
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2017-12

The Forgotten Engineer

Denning, Peter J.
ACM

Denning, Peter J. "The forgotten engineer." Communications of the ACM 60, no. 12
(2017): 20-23.
http://hdl.handle.net/10945/57259

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

20 COMMUNICATIONS OF THE ACM | DECEMBER 2017 | VOL. 60 | NO. 12

V
viewpoints

Much the same happened with
computing technology. The first digital
electronic computer was built in Ger-
many in 1938 by Konrad Zuse, who
was educated as a civil engineer. John
Atanasoff and Clifford Berry built a
digital computer that solved linear
equations and demonstrated it in
1942. The first digital computer ca-
pable of any computable function—
ENIAC (1945)—was built by electrical
engineers J. Presper Eckert and John
Mauchly under a U.S. Army contract.
They spent many hours tinkering to
find reliable electronic logic circuits.
In 1945, they joined with Herman
Goldstine, Arthur Burks, and John von
Neumann to design a stored-program
machine, which they demonstrated
would be more powerful and signifi-
cantly less complex than ENIAC.

Although Alan Turing, whom many
computer scientists revere, proposed
his Turing machine model of compu-
tation in 1936, his work was known
only to a handful of mathematical logi-
cians, and completely unknown to the
engineers who built the first electronic
computers.2,5 It was not until the 1950s,

W
E LIVE IN a time that re-
veres science. It was not
always this way: in much
of the previous centu-
ries, engineers were he-

roes. In the late 20th century, however,
the engineer’s image eroded because
science seemed to offer more hope with
difficult problems and because technol-
ogy seemed to inflict collateral damage
through such issues as pollution, ex-
ploitation of nature, weapons of mass
destruction, and massive surveillance.

Our modern fascination for science
is marginalizing engineering. This is
especially bad for computer science
and engineering. For instance, we rou-
tinely teach programming as a set of
abstractions to be applied rather than a
skill of design to satisfy customers. We
routinely make claims about what com-
puting can theoretically accomplish
without knowing that we can deliver.

Not long ago, Science magazine dis-
tributed a subscription solicitation
that offered a T-shirt bearing on the
front the image of a Leonardo da Vinci
flying machine and on the back the in-
scription “Aviation. Brought to you by

science.” This slogan was an XL mis-
representation of how aviation came
to be.8

The linear model of research and
development behind this slogan has
been repeatedly challenged and dis-
proved. Science advertised this popular
fallacy on a T-shirt—with the worst ex-
ample imaginable.

The Wright brothers did look
to science for help in answering fun-
damental questions about wings and
propellers.8 The premier institution of
the day, the Smithsonian, was unable
to help them. These bicycle mechan-
ics and self-taught engineers conducted
their own experiments, spending many
hours studying the flights of birds to
understand what enabled them to soar,
eventually concluding that wing warping
would be a key to controlling gliders and
powered aircraft. Only when they had a
sketch of a mechanical concept could
they begin to apply science to its devel-
opment. Science did not bring us avia-
tion. Rather, the Wright brothers built
working flying machines that opened
the possibility of aviation and gave birth
to a new science, aeronautics.

The Profession of IT
The Forgotten
Engineer
Engineering has been marginalized by the unhealthy belief
that engineering is the application of science.

DOI:10.1145/3152912	 Peter J. Denning

http://dx.doi.org/10.1145/3152912

DECEMBER 2017 | VOL. 60 | NO. 12 | COMMUNICATIONS OF THE ACM 21

viewpoints

V
I

M
A

G
E

 B
Y

 A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S

velopment is “multiperson development
of multiversion programs”—in other
words, teams and organizations build-
ing families of software. Curricula that
lack a strong emphasis on design can-
not prepare their graduates for this.
What happened to the engineering in
software engineering?

Engineering has helped all the so-
cial, life, and physical sciences advance
by providing tools and instruments.
Engineering has helped civilization ad-
vance by providing reliable infrastruc-
tures such as electricity, transporta-
tion, water, and food. Since the 1980s,
the engineering of supercomputers
and networks has given birth to a raft
of new branches of science, mostly
called “computational X” where “X”
names a traditional science. Most com-
puting professionals today are heavily
engaged in engineering—they design
systems for customers and experiment
to find out what works. Why has the en-
gineering outlook lost favor in many CS
departments?

