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Abstract

The newly introduced neighborhood matrix extends the power of ad-
jacency and distance matrices to describe the topology of graphs. The
adjacency matrix enumerates which pairs of vertices share an edge and it
may be summarized by the degree sequence, a list of the adjacency ma-
trix row sums. The distance matrix shows more information, namely the
length of shortest paths between vertex pairs. We introduce and explore
the neighborhood matrix, which we have found to be an analog to the dis-
tance matrix what the degree sequence is to the adjacency matrix. The
neighbor matrix includes the degree sequence as its first column and the
sequence of all other distances in the graph up to the graph’s diameter,
enumerating the number of neighbors each vertex has at every distance
present in the graph. We prove this matrix to contain eleven oft-used
graph statistics and topological descriptors. We also provide insight into
two applications that show potential utility of the neighbor matrix in com-
paring graphs and identifying topologically significant vertices in a graph.

Key words: adjacency matrix, distance, graph topology, centrality, graph
power.
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1 Introduction
Matrices such as the adjacency, distance, reciprocal distance, walk, reachabil-
ity, and Laplacian offer well-studied, compact structures that represent graph
information [3, 6–10, 13–15]. Two of these matrix representations that form the
foundation of this work are the adjacency matrix and the distance matrix. The
adjacency matrix enumerates which pairs of vertices share an edge. The degree
sequence is one summary of the adjacency matrix: a list of the adjacency matrix
row sums. The distance matrix shows more information, namely the length of a
shortest path between vertex pairs. We introduce and explore the neighbor ma-
trix, a new matrix that extends the degree sequence to capture the distribution
of each distance in a graph from 1 to k, where k is the graph diameter.

We need only consider Figure 1 to see the topological richness of the neighbor
matrix. On the left in the figure is a depiction of the degree sequence of a
Barabási-Albert graph on 100 vertices. The right figure depicts the distances
accounted for by the neighbor matrix. The distance − 1 neighbors are exactly
the degree sequence of the graph, depicted in white on the right. The illustration
shows distance− 2 neighbors in the background of the right picture in medium
gray, followed by distance−3 neighbors in dark gray, and distance−4 neighbors
in light gray. We depict the small number of distance − 5 neighbors in the
foreground of the picture, in black.

Figure 1: Comparing Topological Information of Neighbor Matrix to Degree
Sequence

We use combinatoric techniques to show the neighbor matrix to include
many of the statistics and topological characteristics currently used to describe
graphs. Finally, we describe the use of the neighbor matrix in two applications
that highlight its potential usefulness. We show that where current topological
descriptors fail to discriminate between non-isomorphic graphs, the neighbor
matrix may enable a graph comparison mechanism. We also present a method-
ology that leverages the topological information resident in the neighbors matrix
to improve upon analysis using currently-defined centrality measures that seek
to identify those vertices in the graph which exert the most influence over a
graph’s structure.
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2 Definitions
We first review established definitions of graph theory and complex network
terms that are fundamental to the work described in this paper.

This work is limited to analysis of simple, connected graphs (no multiple
edges nor loops) G = (V (G), E(G)), where V (G) is the vertex set and E(G)
the edge set. We annotate the vertices of a graph v1, v2, . . . , vn, where n is
the number of vertices in the graph. Two vertices are called adjacent if there
is an edge between them, otherwise they are nonadjacent. The edge set E(G)
contains each adjacency between vertices. A cycle is a sequence of adjacent
vertices that begins and ends at the same vertex, but repeats no other vertex.
A graph with no cycles is called acyclic and all connected, acyclic graphs are
called trees. A graph H is a subgraph of G (denoted H ⊆ G) if V (H) ⊆ V (G)
and E(H) ⊆ E(G). If H ⊆ G and either V (H) is a proper subset of V (G) or
E(H) is a proper subset of E(G), then H is a proper subgraph of G, H ⊂ G.

