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Abstract 
Development and acquisition efforts of cyberphysical systems can often encounter cost or 
schedule overruns due to the complexity of the system. It has been shown that a certain 
amount of system complexity is related to the system functionalities (effective complexity), 
whereas excessive complexity is related to unnecessary intricacies in the design (apparent 
complexity). While the former is necessary, the latter can be removed through precise local 
redesign. One of the major challenges of systems engineering today is the development of 
tools, quantitative measures, and models for the identification of apparent complexity within 
the system. 

This research has the goal of evaluating and measuring the structural complexity of the 
engineered system, and does it through the analysis of its graph representation. The 
concepts of graph energy and other spectral invariant quantities allow for the definition of an 
innovative complexity metric. This metric can be applied knowing the design of the system, to 
understand which areas are more in need of redesign so that the apparent complexity can be 
reduced. 

Introduction 
Complexity is one of the hallmarks of all engineered systems, specially a prominent 

feature of defense acquisition programs. Complex engineered systems are continuously 
exposed to various types of uncertainties, risks, and failures in their life cycle. The causes of 
failures and risks are either a known observed phenomenon and perhaps overlooked in the 
development phase, or it is a new type of failure. The former case can lead to improvements 
in engineering design and management and systems engineering processes of a complex 
system. The latter case, instead, can potentially provide useful information that can be 
obtained only through unfolding of these types of failures and events. Complex engineered 
systems design effort resides partially in the domain of known risks and uncertainties. This 
domain, also known as the domain of complicated systems, is characterized by known 
unknowns which can be addressed with time and effort, through theoretical and 
experimental research. This means that systems in this domain can express large 
epistemological emergence, given to the lack of knowledge, but a low ontological one, 
meaning that the knowledge can be obtained. 

However, the engineered systems with high levels of ontological emergence, 
meaning that the system under study is so far from the current level of knowledge, show low 
levels of predictability in behavior. Complex engineered systems involve humans with 
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certain levels of autonomy interacting with the engineered systems. Predicting the behavior 
of a complex system, characterized emergent phenomena is very challenging. To reduce 
various risks in design and operation of an acquisition program, systems engineers have 
attempted to operate within the domain of knowable risks as much as possible, through 
mitigation and exploitation techniques such as trade space exploration, modular designs, 
open architectures, redundancy, verification, and testing. However, a comprehensive, 
applied, and formal way to measure and capture various dimensions of complexity and risks 
in the life cycle of a complex engineered system or an acquisition program is lacking. In past 
years, the systems engineering research community has introduced some measures of 
complexity for engineering design; however, domain dependence and limitation in 
universality of use of these measures has seriously limited their use in the decision-making 
process. In this paper, we introduce a constructed measure of complexity that has carefully 
tried to address as well as to avoid many shortcomings of existing quantitative measures of 
complexity. 

This paper begins with a literature review on state of the art complexity and 
emergence. The literature review also covers some existing measures of complexity and 
their merits as well as shortcomings and limitations. The paper continues to introduce the 
concepts of spectral theory of systems complexity and explains matrix energy and directed 
edges in our suggested complexity measure. The paper concludes by analyzing the results 
and sets the stage for the future work of various case studies, quantitatively connecting 
emergence to spectral complexity measures of an engineered system or an acquisition 
program. 

Literature Review 

What Is Complexity? 

Three Types of Problems 

The first hint to the role of complexity in science and engineering design has been 
given by Weaver (1948). He described three distinct types of problems: problems of 
simplicity, problems of disorganized complexity, and problems of organized complexity. 
Problems of simplicity are the problems with a low number of variables that have been 
tackled in the nineteenth century. An example is the classical Newtonian mechanics, where 
the motion of a body can be described with differential equations in three dimensions. In 
these problems, the behavior of the system is predicted by integrating equations that 
describe the behavior of its components. Problems of disorganized complexity are the ones 
with a very large number of variables that have been tackled in the twentieth century. The 
most immediate example is the motion of gas particles, or as an analogy, the motion of a 
million balls rolling on a billiard table. The statistical methods developed are applicable when 
particles behave in an unorganized way and their interaction is limited to the time they touch 
each other—which is very short. In these problems, it has been possible to describe the 
behavior of the system without looking at its components or the interaction among them. 
Problems of organized complexity are the ones that are to be tackled in the twenty-first 
century, and the ones that see many variables showing the feature of organization. These 
problems have variables that are closely interrelated and influence each other dynamically. 
This high level of interaction that gives rise to organization is the reason these problems 
cannot be solved easily. Weaver (1948) described them as solvable with the help of 
powerful calculators, but today’s technology is not yet able yet to solve the most complex of 
these problems. These are the problems that nowadays we define as “complex.” Predicting 
the behavior of a system with many interconnected parts changing their behavior in line with 
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the state of other components is a problem of organized complexity, and the system itself is 
referred to as a complex system. 

