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The combination of Wigner–Ville distribution (WVD) and Hough
transform (HT) has been successfully used in detection and parame-
ter extraction of frequency modulated continuous waveform (FMCW)
signals. In this paper, a combination of Cross–Wigner–Ville and HT
[(Cross Wigner–Hough transform (XWHT)] is proposed for detection
and parameter extraction of FMCW signals with a novel methodology.
The XWHT method makes use of the cross-terms created by WVD
instead of trying to suppress them. Utilization of the properties of the
cross-terms to detect and unveil the parameters of FMCW signals on
HT space is a new approach. The performance of the method is com-
pared with other Wigner–Hough transform-based methods in terms
of transform speed, parameter extraction, and detection performance.
As a result, this study proposes that the XWHT is a candidate method
to be used in digital electronic support receivers’ automatic signal
detection and analysis capabilities due to its speed and performance.
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I. INTRODUCTION

Military radar systems need to detect before being seen
in order to gain an operational superiority over the op-
ponent’s noncooperative intercept receiver [1]. Therefore,
frequency modulated continuous waveforms (FMCW) and
other low probability of intercept (LPI) radar waveforms
are widely used in contemporary radar systems because of
their low power and wideband properties [2].

To analyze the nonstationary signals, like FMCW
signals, time–frequency (TF) signal representations are
needed. The main motivation of TF distributions is to de-
vise a joint function of time and frequency that describes the
energy of the signal in both time and frequency. A success-
ful application of TF distribution requires prior knowledge
about the signal so that the most suitable distribution is se-
lected [3]. In this paper, Wigner–Ville Distribution (WVD)
is chosen as the TF distribution since; it gives the highest en-
ergy concentration in TF plane, exhibits the nonstationary
properties of the signals, and satisfies the marginal condi-
tions [4].

When the signal to be analyzed is composed of more
than one component; WVD presents signal autoterms as
positive amplitudes along their instantaneous frequency
lines and the cross-terms as oscillatory amplitudes at the ge-
ometrical midpoint of autoterms [5]. The cross-term prob-
lem of the WVD was first pointed out in [6]. The literature
is rich in terms of studies to suppress the cross-terms and
enhance the TF resolution; in [5], amplitude modulation of
the cross-terms was used to reduce them in Wigner–Hough
Transform (WHT). Poyil et al. in [7] detect the linear fre-
quency modulation (LFM) signal components in Hough
Transform (HT), then using the parameters of these com-
ponents, they use back estimation to filter out only the signal
components in WVD. Another study investigated the use
of TF-based blind source separation technique for elimina-
tion of cross-terms in WVD [8]. Researchers proposed a
method called standardization of the pseudoquadratic form
to eliminate the cross-terms in [9].

The existence of cross-terms, however, is not always to
be avoided; there are several studies in the literature that
make use of WVD cross-terms in different research areas.
It has been used in WVD-based radar processors to detect
the presence of targets in [10]. In a medical application,
WVD cross-terms were used to detect presence of very
small signal terms, ventricular late potentials, in patients
who have suffered heart attacks [11]. However, the use
of WVD cross-terms, especially on HT space, has not been
presented in radar signal interception methods. In this paper,
we propose the Cross Wigner–Hough Transform (XWHT)
method to detect and unveil the parameters of the FMCW
signals on HT space by utilizing the properties of the cross-
terms.

In Section II, we start with explaining the WVD and
WVD cross-terms. Section III introduces the commonly
used FMCW LPI waveform and explains the general ap-
proach for WHT-based FMCW detection and parameter
extraction. We also summarize the legacy HT in this section
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and mention about the improvements on it. Section IV in-
troduces the XWHT method and analyzes its performance.
Finally, Section V concludes the work by stating that the
XWHT is a candidate method that can improve electronic
support receivers (ESRs’) automatic signal detection and
analysis capabilities with its speed and performance.

II. WIGNER–VILLE DISTRIBUTION

WVD was first proposed by Wigner with the motiva-
tion to devise a joint distribution that gave the quantum
mechanical distributions of position and momentum simul-
taneously [12]. But it was Ville who introduced WVD into
signal analysis with his work in [13].

