
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2015

Composition of Behavior Models for Systems Architecture

Whitcomb, Clifford A.; Auguston, Mikhail; Giammarco, Kristin
John Wiley & Sons

Whitcomb, Clifford A., Mikhail Auguston, and Kristin Giammarco. "Composition of
Behavior Models for Systems Architecture." Modeling and Simulation Support for
System of Systems Engineering Applications (2015): 361-391.
http://hdl.handle.net/10945/59427

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Modeling and Simulation Support for System of Systems Engineering Applications, First Edition.
Edited by Larry B. Rainey and Andreas Tolk.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

361

Composition of Behavior
Models for Systems
Architecture
Clifford A. Whitcomb, Mikhail Auguston, and Kristin Giammarco
Naval Postgraduate School, Monterey, CA, USA

Chapter 14

14.1 INTRODUCTION

The specification of a system’s architecture has emerged in the last two decades as one
of the fundamental concepts in systems and software engineering. ISO (2011) defines
architecture as the “fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolution.”
The current interest in understanding architecture and applying the methods across new
disciplines as a basis for systems design and evaluation can be tied to recent systems
failures and the fact that many can be traced to problems in their early stage definition
(Maier and Rechtin, 2000). Architecture development methods have been used for many
complex situations, even when the designers were not aware that this was the case.
“Architectural methods, similar to those formulated centuries before in civil works, were
being used, albeit unknowingly, to create and build complex aerospace, electronic, soft-
ware, command, control, and manufacturing systems” (Maier and Rechtin, 2000). Indeed,
the concept of developing architecture is very old, predating engineering, and continues
to this day. “Architecting, the planning and building of structures, is as old as human
societies—and as modern as the exploration of the solar system” (Rechtin, 1991).
Architecture provides structure for stakeholders of a system of interest to express their

362 Theoretical and Methodological Considerations with Applications and Lessons Learned

respective needs and wants and plays a role as the bridge between those needs, require-
ments, and implementation of a system. Decisions made at the architecture level during
the earliest conceptual stages propagate through to detail design and then beyond into the
implementation and operation. Errors exposed during conceptual architecture develop-
ment and design can be corrected less expensively using models than those discovered
during later life cycle phases of testing and implementation. Earlier discovery of design
problems, especially those related to stakeholder needs and engineering feasibility, is the
motivation behind a new approach to formal systems and software architecture specifica-
tion presented in this chapter.

Consider this definition of a system of systems (SoS): “a set or arrangement of systems
that results when independent and task-oriented systems are integrated into a larger
systems construct, that delivers unique capabilities and functions in support of missions
that cannot be achieved by individual systems alone” (Vaneman and Jaskot, 2013, boldface
added by author). For our SoS modeling approaches to support independent systems
behavior models and their subsequent integration, they must address each system and
the systems interactions as separate concerns. Separation of concerns is a design principle
adopted by the software engineering and computer science communities to write highly
cohesive software modules such that each module is associated with exactly one main
function and to reduce unnecessary coupling among modules within a software program,
such that a given module needs to access only a minimum of other modules to perform its
functions. Just as programmers use this principle to keep their code organized and main-
tainable, systems and SoS engineers may use this concept in structuring their systems
behavior models.

The modeling community uses many terms to describe the physical manifestation of
natural and technological objects. Among these terms are system, SoS, object, component,
performer, actor, asset, participant, and so on. These natural language terms may take on
different meanings in different communities who adapt a term for their use. For simplicity,
and to amplify the hierarchical nature of physical entities, the term component is pri-
marily used throughout the remainder of this chapter, with a few exceptions where it is
necessary to make a particular point about a component being a part of a larger system.
When the term component is used, this is a reference to any type of physical entity at any
level of abstraction, from an SoS to a configuration item, from the universe to a subatomic
particle, from a human person to human-created technology, from a concept to a creation,
and from hardware to software to organization. In other words, a component can be any-
thing that exhibits behavior. If another term that fits this description is preferred, the reader
is encouraged to make the substitution, since the hierarchical nature of these behavior-
exhibiting building blocks is more important than the label given to the building blocks.

The new behavior-modeling approach, called Monterey Phoenix (MP), is predicated
on the following foundational premises:

A component’s behavior is central to stakeholder satisfaction. Behavior is the way
in which a component acts on its own and responds to stimuli. For human-designed
components, predicting functional and dysfunctional behavior during the design
stage reduces the risk of stakeholder dissatisfaction and lack of engineering feasi-
bility during the component’s operation. Modeling the behavior of components
of complex natural and technological systems increases human understanding of
overall systems behavior.

Composition of Behavior Models for Systems Architecture 363

Modeling a component in the context of its environment is necessary, but not
sufficient, for predicting the full range of component behaviors before physical
implementation. Modeling the behavior of each interacting component rather
than just one component’s interactions with external components has the poten-
tial to expose many more design flaws and tacit assumptions pertaining to the
component operation in a larger construct.

Describing component interactions at a high level of abstraction, orthogonal to
descriptions of component behavior, enables automatic solving for distinct instances
of behaviors (scenarios, use cases) from an exhaustive superset of possible behaviors
and early testing of systems behavior against stakeholder expectations/requirements
using scenario inspection and assertion checking. The assumption related to an
“exhaustive superset” is supported up to the scope limit. This concept is addressed
in more detail later in the chapter.

14.2 COMMON CHARACTERISTICS FOR
ARCHITECTURE DESCRIPTIONS

Architecture is concerned with the selection of architectural elements, their interactions,
and the constraints on those elements and their interactions necessary to satisfy the
requirements and serve as a basis for the design (Perry and Wolf, 1992). An architecture
description has converged on the concept of architectural elements, such as component,
connector, and relationships among them. “When designers discuss or present a software
architecture for a specific system, they typically treat the system as a collection of interact-
ing components. Components define the primary computations of the application. The
interactions or connections between components define the ways in which the components
communicate or otherwise interact with each other” (Abowd et al., 1995). A conclusion in
Rozanski and Woods (2012) states: “Every system has an architecture, whether or not it is
documented and understood.”

The following aspects have emerged as characteristic for architecture descriptions
(Perry and Wolf, 1992; Bass et al., 2003):

An architecture description belongs to a high level of abstraction, ignoring many
of the implementation details, such as algorithms and data structures.

An architecture specification should be supportive for the refinement process and
needs to be checked carefully at each refinement step (preferably with tools).

There should be flexible and expressive composition operations for the refinement
process.

The architecture specification should support the reuse of well-known architectural
styles and patterns. Practice has provided several well-established, reusable archi-
tectural solutions.

An architecture of a system should be considered in the context of the environ-
ment in which it operates, as suggested in the international standard ISO/IEC
IEEE 42010 “Systems and Software Engineering Architecture Description”
(ISO, 2011).

364 Theoretical and Methodological Considerations with Applications and Lessons Learned

The software architect needs a number of different views of the software architecture
for the various uses and users (Kruchten, 1995) (including visual representations,
like diagrams).

MP utilizes these characteristics and complements existing languages and notations by
extending them to include an abstract interaction specification capability.

14.3 RELATED WORK

The following ideas of behavior modeling and formalization have provided inspiration
and insights for the MP approach.

Literate programming introduced in Knuth (1984) set the directions for hierarchical
refinement of structure mapped into behavior, with the concept of pseudocode and tools
to support the refinement process.

Campbell and Habermann (1974) and Bruegge and Hibbard (1983) have demon-
strated the application of path expressions for program monitoring and debugging. Path
expressions in Perry and Wolf (1992) have been used (semiformally) as a part of software
architecture description.

Hoare’s Communicating Sequential Processes (CSP) (Hoare, 1985; Roscoe, 1997) is
a framework for process modeling and formal reasoning about those models. This behav-
ior-modeling approach has been applied to software architecture descriptions to specify a
connector’s protocol (Allen, 1997; Allen and Garlan, 1997; Pelliccione et al., 2009).

Rapide (Luckham and Vera, 1995; Luckham et al., 1995) uses events and partially
ordered sets of events (posets) to characterize component interaction.