The Point of View of the Observer 

On his blog, Rouse (2016) wrote about the absolute or relative nature of complexity. 
To illustrate his stand on the matter, he considers two uses for a Boeing 747: as a 
paperweight and as an airliner. This thought exercise allows us to understand that the 747 
as a paperweight is not very complex. It does a perfect job, given its large mass, but carries 
no complexity in its operation. On the other side, the airliner function exposes all the 
operational difficulties of flying and maintaining an airplane. From this example, he 
concludes that complexity should be defined in terms of a relationship between the entity 
and an observer. Thus, complexity is relative to the point of view of the observer. 

Wade and Heydari (2014) categorized complexity definition into three major groups, 
according to the point of view of the observer. When the observer is external to the system 
and can only interact with it as a black box, then the type of complexity that can be 
measured is called behavioral complexity, since it looks at the overall behavior of the 
system. When the observer has access to the internal structure of the system, such as 
blueprints and source code for engineered systems, or scientific knowledge for natural 
systems, then the structural complexity of the system is the one being measured. If the 
process of constructing the entity is under observation, then the constructive complexity is to 
be measured, which is the complexity of the building process. This definition relates 
complexity to the difficulty of determining the output of the system.  

Fischi built a framework for the measurement of dynamic complexity entirely based 
on the role of the observer (Fischi, Nilchiani, & Wade, 2015). The definition of complexity 
used in this framework is based on the system being observed, the capabilities of the 
observer, and the behavior that the observer is trying to predict. 

Complexity and Emergence 

Often complex systems have behaviors that cannot be immediately explained, and 
for this reason complexity is associated with the concept of emergence. As defined by 
Checkland (1981), emergence is “the principle that entities exhibit properties which are 
meaningful only when attributed to the whole, not to its parts.” In other words, an emergent 
phenomenon is a phenomenon at the macro-level that was not hard-coded at the micro-
level (Page, 1999), and which can be described independently from the underlying 
phenomena that caused it (Abbott, 2006). 

Both natural and engineered systems are capable of expressing emergence. One 
example of emergence in natural system is wetness. Water molecules can be arranged in 
three different phases (i.e., solid, liquid, and gas), but only one of them expresses a certain 
type of behavior—that is, high adherence to surfaces. This behavior is due to the 
intermolecular hydrogen bonds that affect the surface tension of water drops. These bonds 
are also active in the solid and liquid phase, but in those cases, they are either too strong or 
too weak to generate wetness. As we will see for many systems, some properties emerge 
only when conditions are just right. In engineered systems, the system requirements and 
software specifications are supposed to be written in such a way that they are independent 
from their implementation. For this reason, the functions and properties they describe are 
emergent (Abbott, 2006). 

These definitions of emergence often do not differentiate on whether the emergent 
property is expected or unexpected, and this is obvious, since not every system has a 
designer that is putting together components to generate the system, and therefore 
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sometimes there is no one to expect the property. Natural systems, which are created 
through evolution, do not justify the classification of emergence into expected and 
unexpected. In engineered systems, this is of course not true. The system engineer is 
responsible for the identification of the properties of the system in relation to its environment. 
Not only the operational environment, but also assembly, integration, testing, and disposal 
environment. In the design process, it is customary to differentiate between the attributes of 
the system that are wanted, and therefore expected, and the ones that are unexpected, 
which can be beneficial or adverse. 

Two Types of Emergence 

The works of Chalmers (2008), Bedau (1997), and Kauffman (2007) identify 
differences between two types of emergence: epistemological and ontological. 

Kauffman proposes two approaches to the nature of emergence. The reductionist 
approach sees emergence as epistemological, meaning that the knowledge about the 
systems is not yet adequate to describe the emergent phenomenon, but it can improve and 
explain it in future. This is the case of wetness, where knowledge about molecules and 
intermolecular interactions can explain the emergent phenomenon. On the other hand, there 
is the ontological emergence approach, which says that “not only we don’t know that will 
happen, [but] we don’t even know what can happen,” meaning that there is a gap to fill not 
only about the outcome of an experiment (or process), but also about all the possible 
outcomes (Kauffman, 2007). Ontological emergence is given by the enormous amount of 
states the system could evolve into. The evolution of the swimming bladder in fish is an 
example of ontological emergence (Longo, Montévil, & Kauffman, 2012). An organ that 
gives neutral buoyancy in the water column as its main function also enables the evolution 
of some kinds of worms and bacteria that will live in it. Ontological (or radical) emergence is 
given by the enormous amount of states the system could evolve into. In these cases, we 
not only are not able to predict which state will happen, but not even what are the possible 
states. 