A. WVD Representation

Continuous WVD of a signal s(t) can be calculated with
the following integral:

Ws(t, w) = 1

2π

∫
s

(
t − 1

2
τ

)
× s∗

(
t + 1

2
τ

)
e−jτwdτ

(1)
where w is the frequency variable, t is the time variable,
and τ is the time lag [14].

B. WVD Cross-Terms

The creation of cross-terms can be explained as two
points of the TF space interfering to create a contribution
on another point at their geometrical midpoint. These cross-
terms have positive and negative amplitude values, they are
amplitude modulated, have zero mean [15], and their am-
plitudes are higher than the signal components’ amplitudes
[16]. Assuming signal s(t) is composed of two signal com-
ponents s(t) = s1(t) + s2(t), WVD of s(t) can be calculated
as [14]
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In this expression Ws1s2(t, w) and Ws2s1(t, w) terms
are called the Cross Wigner–Ville distribution [17]. Since
Ws1s2 = W ∗

s2s1, we can rearrange (2) as [14]

Ws(t, w) = Ws1s1(t, w) +Ws2s2(t, w) + 2Re {Ws1s2(t, w)}
(3)

where the last term corresponds to the cross-terms. If Ws1

is around (ts1, ws1) and Ws2 is around (ts2, ws2), then the
cross-term lies midway between these signal terms [18]:

(tx, wx) =
(
ts1 + ts2

2
,
ws1 + ws2

2

)
. (4)

III. WHT-BASED FMCW DETECTION AND PARAME-
TER EXTRACTION

WHT translates the signals from time domain to a pa-
rameter space in which detection and parameter extrac-
tion of signals can be performed simultaneously [5]. This
combination makes it possible to redefine the problem of
detecting FMCW components in WVD as detecting the
high-intensity points in HT space. The detection decision
is given whenever the amplitude of any point in HT space
exceeds the detection threshold, ζ .

A. FMCW Radar Signals

Conventional ESRs are generally tuned to detect pulse
and CW waveforms, and LPI radars try to avoid intercep-
tion by mismatching their waveforms to these waveforms
[19]. Wideband linear FMCW is one of the most common
waveform structures used to achieve LPI operations be-
cause of its ease in implementation, its versatility, and its
suitability for fast FT processing to obtain range measure-
ments [20]. The up/down chirp FMCW modulation consists
of positive/negative slope LFM parts. The transmit signal
expressions for positive and negative parts are given as [21]

sp,n(t) = a0 cos

(
2π

((
fc ∓ B

2

)
t ± B

2Tm
t2

))
(5)

where fc is the RF carrier frequency, B is the transmis-
sion modulation bandwidth, and Tm is the modulation time.
The chirp rate of FMCW signals changes according to the
radar’s instrumented range and desired range resolution.
Although the chirp rate is generally represented by the ratio
(β = Tm/B), we represent it as an angle in this study.

Using the positive part of (5) and discrete pseudo-WVD
(PWVD) formula given in [22], we present the geomet-
ric relations of FMCW modulation parameters on a two-
component up-chirp FMCW signal’s PWVD in Fig. 1.

PWVD is actually an N × M matrix, elements of
which can be represented by

W (ni, wj ), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M. (6)

We take 2M as the FFT length, N as the number of
signal samples collected in the observation time (Tobs), fs1
as the sampling frequency, Ts1 as the sampling interval, and
fc as carrier frequency.

On the y-axis, fs1/2 is represented by M (positive
Wigner spectrum), which gives us frequency resolution as
�f1 = fs1/(2M) and on the x-axis Tobs is represented by
N, where Tobs = N × Ts1.

B. Optimality of WHT for FMCW Detection

The optimality of WHT for detection of FMCW sig-
nals was explained in [23]. It was stated that if the position
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Fig. 1. Geometric relations of a two component upchirp FMCW
waveform parameters on WVD.