Statecharts (Harel, 1987) became one of the most common behavior-modeling
frameworks, integrated in broader modeling and specification systems (Unified Modeling
Language (UML) (Booch et al., 2000) and AADL (Feiler et al., 2009)). UML has four
behavior diagrams: activity, sequence, state machine, and use case.

Wang and Parnas (1994) have proposed to use trace assertions to formally specify
the externally observable behavior of a software module and presented a trace simulator
to symbolically interpret the trace assertions and simulate the externally observable
behavior. The approach is based on algebraic specifications and term rewriting.

The Alloy modeling framework (Jackson, 2007) has strongly influenced this work
through ideas of integration of sets and first-order predicate logic within the relational logic
framework; inheritance structure; emphasis on lightweight formal methods as opposed to
the full-scale theorem proving, with the fundamental concept of small scope hypothesis;
and the principles of immediate feedback and visualization during model design.

The concept of software behavior models based on events and event traces was intro-
duced in Auguston (1991, 1995) and Auguston et al. (2002, 2006) as an approach to soft-
ware debugging and testing automation. The early draft of MP has appeared in Auguston
(2009a, b).

14.4 THE MP APPROACH TO BEHAVIOR MODELING

The behavior of the system is usually the main concern for the developer, and the presence
of unintended behaviors manifests errors in the design and ultimately the implementation
and operation of the system. Many detectable errors made early in the systems design go

Composition of Behavior Models for Systems Architecture 365

undetected until later in the development life cycle, when they are more expensive to fix.
For example, systems architects may be interested in detecting errors in a system’s inter-
action with the operational environment, for example, by querying a systems model to
find scenarios that contain potential hazard states. SoS architects are concerned with
detecting emergent behaviors resulting from the interactions of subsystems, some of
which may lead to undesirable behavior.

The considerations in Section 14.2 suggest the importance of architecture models
and the practical need to test and verify the systems architecture early in the design phase.
Behavior modeling is at the core of the MP systems and software architecture modeling
framework, which has the following main principles:

A view of the architecture as a high-level description of possible systems behaviors,
emphasizing the behavior of subsystems and interactions between subsystems.

The concurrency of actions is a default, unless ordering is imposed (thus representing
a design decision introducing a dependency between activities).

Specifying the interaction between the system and its environment is important.
A model of the system and its environment behaviors and interactions can be a
contribution to the system’s requirements specification.

The event grammar provides a view of the behavior as a set of actions (event trace)
with two basic relations, where the PRECEDES relation captures the dependency
abstraction, and the IN relation represents the hierarchical relationship. Since the
event trace is a set of events, additional constraints can be specified using set-
theoretical operations and predicate logic.

The behavior composition operations support architecture reuse and refinement
toward design and implementation models.

The MP architecture description is amenable to deriving different views, including
a structural view (traditional architecture box-and-arrow diagrams) or those desired
by the Department of Defense Architecture Framework (DoDAF) (DoD, 2009).

The executable architecture models provide the possibility to automatically generate
examples of behaviors (use cases) for early systems architecture testing and verifica-
tion with tools.

The main objective of the MP approach is to provide a formal framework for specifying
behaviors of the system, its parts and environment, and the interaction between them.
From a Systems Engineering point of view, the following two main principles of MP are
the key for complex system and SoS behavioral analysis:

In addition to modeling the behavior of the system along with its interfaces to external
systems, also model the behavior of the environment in which the system operates.

Model component interactions abstractly and separately, rather than instantiated in
specific use cases.

The MP approach provides extensions to current modeling notations to significantly
expand the coverage of the design space explored. MP does this by applying a separation
of concerns that has previously not been done in behavior modeling. Specifically, the MP
approach leverages the power of abstraction to model internal and external interactions
among components as a separate concern from the behavior of each component to extract
the overall possible behaviors of all components acting together. Separation of concerns

366 Theoretical and Methodological Considerations with Applications and Lessons Learned

is a design principle adopted by the software engineering and computer science commu-
nities that aids in the writing of highly cohesive software modules such that each module
is associated with exactly one main function and to reduce unnecessary coupling among
modules within a software program such that a given module needs to access only a
minimum of other modules to perform its functions. This same concept is accessible to
systems architects through MP to structure and organize systems behavior models, just
as programmers have used it to keep their code organized and maintainable. The parti-
tioning of component behavior models and the component interaction specification into
separate concerns enables the component behaviors and interactions to be woven together
during model execution, automatically generating use cases from the separate behavior
and interaction specifications.

MP models may be used for early design testing and verification, for early perfor-
mance and safety assessment estimates, and for generating examples of scenarios (use
cases), which in turn can be used to support test case construction and monitor for systems
implementation testing. MP architecture models can be integrated into standard frame-
works, like UML, Systems Modeling Language (SysML), and DoDAF, providing the
level of abstraction convenient for architecture models with the emphasis on behavior and
interaction aspects (see Example 14.7 in Section 14.5 for more details).

14.5 MODELING COMPONENT BEHAVIOR

In a certain sense, an executable architecture model is a compact description for a set of
required behaviors. The architecture model—a finite object by itself—may specify a poten-
tially infinite number of execution paths. Computers are used to solve problems usually by
finding an algorithm that describes these possible execution paths and mapping it on the
appropriate computational platform, that is, by applying a step-by-step procedure to design
a behavior to solve the problem at hand. A component operates in a certain environment,
which has its own behavior that interacts with the system and causes systems responses. In
the MP approach, behavior of the environment in which a component operates is described
in addition to the system itself to increase the likelihood of predicting these responses.

The behavior of a system of components is defined in MP as a set of events (event trace)
with two basic relations: precedence and inclusion. The structure of an event trace is speci-
fied using event grammars and other constraints organized into schemas. Behaviors for both
system and its environment are specified within the same framework. Suggested composi-
tion operations on schemas are based on event pattern matching and provide for behavior
merging and abstract interface specification. The schema framework is amenable to stepwise
refinement, reuse, visualization of multiple architecture views, and application of automated
tools for consistency checks and systems behavior verification early in the design process.

14.5.1 Event Concept

The MP behavior model is based on the concept of an event as an abstraction of activity.
The event has a beginning and an end and may have duration (a time interval during
which the action is accomplished). The behavior of a system is modeled as a set of events
with two binary relations defined for them: precedence (PRECEDES) and inclusion

Composition of Behavior Models for Systems Architecture 367

(IN)—the event trace. One action is required to precede another if there is a dependency
between them, for example, the send event should precede the receive event. Events may
be nested, when a complex activity contains a set of other activities. Imposing one of these
basic relations on a pair of activities represents an important design decision. Usually,
systems behavior does not require a total ordering of events. Both PRECEDES and IN
are partial ordering relations. If two events are not ordered, they may occur concurrently.
Appendix 1 in Auguston and Whitcomb (2012) provides more details specifying the
properties of the basic relations.

14.5.2 Event Grammar

MP uses an event grammar that allows for the compact specification of behavior for
each component. Events are abstractions of activities that may be experienced from
the perspective of system or its environment. Data inputs and outputs are not mod-
eled in a separate class as in an Enhanced Functional Flow Block Diagram (EFFBD)
and other data flow-oriented notations, but are represented by actions (events) that
may be performed on that data, following the concept of abstract data types (ADT)
introduced in Liskov and Zilles (1974). Behavior is modeled in MP as an algorithm
for each component, describing the step-by-step procedure by which it achieves a
well-defined goal.

Events have two main binary relations used to construct event traces, or particu-
lar instances of behavior. Sequencing of events is denoted using the PRECEDES rela-
tion, and decomposition of events is denoted using the IN relation. An event grammar
rule specifies structure for a particular event type in terms of these two relations and
has the form

A: right-hand-part;

where A is an event type name. Event types that do not appear in the left-hand part of
rules are considered atomic and may be refined later by adding corresponding rules.
More details about event grammar notation can be found in Auguston (2009a). For
brevity, this chapter only describes the composition operations that appear in the exam-
ple models.

