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Ocean Plume Tracking with Unmanned Surface Vessels: Algorithms
and Experiments

Muhammad Fahad1, Yi Guo1, Brian Bingham2, Kristopher Krasnosky3, Laura Fitzpatrick3,

and Fernando A. Sanabria3

Abstract— Pollution plume monitoring using autonomous ve-
hicles is important due to the adverse effect of pollution plumes
on the environment and associated monetary losses. Using
the advection-diffusion plume dispersion model, we present a
control law design to track dynamic concentration level curves.
We also present a gradient and divergence estimation method
to enable this control law from concentration measurement
only. We then present the field testing results of the control
law to track concentration level curves in a plume generated
using Rhodamine dye as a pollution surrogate in a near-shore
marine environment. These plumes are then autonomously
tracked using an unmanned surface vessel equipped with
fluorometer sensors. Field experimental results are shown to
evaluate the performance of the controller, and complexities
of field experiments in real-world marine environments are
discussed in the paper.

I. INTRODUCTION

Pollution plumes not only cause short-term and long-term

damage to the environment but also have adverse societal

impacts that manifest as economic loss and health impacts

for people living in the affected area. These effects are

most clearly observable for oil plumes after oil spills in

marine environments [1]. Tracking pollution plumes has

historically relied on plume trajectory models and remote

sensing platforms. Both these methods are limited in ef-

fectiveness [2]. Modeling techniques require very accurate

environmental data and leak source parameters. On the other

hand, remote sensing solutions are expensive and limited by

weather conditions, and can only track surface plumes. With

the development of long endurance autonomous unmanned

vessels (AUV), using these to track the spatial extent of

pollution is an appealing solution that resolves some of these

problems.

Using robots for environmental monitoring has previously

been studied mainly for source seeking, where robots are

employed for locating the source of a chemical plume in

both aerial and marine domains. A thorough review of

existing work in these domains was provided by Dunbabin
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and Marques in [3], which classifies existing techniques into

gradient based, biologically inspired, and stochastic search

methods. Another review by Ishida et. al. [4] summarizes the

use of robotic platforms for monitoring chemicals introduced

in a fluid medium. Field experiment results for chemical

source seeking have been presented in [5], [6], and plume

mapping experiments have been presented in [7], [8].

Level curve tracking is related to research directions of

gradient climbing [9], [10], estimating environmental bound-

aries [11], [12], perimeter patrolling [13], [15], and sample

coverage of a large area [8], [16]. Zhang and Leonard in

[10] presented a method to track static level curves using

a gradient based approach, where gradient information was

used to minimize the square error between the robot location

and the location of the level curve. Hseih et. al. in [12]

developed a boundary tracking algorithm that uses simple

circular motion as a building block for a composite path that

eventually travels the entire boundary of the region. Clark

and Fierro in [13] presented a biological behavior mimicking

system to patrol both static and dynamic environmental

perimeters. Persistent ocean monitoring experiments were

presented in [16], where underwater gliders swept to perform

sample coverage of an area using lawn mower paths to

study ocean phenomenon of the occurrence and life cycle of

harmful algal blooms. However, most algorithm categories

consider static level curves that are temporally non-evolving

with a few exceptions [13].

While previous studies demonstrate either sources seeking

strategies or plume mapping by exhaustive search methods,

our approach addresses the problem of tracking dynamic

level curves. Level curve tracking has recently received

increased research attention. In this work, we study control

based methods for dynamic level curve tracking based on

an advection-diffusion pollution dispersion model. We also

address the problem of concentration gradient and diver-

gence estimation from point measurements. We present an

estimation method of these quantities using available point

concentration measurements, and then test the performance

of the tracking control algorithms in real field experiments

using an unmanned surface vessel (USV) and Rhodamine

dye plumes.