and sweep rate of the linear chirp is not known, to per-
form generalized likelihood ratio test, one should integrate
WVD along all the possible lines (instantaneous frequency
lines) in the TF plane and the resulting peak value shall be
compared against a threshold. We can assume that, at the
output of the ESR, there is complex white Gaussian noise
n(t) (ℵ(0, σ 2

n ); 0 : zero-mean, σ 2
n : variance) and the signal

s(t), if it exists (i.e., r(t) = s(t) + n(t)). To detect the sig-
nal s(t ;χ) in additive white Gaussian noise (AWGN), ESR
shall filter the intercepted r(t) signal with a matched filter
whose impulse response h(t, χ) is determined by signal pa-
rameters. Here, χ vector includes the maximum likelihood
estimate of the signal parameters. If the parameters of the
signal are not known a priori, maximum filter output is
searched as a function of signal parameters and time delay.
Assuming time delay is known, then the expression below
can be compared against ζ to decide detection [5]:

max
θ

∣∣∣∣
∫
h (τ ;χ ) r (τ ) dτ

∣∣∣∣
2

. (7)

By using the unitarity property of the WVD, time-
domain square modulus of the scalar product in (7) can be
represented as a scalar product of the WVDs in TF domain
using Moyal’s formula [5]

max
θ

∫∫
Wh (t, f ;χ )Wr (t, f ) dtdf . (8)

If we consider FMCW signals in AWGN, WVD of the
impulse response of the filter to be used (Wh(t, f ;χ )) will
have the form of FMCW. In this case, the double integral
in (8) can be calculated using a line integral. Since the
parameters of this line are not known a priori, the integral
needs to be calculated for all the possible lines on WVD [5]
and this can be done by calculating HT of the WVD.

C. HT and Improvements on HT

HT is a pattern recognition technique that is widely used
in image processing to detect geometric shapes in images.

Fig. 2. HT geometry shown on an f (x, y) image.

In an f (x, y) image, we can represent a radial line l with
its orthogonal distance r to the origin and with its normal’s
angle α, as shown in Fig. 2. (In this study we use θ in the
formulations below instead of α, since we also define chirp
rate by θ). This line corresponds to an (r, θ) point in HT
space and transformed by the following formula:

r = x sin θ + y cos θ. (9)

Distance r in (9) can be represented as a sinusoid with
amplitude and phase dependent on the (x, y) coordinates
[24]. If we transform each line crossing over an (x, y) point,
we will have a sinusoid in HT space corresponding to the
(x, y) point

ψ = arctan
x

y
, r =

√
x2 + y2 · cos (α + ψ) . (10)

WHT-based methods can be computationally expen-
sive. Calculating the HT for only a limited set of chirp
rates (signals of interest) and for WVD points exceeding
TF threshold, ThWD, will reduce the required processing
power and complexity. WHT [25], Wigner–Hough–Radon
(WHRT) [26], and Modified Wigner–Hough (MWHT) [27]
transforms were previously proposed to reduce the com-
plexity, yet keeping FMCW parameter extraction perfor-
mance above a certain level.

In WHT, all the lines passing over (xi, yj ) ∈
{f (xi, yj ) ≥ ThWD} points were transferred to (r, θ) space.
Equation xi sin θl + yj cos θl = rk was used for transfor-
mation and the counter was increased by one for the corre-
sponding (rk, θl) point [25]:

C (rk, θl) = C (rk, θl) + 1. (11)

A common (rk, θl) coordinate was calculated for points
on the same line. This common (rk, θl) coordinate was ob-
served as a high-intensity point in HT space.

In Wigner–Radon (WRT) method [28], the cross-terms
in the WVD integrate to a relatively small value due to
negative and positive oscillations present in their structure.
It was proposed to implement WRT with a dual thresh-
old (12) to exploit the cross-term minimization property of
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Fig. 3. WVD of a two Component FMCW up-chirp signal at –6 dB
(X-Z view).

WRT, and this method was called WHRT. In this method,
the intensity value I , was updated instead of counter, as
follows [26]:

if (xi, yj ) ∈ {
f

(
xi, yj

) ≥ ThWD or f
(
xi, yj

) ≤ −ThWD
}

then I (rk, θl) = I (rk, θl) + I new (rk, θl) . (12)

In MWHT, the counter was updated as shown in (13).
This increased the counter for autoterms, and preserved
the counter for cross-terms from increasing due to their
oscillating intensity values [27]:

C (rk, θl) ={
C (rk, θl) + 1 if(xi, yj ) ∈ {

f (xi, yj ) ≥ ThWD
}

C (rk, θl) − 1 if(xi, yj ) ∈ {
f (xi, yj ) ≤ −ThWD

} . (13)

