area network (such as the Internet) to a control center. At its core, the smart grid is 

still an Industrial Control System (ICS)—a combination of components which provide 

control to an industrial process.  

 
Figure 3. Simplified Smart Grid Communications Network. Source: [5]. 

B. WEAKNESS OF THE SMART GRID 

Although the smart grid can bring immense benefit, it comes at a cost. The power 

grid was once protected by obscurity—legacy ICS systems tend to be built upon proprietary 

protocols and hardware, and are physically secure—most of the hardware can be put under 

lock and key, and the loss of a single node simply results in a power outage to a local area. 

However, as information technology components are introduced into the smart grid, many 
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proprietary systems are now being replaced by low-cost Internet Protocol (IP) systems. 

These additions combined with network connectivity (both wireless and through the 

internet), exposes the smart grid to a myriad of cyberattacks with numerous entry  

points [6]. 

According to the 2019 Symantec Internet Security Threat Report [7], an  IoT device 

experiences an average of 5200 cyberattacks a month. IoT and ICS have also over time 

become targets of criminal and targeted attack groups. Placing the grid on a network, 

regardless of whether it is connected to the internet, exposes it to the same cybersecurity 

risks as any online system. Therefore, it is imperative that when a smart grid is fully 

deployed, it comes equipped with a comprehensive cybersecurity architecture that can 

detect, classify, and respond to cyberattacks on the grid.  

C. RESEARCH MOTIVATIONS AND CONTRIBUTIONS 

In 2013, the U.S. Naval Facilities Engineering Command (NAVFAC) foresaw the 

need for the Navy and Marine Corps to leverage the smart grid industry and formulated its 

plan for the Navy’s own smart grid [8]. The NAVFAC has since invested heavily in 

infrastructure and research to deploy a smart grid that is tailored for Navy operations. In 

2019, NAVFAC began full scale implementation of the smart grid at various installations 

in the mid-Atlantic region [9]. In placing the Navy’s critical infrastructure on a network, 

both state and non-state actors will be particularly interested in what information they can 

learn, and what damage they can cause the Navy through these means. The research in this 

thesis contributes to a funded project by the Office of Naval Research’s Energy Systems 

Technology Evaluation Program (ESTEP) which is studying the security of the Navy’s 

smart grid.  

Different cyberattacks warrant different responses to maintain smart grid 

availability; the grid cannot be taken offline every time there is an attack. While there is 

substantial research in the literature that uses machine learning and neural networks to 

detect a cyberattack against an ICS, there is little established work that specifically 

investigates machine learning cyber analytics for the smart grid.  
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The work in this thesis is foundational and our objective is to provide a starting 

point to using machine learning applications for the Navy smart grid. The contributions of 

this thesis are as follows: 

 Propose an Intrusion Detection System (IDS) for the NAVFAC smart grid. 

This IDS is comprised of a feature extractor, classifier, anomaly detector, 

and response manager to allow the grid to react according to the cyber 

threat. 

 Introduce the CICIDS2017 data set and the use of the open source 

CICFlowMeter for feature extraction. 

 Prove that different attacks can be grouped together based on objectives, 

and that machine learning using the K-nearest neighbors algorithm can be 

used to segregate the various classes of attack traffic from benign traffic.  

D. THESIS ORGANIZATION 

The remainder of this thesis is organized as follows: In Chapter II, we discuss the 

smart grid architecture and protocol stack, and scope the area studied. We also describe 

identified cybersecurity vectors with critical impact on the grid. In Chapter III we provide 

a brief overview on machine learning, explain how to choose a technique, and take a more 

in-depth look at the K-Nearest Neighbors (KNN) classifier. Chapter IV describes our 

proposed cybersecurity architecture for the Navy’s smart grid, how attacks are grouped for 

this study, why the KNN classifier was chosen, and introduces the data set used.  

Chapter V presents the results for the simulations conducted and applies it to the proposed 

architecture. Chapter VI concludes the study and recommends possibilities for future work. 
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II. CYBERSECURITY AND THE SMART GRID 

A. SMART GRID ARCHITECTURE  

A large portion of the smart grid consists of the Advanced Metering Infrastructure 

(AMI). This AMI consists of smart devices, data management systems, and a 

communications network. Figure 4 gives a generic view of such a structure and breaks it 

down into a Home area network (HAN), Neighborhood area network (NAN) and Wide 

area network (WAN). 

In this section, the various networks are discussed, and the main components and 

protocols are described.  

 
Figure 4. Multi-tier Smart Grid Communications Architecture. Source: [10]. 

1. Networks and Components 

a. Home Area Network and the Smart Meter 

The HAN, as its name suggests, is everything contained within a single home. The 

smart meter is the gateway from the HAN to the NAN. At the current level of commercial 

implementation, the smart meter is capable of reporting consumption as a function of time 
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and removes the need for manual meter readings. This allows both user and supplier to 

track usage trends and provide accurate pricing, allowing the supplier to reduce wastage 

by generating the correct amount of power, and the user to potentially time his activities to 

take advantage of windows with cheaper electricity to conduct activities like charging 

electric cars. 

In the future, when more homes take advantage of IoT technology, the smart meter 

may be able to track electricity usage by appliance and allow the user to make more 

informed decisions on usage and therefore save cost. An IBM blog [11] also suggested in 

2016 that the AMI will enable the seamless integration of microgrids, where renewables 

can efficiently supplement the grid. 

In the context of the Navy, the HAN could represent a ship or a building. For 

buildings, the smart meter could help ensure efficient use of energy and prioritize critical 

systems when there is an outage. The deployment of smart meters on ships may present 

various advantages. Since each ship has its own generators, they can function themselves 

as microgrids when not drawing power from shore. The bases which house them can 

potentially save on utilities when they supply sufficient power to run various installations 

instead of drawing electricity from the public grid. 

b. Neighborhood Area Network and the Data Concentrator 

The NAN connects all the smart meters in a neighborhood to the utility’s WAN 

infrastructure. To ensure the proper flow of data, the smart meters usually feed their data 

to a data concentrator and the concentrator is responsible for packaging the data to send to 

the utility. These devices also perform local control and manage the system health of the 

smart meters in its neighborhood. They are also capable of data storage and contingent 

modes of operation to mitigate the loss of WAN connectivity [12]. 

In the Navy context, the “neighborhood” will depend on the size of the installation 

and the ability to achieve seamless connectivity. There will likely be a data concentrator 

for each group of buildings, and perhaps each wharf of ships. 
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c. Wide Area Network 

The WAN connects the NAN to the utility control center and to cloud services 

which host analytics and data storage. This connectivity could take various forms but 

would most likely use the internet to enable connectivity across a wide expanse. 