II. THE MODEL AND PROBLEM STATEMENT

In this section we first present the kinematic model of the

USV used in this work. We then provide the details of the

pollutant plume propagation model and followed by a formal

description of the control objective.
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A. Vessel Model

The kinematic model of the USV used in these experi-

ments is described by

ẋ = νr cos θr,

ẏ = νr sin θr, (1)

θ̇r = ωr,

where xr = [x, y]T represents the USV location, θr is

the USV orientation and νr, ωr are the translational and

rotational velocities, respectively. We define a new variable

z as z = [z1, z2]
T = [x + l0 cosφ, y + l0 sinφ]

T where l0
is a positive constant. Then (1) can be re-written as a single

integrator model

ż = ur, (2)

where the new control input ur = [u1, u2]
T is defined as

ur =

[
cos θr −l0 sin θr
sin θr l0 cos θr

]
·
[

νr
ωr

]
�
= C ·

[
νr
ωr

]
. (3)

Note that C is invertible, and its inverse is given by

D=

[
cos θr sin θr
− sin θr

l0
− cos θr

l0

]
. In the USV control design, we

first design the control input ur for the integrator model in

(3), and then the original vehicle input νr, ωr can be obtained

by the inverse operation of (3).

B. Plume Propagation Model

The spatiotemporal growth of the plume can be modeled

by two mechanisms, advection and diffusion. Advection is

the spread of the plume due to flow of the fluid, and diffusion

is its spread due to its motion from higher concentration to

lower concentration. The partial differential equation describ-

ing this spread in two dimensions can be written as

∂c(x, t)

∂t
+ vT (x, t)∇c(x, t) = k∇2c(x, t), (4)

where c(x, t) is the concentration at spatial location x,

v(x, t) is the fluid flow field vector, ∇c(x, t) = ∂c(x,t)
∂x

is the spatial gradient of c(x, t), ∇2c(x, t) = ∂2c(x,t)
∂x2 +

∂2c(x,t)
∂y2 is the divergence of c(x, t) in two dimensional space

x = [x, y]T , k is the turbulent diffusion coefficient. The

concentration field in (4) is a time varying quantity.

A set of spatial locations, that have the same concentration

value c(x, t) = c0 (here c0 > 0 is the monitored concentra-

tion) is defined as a level curve in this concentration field.

This set of spatial locations can be formally defined as the

concentration level set: {x ∈ R2,c(x, t) = c0}.

C. Problem Statement

To monitor the pollutant plume described in (4) using

a USV, we assume that the USV has on-board sensors

including: 1) localization sensors to obtain its position xr

and heading θr, 2) concentration measurement sensors to

measure the plume concentration cr at the robot position

xr, and 3) acoustic Doppler current profilers to measure

the flow velocity vr at the robot position xr. The control

objective is to drive the USV along the concentration level

curve. In addition, we add a second control objective to patrol

along the level curve with a desired speed vd. The control

objectives are formally stated as follows.

Problem 1: For the USV modeled by (1), design a control

law to drive the USV to track the concentration level curve

{x ∈ R2,c(x, t) = c0}, and patrol along it with a desired

speed vd.

III. THE CONTROL ALGORITHM AND GRADIENT

ESTIMATION

In this section we present the design of the control law

to solve the plume monitoring problem stated in Problem 1.

This control law is inspired by the plume front monitoring

controller described in our previous work [15], but we

remove the assumption that the gradient information is

available for controller use.

A. Control Algorithm

The level curve tracking task can be divided into two

parts. First the estimation part estimates the location of the

level curve. The second part is the tracking control part,

which drives the USV to the estimated level curve. Let x
represent the location of the level concentration curve with

concentration c0 at time t. The estimator estimates x̂, the

location of this level concentration curve. The estimator

is designed to enable the convergence of x̂ to x, i.e., the

estimation error e = x-x̂ converges to zero.

The controller design follows the method proposed in [15].