IV. CROSS WIGNER–HOUGH TRANSFORM

The methods mentioned above try to suppress the cross-
terms. However, the cross-terms obtain valuable informa-
tion that can be used in radar signal interception efforts.
They are necessary for unitarity property (i.e., Moyal’s for-
mula) to hold, which is important to derive a closed-form
solution for FMCW signal analysis based on WHT methods
[24]. In the literature, only a few works have been performed
in radar signal detection area on the utilization of informa-
tion contained in cross-terms. Cross-terms are deliberately
formed between an analyzed signal and a reference signal
in [29]. The method uses the geometrical properties of the
cross-terms to estimate the instantaneous frequency of the
analyzed signal. A similar method is used in [30] to sup-
press the cross-terms by multiplying the WVD with a 2-D
mask. The mask was designed by exploiting the geometrical
properties of the cross-terms created between the analyzed
signal and reference signal. These methods use the proper-
ties of the cross-terms to exploit them on WVD space. In
this paper, the XWHT method is proposed to make use of
the properties of the cross-terms on HT space.

In Fig. 3, we present WVD of a two-component FMCW
up-chirp signal at –6 dB SNR, where the high-intensity
cross-term can easily be distinguished. We can see that
the positive intensity part contains both the cross-term and
signal components, whereas the negative intensity part con-
tains only the cross-term. Therefore, the negative intensity

part is more appropriate for putting a threshold to discrimi-
nate cross-terms. With the choice of a best performing neg-
ative threshold (−ThXWD), the counted lines will be those
passing over points on the cross-terms.

Considering the properties of cross-terms, we propose
to create a counter for only negative intensity values so
that, the cross-terms inherent in WVD protrude significantly
in HT. In this case, if xi sin θl + yj cos θl = rk, than the
counter is updated as

if (xi, yj ) ∈ {
f (xi, yj ) ≤ −ThXWD

}
C (rk, θl) = C (rk, θl) + 1. (14)

A. FMCW Parameter Extraction Using XWHT

For parameter extraction using any of the transform
methods mentioned so far, we employ WVD to obtain TF
images; these images are then transferred to a parameter
space of (r, θ) by HT/RT. In this parameter space, the
FMCW signals are detected first and then the properties
of the signals are determined. This parameter space is cal-
culated for all the θ values and we crop the vector at θ hold-
ing the peak value of the transform space to measure the
orthogonal distance between signal components, d. Here,
we propose another algorithm which automatically detects
FMCW signal components and performs parameter extrac-
tion using XWHT. Our goal in this method is to find θ
with XWHT as soon as possible and then calculate d. Af-
ter detecting the FMCW signal and its θ , we need the HT
of signal components to calculate d. At this point, HT is
employed for only this specific θ, determined by XWHT.
Then, we obtain two vectors for the same θ ; XWHT(θ)
vector holding the cross-term and WHT(θ) vector holding
both the signal components and the cross-term. It will be
shown in the next section that the transform speed of the
XWHT is much higher than other HT/RT-based methods.
Determining the θ of the signal with this very fast method
and then calculating the computationally expensive HT for
only one θ is the main advantage of the proposed method.
The flow diagram of the algorithm is shown in Fig. 4.

We analyze the performance of the method using the
signals in Table I.

The signals are modeled in ten different SNR levels (9,
6, 3, 0, –3, –6, –7, –8, –9, –10 dB) to simulate different
ranges, and low-sampling frequency is used for ease of
simulations (fs = 8 kHz). In order to fit at least two signal
components in 1024 sample length time, Tm = 64 m · s is
used for all signals. Monte Carlo runs are performed 100
times for each SNR level.

Top graph in Fig. 5 shows the effect of noise and cross-
term on the WHT(θ)vector. Obviously, the correct calcu-
lation of d depends on avoiding the effects of noise and
cross-terms.

Considering that XWHT is actually WHT with only
negative threshold, subtracting XWHT vector from WHT
vector suppresses cross-term and noise effect and it gives
us a rather clear vector for calculating d. The middle graph
shows the XWHT(θ) vector and the bottom graph illustrates
the result of the vector subtraction for S1(·) at –12 dB SNR.
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Fig. 4. Proposed detection and parameter extraction algorithm flow diagram using XWHT.