Much engineering is oriented
around design of systems and struc-
tures that will be reliable, safe, and se-

when the first academic programs were
being born, that Turing’s work offered
the theoretical basis to make computer
science credible as a new department
in universities. In other words, as im-
portant as Turing’s work is, it did not
inform or inspire the first electronic
computers or the stored program con-
cept. Instead, the success of the first
stored-program electronic computers
created the opening for Turing’s work
to become important. Yet we have our
own T-shirts proclaiming that Turing
was the father of digital computing.

Incongruities
Most engineering associations and
the accrediting body ABET define en-
gineering as “application of science
and mathematics to finding practical
solutions to problems,” a definition
that makes engineering an applica-
tion of science or a branch of science.
Not that long ago, some engineering
associations defined engineering as
the science and art of designing and
making structures. Petroski com-
ments, “Once that design is articu-
lated by the engineer as artist, it must

be analyzed by the engineer as scien-
tist in as rigorous an application of the
scientific method that any scientist
must make.”7 What happened to the
idea that engineering is both science
and art?

When I recently reviewed the status
of computational thinking in educa-
tion,3 I noticed that the recommenda-
tions for curricula focus almost exclu-
sively about the science-math side of
computational thinking and have little
or nothing to say about architecture or
design side. This seemed odd because
programs are designed to control ma-
chines, and moreover most of the new
jobs in computing are in architecture
and design. Why are architecture and
design not showing on the computa-
tional thinking radars?

Software pioneer David Parnas has
long been a critic of the adopted approach
to teaching software engineering, which
seemed to him to downplay an engineer-
ing view in favor of a math-theory view.
He wants students to get plenty of prac-
tice programming and designing pro-
grams to meet customer requirements.6
He notes that the crux of software de-

22 COMMUNICATIONS OF THE ACM | DECEMBER 2017 | VOL. 60 | NO. 12

viewpoints

The second main distinction is how
scientists and engineers regard knowl-
edge. Scientists treat knowledge as data
and information that have been orga-
nized into a “body of knowledge” that
is then available for anyone to use. The
scientific method is a process of stan-
dard, outside observers gathering and
weighing evidence in support of claims
that might be added to the body. Engi-
neers treat knowledge as skillful prac-
tices that enable design and building
of tools and technologies. Engineers
are not disinterested outside observers;
they are immersed in the communi-
ties of use. They embody practices for
building, maintaining, and repairing
technologies; attending to reliability,
dependability, and safety in the context
of use; and following engineering stan-
dards and codes of ethics.

The third main distinction concerns
the role of abstractions and models.
Science emphasizes models, and en-
gineering machines. There is a funda-
mental distinction between modeling
machines and building them. Abstrac-
tions are useful for what they leave out.
Machines are useful for what they leave
in. Hardware and software are inter-
changeable to the theorist, but not to
the engineer.

The familiar phrase “devil is in the
details” is an engineer’s motto. Engi-
neers must get the details right for sys-
tems to work. Scientists want to elimi-
nate the details so that the recurrences
stand out.

The accompanying table summa-
rizes, compares, and contrasts how
computer scientists and engineers
tend to view design. These are disposi-
tions and tendencies, not formal defi-
nitions. Computer scientists need to
function with both worldviews.

Engineering and Science
in Computing
As we noted in 1989,4 science, engi-
neering, and mathematics are irrevo-
cably interwoven in the fabric of com-
puting. Every computing technology
has a science, an engineering, and a
mathematics aspect. Computing can-
not be dissected into the three com-
ponents. It is not a branch of science,
engineering, or mathematics. In
computing, design means develop-
ing practical systems with the aid of
mathematical tools such as program

cure. Aside from “design of experiments
and models,” scientists hardly ever dis-
cuss design. How could engineering be
a subset of science when its main con-
cern is not a concern of science?