Considering the level concentration curve, c(x, t) = c0, and

using the derivative of the concentration curve and the model

presented in (4), the plume front dynamics can be written as,

ẋT∇c = −vx
T∇c− k∇2c (5)

where vx=v(x, t), ∇c = ∇c(x, t), and ∇2c = ∇2c(x, t).
The time t has been dropped in (5) and in the subsequent

discussion without causing confusion. Since the USV is

required to patrol along the concentration curve with velocity

vd, additional behavior constraint can be described as

(A∇c)T

‖∇c‖ ẋ = vd, (6)

where A =

[
0 −1
1 0

]
is an orthogonal rotation matrix. The

estimated level curve location can now be calculated as

ẋ = − (vx
T∇c− k∇2c)∇c

‖∇c‖2 +
(vdA∇c)

‖∇c‖ . (7)

The measurement at the observed level curve location x̂,

using the USV local measurement and first order Taylor

series expansion, can be given by

cx̂ = ∇T cr(x̂− xr) + cr, (8)

where xr is the USV location, cr = c(xr, t), cx̂ = c(x̂, t) and

∇cr = ∇c(xr, t).
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Using (7) and (8), the following Luenberger state observer

[17] can be used:

˙̂x = − (vx̂
T∇cx̂ + k∇2cx̂)∇cx̂

‖∇cx̂‖2 +
vdA∇cx̂
‖A∇cx̂‖

−k1∇cx̂
(∇T cx̂(x̂− xr) + cr − c0

)
, (9)

where k1 > 0 is a coefficient, vx̂ = v(x̂, t), ∇cx̂ = ∇c(x̂, t)
and ∇2cx̂ = ∇2c(x̂, t). Since the quantities are immeasur-

able at x̂, we simply replace these with the corresponding

quantities at the USV location xr and rewrite the equation

as

˙̂x = − (vr
T∇cr + k∇2cr)∇cr

‖∇cr‖2 +
vdA∇cr
‖A∇cr‖

−k1∇cr
(∇T cr(x̂− xr) + cr − c0

)
, (10)

where vr = v(xr, t), ∇cr = ∇c(xr, t) and ∇2cr =

∇2c(xr, t).
The control input ur for the USV to track the estimated

plume front x̂ is designed as follows:

ur = − (vr
T∇cr + k∇2cr)∇cr

‖∇cr‖2 +
vdA∇cr
‖A∇cr‖ − k1∇cr

·(∇T cr(x̂− xr) + cr − c0
)− k2(xr − x̂), (11)

where k, k1, k2 are positive constants representing the

diffusion coefficient, gradient gain, and tracking gain, respec-

tively. Following the same convergence analysis as shown

in [15], it can be proved that this controller makes the

estimation error e = x-x̂ go to zero as time elapses. Note

that this controller makes the USV reach the concentration

level curve and patrol along the level curve in a counter-

clock direction (due to the second term in (10)), thus solve

Problem 1 defined in Section II.

Since the sensors installed on the USV are point sensors

and can only measure the concentration value at one point,

the concentration gradient ∇cr and divergence ∇2cr are not

directly available.

B. Gradient Estimation

Fig. 1: Sensor configuration for the USV. xS1, xS2, xS3

and xS4 denote the location of the four sensors on the USV,

marked by the red circles. The USV center is denoted by xr.

The gradient ∇cr and divergence ∇2cr at the USV lo-

cation xr is needed to generate the control input in (11).

The sensors installed on the USV are point sensors, and can

only measure concentration levels at one spatial location.

Therefore ∇cr, and ∇2cr must be estimated from these point

measurements. The estimation method for ∇cr and ∇2cr is

discussed in this section. The sensor locations configured

on the USV are shown in Fig. 1. Let xSi represent the

location of the i-th sensor, i=1,2,3,4, on the USV. Given

that the sensors are sufficiently close to the USV center

xr, the concentration c(xSi) at the sensor location can be

approximated by a second-order Taylor approximation, i.e.,

c(xSi) ≈ cr + (xSi − xr)
T∇cr

+ 0.5(xSi − xr)
TH(xSi − xr), (12)

for i ∈ {1, 2, 3, 4}, where H is the Hessian matrix. For

the matrix H , the notation h is used to represent a column

vector defined by rearranging the elements of H as h=
[H11, H12, H21, H22]