TABLE I
Test Signal Database

Signals Chirp rate B (in terms of fs) fc(Hz)

Signal 1 (S1) 30 0.433 fs/4
Signal 2 (S2) 45 0.25
Signal 3 (S3) 60 0.144
Signal 4 (S4) 75 0.067

Fig. 5. Top: WHT vector, Middle: XWHT vector, Bottom:
|WHT-XWHT| Vector for S1(·) at –12 dB SNR.

Once we get d and θ , the FMCW characteristic param-
eters are extracted by using the formulas in (15) for all
the HT/RT-based methods, including XWHT. Therefore,
XWHT’s performance of deriving d and θ , along with its
transform speed, are used as means of comparison with

other transform methods, in the next section

B = d

cosα
for (θ0 > 90◦), B = d

sin(α − 90)
for (θ0 < 90◦)

Tm = B

tan(α)
. (15)

B. Performance Analysis of XWHT-Based Parameter
Extraction

In this section, we analyze the efficiency of XWHT
method by comparing it with the other WHT-based param-
eter extraction methods in terms of; parameter extraction
performance and transform speed.N = 1024 sample length
signals, M = 1024 FFT bins (positive frequency bins) are
used and at least two up-chirp FMCW signal components
are simulated. We assume that best performing ThWD is
chosen for each method. Best performing ThWD interval
for extracting FMCW signal parameters using WHT-based
methods was investigated in [27]. In this investigation;
WHT-based algorithms were found to perform well with
ThWD values chosen between 20%–40% of the maximum
WVD intensity levels of the signal.

Before performance comparison, the best performing
ThWD for XWHT is derived. XWHT tries to increase the in-
tensities of cross-terms more than auto-terms’ in HT space.
So, considering the properties of cross-terms, a smaller
negative threshold on WVD is thought to increase the prob-
ability of detection of cross-terms and to increase transform
speed, i.e., shorten detection time. To find the best perform-
ing ThWD for the chosen chirp rate estimation performance
(PCRE) using XWHT, we changed ThWD in the interval of
20%–65% factors in 5% steps. Fig. 6 presents the result
of this analysis at –10 dB SNR, where the threshold factor
40% makes PCRE 100% for all test signals.

The effect of −ThWD for higher SNR levels (–9–0 dB)
was also investigated. We have seen that for SNR levels
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Fig. 6. PCRE Performance of XWHT versus varying WVD threshold
factors.

Fig. 7. Orthogonal distance calculation performance of transform
methods.

–9 dB and higher, and for all test signals, we get PCRE 100%
when −ThWD level is between 35%–45%. So, we concluded
that we can use −ThXWD = −0.4 × max[WVD] both for
low and high SNR levels.

1) Orthogonal Distance Calculation Performance:
Fig. 7 shows the distance calculation performance of all
the methods using S1(·) as an example signal. Similar re-
sults were derived for all the test signals. We can see that
WRT gives us the best parameter extraction performance
and XWHT and MWHT algorithms are next best.

2) Chirp Rate Estimation Performance: We have also
looked at PCRE. Finding the chirp rate in ±1° tolerance was
accepted as successful estimation. The simulation results
are not presented here since it was seen that all methods
performed with 100% success in finding the chirp rate down
to –10 dB SNR levels.

3) FMCW Parameters Extracted by XWHT: In this
study, the chirp rate estimation performance (PCRE) shown

Fig. 8. Transform speeds for S1(·).

in Fig. 6 and orthogonal distance calculation performance
(d) shown in Fig. 7 implicitly suggests the parameter ex-
traction accuracy of the method, because once we get d
and θ , the FMCW characteristic parameters are determin-
istically computed by using (15). So, it is fair to say that
the accuracy in the calculation of d and θ directly deter-
mines the accuracy of the signal parameters, such as center
frequency, bandwidth, and modulation time.

The algorithm works in such a way that, after the vec-
tor subtraction |WHT(θ)| − |XWHT(θ)| shown in Fig. 5,
we get a very clear vector for the calculation of d. How-
ever, depending on the SNR level, even if the cross-term
intensity is enough for detection process in the parame-
ter space, the signal components’ intensity levels may be
buried under noise level. In this case, even after the vector
subtraction, wrong d and θ values are found, therefore they
are discarded.