Chalmers (2008) provides definitions for two different types of emergence, weak and 
strong, based on the capabilities of the observer. At the lower level, there is weak 
emergence, which includes any property possessed by the whole and not its parts. A chair 
is an example of weak emergence since the property of allowing someone to sit is present in 
the whole but not in its parts. At the upper level, there is strong emergence with the example 
of consciousness. In the case of weak emergence, the emergent phenomenon is just 
unexpected, while in the case of strong emergence, it is completely non-deducible. This of 
course depends on the capabilities of the observer in linking the phenomena at the two 
levels. Chalmers, being a philosopher and cognitive scientist, implicitly assumes that the 
observer has the knowledge and capabilities of a human being. An example that he 
provides to illustrate the difference between weak and strong emergence is the high-level 
patterns in cellular automata. These patterns are unexpected but deducible just by looking 
at the low-level rules of the automaton, making them weakly emergent and not strongly 
emergent. The only example that Chalmers provides of strong emergence is consciousness, 
and he goes along to state that there is no other such phenomenon other than the ones in 
which the strong emergence derives “wholly from a dependence on the strongly emergent 
phenomena of consciousness.” Thus, the way of differentiating between a system with weak 
or strong emergence is to look for conscious elements within the system. 

Complexity and Complication 

The idea that complexity also depends on the tools and knowledge available to the 
observer is common to many researchers. Crawley, Cameron, and Selva (2015) use the 
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concepts of essential and apparent complexity to make a distinction between complexity 
and complication. Being engineers, they only consider designed systems. Essential 
complexity comes from functionality and represents the minimum amount of complexity 
required for the desired functionalities to emerge. Apparent complexity, on the other hand, 
represents the unnecessary intricacies that a designed system can have. These are the 
architectural features that are not required from the functionality, which make the design 
complicated and hard to understand. The role of the system architect is to minimize the 
apparent complexity without affecting the essential one. 

Evolved systems do not have functions, but they create advantages to their 
stakeholders. The presence of a heart in the cardiovascular system of many animals is only 
explained by the advantage it creates in the distribution of resources within the organism. 
The heart does various things, such as pumping blood and making the characteristic heart 
sound. The categorization of these behaviors into functions and side effects has no meaning 
in evolved systems, and therefore the concepts of essential and apparent complexity lose 
their validity (Longo, Montévil, & Kauffman, 2012). On the other side, the work of Chaisson 
suggests that evolution keeps the apparent complexity as low as possible by selecting the 
unfit organisms. This implies that the complexity of an evolved organism, which has thrived 
for a substantial amount of time in its environment, is close to its essential complexity 
(Chaisson, 2014). This means that evolved systems are complex but not complicated. 

Gell-Mann (1995), being a physicist, has a more holistic definition of effective 
complexity and logical depth (apparent complexity). Effective complexity is the length of a 
concise description of the regularities of an entity. This quantity should not be confused with 
logical depth. Mandelbrot’s set has high logical depth, since being a fractal, a simple rule is 
applied infinite times in a recursive fashion, but a low amount of effective complexity, since 
the formula used to describe it is relatively short. This is in general true for all fractals. 

In the decision-making field, the Cynefin framework has been proposed by Snowden 
(2005) to help identify the best approach to solving a specific problem.This sense-making 
model can be used to understand (from the data available) the characteristics of the 
problem at hand and which strategy will lead to a solution. As shown in Figure 1, the 
framework identifies five domains of knowledge: simple and complicated, which are ordered; 
complex and chaotic, which are unordered; and disorder. 
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 Representation of the Cynefin Framework 
(Snowden & Boone, 2007) 

In the simple domain, systems decisions can be taken unanimously with all the 
parties, due to the shared understanding of the matter and to the clear relationships 
between cause and effects. The simple domain is the domain of best practice, where once a 
solution to a problem has been found, it is applicable unless there is a domain shift. In the 
complicated domain, there still is a relationship between cause and effect, but not all the 
parties are able to discern it. The answer to the problem often is not best practice, and some 
relatively deep analysis is necessary to find a proper solution. This definition is common to 
the definition of complication as arising from intricacies, where the problem is made difficult 
because of the way it is formulated. In the complex domain, there might not be a right 
answer at all, and the relationships between cause and effect can be identified only in 
retrospect. This is due to ontological emergence, which can create higher logical structures 
in which feedback loops are hidden. In the chaotic domain, no patterns are discernible, and 
no relationships can be identified. This is the domain of emergency, where the immediate 
goal is not to find a solution to a problem, but to bring the system back to an ordered state, 
from which a solution can be found (Snowden & Boone, 2007). 