T . The gradient and divergence estima-

tion using these equations are given by [18] as γ = B+y,
where B+ is the Moore-Penrose pseudoinverse of B defined

as B+ = BT (BBT )−1, and

γ = [∇T c(xr), hT ]T ,

y =

⎡
⎢⎢⎣

c(xS1)− ĉr
c(xS2)− ĉr
c(xS3)− ĉr
c(xS4)− ĉr

⎤
⎥⎥⎦ , (13)

B =

⎡
⎢⎢⎣

(xS1 − xr)
T

(xS2 − xr)
T E

(xS3 − xr)
T

(xS4 − xr)
T

⎤
⎥⎥⎦ (14)

with xr = 0.25
∑4

i=1 xSi, ĉr = 0.25
∑4

i=1 c(xSi), and

E = 0.5

⎡
⎢⎢⎢⎢⎣

−−−−−−−−−−−−−−−−−→
(xS1 − xr)(xS1 − xr)

T

−−−−−−−−−−−−−−−−−→
(xS2 − xr)(xS2 − xr)

T

−−−−−−−−−−−−−−−−−→
(xS3 − xr)(xS3 − xr)

T

−−−−−−−−−−−−−−−−−→
(xS4 − xr)(xS4 − xr)

T

⎤
⎥⎥⎥⎥⎦ .

Hence, the estimates ĉr, ∇̂cr and ∇̂2cr can be obtained

as

ĉr = 0.25

4∑
i=1

c(xSi),

∇̂cr =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
γ,

∇̂2cr =
[
0 0 1 0 0 1

]
γ.

IV. FIELD EXPERIMENTS

In this section, we present the setup used to perform the

experiments and the results of these experiments followed

by a discussion.

3

Authorized licensed use limited to: NPS Dudley Knox Library. Downloaded on August 10,2020 at 21:43:35 UTC from IEEE Xplore.  Restrictions apply. 



Shore

Station

Fig. 2: Field Experiment Site at Makai Research Pier Oahu,

Hawaii. The ellipse marks the approximate source location

during different experiments and red rectangle marks the

testing arena.

A. Experiment Setup

The experiments were carried out at the Makai Research

Pier in August 2015. The testing site was chosen due to

its relatively calmer ocean conditions. The testing site is

sheltered by a pier and breakwater on two sides, the shore on

one side and the fourth side is open to the sea. The detailed

testing site geography is shown in Fig. 2. These conditions

provided relatively calmer near shore ocean conditions for

testing. The ocean floor at the site is relatively flat and sandy.

The average depth of the sea floor here is approximately

4 m [19]. The experiments were conducted in an arena

approximately marked by the red boundary in Fig. 2. The

approximate location of the plume source is also marked

by an ellipse in this figure. An inflatable raft with plume

generating equipment was used as the plume source. The raft

had a constant flow rate pump onboard that dosed Rhodamine

dye into the ocean to generate the plume. Rhodamine dye is

a harmless substance, disperses over time and was used as a

surrogate to generate plumes during these experiments. The

Fig. 3: Unmanned surface vessel (USV) developed by Field

Robotics Lab at University of Hawaii. The pink color seen

around the USV is Rhodamine dye.

USV platform used in this work was originally developed at

the University of Hawaii for port and harbor security appli-

cations [20]. The original vessel was modified to improve

the design and to include additional sensors required for

the current experiments. This is a twin-hull catamaran type

vessels, equipped with dual starboard and port actuation. The

USV used in the experiments illustrated in Fig. 3, is 2 m

long, 1.5 m wide, weighs approximately 150 lbs and can

carry a payload of 180 lbs. It is capable of operating at 1 m/s

nominal speed, 2 m/s maximum speed, and can operate at

the nominal speed for 4 hrs on a single charge.