Distinctions
It is clear that science and engineer-
ing are distinct enterprises with dif-
ferent ways of looking at the world. Yet
they cannot advance without interact-
ing with each other. Historians Bowler
and Morus trace the evolution of the
steam engine and the telegraph in the
1700s and 1800s.1 They debunked the
modern myths of one-directional flow
from science to technology. In those
days, there was no practical differ-
ence between science and technology.
It seems that the distinction between
science and engineering is recent—
introduced in the late 1940s when
Vannevar Bush advocated the estab-
lishment of the U.S. National Science
Foundation for government support
of basic research.

Given the contemporary defini-
tions, I have found three distinctions
between engineering and science

particularly helpful. The first con-
cerns the nature of their work. Engi-
neers design and build technologies
that serve useful purposes, whereas
scientists search for laws explaining
phenomena. Design is among the
most common words of engineering,
whereas it is uncommon in science.
Design in engineering is a process of
finding practical, safe, cost-effective
implementations. Whereas scientists
have a knack for finding recurrences,
engineers have a knack for listening to
clients and proposing technologies of
value to them.

Design in
computing is
fundamentally
an engineering
practice.

Dispositions toward design in computing.

Science Engineering

A design is a plan or a blueprint for a model
or an experiment

Design is a process of proposing systems that meet
customer concerns

Designs aim to reveal causes Designers aim to harness naturally occurring effects

Designers find and validate models Designers align software with user practices

Designers work with proven abstractions and
models that omit inessential details

Designers know that every detail counts for a reliable
and safe product or system

Designers are ultimately concerned with
whether claims are true

Designers are ultimately concerned with whether
products or systems work

Designers are objective observers detached
from communities

Designers are immersed in their communities

Designers aim to understand the world Designers aim for working implementations that can
change the world

Correctness and validation measure success Client satisfaction measures success

Mistakes can be eliminated with formal
verification

Mistakes and defects are inherent, the system must
tolerate them

Good designs can be formally verified so that
they will work the first time

Good designs are fault tolerant so that they continue
to be reliable and safe even when faults and defects
appear

Good designs rule out contingencies or
surprises

Designers work with contingencies and surprises

Experiments validate hypotheses Tinkering is experimenting to find what works

What we know is expressed as our body of
knowledge

What we know is expressed in our practices,
standards, and lore about what works

Engineering and technology will apply
the science

We build technologies to have something to apply
science to

DECEMBER 2017 | VOL. 60 | NO. 12 | COMMUNICATIONS OF THE ACM 23

viewpoints

verifiers, practices from science such
as taxonomies of design patterns,
and validation methods such as care-
ful statistical testing. Design in com-
puting is fundamentally an engineer-
ing practice.

In computing, we work closely with
the notion that programs can be ex-
pressed as structures of abstract ob-
jects, and the useful work happens
when those abstract objects control
machines that affect the world. The sci-
ence-math mind plays a strong role with
structuring the abstractions; the engi-
neering mind plays a strong role with
bringing the effects into the world. The
field cannot survive if these two aspects
do not maintain a synergized balance.

These arguments are not new. In
his 1968 ACM A.M. Turing lecture,
award recipient Richard Hamming ar-
gued that the computer is at the heart
of computing; without it, almost ev-
erything computing professionals do
would be idle speculation. In the past
two decades, we have added natural
information processes, such as DNA
transcription, to what we study, but
the computer remains the heart. Every
programming language is a means for
designers to control an abstract ma-
chine that when simulated produces
useful and practical results. Comput-
er science graduates, Hamming ar-
gued, must learn design in the context
of bringing value to users.

This is why I am concerned that
our academic departments embody
too strong an emphasis on the theo-
retical side of computing. The engi-
neering side has been diminished in
the process. Recent reforms to com-
puting curricula have introduced
a new first course “CS principles.”
Most of the content of these courses
is concepts relating to programming
and algorithm organization. A few de-
partments, more so in engineering,
use design courses and Raspberry Pi
or Arduino labs to introduce students
to the field. The teachers are always
surprised by how much the students
accomplish in the role of designers
without much grounding in the sci-
ence of the field. More departments
ought to consider starting students
with a design course.