For the Navy, the WAN would connect all the NANs within a facility using the 

Navy’s own fiber optics or other secure communications methods and may even link 

various installations together using satellites. However, unless the Navy produces its own 

electricity, a gateway between the Navy grid and the internet or a utility’s network will be 

necessary.  

2. Means of Data Transmission 

Kuzlu, Pipattanasomporn and Rahman [13] summarized potential communications 

technologies suitable for the various sections of the AMI based on range and data rate. This 

is adapted and updated as Table 1.  
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Table 1. Comparison of Communication Technologies for the Smart Grid. 
Adapted from [13]. 

Technology Standard/Protocol Max Theoretical 
Data Rate 

Max Range HAN NAN WAN 

Wired Technologies 
Fiber Optic PON 2.5 Gbps 60 km   X 
 WDM 40 Gbps 100 km    
 SONET/SDH 10 Gbps 100 km    
DSL ADSL 8 Mbps 5 km  X  
 HSDL 2 Mbps 3.6 km    
 VSDL 100 Mbps 1.5 km    
Coaxial Cable DOCSIS 172 Mbps 28km  X  
PLC HomePlug 200 Mbps 200m X   
 Narrowband 500 kbps 3km  X  
Ethernet 802.3x 10 Gbps 100m X X  
Wireless Communications Technologies 
Z-Wave Z-Wave 40 kbps 30m X   
Bluetooth 802.15.1 721 kbps 100m X   
ZigBee ZigBee 250 kbps 100m X X  
 ZigBee Pro 250 kbps 1600m    
WiFi 802.11x 600 Mbps 100m X X  
WiMAX 802.16 75 Mbps 50km  X X 
Wireless 
Mesh  

Various (e.g., RF mesh, 
802.11, 802.15, 802.16) 

Depending on 
Protocol 

Depending on 
Deployment 

X X  

Cellular 4G 100 Mbps Depending on 
Deployment 

 X X 
 5G 10 Gbps    
Satellite Satellite Internet 1 Mbps 6000km   X 

 

Many technologies exist and are ideal for different setups and environments. When 

so many different technologies are used, integration becomes a challenge. The most 

practical solution therefore is to design the smart grid around the widely used Transport 

Control Protocol (TCP) and Internet Protocol (IP). Although this will expose the network 

to cybersecurity risks, it is simply not cost-effective to secure the grid by designing a 

proprietary protocol due to the sheer number of components that will need to be 

programmed and networked. 

B. ASSUMPTIONS MADE ON THE NAVY SMART GRID 

Figure 5 shows the communication flows and a basic architecture for the Navy 

smart grid provided by NAVFAC. Based on this figure and given what we know about 
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traditional smart grids as described in the previous section, a few assumptions can be made 

about the Navy smart grid. These are: 

1. The communications architecture will be based on TCP/IP for information 

exchange. 

2. The Base Area Network (BAN) is a combination of the HAN and NAN 

and will use either wireless or power-line technologies due to the high cost 

of laying cables for this specific purpose. 

3. The endpoint devices have limited cryptographic capability as they may be 

battery operated and be limited in processing power. 

4. The smart meters are potentially located in physically unsecure locations. 

5. The AMI Meter as depicted in Figure 5 does not connect directly to the 

backbone of the base. Several will channel information through a data 

concentrator as per the NAN in Figure 4. These data concentrators can be 

made physically secure. 

6. The WAN between the data concentrator and the control center will use 

the Navy’s private communications methods and will not be exposed to 

the public domain. 

7. Data exchange across the WAN will be encrypted to DOD standards, and 

the basics of confidentiality, integrity and availability in cybersecurity will 

be implemented.  

8. Not every base will house a cybersecurity operations center (SOC). 
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Figure 5. Communication Flows for the Navy Smart Grid. Source: 

NAVFAC. 

Therefore, given the porosity within the BAN, any attempt to detect breaches in the 

network should be made at the data concentrator, before the data is transmitted to the 

control center. Also, given that not every base will contain a SOC, there will be limited 

resources to respond to a cyberattack. 

C. CYBERSECURITY THREATS 

Elmrabet et al. conducted a survey of cybersecurity threats to the smart grid, a large 

number of which are focused at the control center [14]. Of the attacks they describe, this 

thesis focuses on those which can take place prior to the data concentrator. 

1. Port Scanning 

The first step in Lockheed Martin’s Cyber Kill Chain framework is  

reconnaissance [15], and this is where port scanning comes into play. Finding and 

identifying open ports allows an attacker to determine potential vulnerabilities and entry 

points for attacks. 
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Figure 6. Cyber Kill Chain. Source: [15]. 

2. Denial of Service 

Denial of service (DOS) takes several forms in the AMI and is extensively 

researched in the literature [16], [17], [18]. Diaz and Sanchez [19] describe many forms of 

attacks which aim to disrupt the communication flow between nodes. These can be 

summarized into three categories: 

 Attacks which overwhelm the network’s ability to process information via 

means such as fake packet injection.  

 Attacks which introduce noise into the wireless network such as jamming 

the nodes. 

 Attacks on the firmware of the sensors. 
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3. Active / Intrusion 

Liang et al. [20] studied the possibility and potential effects of False Data Injection 

Attacks (FDIA). These have the potential for both physical and economic damage by 

injecting malicious measurement data to adversely affect the state estimation process of 

the smart grid. 

4. Passive / Eavesdropping 

As the HAN and NAN are largely wireless networks, they are particularly 

susceptible to eavesdropping. Without strong encryption, an adversary can easily intercept 

all communications between nodes and capture information to conduct traffic analysis or 

read data. 

D. POTENTIAL IMPACT TO THE SMART GRID AND RESPONSES 

It is useful to frame attacks on the smart grid in terms of the desired effect. Knapp 

and Samai [21] highlight three motivations—theft of information, denial of service, and 

manipulation of service. For the Navy, a similar set of effects for the attacker can be 

discerned, and each warrants a different response. The worst case for each is presented 

here. 

1. Service Interruption  

In this scenario, an attacker can shut down systems or infrastructure at critical 

phases of operations by conducting DOS attacks. For example, an attacker may take 

defenses offline during a missile raid, or create a distraction during a physical intrusion. 

 
A possible countermeasure for DOS attack would be to take the affected nodes off 

the communications network, but automatically deliver a fixed amount of power to the 

systems under attack; i.e., revert to the traditional grid until the DOS attack is resolved.  