Two graphs, G and H are isomorphic if there is a one-to-one correspondence
φ from V (G) to V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H). A
graph invariant is a property that has the same value for every pair of isomorphic
graphs. An automorphism is an isomorphism from a graph G to itself. Since
the identity and inverse are both automorphisms and the composition of two
automorphisms is itself an automorphism, the set of all automorphisms of a
graph G forms a group under the operation of composition. We denote the
automorphism group of G to be Aut(G). Suppose v is a vertex of graph G.
The set of all vertices to which v may be mapped by an automorphism of G
in an orbit of G. The automorphism relating two vertices is an equivalence
relation resulting in equivalence classes that are the orbits of G. We define the
orbit of vertex i in graph G as o(iG). If G contains a single orbit, then G is
vertex-transitive.

The adjacency matrix A is comprised of entries aij ,∀i, j ≤ n, where n is
the number of vertices in the graph. An entry aij = 1 represents the adjacency
of vertex i and vertex j; aij = 0 otherwise. A shortest path between two
nonadjacent vertices is called a geodesic. The length of a geodesic between
two vertices is the distance between the vertices. The distance matrix D is
comprised of entries dij ,∀i, j ≤ n, where n is the number of vertices in the
graph and dij represents distance between vertex i and vertex j. The average
distance in G is computed as the fraction of all pairwise distances out of all

possible distances,
2

n(n− 1)

∑
i6=j

d(vi, vj). By convention, d(x, y) = 0 if x and y

are in different components. For a given vertex v in graph G, u is a k-step (or
k-hop) neighbor of v if d(u, v) ≤ k for 1 ≤ k ≤ n− 1. Wu and Dai introduced a
specification of this measure in [17]: a vertex u is an exact k-hop neighbor of v
if d(u, v) = k for 1 ≤ k ≤ n− 1.

Let v be a vertex of G. The eccentricity of the vertex v, e(v), is the max-
imum distance from v to any other vertex in G: e(v) = max{d(v, w) : w ∈
V (G)}. The radius of G is the minimum eccentricity among the vertices of G:
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rad(G) = min{e(v) : v ∈ V (G)}. The diameter of G is the maximum eccentricity
among the vertices of G: diam(G) = max{e(v) : v ∈ V (G)}. The center of G,
Cen(G), is the subgraph induced by those vertices of G having minimum eccen-
tricity: Cen(G) = G[{v ∈ V (G) : e(v) = rad(G)}]. The periphery of G, Per(G),
is the subgraph induced by those vertices of G having maximum eccentricity:
Per(G) = G[{v ∈ V (G) : e(v) = diam(G)}]. The kth power of an undirected
graph G is the graph Gk = (V (G), E(Gk)), where E(Gk) = {uv : dG(u, v) ≤ k}.

A vertex vi’s degree denotes the number of vertices to which vi is adjacent.
The degree sequence of G of a graph is an integer sequence d1, d2, . . . , dn where
n = |V (G)| and di is the degree of vertex i. We will use the convention that
the sequence is non-increasing. The degree distribution of G is the probability
distribution of the degrees of the nodes in the graph, i.e. what fraction of the
vertices have degree k (δ(G) ≤ k ≤ ∆(G)), where δ(G) and ∆(G) are the
minimum and maximum degree in G, respectively. The average degree of G is∑

vi∈V (G) deg(vi)

n
=

2m

n
, where m is the number of edges in the graph. The

density of a graph is the ratio of possible edges to the edges that are actually

present in the graph:
m(
n
2

) =
2m

n(n− 1)
.

The average clustering coefficient is the ratio of triangles in the graph to the
number of connected triples (i.e., connected subgraphs on three vertices):

Average Clustering Coefficient =
number of triangles x 3

number of connected triples
.

Pearson’s correlation coefficient in graphs is a measure of assortative mixing,
i.e., the extent vertices with high degree are adjacent to each other. See [16] for
a detailed treatment of the topic. The s-metric determines the extent to which
the graph being examined has a “hub-like” core; see [1, 11].