Wade and Heydari (2014) provide a more technical description of the Cynefin 
framework. The simple and chaotic domains have both low complication, the former with low 
complexity, and the latter with high one. The complicated and complex domains have both 
high complication, the former with low complexity, and the latter with high one. Systems with 
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high complication can be analyzed with a reductionist approach such as decomposition, 
while systems with high complexity cannot. This point of view on reductionism is shared by 
Bedau, according to whom weak (epistemological) emergence can be analyzed using 
reductionist techniques (Bedau, 1997). The possibility of applying a reductionist approach to 
the systems exhibiting only weak emergence allows to connect these two types of 
emergence with the definition of complicated and complex system. Complicated systems are 
the ones which exhibit weak emergence, which can be analyzed using reductionist 
techniques, and in which the emergent phenomena are unexpected but still predictable. 
Complex systems are the ones in which strong emergence comes in place, where the 
reductionist approach does not work, and where high-level behaviors are not predictable. 

Structural, Dynamic, and Socio-Political Complexity 

In engineered systems, complexity can be divided into six types (Sheard & 
Mostashari, 2010). 

 Structural complexity 

o Size, or number of elements in the system, number of types of 
elements, instances of a certain type. 

o Connectivity, number of connections, types of connections. 

o Topology, architectural patterns, local and global patterns. 

 Dynamic complexity 

o Short term, at the time scale of the system operations, behavior of the 
system while executing its functions. 

o Long term, at the lifetime scale, evolutionary process of the system, 
retirement or mission extension. 

 Socio-political complexity, anything having to do with humans, cognitive 
limitations, social phenomena. 

How to Measure Complexity? 

With a better understanding of complexity, we can now look at how this quantity can 
be measured. 

Cyclomatic Complexity 

McCabe (1976) provided a complexity metric for software systems. This metric looks 
at the graph representation of the program, and it is defined as 

ሻܩሺݒ ൌ ݁ െ ݊ ൅  ݌

where e is the number of edges, n the number of vertices, and p the number of connected 
components in the graph. This metric is called the cyclomatic number. It can be 
demonstrated that in a strongly connected graph, the cyclomatic number is equal to the 
maximum number of linearly independent circuits (McCabe, 1976). 

Free Energy Density Rate 

Chaisson (2004) proposed a metric for the evaluation of complexity based on the 
amount of energy of the entity under study. More precisely, energy rate density, which is 
“the amount of energy available for work while passing through a system per unit time and 
per unit mass” (Chaisson, 2015). This metric is a boundary metric, since it considers the 
input and output of the system without looking at its internal structure. It has been derived 
through the generalization of various metrics used in various fields, such as propellant to 
mass ratio for engineering, or metabolic rate for biology. The metric has been evaluated for 
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multiple entities such as galaxies, stars, planets, plants, animals, societies, and 
technological systems, showing a rising trend in complexity (Chaisson, 2014). 

Per this metric, a system with a large intake of energy per second (i.e., power) and a 
low mass will be a very complex one. From the engineering point of view, this can also 
represent a very inefficient system. The success of Chaisson’s metric is because the 
systems under study are mostly evolved systems or are designed with efficiency in mind. 
Therefore, the applicability of this metric assumes that the system has been designed, or 
shaped by evolution, in such a way that there is no waste of energy, or useless mass. 

Propagation Cost and Clustered Cost 

MacCormack presented two types of metrics for the evaluation of the complexity of 
software systems (MacCormack, Rusnak, & Baldwin, 2006). The directed dependency 
between files in the source code is the function call. The propagation cost is the average of 
the visibility of modifications to dependent files, while the clustered cost considers the 
importance of the node scaling the relative cost accordingly. 

Spectral Structural Complexity Metric 

Sinha presented a structural complexity metric based on the design structural matrix 
(DSM) of the system (Sinha & de Weck, 2012). The metric is defined as 

,݉,ሺ݊ܥ ሻܣ ൌ 	෍ߙ௜

௡

௜ୀଵᇣᇤᇥ
஼భ

൅ ቌ෍෍ߚ௜௝ܣ௜௝

௡

௝ୀଵ

௡

௜ୀଵ

ቍ

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
஼మ

ሻᇣᇤᇥܣሺܧߛ
஼య

 

where n is the number of components in the system, m the number of interfaces, A 
the DSM, ߙ௜ the complexity of each component, ߚ௜௝ ൌ ௜݂௝ߙ௜ߙ௝ the complexity of each 
interface, ߛ ൌ 1/݊ a normalization factor, and E(A) the matrix energy of the DSM. ܥଵ	is the 
complexity contribution of the components, ܥଶ is the contribution of the interfaces, and ܥଷ	is 
the contribution of the topology. The application of the metric sees the evaluation of ߙ௜ 
through expert judgment, and assumes ௜݂௝ ൌ 1 for lack of information (Sinha & de Weck and 
Olivier, 2013). 

Graph Energy 

The metric is inspired from the Hückel Molecular Orbital (HMO) Theory, which 
evaluates the energy of ߨ-bonds in conjugated hydrocarbon molecules as a solution of the 
time-independent Schrödinger equation 

߰ܪ ൌ  ߰ܧ

where H is the Hamiltonian matrix, and E the energy corresponding to the molecular orbital. 
This equation is an eigenvalue problem of the Hamiltonian. In 1978, Gutman defined the 
energy of a graph, as 

ܧ ൌ 	෍|ߣ௜|

௡

௜ୀଵ

 

where ߣ௜ are the eigenvalues of the adjacency matrix representing the carbon substructure 
of the molecule (Gutman & Shao, 2011). 