The fluorometer sensors were installed on the USV to

measure the concentration of the dye in the ocean. Cyclops 7

fluorometers by Turner Design were used for this purpose.

The USV was designed to support up to a maximum of four

sensors. The minimum detection threshold of this sensor is

0.01 ppb and its dynamic range is 0-10,000 ppb [21]. To

ensure accuracy of the measured concentration data from

the sensors, the fluorometers used in the experiments require

precise calibration in a laboratory setting before they can

be used in experiments. The calibration was performed by

mixing known Rhodamine dye concentration with known

quantity of sea water, creating a solution whose concentration

was known. The concentration of the resultant mixture was

measured with the fluorometers and calibration records were

prepared.

Each experiment was thus started with establishing the

expected direction of the plume growth. This was done by

releasing a small amount of dye in the ocean and observing

its advection direction. Once this was established, the plume

source was placed approximately in the oval area, highlighted

in Fig. 2, to ensure maximum plume growth in the designated

area, without interaction with the pier. The tests were con-

ducted using the USV configured to carry four fluorometer

sensors in the sensor configuration detailed in Fig. 1.

B. Experiment Results

Two different level concentration curves were tracked

during these tests, first case to track 50 ppb and second

case to track 40 ppb. The results for these different tracking

concentrations are detailed next.

1) Case 1: Tracking level concentration curve at 50 ppb
The first test was conducted with the tracked concentration

c0 set to 50 ppb. This was done to test the performance of

the controller to track a concentration value in the denser

section of the plume. The constants k, k1 and k2 in (11)

were set to 1.2, 5 and 11 respectively. The desired patrolling

speed vd was set to 1.5 m/s. The test was conducted for

60 secs. The USV stayed within the denser section of the

plume, generating a near circular trajectory.

The top pane in Fig. 4a-4d shows the snap shots of the

video recorded during the experiments. It shows the USV, the

plume and the approximate location of the x-axis with the

red line and y-axes with the blue line. The origin of the local

coordinate system is at the edge of the breakwater shown by

the intersection point of the two axes. The bottom pane of

each figure shows the visualization of the USV, the two axes

and plume visualization using the measured concentration

from the four sensors in Robot Operating System (ROS) rviz
visualization utility. The trajectory followed by the USV is

shown by the solid yellow line. The Fig. 4a-4d show the USV

following a near circular trajectory while tracking the level

curve. This circular motion is attributed to the term vdA∇cr
‖A∇cr‖

in (11), which makes the USV to patrol the level curve in

a counter-clock direction with velocity vd. The center of

the circular trajectory can be seen moving towards the y-

axis. This is due to the dynamic nature of the plume, as the
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(a) T = 0 secs (b) T = 20 secs (c) T = 40 secs (d) T = 60 secs

Fig. 4: Trajectory followed by the USV while tracking concentration c0 is set to 50 ppb. The top half of each figure shows

the snapshot of the experiments. The bottom half shows the visualization of the experiment in ROS rviz environment.

environmental conditions cause the plume to advect in that

direction. The movement of the USV inside the plume also

perturbs the plume due to the strong currents generated by

the USV actuators. This can be observed in the sequence of

these figures, where the plume is visibly changed within 60

secs, creating a patch of visibly lower concentration towards

the center of the plume.

The concentration measurements from each sensor on the

USV were recorded, in addition to other parameters of the

test. These time series of sensor concentration measurements

c(xSi) for i=1,2,3,4, ĉr are plotted in Fig. 5. The reference

line for tracked concentration c0 at 50 ppb is also shown in

Fig. 5. The estimated mean of the concentration ĉr is shown

by the black line shown in the figure. Significant inter-sensor

concentration difference can be seen in the Fig. 5, however,

the estimated mean concentration value is close to the tracked

concentration value c0 set at 50 ppb.

Fig. 5: Plot of time series of concentration measurement of

four sensors c(xSi), i=1,2,3,4, the mean of the concentration

ĉr, and the reference line at c0 = 50 ppb.