A variety of “centrality” measures serve to provide insight into which vertices
are the most influential in a graph [15]. The word influential is emphasized be-
cause there is no commonly accepted definition in a graph topological context
(and one is not offered here). We will leverage a basic understanding of “impor-
tance” in this paper: a vertex with high centrality is more “important” in some
sense than a vertex of smaller centrality. The degree of vertex i is sometimes
referred to as degree centrality of vertex i (degree centrality is often normalized
through division by n − 1). Closeness centrality is a measure of the distance
from a vertex to all other vertices, calculated as the inverse mean distance. Be-
tweenness centrality is the extent to which a given vertex lies on the shortest
paths to other vertices.

The reader may refer to [6, 7] for additional graph theory terminology and
to [15] for additional complex network terminology.

We now introduce the following definitions as alternative (and more intu-
itive) terminology to the exact k-hop neighbor. The definitions will facilitate
development of the neighbor matrix.
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Definition 1. Let G be a graph with u, v ∈ V (G). Vertex u is a distance-k
neighbor of v if and only if d(u, v) = k, where k = diam(G)(1 ≤ k ≤ n− 1).

Definition 2. Let G be a graph, with v ∈ V (G). The distance-k neighborhood
of v is

Ndist−k(v) = {u ∈ V (G) : d(u, v) = k}.

3 The Neighbor Matrix of Graph G: Xdist−k(G)

We introduce a matrix that is a multi-dimensional analog of the degree sequence.
As the degree sequence summarizes the adjacencies in the adjacency matrix, the
neighbor matrix summarizes the distributions of each vertex-vertex geodesic
length found in the distance matrix.

The neighbor matrix is a multi-dimensional analog of the degree sequence.
As the degree sequence summarizes the adjacencies in the adjacency matrix,
the neighbor matrix summarizes the distributions of each vertex-vertex geodesic
length found in the distance matrix. See Definition 3 and Figure 2.

Definition 3. Let G be a graph with V (G) = {v1, v2, . . . , vn}. The neighbor
matrix,

Xdist−k(G) = [xij ], (1 ≤ i ≤ n, 1 ≤ j ≤ k),

where n = |V (G)|, k = diam(G) (1 ≤ k ≤ n − 1) and xij = |Ndist−j(i)|,
i ∈ V (G); 1 ≤ j ≤ k. We sort the rows of Xdist−k in a reverse lexicographic
manner by organizing the rows of Xdist−k(G) in non-increasing order of the
entries in the first column. If there is a tie in some column j < k, we sort
affected rows in non-increasing order of column j + 1.

The entries xij represent the count of dist-j neighbors of vertex i. This is
the same number defined by Bloom, et al, and later by Buckley and Harary
as the dthij entry of the distance degree sequence [4, 5]. In addition, we define
Xdist−k

i (G) to be row i of the neighbor matrix associated with graph G, the row
associated with vi ∈ V (G).

Figure 2 depicts a graph G and its corresponding neighbor matrix
Xdist−3(G).

Lemma 1. There is a unique neighbor matrix Xdist−k(G) for each graph G.

Proof: Suppose otherwise that a given graph can have two different neighbor
matrices. Let K1 = Xdist−k

1 (G) and K2 = Xdist−k
2 (G) such that K1 6= K2.

Then, there is an entry k1ij 6= k2ij . By construction and ordering of the neighbor
matrix, vertex i in G simultaneously has two different numbers of neighbors at
distance j, which is not possible.

Given Lemma 1, the following observation is immediate:

Proposition 1. Let G and H be two graphs. If G ∼= H, then Xdist−k(G) =
Xdist−k(H).
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v1 v2 v3 v4

v5v6

Xdist−3(G) =



1 2 3

v3 4 1 0
v4 3 1 1
v5 3 1 1
v6 3 1 1
v2 2 3 0
v1 1 1 3


Figure 2: Graph G with associated neighbor matrix

Proof: By definition of isomorphism, there is a one-to-one correspondence
φ from V (G) to V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H).
Therefore, the distance in G from vertex i to vertex j is the same as the distance
in H from φ(i) to φ(j), ∀i, j ∈ G. It follows directly by construction of the
neighbor matrix that Xdist−k(G) = Xdist−k(H).

Remark 1. The converse of Theorem 1 is false. That is,

Xdist−k(G) = Xdist−k(H) 6=⇒ G ∼= H.