Revisiting Fig. 7 for accuracy analysis, we can say that
the XWHT method accurately calculates the parameters of
82% of the signals at –9 dB, 90% of the signals at –6 dB,
and 99% of the signals for SNR levels –3 dB and above.

Orthogonal distance calculation performance analyses
results presented by Fig. 7 favor WRT, but PCRE analy-
ses show that all methods are successful in finding chirp
rate. However, we have to keep in mind that ESR systems
need to operate very fast due to their time-critical missions.
Therefore, we need a very fast method with reasonable per-
formance metrics. So we need to compare the transform
methods in terms of their transform speed performance as
well.

4) Transform Speed Comparison: Transform speed can
actually be considered as the related method’s signal de-
tection speed, since we search for the maximum intensity
points in the transform spaces to declare detection.

As has been defined in Table I, each test signal used in
this study was designed to represent a different chirp rate.
Fig. 8 shows the transform speeds of methods for S1(·) for
SNR levels (–10–9 dB). Transform speed comparisons were
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performed for all the test signals and for each test signal,
comparison results were similar to the ones illustrated in
Fig. 8. As will be explained in the next paragraph, the
transform speeds of the transform methods solely depend
on the number of WVD points to be used for the transform
computations and not on the chirp rate. As expected, Fig. 8
shows that the XWHT method has the fastest transform
speed.

Transform space calculation time results can be sup-
ported by the computational complexity calculations.
The signal length is taken as S, number of FFT bins
is taken as 2S, and the number of angles for trans-
forms is taken as F. Since WRT uses all the S2 pix-
els in the WVD image, the computational complexity of
WRT will be O(FS2). The computational complexity for
WHT and WHRT is O(FK), where K < S2, because
we only use (xi, yj ) ∈ {f (xi, yj ) ≥ ThWD}. For MWHT,
the computational complexity is O(FL), where K <

L < S2, because we use (xi, yj ) ∈ {f (xi, yj ) ≥ ThWD

and f (xi, yj ) ≤ −ThWD}, and for XWHT, since it uses only
(xi, yj ) ∈ {f (xi, yj ) ≤ −ThXWD}, the computational com-
plexity is O(FJ ), where J < K < L < S2 and J 〈〈S2, be-
cause only the cross-term magnitudes exceed −ThXWD and
|ThWD| < |ThXWD|.

As a result we can conclude that XWHT method is a
much faster transform method with a very good parameter
extraction performance.

C. FMCW Detection Using XWHT

In the previous section, we have analyzed the perfor-
mance of transform methods assuming that the signal was
present in the intercepted data. The analyses were per-
formed with a comparison focus and they showed that
XWHT produced results much faster than the other trans-
form methods mentioned in this paper. In this section, we
try to compare the actual performance metrics of Wigner-
Hough-Based FMCW detection methods; probability of de-
tection (Pd ) for a given probability of false alarm (Pfa).
The investigation is performed on ROC curves of the WHT
methods.

Although there are some studies in the literature to de-
termine performance standards of ESRs [31], [32], there
is still no globally accepted performance standard for ESR
development. Also, there is a large difference between the
theoretical and practical performance metrics of ESRs if
generally accepted performance metrics like Cramer–Rao
bound are used [33]. This is because generally accepted re-
ceiver performance metrics are suitable for communication
receivers where properties of the received signal are known
and there is an efficient receiver for the cooperative incom-
ing signal. However, this is not the case for ESRs where
the parameters of the incoming signal are not known. Since
the performance metrics will be receiver dependent, we
choose to perform numerical analysis for the WHT-based
detection performance analysis instead of deriving analytic
expressions. In order to avoid any unintentional misleading

TABLE II
Signal Database to be Used in Detection

Performance Analysis

Chirp rate B (in terms of fs) fc

Signal 1 30 0.433 fs/4
Signal 2 35 0.357
Signal 3 40 0.298
Signal 4 45 0.25
Signal 5 50 0.209
Signal 6 55 0.175
Signal 7 60 0.144
Signal 8 65 0.117
Signal 9 70 0.091
Signal 10 75 0.067

performance reports, we only perform performance analy-
sis by comparing our own methods with each other.

For this analysis, a more comprehensive FMCW signal
database is used as shown in Table II, to include signals
between chirp rates 30◦−75◦ in 5◦ steps.