2. Cascading Failure 

Baldick et al. describe a cascading failure as “a sequence of dependent failures of 

individual components that successively weakens the power system” [22]. In their paper, 
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they discuss various causes and methods to model cascading failures. In general, the failure 

of one or more critical components causes a rerouting of power which in turn may overload 

other components, causing a series of failures and leading to a blackout. While these events 

are usually random, the bridging of cyber and physical systems make it possible that an 

attacker could plan and actively cause failures by methods such as FDIA. A well-planned 

attack on a naval facility could cause lasting damage on par with Stuxnet [23]. 

To effectively respond to such a scenario, the cybersecurity system must be able to 

detect the intrusion and if necessary, isolate the nodes under attack. 

3. Gathering Intelligence 

Through traffic analysis and studying the exchange of data that comes from 

eavesdropping, an attacker could determine locations of interest within a military 

installation. Data centers or servers could be characterized by an above average power 

draw, experimental labs correlated to power surges, power sources indicated by power 

provided to the grid, etc.  

This set of attacks is passive by nature and usually undetectable. It is unlikely that 

any system can detect passive activity and the best mitigation and countermeasure is in the 

design of the system. Data from critical facilities may need to be encrypted or transmitted 

via wired means. 

E. THE NEED FOR CYBERSECURITY 

The previous section describes how an attacker could cause catastrophic damage to 

the Navy’s interests and has numerous means to achieve that outcome. An attacker only 

has to succeed once, while we as the defender need to succeed all the time. It is therefore 

imperative to have a robust cybersecurity architecture to secure the Navy smart grid.  

The need for a robust system gives rise to the idea of layered security and defense 

in depth. Many models exist, and one such model is the NIST cybersecurity framework 

shown in Figure 7. While the identification of threats (Identify) and the design of the system 

(Protect) is important, this thesis will focus on the detection (Detect) of cybersecurity 

events to enable the appropriate response (Respond). 
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Figure 7. NIST Cybersecurity Framework. Source: 

[24].Equation Chapter 3 Section 1 
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III. MACHINE LEARNING 

Machine learning (ML) has come a long way since its inception in the 1950s. Arthur 

Samuel, a pioneer in the field and the person credited with the phrase, stated that 

“Programming computers to learn from experience should eventually eliminate the need 

for much of this detailed programming effort” [25]. Today, there is extensive literature on 

ML techniques and their various applications, including in the field of cybersecurity. 

A. OVERVIEW 

As mentioned in Chapter II, this thesis focuses on the detection of cybersecurity 

events. This necessitates the development of what is commonly known as an Intrusion 

Detection System (IDS), which monitors a network and flags unusual events. There are 

two approaches to IDS: misuse detection which is based on rules and signatures, and 

anomaly detection which analyzes traffic to determine if it statistically deviates from what 

is known to be normal. ML is suitable to both types of detection depending on the technique 

chosen and the data available. In this section two general types of ML techniques are 

described—supervised and unsupervised.  

It must be noted that data is core to the development of a ML algorithm and many 

data sets have been produced over the years for academic study. In [26], Amit et al. discuss 

some newer available data sets that add to the popular Defense Advanced Research Projects 

Agency (DARPA) data sets from the Massachusetts Institute of Technology, and the 

International Conference on Knowledge Discovery and Data Mining (KDD) series of data 

sets from the University of California. The generation of data sets is beyond the scope of 

this thesis. For our work in this thesis, we use the Canadian Institute for Cybersecurity’s 

Intrusion Detection Evaluation Dataset (CICIDS) from the University of New Brunswick. 

The CICIDS will be discussed in detail in the next chapter.  

1. Supervised Learning 

In supervised learning, we use labelled data to train an algorithm, and when we 

input new data into the algorithm, it will output the label which best fits the given data. 
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There are two types of supervised learning: (1) classification and (2) regression methods. 

The former involves predicting a category whilst the latter predicts a quantity. 

In cybersecurity, supervised techniques can be applied if we have data captured 

while an attack is taking place, and we are able to label the attack. Yousef et al. [27]. 

conducted a comparison on the use of K-means, Naïve Bayes, Support Vector Machine 

and Random Forest for wireless sensor networks using the KDD99 data set. Belavagi and 

Muniyal [28] compared Logistic Regression, Gaussian Naïve Bayes, Support Vector 

Machine and Random Forest using the NSL-KDD data set. Both determined that the 

Random Forest classifier was the best performing for the purpose of intrusion detection.  

2. Unsupervised Learning 

For unsupervised learning, we give unlabeled data to the algorithm in an attempt 

for the algorithm to find structure or relationships in the data, and group them accordingly. 

There are usually two tasks for unsupervised learning: (1) clustering and (2) dimensionality 

reduction. The former groups the data to allow the user to perform analysis and find 

patterns, while the latter reduces the number of features to those which are statistically 

more important in grouping.  

In cybersecurity, unsupervised techniques are useful for anomaly detection and 

attacks for which there is no known signature or data, such as zero-day attacks. However, 

it is also well established that an unsupervised technique performs poorly compared to 

supervised techniques when labelled data is available due to the number of false alarms 

and the fact that not all anomalous events are cybersecurity events. Early work by Leung 

and Leckie studied various clustering methods to achieve anomaly detection [29]. More 

recently, the application of deep learning [30] and neural networks [31] have been studied 

in depth for the purpose of cyberattack detection.  

B. SELECTING AN ALGORITHM 

There are several requirements in choosing a ML algorithm. The first is to 

determine what kind of problem we want to solve, and therefore, what to do with the data. 
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This is followed by choosing a precise technique based on accuracy, training time, 

linearity, and number of parameters or features. 

1. Objective 

Mathworks summarized the ML techniques available in MATLAB (Figure 8) 

according to what it is best suited for. 

 
Figure 8. ML Techniques in MATLAB. Source: [32]. 
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2. Training Time 

Buczak and Guven conducted a survey of ML techniques and compiled the time 

complexity of training which can be found in Table 2 [33].  ...O  represents the order of 

magnitude proportional to the variables in the brackets. Variables common to all entries of 

the table is that the data consists of n  instances, each described by m  attributes or features, 

and n  is much greater than m .  O n  and  logO n n  are linear time and appropriate for 

real-time applications.  3O n  is indicative of much slower algorithms and are used offline. 

However, it should be noted that once an algorithm is trained, the testing of incoming data 

is generally linear time and can be used in real-time. 

Table 2. Complexity of ML Algorithms During Training. Adapted from 
[33]. 