Instead of the eigenvalues, the approach introduced by Nikiforov (2007) and 
embraced by Sihna evaluates the graph energy using the singular values of the matrix. This 
modification extends the applicability to directed graphs where the adjacency matrix is not 
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symmetric, while for undirected ones where the adjacency matrix is symmetric matrix, this 
new approach is coincident with the original eigenvalues one. 

The HMO theory is applied to structures of carbon atoms, which are homogeneous. 
Its application to systems of heterogeneous components, this metric does not consider the 
role of components with different levels of complexity. 

Methodology 

 

 Graph Representation of a System 

The goal of this research is to measure the structural complexity of engineered 
systems. The system of interest can vary from a piece of software controlling a reaction 
wheel to an attitude control system, a satellite, and up to a whole network of satellites. Let’s 
consider the system represented in Figure 2. This graph is a general representation of any 
engineered system, in which the components are represented by the vertices and the 
interfaces by the edges. The generality of this approach allows one to evaluate the 
complexity of the more disparate engineered systems if they can be represented as a graph. 
The complexity metric proposed by Sinha needs the following data to be available: the 
complexity of each component ߙ௜, the complexity of each interface ߚ௜௝, and the adjacency 
matrix A. Here we describe two limitations of Sinha’s approach, which will be overcome by 
the newly developed metric. 
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Component Swap Test 

 

 Swapping of Nodes Within a Graph 

The component complexity ߙ௜represents the complexity of the irreducible 
components at a certain hierarchical level within the system representation. In the graph 
representation of the system, it can be represented as the weight of a looping edge over 
each vertex. Let’s consider two vertices, ݑ and ݒ, and their weights, ݓሺݑ, ሻݑ 	ൌ  ௨ andߙ
,ݒሺݓ ሻݒ 	ൌ ,ݑሺݓ ௩. Swapping the weights to haveߙ ሻݑ 	ൌ ,ݒሺݓ ௩andߙ ሻݒ 	ൌ  ௨ should generallyߙ
reflect a change in the value of the structural complexity metric. 

As an example, consider two separate temperature control systems within a building. 
One takes care of a conference room and the other one of a biotech laboratory. These two 
systems are going to have in general very different essential complexities, as it can be seen 
from their required level of performance (e.g., accuracy, responsiveness). The complexity of 
the whole building would generally be affected in case these two systems are swapped. A 
good complexity metric should be able to verify the component swap criterion. 

The complexity metric developed by Sinha is not able to distinguish between the two 
systems. This is because the contribution of the components ܥଵ is evaluated using a sum of 
the component complexities, which is commutative. 



Acquisition Research Program: 
Creating Synergy for Informed Change - 406 - 

Interface Swap Test 

 

 Swapping of Edges in a Graph 

The interface complexity ߚ௜ represents the complexity of the interconnection between 
two components at a certain hierarchical level within the system representation. In the graph 
representation of the system, it can be represented as the weight of the edge between two 
vertices. Let’s consider two edges having weights ݓଵሺݑଵ, ଵሻݒ ൌ ,ଶݑଶሺݓ ଵ andߚ ଶሻݒ ൌ  .ଶߚ
Swapping the weights to have ݓଵሺݑଵ, ଵሻݒ ൌ ,ଶݑଶሺݓ ଶ andߚ ଶሻݒ ൌ   should generally reflect a	ଵߚ
change in the value of the structural complexity metric. 

In this case as well, the metric developed by Sinha does not reflect a change 
following this swap because of the commutative property of the sum. 

Approach for the Development of a New Metric 

Requirements for a Structural Complexity Metric 

In this research, we are developing a spectral structural complexity metric that can 
overcome the limitations in other structural complexity measures while maintaining all the 
good features of the existing ones. The new metric shall be able to 

1. Measure the complexity of a system with directed interfaces, in which the 
adjacency matrix is asymmetric. 

2. Measure the complexity of a system with multiple parallel edges, in which two 
components can be connected via more than one edge. 

3. Measure the complexity of a system with respect to its size, meaning that the 
complexity metric should be normalized with respect to the extension of the 
system. 

4. Pass the component swap test. 

5. Pass the interface swap test. 

Directed Edges 

Any engineered system can be represented through a graph in which the 
components are vertices and the interfaces are edges. In general, interfaces have a 
direction, such as for broadcasting communication systems in which one components 
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transmits data to many receivers. Directionality can create asymmetry in the representation 
of the graph, in case the adjacency matrix is used, with subsequent complex eigenvalues. 
This approach will use the Laplacian matrix, which is Hermitian, and since we are going to 
use real values for the matrix, it will be symmetric. Therefore, the use of the Laplacian matrix 
allows us to have real eigenvalues—more precisely non-negative ones—which can be used 
for the definition of the metric. 