All the signals were modeled in eight different SNR
levels (–3, –4, –5, –6, –7, –8, –9, –10 dB) with same Tm
value. Higher SNR values were not modeled since we know
that signals with high SNR values are detected with a very
high performance regardless of their chirp rate [25], [26],
[27]. Monte Carlo runs were performed 100 times for each
SNR level.

To investigate the Pd performance, first we found the
maximum intensity value of the transform spaces of all
intercepts to normalize the intercept transform spaces, in-
cluding noise-only cases. We assumed that, in our simulated
operational area, the most powerful signals are intercepted
at 9 dB SNR. So, for each signal in Table II, we found the
peak value of transform space of each simulation at 9 dB
SNR. As a requirement for our simulated ESR, we wanted
to have Pfa = 10−4. To determine the ζ for this Pfa , we
simulated 104 “noise only” intercepts. The histograms of
these intercepts were calculated to see the maximum inten-
sity value that only noise intercepts could get and this value
determined ζ .

The average of highest peak intensity values of XWHT
spaces for each signal at 9 dB SNR level was investi-
gated and highest peak value was derived at chirp rate
45◦ as 150. Then, from the histograms of noise simula-
tions, the maximum intensity value is found as ζ= 0.3838.
This ζ value was verified by controlling the maximum in-
tensity value of all 104 noise simulations, which was 58
(ζ = 58/150 = 0.38).

In Fig. 9, we present the Pd curves for Pfa = 10−4,
using each signal in Table II, at each SNR level.

In Fig. 9, more obvious for SNR< –8.5 dB, we see that
we get the highest Pd between chirp rates 30◦−50◦. As the
SNR increases, the difference between Pd ’s based on the
chirp rates diminishes. The major cause of the differences
stems from the need to represent the WVD as a digital
(rectangular) grid for calculations. In this representation
geometry, for 45◦ chirp rate, almost each respective point
on the LFM contributes to the XWHT peak in the transform
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Fig. 9. ROC: XWHT for Pfa = 10−4.

Fig. 10. Pd Performance versus chirp rate (at –9 dB).

space. But when the chirp rate is above or below 45◦, the
digital representation geometry sometimes calculates more
than one point to be in the same WVD cell, causing the
corresponding amplitudes in the transform space to subside.
Since, above –8.5 dB SNR, enough LFM points from WVD
are transferred to the XWHT space, component amplitudes
exceed the ThXWD, and chirp rate effect is not recognizable.

D. Performance Analysis of XWHT Based FMCW
Detection

The same analysis is performed for MWHT and WHT
methods as well. The Pd values of all WHT-based methods
at –9 dB SNR are illustrated in Fig. 10. We can clearly
see that the Pd performance of all WHT-based FMCW
interception methods is considerably better between chirp
rates 30◦−50◦.

As a result, the parameter extraction performance com-
parison in Section IV-B showed that XWHT provides a very
good performance at the fastest time, and the detection per-
formance comparison in Section IV-C showed that XWHT
produces comparable detection performance between chirp

rates 30◦−50◦. Considering that it is also possible to dig-
itally adapt the chirp rate to overcome the performance
degradation for signals outside this chirp-rate interval [34],
XWHT should be considered as a strong candidate to be
applied in digital ESR systems.

V. CONCLUSION

With more LPI systems coming into use, the signals of
interest are changing at a rapid pace. ESRs currently in use
are not well optimized for LPI signal detection. Interception
of LPI signals requires sophisticated receivers that use TF
signal processing, correlation techniques, and algorithms to
overcome the processing gain of the LPI systems.

It is not always necessary for ESRs to have idealistic
performance figures to achieve the dedicated task. ESRs
process received signals over an observation period and
perform detection without the need to have 100% Pd on
every received signal.

Our goal in this study was to propose a candidate method
to be used in ESRs for FMCW waveform detection and
parameter extraction. We have exploited the properties of
the cross-terms to detect and unveil the parameters of the
FMCW signals on HT space using XWHT. We have com-
pared the XWHT with other WHT-based methods in terms
of speed, parameter extraction, and detection performance.
Considering the performance analysis results, we can con-
clude that XWHT method produced very successful results
in a much less processing time compared to other methods,
which makes it a candidate method to be used in digital
intercept receivers for FMCW waveform detection.