Algorithm Typical Time 
Complexity 

Streaming 
Capable 

Comments 

Artificial Neural Networks  O emnk   Low e: number of epochs 
k : number of neurons 

Association Rules  3O n  Low  

Bayesian Network  O mn  High  

Clustering, k-means  O kmni  High i: number of iterations 
k : number of clusters 

Clustering, hierarchical  3O n  Low  

Clustering, DBSCAN  logO n n  High  

Decision Trees  2O mn  Medium  

Genetic Algorithms  O gkmn  Medium g : number of generations 
k : population size 

Naïve Bayes  O mn  High  

KNN  logO n k  High k : number of neighbors 
Hidden Markov Models  2O nc   Medium c: number of states 

Random Forest  logO Mmn n   Medium M : number of trees 

Sequence Mining  3O n  Low  

Support Vector Machines  2O n  Medium  
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C. K-NEAREST NEIGHBORS 

The rationale for technique selection will be covered in the next chapter, but at this 

point it is useful to introduce the ML algorithm used for this thesis. The KNN technique 

was first introduced by Thomas Cover in 1966 [34] and is one of the earliest methods of 

classification. He stated that there are two polar opposite cases, either the complete 

statistics of a distribution is known (and therefore the category for each new occurrence 

can be calculated), or there is no knowledge of the distribution other than making the 

inference from other samples (and therefore the category for each new occurrence is 

assigned based on the sample or samples most similar to it). 

Consider an arbitrary distribution of three classes in two dimensions as shown in 

Figure 9. The red star is the new observation we wish to classify. The algorithm will 

calculate the distance (usually Euclidean) to every other point around it. From the diagram, 

one can see that if 3k  , illustrated by the inner circle, it will be assigned to class 3. If 

5k  , it will be assigned to class 2 as per the outer circle. 

 
Figure 9. Illustration of the KNN Methodology. 

Class 1 

Class 2 

Class 3 
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This thesis makes use of the weighted KNN algorithm, where closer points are 

accorded higher value or “weights.” This thesis uses the built-in MATLAB weighting 

function of inverse of the distance. However, any function that causes a value to decrease 

as the distance increases can be used in MATLAB to realize the weighted KNN. 

Some parameters of note: 

1. k   

This is the main parameter for the algorithm as suggested by the fact that it features 

in the name. The k  is the number of data points that are nearest to the sample under 

consideration. The class assigned will be that which occurs most frequently amongst these 

k  data points. This algorithm is highly data dependent and is premised on the assumption 

that classes are well clustered and distinct. If that is the case, 1k   will suffice, i.e., the 

data point closest to it will be the most appropriate class. However, outliers do exist in the 

data and increasing k  will help remove some of this bias.  

2. Dimensionality 

This is the number of features each data point has. The example on the previous 

page has two dimensions ( x  and y  axis), but data used in machine learning can have any 

number of fields. While more fields may help segregate different classes better, they may 

also give rise to certain peculiarities. Beyer et al. [35]. showed that under certain 

conditions, as the number of dimensions increases, the difference between the distance to 

the nearest and farthest points decreases. This decrease will adversely affect the use of the 

KNN method. Their paper suggests that such phenomenon start to occur when there are 

between 10 to 15 dimensions and termed it the “curse of dimensionality.” There are several 

techniques to reduce the number of features, one of which is using principal component 

analysis (PCA), a tool available in MATLAB.  
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3. Distance 

In most cases the Euclidean distance is used as a metric to compute the nearest 

neighbors. The equation for the Euclidean distance between two n -dimensional points p  

and q  is defined as: 

  2

1
( , ) n

i ii
d p q q p


   .  (3.1) 

The square of the distance between two points p  and q  is the sum of the square of 

the difference between each point for every feature i . 

D. PRINCIPAL COMPONENT ANALYSIS 

The reduction of the number of features in the data is extremely useful, both in 

order to avoid the “curse of dimensionality” mentioned earlier, as well as to reduce the 

time taken to train the model. While it is possible to write a program to assess and 

individually remove features that have little to no bearing on the resultant model, it is time 

consuming and inefficient. A popular method to achieve feature reduction, and one that is 

available in the MATLAB machine learning toolbox is PCA. PCA does not actually 

remove features by deleting them, but instead determines a new set of orthogonal features 

called “Principal Components” that forms a basis of the original set. MATLAB uses a 

Singular Value Decomposition algorithm [36] to produce a matrix which determines how 

each original feature contributes to the principal component, and conducts a matrix 

multiplication of the data with this matrix to reduce the number of variables for 

computation.  
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IV. PROPOSED ARCHITECTURE AND RESEARCH 
METHODOLOGY  

A. PROPOSED SECURITY ARCHITECTURE 

The IDS is a common feature in any cybersecurity system. However, the difficulty 

in implementing an IDS in a Wireless Sensor Network (WSN), such as in the AMI portion 

of the smart grid, is well established [18], [19], [37]. The WSN in the smart grid is 

characterized by the following:  

1. Certain nodes may have limited resources such as computational power, 

bandwidth and memory which may constrain measures such as encryption 

throughout the WSN. 

2. Nodes are in a potentially hostile environment as they are not physically 

secure and because they communicate wirelessly. 

3. Network availability is a foremost consideration of a smart power grid and 

therefore any IDS requires high detection accuracy.  

We propose a system where the IDS is placed at the data concentrators which 

receive the data from the wireless networks before pushing it to the local control center. 

These concentrators are assumed to be physically secure and computationally more capable 

than the nodes they serve. However, the IDS mechanism still needs to be of relatively low 

complexity to detect cyberattacks quickly. There should also be two-way communication 

between the IDS and the control center in order for the control center to update the detection 

models.  

The proposed system is a combination of a classifier to quickly detect known 

attacks, and an anomaly detector to detect new threats. This system should be able to trigger 

specific responses to protect the integrity of the grid and isolate the areas under attack. Due 

to the current NAVFAC structure where not every base has a SOC, the classifier needs to 

be highly accurate in order to alleviate the workload of cybersecurity personnel and allow 

them to direct their efforts to investigate the anomalies. Figure 10 describes the proposed 
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security architecture. The components within the dotted area of Figure 10 compose the 

IDS. 

 
Figure 10. Block Diagram of Proposed Security System. 

There are two possible models to realizing this IDS. If the total lag time is such that 

grid performance is unaffected, then only one data path is necessary (Figure 11).  
 

 

Figure 11. Proposed Security System with Low-Lag IDS. 

Otherwise, grid data needs to continue to be passed while the IDS is analyzing the 

traffic, and the IDS data is passed separately (Figure 12). This approach is less ideal as the 

delay may expose the control center to the attack data stream until the IDS can close the 

communications loop. In addition, in this scenario both data streams will compete for the 

WAN bandwidth which may cause further delays. 