Proof: We present an example depicting two infinite classes of non-isomorphic
graphs with the same neighbor matrix below.

We define graphs G and H in accordance with Table 1. Vertices 1 to n define
a Kn. In Figure 3, n = 8.

G H
vertex n+ 1 adjacent to n, n− 1, 3, 4 n, 2, 3, 4
vertex n+ 2 adjacent to 1, 2, 3, 4 1, 2, 3, 4
vertex n+ 3 adjacent to n, n− 1, n− 2, n− 3 n, n− 1, n− 2, n− 3
vertex n+ 4 adjacent to 1, 2, n− 2, n− 3 1, n− 1, n− 2, n− 3

Table 1: Non-isomorphic Graphs G and H with Identical Neighbor Matrices

Figure 3 is an illustration of the graphs constructed in Table 1. The edges
drawn in heavier pitch are those edges which are different between graphs G
and H.

Given G andH, Xdist−k(G) = Xdist−k(H). In graph G, each degree-4 vertex
has a maximum of two dist-1 neighbors shared with any other degree-4 vertex.
In graph H, each degree-4 vertex has one vertex with which it shares three dist-1
neighbors. Therefore G 6∼= H.

It is clear that the implication stated in Proposition 1 holds for trees. Buckley
and Harary provide a counterexample for Remark 1 which may be extended to
show identical neighbor matrices do not imply isomorphism for trees [5]. As
algorithms exist to construct neighbor matrices, the contrapositive of Theorem 1
is a method to verify the non-isomorphism of two graphs.
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Graph G

v4v5
n+ 1

n+ 2

n+ 3

n+ 4

Graph H

v4v5
n+ 1

n+ 2

n+ 3

n+ 4

Figure 3: Graphs G and H

The beauty of the newly introduced neighbor matrix extends from how natu-
rally it captures the topology of an arbitrary graph, coupled with the simplicity
of calculating matrix entries. A neighbor matrix of a graph captures each ver-
tex’s “view” of the graph through shortest paths, thus reaching every vertex of
the graph, implicitly accounting for edges, cycles and other subgraphs of G (see
Figure 4, two views of the Petersen graph).

v1

v2

v3v4

v5

u1

u2

u3u4

u5

v1

v2

v3v4

v5

u1

u2

u3u4

u5

Figure 4: Two views of distance-1 and distance-2 neighbors (from v1 and v2) in
the Petersen graph

From the topological information encoded in the neighbor matrix, we may
extract many graph parameters, as shown in Theorem 1.

Theorem 1. For a simple graph G the following topological information can be
observed from the neighbor matrix Xdist−k(G) = [xij ], (1 ≤ i ≤ n, 1 ≤ j ≤ k):

(a) G is connected if and only if
n∑

i=1

k∑
j=1

xij = n(n− 1).
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• The number of components in G, κ(G), is
n−1∑
d=1

|Sd|
d+ 1

, where

Sd = {vi :

k∑
j=1

vij = d}.

(b) The radius of the graph is Rad(G) = max{j : xij 6= 0,∀i, 1 ≤ i ≤ n}.

(c) The center of the graph is Cen(G) = G[{vi : xi rad(G) 6= 0, xij = 0,∀j >
rad(G)}].

(d) The closeness centrality of vertex i in a connected graph is

CCi =
n− 1∑k
j=1 j · xij

.

(e) The average distance between vertices in a connected graph G is

1

n(n− 1)

n∑
i=1

k∑
j=1

(j · xij) =
1

n(n− 1)

k∑
j=1

n∑
i=1

(j · xij).

(f) Given diam(G) = k (the number of columns in Xdist−k(G)), (1 ≤ k ≤
n − 1), the graph periphery is Per(G) = G[{vi : xik 6= 0 ∀i, 1 ≤ i ≤
n}].

(g) The first column is a representation of the degree sequence, in which the
degree centrality of vertex i is the first entry in row i, xi1. The number
of edges in the graph is the half-sum of the entries in the first column:

m =
1

2
·

n∑
i=1

xi1.