The result is curricula that encap-
sulate computing inside a boundary
of math-science-theory and diminish

crucial engineering aspects in archi-
tecture and design. This is unhealthy
because most of the jobs for which
our graduates are aiming are much
more strongly oriented around en-
gineering than science. It is no won-
der that employers complain that CS
graduates do not fit and need exten-
sive training and hand holding to be-
come profitable employees.

It bothers me that all the modern
advances—in AI, machine learning,
big data, cloud computing, and com-
puter security—are touted as triumphs
of science rather than what they really
are, achievements of engineering and
science working together.

Conclusion
Science and engineering need each
other. Neither is the application or
fulfillment of the other. Science em-
phasizes the discovery of recurrenc-
es. Engineering seeks to harness ef-
fects before the recurrences are fully
known. Science moves in when the ef-
fect has proved useful and we seek to
understand it better, optimize it, make
it more reliable, and exploit its recur-
rences for prediction. Science takes
care of abstractions, engineering the
details that enable abstractions to
work. The marriage of science and en-
gineering in computing is critical for
the continued health of the field.	

References
1.	 Bowler, P.J. and Morus, I. Making Modern Science: An

Historical Survey. University of Chicago Press, 2010.
2.	 Daylight, E. A Turing tale. Commun. ACM 57, 10 (Sept.

2014), 36–38.
3.	 Denning, P. Remaining trouble spots with computational

thinking. Commun. ACM 60, 6 (June 2017), 33–39.
4.	 Denning, P. et al. Computing as a discipline. Commun.

ACM 32, 1 (Jan. 1989), 9–23.
5.	 Haigh, T. Actually, Turing did not invent the computer.

Commun. ACM 57, 1 (Jan. 2014), 36–41.
6.	 Parnas, D. David Parnas speaks of software

engineering. CCSL Centro de Competéncia em
Software Livre, 2014; http://ccsl.ime.usp.br/en/
news/14/09/17/david-parnas-speaks-software-
engineering-ccsl

7.	 Petroski, H. To Engineer is Human: The Role of Failure
in Successful Design. Vintage, 1992.

8.	 Petroski, H. and Denning, P. Your science T-shirt
doesn’t fly. ACM Ubiquity (Dec. 2016); http://ubiquity.
acm.org/blog/your-science-t-shirt-doesnt-fly/

Peter J. Denning (pjd@nps.edu) is Distinguished
Professor of Computer Science and Director of the
Cebrowski Institute for information innovation at the
Naval Postgraduate School in Monterey, CA, is Editor of
ACM Ubiquity, and is a past president of ACM.
The author’s views expressed here are not necessarily
those of his employer or the U.S. federal government.

The author thanks Fernando Flores and Henry Petroski for
conversations with insights about science and engineering.

Copyright held by author.

Calendar
of Events
December 4–6
K-CAP 2017: Knowledge Capture
Conference,
Austin, TX,
Sponsored: ACM/SIG,
Contact: Oscar Corcho,
Email: ocorcho@gmail.com

December 5–8
UCC ‘17: 10th International
Conference on Utility
and Cloud Computing,
Austin, TX,
Co-Sponsored: Other Societies,
Contact: Alan Fraser Sill,
Email: Alan.Sill@ttu.edu

December 11–15
Middleware ‘17: 18th
International Middleware
Conference.
Las Vegas, NV,
Sponsored: ACM/SIG,
Contact: Anshul Gandhi,
Email: anshul@cs.stonybrook.
edu

December 12–15
CoNEXT ‘17: The 13th
International Conference
on Emerging Networking
Experiments and Technologies,
Incheon, Republic of Korea,
Contact: Taekyoung Kwon,
Email: tkkwon98@gmail.com

2018

January

January 7–10
GROUP ‘18: 2018 ACM
Conference on Supporting
Groupwork,
Sanibel Island, FL,
Sponsored: ACM/SIG,
Contact: Michael Prilla,
Email:
prilla.michael@googlemail.com

February

February 21–24
SIGCSE ‘18: The 49th ACM
Technical Symposium on
Computing Science Education,
Baltimore, MD,
Sponsored: ACM/SIG,
Contact: Tiffany Barnes,
Email: tiffany.barnes@gmail.
com