 

Data 
Concentrator IDS Control Center 

WAN 
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Figure 12. Proposed Security System with Higher Latency IDS. 

As shown in Figure 10, the first part of the proposed security system consists of a 

data logger which extracts the necessary features for the ML algorithm to work on. The 

converted data stream is then passed through the classifier. 

If an attack is detected by the classifier, the system will trigger the response 

manager. The response manager is responsible for a set of pre-planned responses. For 

example, if a DOS attack is detected from nodes 1 to 5, then the response may be to drop 

all communication packets from node 1 through 5 (to avoid negatively affecting the rest of 

the system), and provide a pre-determined amount of power to the services governed by 

nodes 1 to 5 (to prevent a blackout). This contingency action should be maintained until 

the threat has been dealt with and the SOC resets the response manager. Such an IDS will 

allow the system to quickly isolate the problem and ensure availability of the rest of the 

network. 

It is unrealistic to expect that the classifier will be able to deal with all cyberattacks, 

especially if we consider zero-day attacks. The anomaly detector will deal with these, as 

well as attacks for which there is no pre-planned response. Upon detection of an anomaly, 

this component will trigger the SOC for further investigation and a man-in-the-loop 

response. 

The rest of this thesis focuses on a ML technique to realize the classifier block and 

address the requirements for the feature extractor. As the anomaly detector will also likely 

be triggered by faults, and each SOC will have to deal with several bases, each alert will 

require significant man-hours to resolve. Therefore, the false alarm rate of the classifier 

must be minimized.  

Data 
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B. CLASSIFICATION OF ATTACKS 

Elmrabet et al. pointed out that much of the literature focused on individual attacks 

and individual countermeasures [14]. Much of the literature on ML focuses on obtaining 

the classes defined in the data sets. This thesis notes that attacks of a similar nature share 

largely similar characteristics, and since the focus of the classifier is to trigger appropriate 

responses, the attacks should be grouped according to the desired response. Four general 

attack classes are proposed for analysis: 

1. Active 

The active attack seeks to gain access to the data stream to modify the exchanges 

between the AMI and the control center. The effects of this type of attack range from 

monetary loss due to inaccurate usage and possible siphoning of electricity, to destructive 

damage due to overloads and a possible cascading failure. 

2. Probe 

Referring to the Lockheed cyber kill chain that was shown in Figure 6, the first step 

is reconnaissance. There are some forms of reconnaissance which are completely passive 

and undetectable by an IDS such as “listening” to traffic. Such threats should be addressed 

through the security design of the system. Other forms include “probing” measures to 

discover weaknesses in a system which are not passive, such as port scanning. Detecting 

probes will indicate the presence of a potential adversary, and security personnel should 

endeavor to locate the source before a full attack is carried out.  

3. Denial 

Denial is the act of disrupting communications between the AMI and the rest of the 

system. This could be done to cause a localized blackout or to cause chaos to the system. 

Possible attacks include DOS, Distributed DOS (DDOS) or replay attacks. 

4. Benign 

Any traffic which is not classified as one of the previous classes would be classified 

as benign. Ideally this would mean that it consists of purely normal traffic. However, there 
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can be other attacks which cannot be grouped within the first three classes Therefore, all 

benign traffic should pass through the anomaly detector as an added layer of security. 

C. CHOICE OF MACHINE LEARNING TECHNIQUE 

As was stated previously, this thesis uses the KNN as the ML technique for this 

application. KNN is one of the earliest ML techniques. In recent times research has shown 

that non-linear techniques such as Support Vector Machines significantly outperform KNN 

in terms of false positive rates [38]. However, this result applies when there is only labelled 

data present and no unknown data. Liao and Vemuri [39] showed that a modified version 

of the KNN algorithm can produce high detection rates with a low false positive rate. Also, 

all these studies are based on either the DARPA or KDD data sets. 

There is little work done in grouping data by attack type, and the data set described 

in the next section has not yet become mainstream. Therefore, from an experimental 

standpoint, it is prudent to return to a linear and not computationally intensive algorithm 

such as the KNN as a foundation for such work.  

D. CICIDS2017 DATA SET 

The basis of any ML algorithm is the suitability and availability of the training data. 

Much has been written about the challenges in obtaining such data, especially when 

organizations tend not to release real data logs freely due to privacy issues [26], [40]. This 

is the reason many studies resort to using the KDD and DARPA data sets, though they may 

be dated. 

Sharafaldin, Lashkari and Ghorbani generated the CICIDS2017 data set [41] by 

setting up a comprehensive testbed consisting of different hardware and operating systems 

common to a network and running a variety of attack types to satisfy a framework of 11 

criteria set by the Canadian Institute of Cybersecurity used to benchmark datasets [42]. By 

comparison, the KDD99 data set fulfilled six criteria and partially fulfilled two (not all 

common protocols were addressed, and the variety of attacks were limited). Traffic from 

this test bed was put through an open source program called CICFlowMeter to extract up 
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to 80 features from each “flow” which can be defined based on when a connection is 

terminated in a TCP exchange, or by time. 

The data set contains eight files. The attack type (data labels) and number of data 

points for each file are listed in Table 3. 

Table 3. Summary of Data from CICIDS2017. 

File Description Data Labels Number of Data 
Points 

Monday - - 
Tuesday FTP-Patator 7938 

SSH-Patator 5897 
Wednesday DoS Goldeneye 10293 

DoS Hulk 231072 
DoS Slowhttptest 5499 
DoS Slowloris 5796 
Heartbleed 11 

Thursday Morning Web Attack – Brute Force 1507 
Web Attack – SQL Injection 21 
Web Attack – XSS 652 

Thursday Afternoon Infiltration 36 
Friday Morning Botnet 1966 
Friday Afternoon 1 PortScan 158930 
Friday Afternoon 2 DDoS 128027 
Total of All Files Benign 2359087 

 

E. DATA PREPARATION AND FEATURE SELECTION 

In the initial stages of this research, while doing exploratory simulations on the 

CICIDS2017 dataset, some issues were apparent—a number of entries in each file had 

erroneous fields when loaded into MATLAB, and there was a disproportionate amount of 

data across the attack methods including the benign data. This finding agrees with those of 

Panigrahi and Borah [43] who studied the dataset, highlighted its shortcomings, and 

recommended some modifications. While this class imbalance might be reflective of actual 

system traffic, that is, a lot more traffic generated from normal usage vis-à-vis attacks, this 

imbalance is not useful for training an algorithm as a minority class may be obscured by 

the majority class and written off as a false positive. From Table 3 an example of this 
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imbalance is Heartbleed (11 occurrences) versus the Benign class (2.4 x106 occurrences). 