• The density of a graph is the ratio of possible edges to the edges
that are actually present in the graph:

m(
n
2

) =
2m

n(n− 1)
.

(h) For each column j ∈ Xdist−k(G),
n∑

i=1

xij = 2
(
|E(Gj)| − |E(Gj−1)|

)
.

(i) For each s
(
1 ≤ s ≤ diam(G)

)
, the number of edges in the power graph

Gs is given by
s∑

j=1

n∑
i=1

xij = 2|E(Gs)|.

8



Proof:

(a) Suppose G is connected. Fix a vertex v, and note that ∀u ∈ V (G− v), a
geodesic exists such that d(u, v) = j (1 ≤ j ≤ k). There are n− 1 choices
for u in G − v. By construction of Xdist−k(G), the length of a geodesic
between all vertex pairs u, v ∈ V (G) is counted. So, for each of the n
rows of the matrix there are n − 1 distance entries, totalling n(n − 1).
For the converse, assume, to the contrary, that G is not connected and
n∑

i=1

k∑
j=1

xij = n(n− 1). Then, there is a component G′ containing q ver-

tices (1 ≤ q ≤ n− 1); we choose v /∈ V (G′). There are at most n− 1− q
vertices adjacent to v. By construction of Xdist−k(G) the entries of the
row corresponding to vertex v sum to n−1−q, and also there are at most
n− 2 geodesics that are counted in the other rows of Xdist−k(G). There-

fore
n∑

i=1

k∑
j=1

xij ≤ (n− 1)(n− 2) + (n− 1− q) < n(n− 1), which contra-

dicts the initial statement that
n∑

i=1

k∑
j=1

xij = n(n− 1).

– We proved in (a) that a connected graph (i.e., graph with 1 com-
ponent) has n neighbor matrix row sums of n − 1. It follows that
each connected component of order d will have d neighbor matrix
row sums of d − 1. Therefore, given Sd = {vi :

∑k
j=1 vij = d},

∀d : 1 ≤ d ≤ n − 1, the number of connected components in G of
order d is

κ(G)d =
|Sd|
d+ 1

,

and, κ(G) =

n−1∑
d=1

κ(G)d.

By construction of Xdist−k, each value xij is the number of geodesics
originating at vertex i of length j (1 ≤ j ≤ k) with different terminal
vertices. We weight the entries of the k-matrix row by multiplying each
value xij by its associated distance, j. As seen in (a), the number of
possible geodesics in G in a simple, connected graph is n(n− 1).

(d) After summing over row i, division by the number of geodesics pro-
vides the weighted average which is the average distance in G from
vertex i to all other vertices. As stated in Section 2, the closeness
centrality is the inverse of this average distance.

(e) After summing over rows and columns, division by the number of
geodesics provides the weighted average which is the average distance
between vertices in G.

9



(h) The left hand side of the equation double counts the sum of distance j
neighbors (1 ≤ j ≤ diam(G)) from each vertex in G. The right hand side
does the same by calculating the number of vertex pairs of distance at
most j apart, and then it removes the number of vertex pairs of distance
at most j − 1.

(i) The left hand side of the equation double counts the sum of distance 1, 2,
. . . , j neighbors (1 ≤ j ≤ diam(G)) from each vertex in G. The right hand
side does the same by calculating the number of vertex pairs of distance
at most j apart.

4 The Neighbor Matrix and Graph Orbits
As stated in Section 2, vertices in the same orbit of a graph form an equivalence
class. These equivalence classes are related to neighbor matrix rows, as stated
in Proposition 2.

Proposition 2. Given vertices vi and vj in graph G we have

oG(i) = oG(j) =⇒ Xdist−k
i (G) = Xdist−k

j (G).

Proof: Suppose otherwise, that vi and vj are in the same orbit and Xdist−k
i (G)

6= Xdist−k
j (G). Then, there is at least one distance value f for which vi has more

(or less) distance − f neighbors than vj . Therefore, there is no automorphism
that maps vi to vj in Aut(G). This is a contradiction, as vi and vj are in the
same orbit, such a permutation of vertices must indeed exist in Aut(G).