Events are composed to describe possible event traces using composition opera-
tions in the right-hand part of the event grammar rule. The composition operations
comprise an algorithm for each root event. Behavior is described using composition
operations such as ordered sequence of events A B C; alternative (A | B | C); ordered
iteration (* A B C *) (A B C repeated zero or more times); (+A B C +) (one or more
times); optional event [A]; {A, B, C}, set of unordered (potentially concurrent) events;
{* A *}, set of zero or more of unordered events A; and {+A +}, set of one or more of
unordered events. An event grammar, as in Example 14.1, is essentially a graph gram-
mar, which specifies directed acyclic graphs of events with the arcs representing rela-
tions IN and PRECEDES.

Similar to context-free grammars, event grammars can be used as production gram-
mars to generate instances of event traces, as in Example 1.

368 Theoretical and Methodological Considerations with Applications and Lessons Learned

Example 14.1 An event grammar for car race scenarios.

car_race: {+ driving_a_car +};
driving_a_car: go_straight (* (go_straight |
turn_left | turn_right) *) stop;
go_straight: (accelerate | decelerate | cruise);

An instance of an event trace satisfying the grammar can be visualized as a directed graph
with two types of edges (one for each of the basic relations) (Figure 14.1).

14.6 MODELING COMPONENT INTERACTION
AND ARCHITECTURE VIEWS

The behavior of a particular system is specified as a set of all possible event traces using
a schema. The concept of the MP schema has been inspired by the Z schema (Spivey,
1989). The purpose is to define the structure of all possible event traces (in terms of IN
and PRECEDES relations) using event grammar rules and other constraints. A schema
usually contains a collection of events called roots representing the behaviors of parts
of the system (e.g., components and connectors in common architecture descriptions),
composition operations specifying interactions between these behaviors, and additional
constraints on root behaviors.

There is precisely one instance of each root event in any trace. The schema also may
contain auxiliary grammar rules defining composite event types used in other rules. Roots
in turn may be defined as schemas, thus providing for architecture reuse and composition.
A schema may define both finite and infinite traces, but most analysis tools for reasoning
about a system’s behavior assume that a trace is finite.

The schema represents instances of behavior (event traces), in the same sense as
Java source code represents instances of program execution. Just as a particular program

Car_race

Driving_a_car

Go_straight Go_straight

Accelerate

StopTurn-right

Cruise

Driving_a_car

Go_straight

Accelerate

Stop

Figure 14.1 An event trace derived from the event grammar in Example 14.1.

Composition of Behavior Models for Systems Architecture 369

execution path can be extracted from a Java program’s source code by running it on a
Java virtual machine (JVM), a particular event trace specified by an MP schema can be
generated from the event grammar rules by applying behavior composition operations
and constraints.

In addition to describing specific systems behavior, MP can also be used to describe
behavior patterns. In order to establish coordination between sending and receiving mes-
sages, we use the behavior composition operation COORDINATE. In Example 14.2,
the composition operation takes two traces and defines a modified event trace (merges
behaviors of Task_A and Task_B) by adding the PRECEDES relation between the
selected send and receive.

Example 14.2 A simple pipe/filter architecture pattern.

SCHEMA simple_message_flow
ROOT Task_A: (* send *);
ROOT Task_B: (* receive *);
COORDINATE (* $x: send *) FROM Task_A,
 (* $y: receive *) FROM Task_B ADD $x PRECEDES $y;

The first part of composition operation (the source) uses event patterns to specify segments
of root traces that should be selected. The (* $x: send *) pattern identifies the sequence of
totally ordered send events (with respect to the transitive closure of PRECEDES relation—
PRECEDES*). Use of the (* P *) pattern for selection means that all events P in the source
root should be ordered, both iterations should have the same number of selected elements
(send events from the first trace and receive events from the second), and the pair selection
follows this ordering (synchronous coordination). Labels $x and $y provide access to
the events selected within each iteration. The ADD composition completes the behavior
adjustment, specifying that an ordering relation will be imposed on each pair of selected
events. Behavior specified by this schema is a set of matching event traces for Task_A and
Task_B with the modifications imposed by the composition.

The composition operation may be considered as an abstract interaction description
for root behaviors. In the case when asynchronous coordination is needed, an iterative
set pattern can be used. For example,

COORDINATE {* $x: E1 *} FROM A, {* $y: E2 *} FROM B ADD
$x PRECEDES $y;

In this case, matching root traces for A and B still should contain an equal number
of selected events of types E1 and E2, correspondingly. But now the resulting merged
traces will include all permutations of events E2 from B matching events E1 from A,
with the PRECEDES relation imposed on each selected pair. This assumes that other
constraints, like the partial ordering axioms from Appendix 1 in Auguston and Whitcomb
(2012), are satisfied. Each permutation yields one potential instance of a resulting trace
for the schema deploying this composition. In order to reduce the exponential explo-
sion, optimizations similar to symmetry reduction in model checking tools should be
considered. Changing (* … *) for {* … *} in Example 14.2 may increase the number
of composed traces in the schema.

370 Theoretical and Methodological Considerations with Applications and Lessons Learned

Different views for different stakeholders can be extracted from MP schemas. For
example, each root may be visualized as a box (Figure 14.2), and if there is a composition
operation specifying an interaction between root behaviors, the boxes are connected by an
arrow marked by the interaction type. The root behavior may be visualized with UML
activity diagrams (Booch et al., 2000) (see Figure 14.6). The MP developer’s environment
may have a library of predefined views providing different visualizations for schemas.

Data items in MP are represented by actions (events) that may be performed on that
data. This principle follows the ADT concept introduced in Liskov and Zilles (1974), as
in Example 14.3.

Example 14.3 Data flow.

SCHEMA Data_flow
ROOT Process_1: (* work write *);
ROOT Process_2: (* (read | work) *);
ROOT File: (* write *) (* read *);
Process_1, File SHARE ALL write;
Process_2, File SHARE ALL read;

Behavior of the file requires that all write operations should be completed before any
read operations. The view of this schema in Figure 14.3b renders root interaction with a
line where the shared event name is attached as a label.

Receive Receive Receive

SendSendSend

Task A

Task A

Task_A

(b)

(a)

Task_B

Send > > receive

Figure 14.2 An example of a composed event trace and corresponding architecture view for the simple_
message_flow schema. (a) The composed event trace for the simple_message_flow schema is labeled.
(b) The architecture view for the simple_message_flow schema is labeled.

Composition of Behavior Models for Systems Architecture 371

The schema in Example 14.4 specifies the behavior of a stack in terms of stack
primitive operations.

Example 14.4 Stack behavior.

SCHEMA Stack
ROOT Stack_operation: (* (push | pop) *);
SATISFIES FOREACH $x: pop FROM Stack_operation
 (Number_of (pop) before ($x) < Number_of (push)
before ($x));

Let IN* denote the transitive closure of the IN relation (similarly as PRECEDES* is a
transitive closure for PRECEDES). The domain of the universal quantifier is the set of
all pop events e such that (e IN* Stack_operation). The function Number_of (pop)
before ($x) yields the number of pop events e such that (e PRECEDES* $x). The set of
event traces specified by this schema contains only traces that satisfy the constraint. This
example presents a filtering operation as yet another kind of behavior composition.

The reuse of a schema is demonstrated through Example 14.5.

Example 14.5 Reuse of a schema.

SCHEMA Two_stacks_in_use
INCLUDE Stack;
ROOT Main: {* (do_something | use_S1 | use_S2) *};
 use_S1: (push | pop);
 use_S2: (push | pop);
ROOT S1: Stack;
ROOT S2: Stack;

Process_1

Work Work WorkRead

Read

File

Write Write

Write

Process_2

Process_1

(b)

(a)

File Process_2

Figure 14.3 An example of a composed event trace and corresponding architecture view for the Data_flow
schema. (a) The composed event trace for the Data_flow schema is labeled. (b) The architecture view for the
Data_flow schema is labeled.