Therefore, although the data comes in an immediately usable form, additional preparation 

needs to be made.  

The following steps were taken to prepare the data for simulation: 

1. Delete errors. All data points which contain “NaN” or “Inf” in the data 

fields were removed. “NaN” means “not a number” indicating the value is 

undefined. “Inf” means “infinity.” As KNN depends on the data being 

plotted and distances measured, the algorithm cannot tolerate data which 

cannot be represented on a scale.  

  
Figure 13. Reclassification of Data Labels. 

2. Relabel Data. The relevant attack types from the dataset were selected 

and relabeled to the recommended classes in Section B, as presented in 

Figure 13. The Heartbleed (Wednesday file) and Infiltration (Thursday 

Afternoon file) data labels shown in Table 3 were not used due to the lack 

of data points. The Botnet label (Friday morning file) of Table 3 was also 
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not used in the data set because a Botnet can perform many attacks across 

the different classifications and the task for each entry is not clear in 

CICIDS2017. 

Patator is an open source penetration tester, using brute force techniques to 

discover passwords. These passwords will allow an attacker to gain 

control of both hardware and software to conduct malicious activity. For 

the data set, the creators used the Secure Shell (SSH) and File Transfer 

Protocol (FTP) modules of the Patator program (see Table 3 Tuesday file). 

The web attacks exploit weaknesses in web-based data storage and man-

machine interfaces. SQL injection attempts to trick a SQL database into 

revealing stored information, Cross Site Scripting (XSS) attempts to find 

weaknesses in the developer’s coding to get the website to execute the 

attacker’s scripts, and the Web Attack—Brute Force uses brute force 

techniques over HTTP to guess administrator passwords for web-based 

accounts (see Table 3 Thursday Morning file). 

3. Remove “Port Number” feature. Without studying the features in depth 

to reduce dimensionality, the “Port Number” feature was removed as the 

Navy smart grid architecture is not publicly available and port numbers 

may be reassigned as part of a proprietary system. It is undesirable that 

any result should be based on port numbers of a system other than the 

actual grid. 

4. Sort and Randomize. The data was then sorted according to class and 

randomized within the class to ensure that the data that is subsequently 

extracted to form the training and testing set is not biased in time. 

5. Select Sample Size for Training and Test Sets. The data is then scaled 

down to training and test sets. There should be no overlap of data between 

the two sets, and an appropriate set size was chosen to maximize accuracy 

and minimize training time. In general, for classes with more than 100,000 

entries (Denial, Probe), 25,000 entries were used for the training set, and 
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25,000 used for the test set. Otherwise, 90% of the data was used for the 

training set and 10% of the data for the test set. Also, the proportion of 

benign data to attack data was set as 3:1. That is, three entries of benign 

data for every one attack entry. The data used and any deviations are 

detailed in the results section in the next chapter. 

6. Compile Data Files. The data was then merged into training or test set

files to fulfill the requirements of each simulation listed in the next

section.

F. SIMULATION

1. General MATLAB Settings

The Appendix lays out how to set up and run MATLAB to allow the reader to use 

a similar simulation environment. The general parameters are listed in Table 4. 

Table 4. General MATLAB Parameters Used. 

Model Type Preset Weighted KNN 
Validation Cross-Validation, 5 folds
Number of Neighbors Varied based on simulation run 
Distance Metric Euclidean 
Distance Weight Inverse 
Standardized Data True 
PCA  Enabled based on simulation run 
PCA Variance 99% 

2. Simulation Runs

For each simulation run, an appropriate training and test set was compiled. A 

different k  was used in each run to determine the model’s sensitivity to the k  value. Also, 

each simulation was run with the MATLAB PCA feature toggled to determine its effect on 

accuracy and training time.  
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The statistics of significance are  

1. Probability of Detection: Throughout the results section this will be the 

lowest percentage value for correctly classified attacks. 

2. False Positive Rate: This will be the percentage of benign data points 

wrongly classified as attacks. This would wrongly trigger the response 

manager. 

The simulations used in this thesis are as follows: 

a. Pairwise 

This set of simulations is to ensure that each type of attack data can be discerned 

from the benign traffic. 

 Benign – Active 

 Benign – Probe 

 Benign – Denial 

b. Triplets 

This set of simulations is to ensure that different types of attacks can be discerned 

from each other. 

 Benign – Active – Denial 

 Benign – Active – Probe 

 Benign – Denial – Probe 

c. Combined 

The final combined simulation is to show that a multi-attack classifier is possible 

with sufficient accuracy to function as part of the IDS. 

 Benign – Active – Denial – Probe 
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V. RESULTS AND APPLICATION 

A. PAIRWISE 

This set of simulations investigates whether each type of attack data can be 

discerned from the benign traffic. A confusion matrix is usually used to visualize results in 

a classification problem and will be used extensively in this section. A sample matrix with 

a short explanation of the content in each box is presented in Figure 14. The color intensity 

is used in MATLAB to illustrate the difference in the numerical magnitude (for example: 

dark blue for 200,000 and light blue for 5,000) and should be ignored for the purpose of 

this section. 

 
Figure 14. A Sample Confusion Matrix.  
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1. Benign – Active 

In addition to being able to separate benign from attack data, this pairwise test also 

needs to prove that the web attack data can be combined with the SSH/FTP Patator data to 

form an overall “active” attack class. The data used is presented in Table 5. 

Table 5. Data for Benign-Active Test Pair. 

 Training Set Test Set 
Web Attack ~2000 201 
Benign ~6000 600 
FTP/SSH Brute Force ~10000 3835 
Benign ~30000 ~12000 
Combined   
Active ~12000 NA 
Benign ~36000 NA 

 

Figure 15 and Figure 16 show that the brute force and web attack flow can be 

discerned from benign data with a greater than 94.5% probability of detection and a false 

positive rate of 1.4% and 0.3%, respectively. The two training sets were then combined, 

and the resultant model was applied to the web attack and FTP/SSH brute force test sets 

separately. This is necessary as the web attack test set is only 5% of the size of the other. 
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Figure 15. Results from Brute Force (Patator)-Benign Model. 

 
Figure 16. Results from Web Attack-Benign Model. 

Figure 17 shows that both brute force and web attack flows are correctly classified 

by the combined model with an accuracy of greater than 92.0%. From the brute force data, 

the false positive rate is a maximum of 0.2%. The old data labels were retained intentionally 

under the “true class” to show that the combined model classified the data as an “active” 

attack. 
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Figure 17. Results from Benign-Active Attack Model. 

2. Benign – Probe 

This pairwise test needs to prove that probe data can be discerned from benign data. 