Multiple Parallel Edges 

Engineered systems can also have multiple interfaces between components. In a 
graph representation, this means that the edge ሺݑ,  ,ሻ can have multiple instances, namelyݒ
ሺݑ, ,	ሻଵݒ ሺݑ, ,	ሻଶݒ …	 , ሺݑ,  ሻ௞. For example, the interfaces between two components in aݒ
cyberphysical system can be thermal, mechanical, electromagnetic, or logical (i.e., in 
software). In our approach, multiple interfaces are simply bundled together and considered 
as one. The same approach has also been used already by Sinha, even if without explicit 
mention (Sinha & de Weck, 2012). 

Size Normalization 

Since the size of the system influences its complexity, we want to adopt Chaisson’s 
approach and normalize the metric with the size of the system. This can be done by 
normalizing the graph metric with the number of vertices, or by using normalized matrices 
such as the normalized Laplacian, which is normalized with the degree of the nodes. 

Weighted Edges 

The role of the graph in this application is to carry the information about complexity of 
components and interfaces. For this reason, the edges of the graph need to be weighted 
according to their complexity. The complexity of the components is represented through 
weights on self-looping edges. 

In the following section, the theory behind the development of a new metric is 
presented, and a running example is used to illustrate the ߙ௨ ൌ 1 for all the vertices, and 
௨௩ߚ ൌ 1 for all the edges. While the theory considers the more general case and is not 
based upon this assumption, its use in the illustrative example allows the reader to more 
easily focus on the topological contribution to the system complexity. 

Spectral Theory of Systems Complexity 

Spectral Graph Theory 

Spectral Graph Theory is the study of graphs through the eigenvalues of their matrix 
representation. The set of eigenvalues is known as the spectrum. The elements of spectral 
graph theory here reported were published by Chung (1997) and Spielman (2007). Let’s 
consider a graph with n vertices and m edges. If u and v are two vertices in the graph, and 
they are connected by an edge, we say that they are adjacent. An edge that connects a 
vertex to itself is called a loop. Graphs that contain no loops are called simple graphs. 
Edges can be associated to a direction. Directed graphs have edges with an associated 
direction, meaning that the edges ሺݑ, ,ݒሻ and ሺݒ  ሻ are two distinct entities. For undirectedݑ
graphs, those are two representations of the same entity. 

Edges in a graph can also be weighted, meaning that we can define a function 

,ݑሺݓ ሻݒ ∶ 	ܸ	ൈ	ܸ	 → Թ . 

where 

,ݑሺݓ ሻݒ ൒ 0 



Acquisition Research Program: 
Creating Synergy for Informed Change - 408 - 

and, in the case of undirected graphs, 

,ݑሺݓ ሻݒ ൌ ,ݒሺݓ  ሻݑ

The degree of a vertex is defined as the number of incoming edges connected to it, 
and in the case of weighted edges  

݀௩ ൌ෍ݓሺݑ, ሻݒ
௨

 

In this section, we introduce various matrix representations of graphs that will be 
useful in the creation of a spectral complexity metric. To do this, we will consider the graph 
represented in Figure 2 as a running example. 

Adjacency Matrix 

The adjacency matrix is defined as 

,ݑሺܣ ሻݒ ൌ ቄ1 ,ݐ݆݊݁ܿܽ݀ܽ	݁ݎܽ	ݒ	݀݊ܽ	ݑ	݂݅
0 .݁ݏ݅ݓݎ݄݁ݐ݋

 

The adjacency matrix is symmetric in the case of undirected graphs. For directed 
graphs, the symmetry holds only if edges appear in pairs. In the case of weighted edges, the 
adjacency matrix is defined as 

,ݑሺܣ ሻݒ ൌ ቄݓሺݑ, ሻݒ ,ݐ݆݊݁ܿܽ݀ܽ	݁ݎܽ	ݒ	݀݊ܽ	ݑ	݂݅
0 .݁ݏ݅ݓݎ݄݁ݐ݋

 

The eigenvalues of the adjacency matrix are labeled in increasing order and 
represented as 

ଵߣ ൒ 	 ଶߣ ൒ ⋯ ൒	ߣ௡ 

and the following is true 

෍ߣ௜

௡

௜ୀଵ

ൌ 0 

෍ߣ௜
ଶ

௡

௜ୀଵ

ൌ 2݉ 

In our example, the adjacency matrix will have the following values in case we 
consider the edges of the graph as directed or undirected 

 