372 Theoretical and Methodological Considerations with Applications and Lessons Learned

S1, Main SHARE ALL $x: (pop | push) SUCH THAT
Has_enclosing (use_S1)($x) WITHIN Main;
S2, Main SHARE ALL $x: (pop | push) SUCH THAT
Has_enclosing (use_S2)($x) WITHIN Main;

The INCLUDE statement brings the schema Stack into the scope. This means that all
constraints specified in the Stack also will be included. The rule for Main is intentionally
left lax without imposing any specific ordering on embedded activities. Roots S1 and S2
represent the presence of two independent stacks as data items. The ordering of pop and
push events inside use_S1 and use_S2 in each stack behavior is ensured and will be
brought into the resulting trace by the included Stack behaviors as a result of sharing
these events with the Stack behavior. The SHARE ALL composition operation uses
event patterns and context conditions to accomplish the necessary event trace construc-
tion. The predicate Has_enclosing(T)(e1) is true iff there exists an event e2 of the type T
in the trace specified by the WITHIN clause such that e1 IN* e2.

Predicates and functions like Has_enclosing(T)(e) and Number_of (T) before (e)
are used for convenient navigation in the event graphs.

Connectors and components, which are core elements in an architecture description,
can be uniformly modeled in MP as behaviors. The idea that connectors should be elevated
to the first-class-citizen status on a par with components is often discussed in the literature,
for example, in Taylor et al. (2010), as in Example 14.6.

Example 14.6 Connectors and components.
Suppose that the communication between the components is implemented via a buffer
of size max_buffer_size and not necessarily all sent messages are consumed, that is,
some of them could stay in the buffer indefinitely. Each message may be consumed no
more than once, and the ordering of receiving does not necessarily correspond to the
ordering of sending. The root Buffered_channel simulates the behavior of a connector
between Task_A and Task_B. This behavior model does not provide details about what
happens after a buffer overflow event:

CHEMA Buffered_transaction
ROOT Task_A:: (* Send *);
ROOT Task_B:: (* Receive *);
ROOT Buffered_channel: {* (Send [Receive]) *}
(Overflow | Normal);

Task_A, Buffered_channel SHARE ALL Send;
Task_B, Buffered_channel SHARE ALL Receive;
SATISFIES FOREACH $x: Receive FROM Buffered_channel
 (Number_of (Send) before ($x) - Number_of
(Receive) before ($x)) <= max_buffer_size;
SATISFIES FOREACH $x: Overflow FROM Buffered_channel
 (Number_of (Send) before ($x) - Number_of
(Receive) before ($x)) > max_buffer_size;
SATISFIES FOREACH $x: Normal FROM Buffered_channel
 (Number_of (Send) before ($x) - Number_of
(Receive) before ($x)) <= max_buffer_size;

Composition of Behavior Models for Systems Architecture 373

If the schema should satisfy only behaviors without buffer overflow, the three SATISFIES
conditions above can be replaced by the following constraint (and the Overflow event can
be removed from the schema):

SATISFIES FOREACH $x: Send FROM Buffered_channel
 Number_of ($y: Send) before ($x) SUCH THAT (¬
Has_next(Receive)($y)) < max_buffer_size;

Note that PRECEDES relation is defined explicitly either in the grammar rule or by
ADD composition operation and is a proper subset of its transitive closure PRECEDES*.
The predicate Has_next(T)(e1) is true iff there exists an event e2 of the type T in the trace
such that e1 PRECEDES e2 (Figure 14.4).

Example 14.7 demonstrates how to integrate the behavior of an environment with the
behavior of a system (Figures 14.5 and 14.6). The ATM_withdrawal schema specifies a set
of possible interactions between the Customer, ATM_system, and Data_Base. An event
trace generated from this schema can be considered as a use case example.

Example 14.7 Withdraw money from ATM.

SCHEMA ATM_withdrawal
ROOT Customer: (* insert_card
 ((identification_succeeds
 request_withdrawal
 (get_money | not_sufficient_funds)) |
 identification_fails) *);
ROOT ATM_system: (* read_card validate_id
 (id_successful check_balance
 ((sufficient_balance dispense_money) |
 unsufficient_balance) |
 id_failed) *);
ROOT Data_Base: (* (validate_id | check_balance) *);

Task_B

Task_B

Task_A
Task_A

(a) (b)

Buffered_channel

Buffered_channel

ReceiveReceive Receive

Normal

Send

SendSendSend

Figure 14.4 An example of an event trace and corresponding architecture view for the Buffered_transaction
schema. (a) The event trace (without overflow) for the Buffered_transaction schema with max_buffer_size = 3
is labeled. (b) The architecture view for the Buffered_transaction schema is labeled.

ATM_system

ATM_system

Id_successful Check_balance Sufficient_balance Dispense_money

Get_moneyRequest_withdrawalIdentification_succeeds

Customers

Customer

(b)

(a)

Insert_card

Read_card Validate_id

Validate_id
Check_balance

id_successful >> identification_succeeds
dispense_money >> get_money

insufficient_balance >> not_sufficient_funds
id_failed >> identification_fails

Insert_card >> read _card
request_withdrawal >>

check_balance

Data_base

Data_base

Figure 14.5 An example of an event trace and corresponding architecture view for the ATM_withdrawl schema. (a) The event trace for the
ATM_withdrawal schema is labeled. (b) The architecture view for the ATM_withdrawal schema is labeled.

374

Composition of Behavior Models for Systems Architecture 375

Data_Base, ATM_system SHARE ALL validate_id, check_balance;

COORDINATE (* $x: insert_card *) FROM Customer,
 (* $y: read_card *) FROM ATM_system ADD $x PRECEDES $y;
COORDINATE (* $x: request_withdrawal *) FROM Customer,
 (* $y: check_balance *) FROM ATM_system
ADD $x PRECEDES $y;
COORDINATE (* $x: identification_succeeds *) FROM Customer,
 (* $y: id_successful *) FROM ATM_system ADD $y
PRECEDES $x;
COORDINATE (* $x: get_money *) FROM Customer,
 (* $y: dispense_money *) FROM ATM_system ADD $y
PRECEDES $x;
COORDINATE (* $x: not_sufficient_funds *) FROM Customer,
 (* $y: unsufficient_balance *) FROM ATM_system ADD $y
PRECEDES $x;
COORDINATE (* $x: identification_fails *) FROM Customer,
 (* $y: id_failed *) FROM ATM_system ADD $y PRECEDES $x;

Insert_card

Identification_succeeds Identification_fails

Request_withdrawal

Get_money Not_sufficient_funds

Figure 14.6 A view on the Customer root event behavior as a UML activity diagram.

376 Theoretical and Methodological Considerations with Applications and Lessons Learned

If the view of the whole system’s behavior emphasizing the interaction between the parts
(components) can be visualized as in Figure 14.5b, the view of root’s stand-alone behav-
ior can be visualized as a UML activity diagram (Figure 14.6 provides an example for
the Customer root behavior). Since event aggregates (iterations, alternatives, sets) in MP
are well structured, it is possible to use Nassi–Shneiderman diagrams (Nassi and
Shneiderman, 1973) as yet another kind of view. The event trace on Figure 14.5a can
be viewed as an analog of UML sequence diagram’s “swim lanes” for the Customer
and ATM_system interaction. This example demonstrates that MP models can be inte-
grated into standard frameworks, like UML, SysML, and DoDAF, providing the level of
abstraction convenient for architecture models, where, in particular, MP focuses on the
interaction aspects.

14.7 MERGING SCHEMAS

So far, we have seen examples of assembling schemas using previously defined schemas
(Example 14.5). Each schema in the assembly holds its own roots and composition
operations (SATISFIES filter and interaction constraints, like COORDINATE and
SHARE ALL) within its scope.

The join operation for schemas looks like:

SCHEMA A EXTENDS B
Roots for A
Constraints and composition operations involving roots
from both A and B

The resulting schema A joins roots defined in A and roots defined in B, merges within its
scope all constraints and composition operations defined in B, and may have additional
constraints and composition operations involving all roots. A typical use of such schema
composition may be for assembling the architecture of an SoS from the architectures of
its constituent systems.