2) Case 2: Tracking level concentration curve at 40 ppb
The next test was conducted with c0 set to 40 ppb with

the same intention as the first test. The values for k, k1, k2
and vd are also the same as those set in Case-1. The top half

of Fig. 6a-6d shows the snapshots of the experiment video.

The approximate location of the two axes is also shown.

The trajectory followed by the USV is marked by a yellow

line and displayed in ROS rviz along with the measured

concentration cloud. In this case, the USV again stays within

the denser part of the plume towards the center and follows a

near circular trajectory as expected. The approximate center

of this circular trajectory can be seen advecting towards the

x-axis. This direction is different from the last case. We

observed during testing that the plume advection direction

varies due to changing currents in the testing arena which is

the cause of this shift. The perturbation caused by the motion

of the USV can also be clearly seen as visibly reduced

concentration in the top half of these sequence of figures.

This test was also conducted for 60 secs.

The concentration time series for c(xSi) for i=1,2,3,4

were recoded and plotted in Fig. 7, which also shows the

mean concentration ĉr in black color. The reference line

for tracked concentration c0 set at 40 ppb is shown in

red in this figure. The mean concentration ĉr follows the

tracked concentration c0, which demonstrates satisfactory

performance of the tracking controller.

C. Discussions

Although the field experimental results show that our

designed controller works in tracking concentration level

curves, there are complexities and limitations involved in the

testing of control laws in experimental plumes generated in

real marine environments. As we performed the experiments

in a near shore environment, the usable size of the testing

arena is only of the order 10s of meters. A plume of such a

size is relatively small and the concentration characteristics

may not represent a larger-scale pollution plume. We think

that the small size of the plume results in sharp changes

in concentration values and also high gradient values, even

over small distance. The concentration time series c(xSi)
measured by the fluorometer sensors during the plume con-

centration curve tracking experiments have been plotted in

Fig. 5 and 7. These time series show significant inter-sensor

difference in the measured concentration, even though sensor

separation is of the order of 2 m or less. This makes plume

monitoring more challenging, since even small movements

of the USV can cause large changes in the measured con-

centration, which in turn results in relatively big tracking

error. Also, the motion of the USV perturbs the plume. This

perturbation caused the plume to develop differently than the

ideal model presented in (4). Since the scale of the plume is

relatively small, the effect of this perturbation significantly

alters the plume structure. Moreover, the longer the USV

moves inside the plume, the more significant the effect of

this perturbation. This can be seen in Fig. 4 and 6, where

the shape of the plume is visibly changed within 60 secs of

the experiment. The circular motion of the USV generates
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(a) T = 0 secs (b) T = 20 secs (c) T = 40 secs (d) T = 60 secs

Fig. 6: Trajectory followed by the USV while tracking concentration c0 is set to 40 ppb. The top half of each figure shows

the snapshot of the experiments. The bottom half shows the visualization of the experiment in ROS rviz environment.

Fig. 7: Plot of time series of concentration measurement of

four sensors c(xSi), i=1,2,3,4, the mean of the concentration

ĉr, and the reference line at c0 = 40 ppb.

a region of low concentration at the center of the USV

trajectory. This further complicates the plume monitoring

experiments.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a a control design to track con-

centration level curves of a pollution plume dispersion using

a USV. The presented algorithms were tested in field ex-

periments using a USV monitoring Rhodamine dye plumes.

Two test cases are presented to demonstrate the performance

of the proposed control law. The controller performed rea-

sonably well despite the challenges presented in real field

experiments such as high concentration gradients and the

perturbations caused by the motion of the USV in the plume.

Videos of our experimental work can be found at our Vimeo

site1. Using the results gathered during these experiments,

we plan to develop a more robust, behavioral/gradient-based

hybrid controller for plume tracking, in oder to overcome

some of the shortcomings of the current controller design

and to improve the tracking performance.
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