Remark 2. The converse of Proposition 2 is false. That is,

Xdist−k
i (G) = Xdist−k

j (G) 6=⇒ oG(i) = oG(j).

Proof: The graph G in Figure 5 shows an example of a graph with a cycle.
Note that vertices vi and vj have identical neighbor matrix rows. There are two
different paths from vertex vi to vertex vk, a distance-2 neighbor. All paths from
vertex vj to distance-2 neighbors are unique; therefore there is no automorphism
in Aut(G1) that maps vi to vj and the two vertices are in different orbits.

Consider graph T in Figure 5. Note that vertices vy and vz have identical
neighbor matrix rows. The subgraphs rooted at vertices vy and vz, respectively
each have two distance-2 neighbors. In the subgraph rooted at vy, the paths to
the two distance-2 neighbors share a common vertex. In the subgraph rooted
at vz, the paths to the two distance-2 neighbors do not share a common vertex.
Therefore, there is no automorphism in Aut(T ) that maps vy to vz and the two
vertices are in different orbits.

10



An arbitrary graph (G)
vi vj

vk
Xdist−6

i (G1) = Xdist−6
j (G1) =[

3 3 1 0 0
]

A tree (T )

vy vz

Xdist−6
y (G2) = Xdist−6

z (G2) =[
4 3 3 2 0 0

]
Figure 5: Graphs G1 and G2, Counterexamples to Proposition 2

5 Finding the Neighbor Matrix
The neighbor matrix may be fully determined using powers of adjacency matri-
ces, or any of a variety of computer algorithms that determine all-pairs shortest
paths. Propositions 3 and 4 present two algebraic methods of obtaining a neigh-
bor matrix representation of G. For these propositions we use Xdist−k

A to refer
to the neighbor matrix obtained from an adjacency matrix A of G, and ~1 to
represent the n× 1 vector whose entries are 1.

Proposition 3. Each neighbor matrix can be obtained using adjacency matrices
of powers of the original graph G, as shown in equation 1. Entries of −1 in
A(Gi)−A(Gi−1) are replaced by 0 before multiplication by ~1:

Xdist−k
A =

[
A(G)~1

(
A(G2)−A(G)

)
~1 . . .

(
A(Gk)−A(Gk−1)

)
~1
]
. (1)

Proof: Notice that from the definition of Gk, the adjacency matrix of Gk,
namely A(Gk), includes entries of 1 for all pairs of vertices of distance k or less
in the original graph G. Therefore, when we subtract A(Gk−1) from A(Gk)
and replace the −1 entries by 0, we are left with a (0, 1)-matrix with 1 entries
representing pairs of vertices exactly distance k apart in G. Multiplication by
~1 creates a vector consisting of the number of vertices at distance k from each
vertex in G.

We let Aj be the Boolean matrix obtained from Aj = (Aj)b −Aj−1, where
j ≥ 2, by replacing the value of −1 and diagonal entries with zero; A1 = A, the
adjacency matrix.

11



Proposition 4. Each unsorted neighbor matrix, Xdist−k(u) can be obtained
using the boolean matrices Aj(1 ≤ j ≤ k), as shown in equation 2

X
dist−k(u)
A (G) =

[
A1~1 A2~1 A3~1 . . . Ak~1

]
. (2)

Proof: Notice that multiplying the adjacency matrix A1 of G by the column
vector ~1 we obtain the first column of the matrix Xdist−k(G), the degree se-
quence. The second column of Xdist−k(G) is A2~1 − A~1, as it counts all the
vertices of distance 2 or less, and then it subtracts the vertices of distance 1, i.e.
the neighbors of each fixed vertex in V (G), as shown in Theorem 1. Similarly,
Ak~1 − Ak−1~1 counts the number of vertices k-hops away, and it subtracts the
number of vertices k − 1 hops away.

After a reverse lexicographic sort, Xdist−k(u) becomes the neighbor matrix
Xdist−k.