14.8 COMPARISON OF MP WITH COMMON SYSTEMS
ENGINEERING NOTATIONS

MP complements and extends Systems Engineering behavior-modeling notations. The
Functional Flow Block Diagram (FFBD) notation was developed in the 1950s to show
systems functions and their chronological order of execution (NASA, 2007). The EFFBD
was developed in the 1990s to show information flow on the diagrams as inputs/triggers
and outputs (Long, 2000). The notion of an xFFBD has been proposed to extend EFFBD
with additional formalisms to make it more expressive (Aizier et al., 2012). The SysML
(OMG, 2012) was developed to extend UML for application on the systems scale and
directly reuses all behavior diagrams except the activity diagram, which has been modi-
fied from UML for consistency with the EFFBD and to support a continuous flow of

Composition of Behavior Models for Systems Architecture 377

matter or energy (Friedenthal et al., 2006). Although these notations have been success-
fully used in modeling slices of systems behavior and interaction, none are presently used
to model the behavior of each component and the interaction of each component with
other components in its environment, as separate concerns, nor do existing frameworks
such as the DoDAF (DoD, 2009) address this separation of concerns when describing
event-based interactions.

Many component models describe only a subset of possible behaviors with assump-
tions about possible component interactions in specific scenarios or use cases, since
behavior of external components may be outside the scope of the component under
design. This practice prevents the opportunity to observe behaviors that result from com-
binations of interactions that fall outside the scope of the assumptions made about exter-
nal component behavior.

Example 14.8 considers a simple user authentication scenario done internal to a system.

Example 14.8 User authentication.
User provides a general identification.

1. System requests unique identification.

2. User provides a unique identification.

3. If the credentials are valid, the System authorizes the User to access the services;
otherwise, the System notifies the User that credentials are invalid and the user
may reattempt access up to two more times.

4. The User or the System ends the session.

This narrative gives rise to at least two possible use cases: user authentication succeeds
and user authentication fails. The EFFBD activity model in Figure 14.7 is a first
attempt at graphically depicting behavior for the scenario shown earlier, minus the
access reattempts. The EFFBD uses functional activities transforming inputs into
 outputs, exit conditions documenting possible outcomes of an activity, and inputs/
triggers and outputs consisting of matter or energy consumed or produced by an
activity. The approach taken in the diagram illustrates some generally accepted con-
ventions when modeling with EFFBDs, such as allocating the activities of each main
component taking part in the thread (in this case the User (an “external” component)
and the System (component under design)) onto its own primary branch, similar to the
use of swim lanes on a UML or SysML activity diagram (Long, 2000; Long and Scott,
2011; Armstrong, 2013).

In this example, conditions leading to different possible behaviors based on the out-
come of the credential verification are specified on the System branch. The User func-
tions in this example, however, do not exhibit any structured logic for User behavior. All
User functions instead simply serve as source or sink for information interactions with the
System. The main limitation of this approach is that only a limited set of use cases can be
generated from it since the User behavior is “hard coded” to respond the same way each
time the model is executed.

A revision to this model takes a slightly different approach, compressing the User
functions onto one main branch and placing C.3 Access Services and C.4 Process Access
Failure as alternative exit conditions, since only one of these functions would be selected
depending on whether the supplied credentials are valid or invalid (Figure 14.8).

Ref. And

System

1.21.1

Request unique
identification

Verify
credentials

Creds valid

Creds invalid Provide notice
of invalid

credentials

Process access
failure

Access
services End user

session

C.3

C.2

Provide unique
ID

Provide general
ID

C.1

General ID
And

Request for
unique ID

Unique ID Invalid
credentials notice Authorization

C.5

And

And Ref.
1.4

C.4

1.3

1.5

Authorize
access

End system
session

Or

User

Figure 14.7 An example of EFFBD depicting an authentication behavior model that excludes dependencies on the behavior of an external
system (the User).

378

Ref. And

System

1.21.1

Request unique
ID

Verify
credentials

1.2 Creds valid

C.2 Creds valid

1.2 Creds invalid

C.2 Creds invalid

Provide notice
of invalid

credentials

Process access
failure

Access
services

End user
sessionC.3

C.2

Provide unique
ID

Provide general
ID

C.1

General ID

Request for
unique ID

Unique ID

Invalid
credentials notice

Authorization

C.5

Or

And Ref.
1.4

C.4

1.3

1.5

Authorize
access

End system
session

Or

User

Figure 14.8 An example of EFFBD that includes a description of behavior for both systems in the authentication scenario.

379

380 Theoretical and Methodological Considerations with Applications and Lessons Learned

In the revised model, two of the User activities are related to exit condition selections,
consistent with corresponding activities on the System branch. If, after providing a unique
ID, the System determines the credentials to be valid, the User receives authorization to
Access Services. If, on the other hand, the System determines the credentials to be invalid,
the User receives notice of this to Process Access Failure. To implement this approach
correctly in simulation, a specification must be added to coordinate the branch selections,
such that when exit condition “1.2 creds valid” is selected, “C.2 creds valid” should always
occur and likewise for the case of invalid credentials. Without such a specification, a simu-
lator has no way to know that this is a requirement and selects exit conditions on different
branches at random.

To incorporate additional possible use cases, the EFFBD model could continue to be
expanded to encompass more behaviors for both the User and the System. For example,
consider the possibility that the User does not respond to the request for unique ID, as
tacitly assumed in Figure 14.8. How shall the System behave then? An important consid-
eration is that an EFFBD showing all potential behaviors for all components interacting in
a use case will likely become unwieldy and prone to human error, the larger it grows. This
is one likely rationale for the scoping mechanism employed in Figure 14.7.

MP is an approach that resolves this conundrum by employing a divide-and-con-
quer strategy involving the creation of a separate behavior model for each component
and specifying interactions between the components as a separate concern from that
of the behavior of each component. This concept would be akin to creating a separate
EFFBD or SysML activity model for each component, allowing elaboration on each
component’s behavior without concern about adding clutter to a diagram already busy
with multiple components and their interactions. This approach allows an architect to
focus on describing behavior for one component at a time and then separately specify
the general rules (interaction patterns appearing in all use case instances) for interaction
among components. These component interactions (e.g., the general ID trigger the
request for unique ID) may be captured abstractly in a specification of general interac-
tion rules that apply in many similar use cases. Such a specification is what is missing
from contemporary Systems Engineering approaches, notations, and frameworks. By
separating these concerns, the component behaviors and interactions can be woven
together during model execution, automatically generating use cases from the separate
behavior and interaction specifications, thereby achieving increased coverage of pre-
dictable component interaction.

In MP event grammar, the authentication scenario is described as follows. Each
component’s behavior is specified separately as a root event in the left-hand part. For
example, root events (lines 01 and 08) specify the behaviors of the User and the System,
correspondingly. The User’s behavior is described in lines 02–07:

01 ROOT User:
02 (* request_access
03 (* creds_invalid request_access *)
04 (creds_valid (run_services | abandon_access_request)|
05 creds_invalid (attempt_exhausted |

abandon_access_request))
06 end_User_session *);
07 request_access: provide_general_ID provide_unique_ID;

Composition of Behavior Models for Systems Architecture 381

First, the user requests access (line 02). If the credentials are invalid, the user repeats
the request for access (line 03). Line 04 specifies what the user does when credentials are
valid: the user may run services having been granted authorization or may abandon
the access request for some reason (e.g., experiences an interruption). Line 05 specifies
more events that can occur when credentials are invalid: the number of allowable attempts
may be exhausted (the number of access attempts is constrained in the systems model), or
perhaps the user may abandon the access request. The User session ends (line 06) at the
conclusion of event traces for both valid and invalid credentials. In line 07, request_access
is decomposed into provide_general_ID followed by provide_unique_ID, to demonstrate
the ability to create a hierarchy of events similar to a hierarchy of functions.