The data used is reflected in Table 6. 

Table 6. Data for Benign-Probe Test Pair. 

 Training Set Test Set 
Probe ~50000 ~50000 
Benign ~150000 ~150000 
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Figure 18. Results from Benign-Probe Attack Model. 

Figure 18 shows that the benign-probe attack model has a probability of detection 

of 99.9% and a false positive rate of 0.6% 

 

3. Benign – Denial 

In addition to being able to separate benign from denial data, this pairwise test also 

needs to prove that the DOS data can be combined with the DDOS data to form an overall 

“denial” class. The data used is presented in Table 7. 

Table 7. Data for Benign-Active Test Pair. 

 Training Set Test Set 
DOS ~25000 ~25000 
Benign ~75000 ~75000 
DDOS ~25000 ~25000 
Benign ~75000 ~75000 
Combined   
Denial ~50000 ~50000 
Benign ~150000 ~150000 
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Figure 19 shows that the benign-denial attack model has a probability of detection 

of 95.0% and a false positive rate of 0.1%. There were other observations made through 

this experimentation: 

 If the model was trained with DOS data only, it shows poor results when a 

DDOS test set is used. The training set must include all types of data. 

 The previous point also applies to the various types of DOS programs 

used. However, with PCA switched off, this requirement seems to be less 

strict. Figure 19 was produced with random DOS data and PCA off. 

However, with the same data but PCA on, the accuracy was only about 

65%. 

 When a properly curated denial training set was used (containing data 

from all the different DOS labels), the accuracy was greater than 90%.  

 
Figure 19. Results from Benign-Denial Attack Model. 
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B. TRIPLETS 

This set of simulations is to ensure that different types of attacks can be discerned 

from each other by moving to sets of three before simulating the full four attack classes.  

1. Benign – Active – Denial 

As per the previous section, Table 8 shows the data used and Figure 20 shows the 

results of the Benign-Active-Denial triplet. The detection rate is at least 93.2% and the 

false positive rate is 0.4%. 

Table 8. Data for Benign-Active-Denial Test Triplet. 

 Training Set Test Set 
Active ~14500 ~4000 
Denial ~50000 ~50000 
Benign ~193500 ~162000 

 
Figure 20. Results from Benign-Active-Denial Attack Model. 

2. Benign – Active – Probe 

Table 9 shows the data used and Figure 21 shows the results of the Benign-Active-

Probe triplet. The detection rate is at least 98.2% and the false positive rate is 0.3%. 
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Table 9. Data for Benign-Active-Probe Test Triplet. 

 Training Set Test Set 
Active ~14500 ~4000 
Probe ~25000 ~25000 
Benign ~118500 ~87000 

 
Figure 21. Results from Benign-Active-Probe Attack Model. 

3. Benign – Denial – Probe 

Table 10 shows the data used and Figure 22 shows the results of the Benign-Denial-

Probe triplet. The detection rate is at least 92.9% and the false positive rate is 0.4%. 

From this series of simulations, the “Denial” class seems to have the lowest 

detection rate of the four classes. When the flow is classified wrongly, it is usually 

classified as “Benign.” This could be a function of the method of attack such as replay 

attacks, which repeat benign packets to achieve the denial effect. While this result warrants 

further study, a detection rate of above 90% is considered sufficient for this classifier’s 

purpose, particularly when the need to minimize false positives is considered. 
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Table 10. Data for Benign-Denial-Probe Test Triplet. 

 Training Set Test Set 
Denial ~50000 ~50000 
Probe ~25000 ~25000 
Benign ~225000 ~225000 

 
Figure 22. Results from Benign-Denial-Probe Attack Model. 

C. COMBINED CLASSIFIER 

Table 11 reflects the data used and Figure 23 presents the results for the final 

simulation where all four classes are combined. Low k  values were used throughout 

sections A and B as the simulations returned sufficiently accurate results. In this section 

the model was trained for k  values of 3, 4 and 5 and 4k   was chosen as the model for 5 

did not show any increase in accuracy. The detection rate of the combined classifier is 

98.3% (based on the “active” class) and the false positive rate is 1.6%. 
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Table 11. Data for the Combined Classifier. 

 Training Set Test Set 
Active ~14500 ~1600 
Denial ~50000 ~50000 
Probe ~25000 ~25000 
Benign ~268500 ~230000 

 
Figure 23. Results from the Combined Attack Model with PCA. 

D. WITHOUT PCA 

The same data used in section C was used to train another model where PCA was 

disabled and the k  value was maintained at 4. The results are shown in Figure 24. The 

detection rate rose to 99.3% and the false positive rate dropped significantly to 0.6%. 

However, as mentioned in the PCA section of Chapter III, the trade-off is time. Using a 

laptop equipped with an Intel i7 1.8GHz Quad Core processor and 8GB RAM running 

Windows 10, the training time for the model increased from 48 seconds to 13707 seconds. 



 

45 

While that may be acceptable given training could be done offline and infrequently, the 

processing time for the test set also increased from 15.9 seconds to 3838 seconds. 

 
Figure 24. Results from the Combined Attack Model without PCA. 

E. INCREASE k   

For completeness, the final simulation was re-run with 10k   to assess if a larger 

increase in k  value significantly impacts the results. The results are presented in Figure 

25. The detection rate increased to 99.8% with a 0% false positive rate. Also, no attack was 

misclassified (which would cause an erroneous response from the response manager). 

Increasing k  has a significant positive effect on the accuracy of the model, with only a 

linear training time increase (1.66 times in this case based on Table 2). 
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Figure 25. Results from the Combined Attack Model with PCA for 10k  . 

F. ANALYSIS 

As mentioned in the previous chapter, minimizing the false positive rate is the main 

aim of this system because the response is to be automated. If this is not minimized, then 

the grid runs the risk of shutting itself down frequently due to false alarms. 

The results show that there are two ways to reduce the false positive rate. These 

methods and the required tradeoffs are summarized in Table 12. 

Table 12. Methods to Reduce False Positive Rate. 

Method Effect on Time Taken 
Increase k  Linear.  
Disable PCA Non-linear. 
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1. Increase k  

Figure 25 shows significant improvement in false positive rate over Figure 23. 

Table 2 shows that if k  is increased by a factor of n , the processing time is also increased 

but by a factor smaller than n . In this case, 4k   was increased to 10k   and therefore 

the time taken will be 1.66 times that of the original. Also, we can see that if we increase 

k  any further, we will get no improvement of the false positive rate because it is already 

zero. While the actual smart grid data may not return such ideal numbers, there will be an 

upper limit to k  beyond which the results will show no improvement. Therefore, the value 

of k   should first and foremost be optimized to minimize the false positive rate as it yields 

the highest return for the extra time spent. 