We next show that the neighbor-matrices Xdist−k obtained from different
adjacency matrices of a graph G are related through the same permutation
matrices as the adjacency matrices themselves.

Proposition 5. Given A and B, two different adjacency matrices of graph G
(so B = P ·A · PT , for some permutation matrix P ),

Xdist−k
B (G) = P ·Xdist−k

A (G) · PT .

Proof: Let A and B be two different adjacency matrices of G, so B = P ·
A · PT for some permutation matrix P . Since P is an orthogonal matrix, we
have that Bi = (PAPT )i = PAiPT , for 1 ≤ i ≤ k. Therefore Bj − Bj−1 =
P (Bj − Aj−1)PT for each j(1 ≤ j ≤ k), which implies that Xdist−k

B (G) =

P ·Xdist−k
A (G) · PT .

6 Applications
There are many potential applications for the neighbor matrix, as it is a compact
structure and rich in topological information. Two such applications are graph
comparison and the identification of vertices with high topological significance,
relative to other vertices in the graph.

6.1 Graph Comparison
The neighbor matrix enables the analysis of two graphs and insight into their
topological similarity, which we consider to be a relaxation of isomorphism. We
consider two graphs to be similar if they have the same distance distributions,
i.e., their neighbor matrices are the same. For example, using this definition,
graphs G and H in Figure 3 are similar.

12



It has previously been established that using individual characteristics pro-
vides an incomplete picture of a graph’s structure [1, 11]. This is because
information is missing that is needed to fully characterize the graph. Several
measures follow that illustrate the problem of different structures with the same
(or close) comparison criteria:

• Degree Sequence: a cycle C3k and the disconnected graph obtained from
the union of k copies of the C3 cycle (or, kC3) each have constant, identical
degree sequences

• Average Distance: a wheel on 32 vertices W1,31 and the 16-vertex star
graph K1,15 have the average path length of 1.875.

• Average Clustering Coefficient (close, positive): a wheel on 21 vertices
W1,20 has the average clustering coefficient of 0.63888, while the (7, 7)
Barbell graph (two copies of K7 connected by a path with 7 additional
vertices) has average clustering coefficient of .63945.

• Average Clustering Coefficient (same): a graph of small diameter (star)
and a large diameter (path) each have a clustering coefficient of 0.

• Pearson Coefficient: a wheel on n+ 1 vertices (n ≥ 5) W1,n and the (3, 5)
Barbell graph (two copies of K3 connected by a path with 5 more vertices)
have the Pearson correlation coefficient of −.33333.

• s-metric: for each r−regular graph, the normalized s-metric is 1 because
there is no variability in the degree sequence in the background set of
graphs.

Though variability of graphs with the same or similar graph invariant values
has been observed before, it has not been adequately addressed. A widespread
desire remains in the community of decision makers operating in a connected
world to compare graph and network structures in a scientifically-viable man-
ner. This, coupled with the well-documented lack of a comprehensive, intuitive
metric useful in making this comparison served as a motivation for development
of the neighbor matrix to describe graphs.

Consider Table 3, which includes several classes of graphs that are defined
in Table 2. The entries in bold are the graph invariants previously discussed
that have identical values when calculated from different graphs. Note that
eight of the graphs represented in Table 3 have the same average clustering
coefficient: 0; but neighbor matrix dimensions are different. This phenomenon
persists through the other examples shown. A similar result comes from looking
at the dimension of neighbor matrices associated with graphs manifesting the
same average path length, Pearson correlation coefficent, and normalized s-
metric. So, simple inspection seems to indicate utility in the neighbor matrix as
a topological discriminator where other invariants fail, even before more detailed
analysis.
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In linear algebra, we use norms to determine the “size” of a matrix. As
we see in Table 3, the Frobenius norm is unique for each graph present, even
those for which multiple measures are the same or even undefined. This unique-
ness provides the foundation for future work that uses the norm to calculate a
graph comparison metric that is potentially more topologically insightful than
measures currently in use.