The System’s behavior is specified in lines 09–17:

08 ROOT System:
09 (* request_unique_ID
10 [creds_invalid request_unique_ID
11 [creds_invalid request_unique_ID
12 [creds_invalid attempt_exhausted
13 invalid_creds_notice cancel_access_request]]]
14 [(creds_valid (authorize_access run_services |
15 long_wait_for_User cancel_access_request) |
16 creds_invalid long_wait_for_User cancel_access_request)]
17 end_System_session *);

The first event in the System for this authentication scenario is request_unique_ID (line
09). If invalid credentials are supplied, the System requests the unique ID up to two more
times (lines 10–11). If invalid credentials are supplied for a third time, the number of
attempts is exhausted (line 12), and the System provides an invalid credentials notice and
cancels the access request (line 13). If valid credentials are supplied, then the System may
authorize access and run services (line 14) or cancel the access request after a long time
elapses while the System is waiting for input (line 15). Yet another alternative is that if
invalid credentials are supplied, then there is a long wait for User input; in that case also,
the System will cancel the access request (line 16). Regardless of the presence or absence
of valid or invalid credentials, the system will always end the session (line 17).

Note that each of these models describes events independent of interactions between
the User and the System. The separation of concerns about component behavior and com-
ponent interaction allows the development of detailed algorithms for every component in the
environment and furthermore allows the clean specification of access attempt repetition.

The concept of abstract interaction specification is a crucial missing link in current
notations and frameworks. As seen in Figures 14.7 and 14.8, systems interactions are
often manually embedded in specific use cases or instances of behavior by hard-coding
sequenced interactions through multiple components on the same diagram. Many use
cases are slight variations of another (such as an authentication scenario resulting in suc-
cess or failure), so changes to the decomposition or sequence of activities in one use case
thread may trigger changes in all affected threads. For example, one may wish to specify
that in any authorization scenario, the general ID from the User always precedes a request
for a unique ID from the System. In MP, this is accomplished using the COORDINATE
composition operation:

382 Theoretical and Methodological Considerations with Applications and Lessons Learned

18 COORDINATE (* $x: provide_general_ID *) FROM User,
19 (* $y: request_unique_ID *) FROM System
20 ADD $x PRECEDES $y;

This composition operation adds the PRECEDES relation between selected provide_
general_ID and request_unique_ID events. The first part of composition operation
uses event patterns to specify segments of root traces that should be selected. The (* $x:
provide_general_ID *) pattern in line 18 identifies the sequence of totally ordered
provide_general_ID events (with respect to the transitive closure of the PRECEDES
relation). Use of the (* P *) pattern for selection means that all events P should be
ordered, both iterations should have the same number of selected elements (provide_
general_ID events from the first trace and request_unique_ID events (line 19) from
the second), and the pair selection follows this ordering (synchronous coordination).
Labels $x and $y provide access to the events selected within each iteration. The ADD
composition in line 20 completes the behavior adjustment, specifying that an ordering
relation will be imposed on each pair of selected events.

Likewise, one can state that the request for a unique ID from the System always
precedes the providing of the unique ID from the User:

21 COORDINATE (* $x: request_unique_ID *) FROM System,
22 (* $y: provide_unique_ID *) FROM User
23 ADD $x PRECEDES $y;

Note that both the User and System behavior algorithms have event names in com-
mon. A constraint must be written to explicitly state that the User and the System
share all instances of those events when they occur. For example, there should be no
event traces in which credentials are valid from the User perspective but not from the
System perspective—such a trace would be invalid. The SHARE ALL composition
ensures that the schema admits only event traces where corresponding event sharing
is implemented:

24 User, System SHARE ALL creds_valid, creds_invalid,
25 attempt_exhausted, run_services;

Event sharing is in fact yet another way of behavior coordination. Shared events may
appear in the root event at any level of nesting.

MP is an executable architecture modeling framework. Event traces (use cases or
examples of behavior) can be generated by automated tools from the MP models.
Events may be visualized as boxes, and dependencies between pairs of events as
arrows marked by the relation type (Figures 14.9, 14.10, and 14.11). Each PRECEDES
relation may correspond to a control flow or trigger commonly used in flow-oriented
notations (e.g., Figure 14.8). Architecture views can also be extracted from MP
schemas for different stakeholders to answer typical questions. The root behavior
may be visualized with UML activity diagrams (see Figure 14.6). An MP develop-
er’s environment may have a library of predefined views providing different visuali-
zations for schemas.

Provide_
general_ID

Provide_
unique_ID

Request_unique_ID

Creds_invalid Creds_invalid

Request_access

Provide_
general_ID

Provide_
unique_ID

Request_unique_ID Authorize_access

Run_services

End_user_session

User

System

End_system_session

Request_access

Figure 14.9 An example of event trace (use case) where the User gets access to the System after one unsuccessful attempt. Solid
arrows denote IN relations, and dashed arrows depict PRECEDES relations.

383

creds

Provide_
general_ID

Provide_
unique_ID

Request_unique_ID

Creds_invalid

Request_access

Provide_
general_ID

Provide_
unique_ID

Request_unique_ID

Run_
unique_ID

Provide_
general_ID

End_user_session

End_system_session

Attempt_exhaustedCreds_invalid

Request_access

Request_unique_ID

User

System

Cancel_access_
reqest

Invalid_creds_
notice

Request_access

Creds_invalid

Figure 14.10 An example of event trace (use case) where the User is denied access after three unsuccessful attempts.

384

Provide_
general_ID

Provide_
unique_ID

Request_unique_ID

Creds_invalid Creds_invalid

Request_access

Provide_
general_ID

Provide_
unique_ID

Request_unique_ID Long_wait_for_user

Abandon_access_requires End_user_session

User

System

Cancel_access_request End_system_session

Request_access

Figure 14.11 An example of event trace (use case) where the User abandons the access request after two unsuccessful attempts.

385

386 Theoretical and Methodological Considerations with Applications and Lessons Learned

14.9 ASSERTIONS AND QUERIES

An event trace represents an example of particular execution of the system (or use case,
especially if the behavior of the environment is included) that can evolve from the archi-
tecture specified by a schema. Event traces can be effectively generated from the event
grammar rules and then adjusted and filtered according to the composition operations in
the schema. This justifies the term executable architecture model for MP. It is possible
to obtain all valid event traces within a certain limit. Usually, such a limit (scope) may
be set by the maximum total number of events within the trace or by the upper limit on
the number of iterations in grammar rules (recursion in the grammar rules can be limited
in similar ways). For many purposes, a modest limit of a maximum three iterations will
be sufficient. This process of generating and inspecting event traces for the schema is
similar to the traditional software testing process.

In the case of MP models, it is possible to automatically generate all event traces
within the given scope (exhaustive testing). Careful inspection of generated traces (sce-
narios/use cases) may help developers identify undesired behaviors. Usually, it is easier
to evaluate an example of behavior (particular event trace) than the generic description of
all behaviors (the schema). The small scope hypothesis (Jackson, 2006) states that most
errors can be demonstrated on relatively small counterexamples.

Certain properties of behavior can be formalized as assertions about traces (similar
to the SATISFIES constraint in Example 14.4 and Example 14.6) and verified exhaus-
tively for all event traces within the scope, yielding the counterexamples when the assertion
is violated. For example, hazard states can be specified as a result of certain interactions
between the system and its environment, and then the traces within scope can be searched
for a trace that matches the hazard scenario. An example of such assertion checking per-
formed on an MP prototype is given in Auguston and Whitcomb (2010). Since assertion
checking is performed on a complete event trace, it becomes possible to refer to events
following a given event, for example, to specify fairness conditions. This brings the expres-
siveness of MP assertions closer to temporal logic (Pnueli, 1981).

In a similar fashion, queries can be performed on the traces, providing different
kinds of statistics. For example, events may have attributes, such as estimated duration,
and system’s performance estimates can be obtained from collecting a representative
amount of event traces and calculating durations for event sets of interest.