Laplacian Matrix 

The Laplacian matrix is defined as ܮሺݑ, ሻݒ ൌ ,ݑሺܦ ሻݒ െ ,ݑሺܣ ,ݑሺܦ ሻ, whereݒ  ሻ is theݒ
diagonal matrix of the vertex degrees. This definition is equivalent to 
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,ݑሺܮ ሻݒ ൌ ൝
݀௩ ݑ	݂݅ ൌ ,ݒ
െ1 ,ݐ݆݊݁ܿܽ݀ܽ	݁ݎܽ	ݒ	݀݊ܽ	ݑ	݂݅
0 .݁ݏ݅ݓݎ݄݁ݐ݋

 

If edges are weighted, its definition is given by 

,ݑሺܮ ሻݒ ൌ ൝
݀௩ െ ,ݑሺݓ ሻݒ ݑ	݂݅ ൌ ,ݒ

െݓሺݑ, ሻݒ ,ݐ݆݊݁ܿܽ݀ܽ	݁ݎܽ	ݒ	݀݊ܽ	ݑ	݂݅
0 .݁ݏ݅ݓݎ݄݁ݐ݋

 

In the case of directed graphs (Chung, 2005), the Laplacian matrix is defined as 

,ݑሺܮ ሻݒ ൌ Φ െ
Φܲ ൅ ܲ∗Φ

2
 

where Φ is the diagonal matrix of the flow of a vertex ߶ሺݒሻ and ܲ is the transition probability 
matrix. For a weighted directed graph (Butler, 2007), 

ܲሺݑ, ሻݒ ൌ
,ݑሺݓ ሻݒ
݀௢௨௧ሺݑሻ

 

The Laplacian matrix is always symmetric, both in the case of directed and 
undirected graphs. The eigenvalues of the Laplacian matrix are usually labeled in a 
decreasing order, and are represented as 

0 ൌ ଵߤ ൑ ଶߤ ൑ ⋯ ൑  ௡ߤ

and the following is true: 

෍ߤ௜

௡

௜ୀଵ

ൌ 2݉,෍ߤ௜
ଶ

௡

௜ୀଵ

ൌ 2݉ ൅෍݀௜
ଶ

௡

௜ୀଵ

 

In our example, the directed and undirected Laplacian matrices assume the following 
values 

 

and 
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Normalized Laplacian Matrix 

The normalized Laplacian matrix for undirected graphs is defined as ࣦ ൌ
 ଵ/ଶ which is equivalent toିܦܮଵ/ଶିܦ

ࣦሺݑ, ሻݒ ൌ

ە
۔

ۓ
1 ݑ	݂݅ ൌ ,ݒ

െ
1

ඥ݀௨݀௩
,ݐ݆݊݁ܿܽ݀ܽ	݁ݎܽ	ݒ	݀݊ܽ	ݑ	݂݅

0 .݁ݏ݅ݓݎ݄݁ݐ݋

 

For weighted graphs, the weighted normalized Laplacian matrix is 

ࣦሺݑ, ሻݒ ൌ

ە
ۖ
۔

ۖ
1ۓ െ

,ݑሺݓ ሻݒ
݀௨

ݑ	݂݅ ൌ ,ݒ

െ
,ݑሺݓ ሻݒ

ඥ݀௨݀௩
,ݐ݆݊݁ܿܽ݀ܽ	݁ݎܽ	ݒ	݀݊ܽ	ݑ	݂݅

0 .݁ݏ݅ݓݎ݄݁ݐ݋

 

In the case of directed graphs (Chung, 2005), the normalized Laplacian matrix is 
defined as 

ࣦሺݑ, ሻݒ ൌ ܫ െ
Φଵ ଶ⁄ ܲΦିଵ ଶ⁄ ൅ Φିଵ ଶ⁄ ܲ∗Φଵ ଶ⁄ 	

2
 

where I is the identity matrix, ߔ is the diagonal matrix of the flow of a vertex ߶ሺݒሻ, and P is 
the transition probability matrix. For a weighted directed graph (Butler, 2007), 

ܲሺݑ, ሻݒ ൌ
,ݑሺݓ ሻݒ
݀௢௨௧ሺݑሻ

 

The normalized Laplacian matrix is always symmetric, and its eigenvalues are 
represented as 

0	 ൌ ଵߥ ൑ ଶߥ ൑ ⋯ ൑  ௡ߥ

In our running example, the values of this matrix for the directed and undirected case 
are 

 

and 
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Matrix Energy 

Graph Energy 

Graph energy has been defined by Gutman in 1978 (Gutman, 2001; Gutman & 
Shao, 2011) as 

ሻܩ஺ሺܧ ൌ 	෍|ߣ௜|

௡

௜ୀଵ

 

and it has the following properties 

ሻܩሺܧ .1 ൒ 0, where equality is attained only for m = 0, meaning that the graph 
has no edges, and all the vertices are disconnected; 

2. the energy of two disconnected graph components ܩଵand ܩଶ is ܧሺܩሻ 	ൌ
ଵሻܩሺܧ	 	൅  ଶሻܩሺܧ	