Graph Description Graph Description
B7,7 2 x K7 connected by P7 W1,20 wheel on 21 vertices
K1,15 star on 16 vertices P16 path on 16 vertices
W1,31 wheel on 32 vertices B10,12 2 x K10 connected by P12

K32 complete graph on 32 vertices K16,16 32-vertex complete bipartite
CL32 circular ladder on 32 vertices C32 cycle on 32 vertices
H32 hypercube on 32 vertices L21,11 K21 connected to P11

P32 path on 32 vertices K1,31 star on 32 vertices

Table 2: Graphs Analyzed

Graph AVG
Dis-
tance

AVG
Cluster
Coeff

Pearson
Correl
Coeff

s-metric
(Norm’d)

dimension
(Xdist−k)

Xdist−k

Frobenius
Norm

B7,7 5.0 0.640 0.719 0.981 21 x 10 43.36
W1,20 1.81 0.640 -0.333 0.323 21 x 2 79.75
K1,15 1.875 0 -1 0.133 16 x 2 56.39
P16 5.330 0 -0.077 0.981 15 x 14 17.55
W1,31 1.875 0.648 -0.333 0.207 32 x 2 159.8
B10,12 7.323 0.613 0.866 0.990 32 x 15 77.05
K32 1.0 1.0 * 1 32 x 1 175.4
K16,16 1.484 0 * 1 32 x 2 124.1
CL32 4.645 0 * 1 32 x 9 60.66
C32 8.258 0 * 1 32 x 16 44.18
H32 2.581 0 * 1 32 x 5 89.62
L21,11 4.105 0.653 0.942 0.998 32 x 12 116.0
P32 11.0 0 -0.033 0.992 32 x 31 38.37
K1,31 1.94 0 -1 0.064 32 x 2 170.0

Table 3: Graph Comparison Metrics

*The Pearson correlation coefficient is undefined in regular graphs because the
denominator of the calculation is a variance of zero.
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6.2 Application 2: Identification of Topologically Influen-
tial Vertices

Analysis using the topological information stored in the newly-developed neigh-
bor matrix can rank the vertices in a graph based upon the structural impor-
tance of that vertex. If the removal of vertex vi results in a relatively large
change to the distance distributions in a graph, we may assert vi is structurally
important to the graph. Relatively small change to the distances in a graph
upon vertex removal indicates less structural importance. There are other mea-
sures of topological importance currently in use—the centralities described in
Section 2; however, these measures do not directly address how vertices impact
the distance between vertices in a graph.

This information can be leveraged towards recommendations for network
attack and defense. In the attack, the attacker would choose to interdict the
vertex or vertices that cause the greatest structural change. On the defense, the
defender would choose to protect or “harden” those nodes that cause greatest
structural change in the network.

7 Conclusion
This work introduced and explored the neighbor matrix as an algebraic structure
that contains significant graph descriptive and topological information. We
proved this topological richness by proving the presence of 11 graph invariants
in the neighbor matrix and relating the neighbor matrix to graph orbits. Though
it does not inform isomorphism in arbitrary graphs, the neighbor matrix does
provide a technique to verify the non-ismorphism of two graphs. The neighbor
matrix has the potential to enable greater understanding of “graph space,” as it is
simultaneously more compact and richer in information than current structures
used in graph exploration. For example, the degree sequence has long been
used as a foundational element for the exploration of families of graphs. Since
the neighbor matrix extends the degree sequence through all the distances that
comprise the graph, it promises to enhance our current capability to model,
analyze, and understand graphs in all distance dimensions. Further exploration
is warranted into how we may use the neighbor matrix to further refine models
that use the degree sequence as an input, such as the configuration model of
graph generation. We proved the neighbor matrix to contain eleven of the most
commonly used invariants used to describe graphs. Future work will leverage
this topological richness toward generating insights into graph comparison and
further, toward informing the identification of vertices whose influence on graph
topology is significant. The neighbor matrix is a mathematically-manipulable
structure that may move us toward a single characterization of certain classes
of graphs, such as is found in the idea of a “graph signature” [2, 12]. Finally, as
the neighbor matrix presents the sequences of all distances which manifest in a
graph, it may provide a tool to verify the unigraphicality of certain classes of
graphs.
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