Another example of an event attribute may be the probability of an event in alterna-
tives, like (A [0.3] | B [0.7]) establishing that A happens with the probability of 0.3 and B
with probability of 0.7. Now, it becomes possible to estimate probabilities of certain event
traces, for example, probability for the system to get into a hazard state. This opens a
whole direction for systems simulation and statistical experiments based on executable
systems architecture models and their environment models.

Using MP to automatically generate use cases from component behavior models and
abstract interaction specifications, a much larger set of systems behaviors can be pre-
dicted. Inspection can be used to expose design errors early in the life cycle by examining
each generated use case for logic flaws or undesirable sequences of events. The maxi-
mum benefits are gained with assertion checking. The small scope hypothesis provides
that the scope of use case generation may be limited by simulating only a specified num-
ber of loop iterations for every event trace. MP leverages the small scope hypothesis to
provide a solution to expose far more design errors than do current approaches alone,

Composition of Behavior Models for Systems Architecture 387

without requiring specialized skills. If an assertion results in a counterexample (an event
trace that contradicts the assertion), it can be used to observe precisely why the assertion
is false and, if needed, help the architect write a constraint to prevent the sequence of
events that makes the assertion false. MP consequently provides a means for observing
and correcting design errors in a modeled architecture, so that an architect can weed
undesired behavior from the specification through the addition of abstract SoS interaction
constraints.

14.10 IMPLEMENTATION PROTOTYPES

The first MP prototype (Auguston and Whitcomb, 2010) has been implemented as a com-
piler generating an Alloy model (Jackson, 2006) from the MP schema and then running
the Alloy Analyzer to obtain event traces and to perform assertion checks. It has benefited
from Alloy’s relational logic formalism and visualization tools. Performance depends on
the performance of SAT solver used by the Alloy Analyzer.

Direct trace generation from the event grammar can be accomplished quite effi-
ciently, and the process of generating all traces for the given schema and within a given
scope can be roughly described by the following procedure:

1. Generate all possible traces within the given scope for each root in the schema.

2. Select one trace from each root’s collection. Apply all the schema’s composition
operations and filters. If the resulting composed trace is consistent with the schema’s
filters and composition operations, it is included into the schema trace collection.
Otherwise, proceed with the next selection.

This process may lead to an exponential explosion, but it has potential for optimization
by applying early pruning whenever possible. The main optimization ideas stem from the
considerations that composition operations (COORDINATE and SHARE ALL) usually
require an equal number of selected events in the matching traces. Root traces can be
sorted according to the number of required events to avoid selection of inconsistent root
traces in step 2. Careful rearrangement of composition operations and filters may also
provide a significant speed up in the trace assembly.

Other examples using this technique and an online demo of MP automated tools are
found in Rivera (2010) and Rivera Consulting Group (2013), respectively. A prototype trace
generator has been built to convert MP schemas into a C++ code and then compile and run
it. This architecture solution is similar to the one that has been implemented, for instance, in
the SPIN/PROMELA model checker (using C as a target language) (Holzmann, 2004).

Several optimizations similar to the one mentioned earlier have been implemented.
A sample run on an iMac with 2.8 GHz/4 GB yields the following performance for a
schema example with approximately 60 lines of MP source text, 31 event types including
9 roots, 10 composite event types, 12 atomic event types, and 12 SHARE ALL composi-
tions and for a maximum scope of 3 for iterations (actually it is an architecture model for
the MP → C++ prototype itself):

Total of 1,328 traces generated, with total of 79,836 events, average of 60.1175
events/trace, and max trace length of 69

Initial search space (number of all root trace selections before filtering) of 35,100

388 Theoretical and Methodological Considerations with Applications and Lessons Learned

Selection ratio of 3.78348% and generation speed of 18021.8 events/s

Elapsed time (including compilation of the generated C++ code) of 4.42997 s

14.11 CHAPTER SUMMARY

The MP executable architecture models provide a high level of abstraction for testing,
verifying, and documenting systems architecture early in the conceptualization and design
phases. The main advantages may be summarized as follows:

The use of MP focuses the attention of developers early on the behavior of the
system and provides tools to verify the assumptions.

The schema framework is amenable to stepwise architecture refinement, reuse, com-
position, visualization, and application of automated tools for consistency checks.

The executable architecture models integrated with the environment behavior
models can be helpful for identifying emerging behaviors.

The ability to generate use cases for requirements specification and for testing the
system’s implementation.

The ability to create abstract views on the interfaces, composition, and coordination
within the system.

The ability to develop performance estimates based on statistics obtained from the
event traces.

The possibility to extract different architecture views, for example, based on stake-
holder viewpoints, from the architecture model.

MP provides a uniform way to extract use cases from a single architecture model composed
of component behavior algorithms and an abstract interaction specification—the latter
being a capability that is absent from current Systems Engineering approaches. Use cases
are based on generic descriptions of systems behavior, rather than on a limited number of
use cases. This approach allows architects to expand their definitions of a “representative”
set of use cases to increase the design space explored early in the life cycle and to correct
undesired behaviors prior to the implementation. It also transfers the burden of maintaining
consistency among similar use cases to automated tools.

Architecture modeling touches on the very fundamental issues in Systems Engineering
and software design processes and has substantial consequences for the next phases in
software systems design in particular. There are many threads of future research based on
the ideas described earlier:

Monitoring whether the behavior of an implemented system matches the MP
architecture model (testing automation). If the source code of implementation can
be marked up to indicate which segments of code start and end corresponding MP
events, it becomes possible to log actual execution traces and to check them for
consistency with expected behaviors.

Developing methods and techniques for early performance, throughput, and latency
estimates based on duration and frequency estimates for events within components
and connectors.

Composition of Behavior Models for Systems Architecture 389

Developing methods and techniques for an architecture model’s static analysis, for
example, by verifying MP models with a model checking tool (Zhang et al., 2012).

Introducing architecture metrics for MP models for systems cost estimates.

Developing a library of reusable architecture patterns.

Developing a library of reusable architecture views.

Developing a collection of reusable environment behavior models, including business
process models in MP.

Extending the MP approach to the meta-architecture level to support software
product lines and domain-specific architectures by representing the variation points
as macroconditions in schemas. The same mechanism may be used for architecture
configuration management.

Because of its high abstraction level, application of the MP approach should not be con-
sidered limited to the improvement of human-designed software intensive and complex
adaptive systems. Design flaws manifesting themselves at inopportune times in these
classes of systems were merely the original motivation for developing this approach
to behavior modeling. Future research may explore its application to the improvement
of human understanding of emergent behavior in economic, biological, and ecological
systems and to study the causality of events from patterns in cellular behavior to sustain-
able food and energy production.

Existing software engineering tools have codified the concepts described herein; the
next step is to integrate them into notations and modeling environments used by systems
engineers and other professionals concerned with complex technological and/or natural
systems. The MP approach is a force multiplier for systems architects that is open for
implementation in any academic, government, or commercial modeling tool or environ-
ment whose objective involves architecting complex systems.

This chapter described a novel approach for modeling and predicting systems behavior
resulting from the interactions among subsystems and among the system and its environ-
ment. The approach emphasizes specification of component behavior and component inter-
action as separate concerns at the architectural level. MP provides a new capability for
automatically verifying systems behaviors early in the life cycle, when design flaws are most
easily and inexpensively corrected. MP extends existing frameworks and allows multiple
visualizations for different stakeholders and has potential for application in multiple domains.

REFERENCES

Abowd, G., Allen, R., Garlan, D., 1995, Formalizing style to understand descriptions of software architec-
ture, ACM Transactions on Software Engineering and Methodology, 4(4):319–364.

Aizier, B., Lizy-Destrez, S., Seidner, C., Chapurlat, V., Prun, D., Wippler, J.l., 2012, xFFBD: Towards a
formal yet functional modeling language for system designers, In Proceedings of the 22nd INCOSE
International Symposium. Rome, Italy, July 9–12.

Allen, R., 1997, A formal approach to software architecture, Ph.D. Thesis, Carnegie Mellon University,
Pittsburgh, PA. CMU Technical Report CMU-CS-97-144, May 1997.