3. if one component is ܩଵ and all the other components are isolated vertices, 
then ܧሺܩሻ 	ൌ  .ଵሻܩሺܧ	

Laplacian Graph Energy 

Gutman also defined the Laplacian energy of a graph (Gutman & Zhou, 2006) as 

ሻܩ௅ሺܧ ൌ 	෍|ߛ௜|

௡

௜ୀଵ

ൌ෍ฬߤ௜ െ
2݉
݊
ฬ

௡

௜ୀଵ

 

where ߛ௜ are the auxiliary Laplacian eigenvalues defined as 

௜ߛ ൌ ௜ߤ െ
2݉
݊

 

Generalized Matrix Energy 

A generalization of all these definitions can be given considering a general matrix 
(Cavers, Fallat, & Kirkland, 2010) 

ሻܩெሺܧ ൌ 	෍ฬߣ௜ሺܯሻ െ
ሻܯሺݎݐ
݊

ฬ

௡

௜ୀଵ

 

where ݎݐሺܯሻ is the trace of the matrix M. Thanks to this generalization it is possible to define 
the normalized Laplacian energy of a graph 

ሻܩሺࣦܧ ൌ෍ฬߥ௜ െ
ሺࣦሻݎݐ
݊

ฬ

௡

௜ୀଵ

ൌ෍|ߥ௜ െ 1|
௡

௜ୀଵ

 

Spectral Structural Complexity Metrics 
The advancements in spectral graph theory presented in the previous section allow 

us to define a series of complexity metrics based on the spectrum of a certain 
representation of the system. Let’s start with defining the weight function as 

,ݑሺݓ ሻݒ ൌ ൜
௨ߙ ݑ	݂݅ ൌ ݒ
௨,௩ߚ  ݁ݏ݅ݓݎ݄݁ݐ݋

where ߙ௨ represents the complexity of the component ݑ, and ߚ௨,௩ the complexity of the 
interface between components ݑ and ݒ. This function allows us to use the definitions for the 
weighted adjacency, Laplacian, and normalized Laplacian matrices, for both the case of 
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directed and undirected graphs. The structural complexity evaluated using the adjacency 
matrix is defined as 

஺ܥ ൌ
ሻܩ஺ሺܧ

݊
 

where the adjacency matrix considers the weights of the edges, and n is the number of 
vertices of the graph. In the case of unweighted edges, this metric is equivalent to the ܥଷ 
component of the one defined by Sinha (Sinha & de Weck, 2012). The adjacency matrix is 
historically the most used in systems engineering (as DSM) and in spectral graph theory. In 
recent years, there has been a shift in spectral graph theory, given by the interesting 
properties of the Laplacian eigenvalues. The second smallest eigenvalue is particularly 
interesting, since it represents the connectivity of the graph. Also, the multiplicity of zero in 
the Laplacian spectrum represents the number of connected components, used in the metric 
proposed by McCabe. For these reasons, we are defining the structural complexity 
evaluated using the Laplacian matrix as 

௅ܥ ൌ
ሻܩ௅ሺܧ
݊

 

where the Laplacian matrix considers the weights of the edges, and n is the number of 
vertices of the graph. This type of normalization has an alternative, which is to normalize 
using the degree matrix of the system. This alternative approach brings to the normalized 
Laplacian matrix. The structural complexity evaluated using the normalized Laplacian matrix 
is defined as 

ࣦܥ ൌ  ሻܩሺࣦܧ

where the normalized Laplacian matrix is defined considering the weights of the edges. 

In Figure 5 we report the values of these metrics for the directed and undirected case 
of our running example. 
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 Evaluation of Complexity Metrics Based on the Matrix Energy of the 
Adjacency Matrix, Laplacian Matrix, and Normalized Laplacian Matrix, for 

the Directed and Undirected Graph Represented in Figure 2 

Conclusion and Future Work 
In this paper, we presented an alternative to existing structural complexity metrics. 

The purpose of the metrics is to measure the structural complexity of the system, 
considering the contributions of the size, the connectivity, and the topology of the system. At 
this stage of the research, the focus has been shifted on the topological contribution, with 
the plan of addressing size and connectivity in a later stage. 

These metrics will subsequently be applied to real world systems, with the goal of 
verifying their applicability and understanding their differences in terms of features and 
limitations. The results will then be compared to the ones from other complexity metrics, with 
the goal of validating the new metrics and clarifying their possible shortcomings. 

In the context of the systems engineering practice, these metrics represent a 
continuation of the widespread effort to introduce quantitative tools to increase objectivity of 
measurements. The spectral approach developed by Sinha is the starting point of possibly a 
series of research efforts that will gradually introduce new metrics trying to patch limitations 
in the existing ones. The long-term expectation is for practitioners to converge on the use of 
a low number of metrics that will be applied depending on the specific case. 
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