2. Disable PCA 

The time taken when PCA was disabled was approximately 240 times that of when 

it was enabled based on measurements in MATLAB (Section C). MATLAB’s PCA 

algorithm used 6 features to represent the 77 used. Therefore, the additional processing 

time could be said to be greater than  2O n  where the number of features was increased 

by a factor of n . However, it is harder to quantify the time-accuracy tradeoff for PCA as 

the processing time for a single data point is insignificant (0.0125s in this case). To recap, 

Chapter IV mentions that CICFlowMeter packages each TCP exchange or a user defined 

period as a “flow,” and the features for each data point in the data set are produced from 

this. The number of AMI the concentrator manages, the duration of each exchange and the 

network access scheme must all be considered. If the additional processing time does not 

cause other data to be delayed or lost, then PCA should also not be applied to preserve the 

classifier accuracy.  
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VI. CONCLUSIONS 

A. SUMMARY AND CONCLUSIONS 

As the Navy maintains its technological edge and implements its smart grid to 

improve the reliability and efficiency of its electricity supply, its cybersecurity defenses 

must keep pace and be robust. In placing the Navy’s critical infrastructure on a network, 

both state and non-state actors will be interested in what information they gain, and what 

damage they can cause through cyberattacks.  

We have proposed a security system for the Navy smart grid in which an IDS is 

placed at the data concentrators to enable an automated response, offering the ability to 

quickly isolate the threat and maintain power availability to critical systems. It is assumed 

that all hardware before the concentrators may be easily compromised due to the difficulty 

in physically securing them, as well as the high likelihood that it will communicate via a 

wireless protocol. The concentrator is therefore the best place to situate a first layer of 

protection as it can be physically secured, has more computing power, and can maintain a 

secure communications link with the control center. The IDS that was developed in this 

thesis consists of a feature extractor, a classifier, an anomaly detector, and a response 

manager. 

We introduced the CICIDS2017 dataset and grouped different attacks based on the 

perceived objectives. Using MATLAB’s machine learning toolbox, we demonstrated that 

a classifier using the KNN technique is able to segregate the various classes of attack traffic 

from benign traffic. This implementation will enable the automated response. 

Finally, we recommended two methods by which to increase the accuracy of the 

classifier in order to minimize false positives, and therefore, an unnecessary interruption 

to the smart grid. These methods are to increase k  (specific to KNN) and use the full suite 

of features provided by the feature extractor. The potential trade off in terms of time was 

also discussed.  



 

50 

B. THESIS CONTRIBUTIONS 

Our objective was to provide a starting point to using machine learning applications 

for the Navy smart grid. In this thesis we have contributed the following: 

 Proposed the implementation of an IDS for the NAVFAC smart grid that 

consists of a feature extractor, classifier, anomaly detector, and response 

manager. We showed that is system implementation allowed the grid to 

react according to the cyber threat. 

 Introduced the CICIDS2017 data set and the use of the open source 

CICFlowMeter for feature extraction. 

 Proven that different attacks can be grouped together based on objectives, 

and that KNN is able to segregate the various classes of attack traffic from 

benign traffic.  

C. RECOMMENDATIONS FOR FUTURE WORK  

We conducted our simulations based on a publicly available dataset, generated by 

an experimental setup. The next step will be to show that similar techniques can be applied 

specifically to the Navy smart grid. To that end, the following steps are recommended: 

1. Build a smart grid test bed. A scaled down version of the actual network 

architecture and communications protocols used will go a long way to 

generating actual data that can be used for further simulations and 

evaluating the effectiveness of PCA. A test bed will also allow researchers 

to conduct attacks on the grid without causing actual damage and produce 

valuable attack data for a classifier.  

2. Manual feature selection. Once actual data is produced, the IDS can be 

optimized. MATLAB’s PCA algorithm derives 6 features to represent 77 

with a lowered accuracy. It is likely that a compromise can be found such 

that a sufficiently high accuracy can be obtained with less features, but 

without the use of PCA. This will involve determining which features 
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have no bearing on the outcome of the algorithm and manually removing 

them from the computations. 

3. Investigate methods to reduce the false positive rate. Reducing the false 

positive rate is critical to the success of a fully automated response 

manager. With the actual data and communications architecture, the 

efficacy of various techniques to reduce the false positive rate such as 

requiring consecutive true positives to trigger a response, or running the 

same data through multiple ML classifiers can be studied. 
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APPENDIX. USING THE MATLAB MACHINE LEARNING 
TOOLBOX 

This appendix aims to provide a step by step guide to using the MATLAB machine 

learning toolbox. The pictures are provided using version 2019a. 

Step 1. After the MATLAB program is loaded, click on the “Apps” tab and locate 

“Classification Learner” 

 
Figure A1. The MATLAB Apps Bar. 

Step 2. After the Classification Learner is loaded, click the “New Session” 

dropdown and select “From File”  

 
Figure A2. Starting a New Session. 
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Step 3. Choose your training set, and the file import window will open. It is 

recommended that you select “Exclude rows with” under “unimportable cells..” Then click 

“Import Selection” 

 
Figure A3. Importing Data in MATLAB. 

Step 4. The data set window will open. Set your validation settings then click “Start 

Session.” 

 
Figure A4. Validation Method Selection. 
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Step 5. In the main drop-down window. Select your ML technique. 

 
Figure A5. Selecting the Machine Learning Technique. 

 
Step 6. Click “Advanced” and “PCA” to input the respective settings, then click “Train.” 

 
Figure A6. Training the ML Algorithm. 
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Step 7. The left panels display information about settings and timing. The training 

set confusion matrix can be called to see the training accuracy. Once satisfied, click on the 

“Export Model” drop down and click “Export Model,” you will be prompted to give the 

model a name. 

 
Figure A7. Exporting the Model. 

 
Step 8. A workspace object will be generated with that name. On the “Home” tab 

select “Import Data” and repeat step 3 with your test set. 

 

 
Figure A8. Importing Data into the Workspace. 
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Step 9. Run the following code. Replace the text highlighted in red with the 

appropriate workspace object name for the test set, and the orange with the model 

workspace object name. Edit the title as appropriate. 

 
yfit1 = Activek3Poff.predictFcn(AccessTest); 
[m1,order1] = confusionmat(AccessTest.Label,yfit1); 
figure(1) 
confusionchart(m1,order1, 'Title','Result of Trained Model 
on Brute Force Test Set', 'RowSummary','row-normalized') 
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