Allen, R., Garlan, D., 1997, A formal basis for architectural connection, ACM Transactions on Software
Engineering and Methodology, 6(3):213–249.

390 Theoretical and Methodological Considerations with Applications and Lessons Learned

Armstrong, J.R., 2013, Functional architecture’s mental roadblocks and other things your mother didn’t
tell you, In Proceedings of the 23rd Annual INCOSE International Symposium, Philadelphia, PA,
June 24–27.

Auguston, M., 1991, FORMAN—Program formal annotation language, In Proceedings of 5th Israel
Conference on Computer Systems and Software Engineering, Herclia, IEEE Computer Society Press,
Herclia, Israel, May 27–28, pp.149–154.

Auguston, M., 1995, Program behavior model based on event grammar and its application for debugging
automation, In Proceedings of the 2nd International Workshop on Automated and Algorithmic
Debugging, Saint-Malo, France, May 1995.

Auguston, M., 2009a, Software architecture built from behavior models, ACM SIGSOFT Software
Engineering Notes, 34:5.

Auguston, M., 2009b, Monterey phoenix, or how to make software architecture executable, OOPSLA’09/
Onward Conference, OOPSLA Companion, Orlando, FL, October 2009, pp. 1031–1038.

Auguston, M., Jeffery, C., Underwood, S., 2002, A framework for automatic debugging, In Proceedings
of the 17th IEEE International Conference on Automated Software Engineering, Edinburgh, UK,
IEEE Computer Society Press, September 23–27, pp. 217–222.

Auguston, M., Michael, B., Shing, M., 2006, Environment behavior models for automation of testing and
assessment of system safety, Information and Software Technology, 48(10):971–980.

Auguston, M., Whitcomb, C., 2010, System architecture specification based on behavior models, In
Proceedings of the 15th ICCRTS Conference (International Command and Control Research and
Technology Symposium), Santa Monica, CA, June 22–24.

Auguston, M., Whitcomb, C., 2012, Proceedings of the 24th ICSSEA Conference (International
Conference on Software and Systems Engineering and their Applications), Paris, France, October
23–25.

Bass, L., Clements, P., Kazman, R., 2003, Software Architecture in Practice, 2nd Edition, Boston, MA:
Addison-Wesley.

Booch, G., Jacobson, I., Rumbaugh, J., 2000, OMG unified modeling language specification, http://www.
omg.org/spec/UML/ (accessed October 15, 2014).

Bruegge, B., Hibbard, P., 1983, Generalized path expressions: A high-level debugging mechanism, The
Journal of Systems and Software, 3:265–276.

Campbell, R.H., Habermann, A.N., 1974, The specification of process synchronization by path expres-
sions, Lecture Notes in Computer Science, 16:89–102.

Department of Defense, 2009, DoD Architecture Framework, version 2.0, Washington, DC: ASD(NII)/
DoD CIO.

Feiler, P., Gluch, D., Hudak, J., 2009, The architecture analysis & design language (AADL): An introduc-
tion, Technical Note CMU/SEI-2006-TN-011, http://www.sei.cmu.edu/publications/documents/06.
reports/06tn011.html (Accessed June 2009).

Friedenthal, S., Moore, A., Steiner, R., 2006, OMG systems modeling language (OMG SysML™) tutorial,
Presented at the 2006 INCOSE (International Council on Systems Engineering) International
Symposium, Orlando, FL, July 11.

Harel, D., 1987, A visual formalism for complex systems. Science of Computer Programming, 8(3):231–274.

Hoare, C.A.R., 1985, Communicating Sequential Processes, Englewood Cliffs, NJ: Prentice-Hall.

Holzmann, G., 2004, The SPIN Model Checker, Boston, MA: Addison-Wesley.

ISO, 2011, International Organization for Standardization. ISO Standard ISO/IEC 42010:2011, Systems
and Software Engineering—Recommended Practice for Architectural Description of Software-
Intensive Systems.

Jackson, D., 2006, Software Abstractions: Logic, Language, and Analysis, Cambridge, MA: The MIT Press.

Jackson, M., 2007, Consultancy and research in software development. Past research topics. http://mcs.
open.ac.uk/mj665/topics.html (Accessed October 15, 2014).

Composition of Behavior Models for Systems Architecture 391

Knuth, D., 1984, Literate programming, The Computer Journal, 27(2):97–111.

Kruchten, P., 1995, Architectural blueprints—The 4 + 1 view model of software architecture, IEEE
Software, 12(6):42–45.

Liskov, B., Zilles, S., 1974, Programming with abstract data types, ACM SIGPLAN Notices, 9(4):50–59.

Long, D., Scott, Z., 2011, A Primer for Model-Based Systems Engineering, 2nd Edition, lulu.com.

Long, J.E., 2000, Relationships between common graphical representations used in system engineering,
In Proceedings of the SETE2000 Conference (Systems Engineering and Test and Evaluation),
Brisbane, Queensland, November 15–17.

Luckham, D., Augustin, L., Kenney, J., Vera, J., Bryan, D., Mann, W., 1995, Specification and analysis of
system architecture using Rapide. IEEE Transactions on Software Engineering, Special Issue on
Software Architecture, 21(4):336–355.

Luckham, D., Vera, J., 1995, An event-based architecture definition language, IEEE Transactions on
Software Engineering, 21(9):717–734.

Maier, M., Rechtin, E., 2000, The Art of Systems Architecting, Boca Raton, FL: CRC Press.

NASA, 2007, Systems Engineering Handbook, Washington, DC: NASA/SP-2007-6105 Rev1.

Nassi, I., Shneiderman, B., 1973, Flowchart techniques for structured programming, ACM SIGPLAN
Notices XII, pp. 12–26.

Object Management Group, 2012, Systems Modeling Language Specification, version 1.3, http://www.
omg.org/spec/SysML/ (Accessed July 22, 2014).

Pelliccione, P., Inverardi, P., Muccini, H., 2009, CHARMY: A framework for designing and verifying
architectural specifications, IEEE Transactions on Software Engineering, 35(3):325–346.

Perry, D., Wolf, A., 1992, Foundations for the study of software architecture, ACM SIGSOFT Software
Engineering Notes, 17(4):40–52.

Pnueli, A., 1981, A temporal logic of programs, Theoretical Computer Science, 13:45–60.

Rechtin, E., 1991, Systems Architecting: Creating and Building Complex Systems, Englewood Cliffs, NJ:
Prentice Hall.

Rivera, J., 2010, Software system architecture modeling methodology for Naval Gun Weapon Systems,
Doctoral Thesis, Naval Postgraduate School, Monterey, CA, December 2010.

Rivera Consulting Group, 2013, Eagle 6 Modeling, http://eagle6modeling.riverainc.com/ (Accessed July
22, 2014).

Roscoe, B., 1997, The Theory and Practice of Concurrency, London, UK: Prentice Hall International
Series in Computer Science, pp. 580.

Rozanski, N., Woods, E., 2012, Software Systems Architecture, 2nd Edition, Upper Saddle River, NJ:
Addison-Wesley.

Spivey, J.M., 1989, The Z Notation: A Reference Manual, 2nd Edition, Englewood Cliffs, NJ: Prentice
Hall International Series in Computer Science, pp. 1992.

Taylor, R., Medvidovic, N., Dashofy, E., 2010, Software Architecture, Foundations, Theory, and Practice,
Hoboken, NJ: John Wiley & Sons, Inc.

Vaneman, W., Jaskot, R., 2013, A criteria-based framework for establishing system of systems govern-
ance, In Proceedings of the 7th Annual International IEEE Systems Conference, Orlando, FL, April
15–18, pp. 491–496.

Wang, Y., Parnas, D., 1994, Simulating the behavior of software modules by trace rewriting, IEEE
Transactions on Software Engineering, 20(10):750–759.

Zhang, J.Y., Liu, M., Auguston, J.S., Dong, J.S., 2012, Using monterey phoenix to formalize and verify
system architectures, In 19th Asia-Pacific Software Engineering Conference APSEC 2012, Hong
Kong, December 4–7.

View publication statsView publication stats