Future work will be on trying the XWHT on a much
bigger database including poly-phase, poly-time coded sig-
nals, and hardware implementation with real radar wave-
form simulations.

REFERENCES

[1] P. E. Pace
To see and not be seen
In Detecting and Classifying Low Probability of Intercept
Radar, 2nd ed. Norwood, MA, USA: Artech House, 2009.

[2] T. O. Gulum
Autonomous nonlinear classification of LPI radar signal mod-
ulations
M.S. thesis, Dept. Electron. Eng., Naval Postgraduate School,
Monterey, CA, USA, 2007.

[3] J. P. Stephens
Advances in signal processing technology for electronic
warfare
IEEE Aerosp. Electron. Syst. Mag., vol. 11, no. 11, pp. 31–38,
Nov. 1996.

[4] L. Cohen
Time-frequency distributions- A review
Proc. IEEE, vol. 77, no. 7, pp. 941–981, Jul. 1989.

[5] S. Barbarossa and A. Zanalda
A combined Wigner-Ville and Hough transform for cross-terms
suppression and optimal detection and parameter estimation
In Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 1992,
vol. 5, pp. 173–176.

[6] W. D. Mark
Spectral analysis of the convolution and filtering of non-
stationary stochastic processes
J. Sound Vib., vol. 11, pp. 19–63, 1970.

ERDOGAN ET AL.: FMCW SIGNAL DETECTION AND PARAMETER EXTRACTION BY CROSS WIGNER–HOUGH TRANSFORM 341



[7] A. T. Poyil and S. A. Meethal
Cross-term reduction using Wigner Hough Transform and back
estimation
In Proc. Int. Conf. Ind. Control Electron. Eng., 2012, pp. 5–8.

[8] J. B. Wu, J. Chen, and P. Zhong
Time frequency-based blind source separation technique for
elimination of cross-terms in Wigner distribution
Electron. Lett., vol. 39, no. 5, pp. 475–477, Mar. 6, 2003.

[9] Q. Li, T. Zhou, and W. Wang
New method to eliminate cross-term in Wigner Distribution
In Proc. IET Int. Conf. Wireless, Mobile Multimedia Netw.,
2006, pp. 1–3.

[10] J. Giridhar and K. M. M. Prabhu
Implementation details of MTD-WVD on a TMS320C30 DSP
processor
Microprocessors Microsyst., vol. 22, no. 1, pp. 1–12, 1998.

[11] M. A. Reyna-Carranza, L. S. Fierro, and M. E. Bravo-Zanoguera
Wigner distribution’s cross terms characterization to detect pat-
terns of ventricular late potentials
In Proc. Pan Amer. Health Care Exchanges, 2012, pp. 117–120.

[12] E. Wigner
On the quantum correction for thermodynamic equilibrium
Phys. Rev., vol. 40, pp. 749–759, Jun. 1932.

[13] J. Ville
Theorie et applications de la notion de signal analytique
Cables et Transmiss., vol. 2A, pp. 61–74, 1948, (Translated
from French by I. Selin, “Theory and applications of the notion
of complex signal,” RAND Corporation Technical Report T-92,
Santa Monica, CA, 1958).

[14] L. Cohen
Time-Frequency Analysis. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1995.

[15] G. Cornelia, M. Lucian, and R. Romulus
Detection and estimation of linear FM signals
In Proc. IEEE Int. Symp. Signal, Circuits Syst., 2005, pp. 705–
708.

[16] V. C. Chen and H. Ling
Time-Frequency Transforms for Radar Imaging and Signal
Analysis, Norwood, MA, USA: Artech House, 2002.

[17] B. Boashash Ed.
Time-Frequency Signal Analysis and Processing: A Compre-
hensive Reference, 2nd ed. Amsterdam, The Netherlands:
Elsevier, 2003.

[18] F. Hlawatsch
Interference terms in the Wigner distribution
In Proc. Int. Conf. Digit. Signal Process., 1984, pp. 363–367.

[19] D. C. Schleher
LPI radar: Fact or fiction
IEEE Aerosp. Electron. Syst. Mag., vol. 21, no. 5, pp. 3–6, May
2006.

[20] F. G. Geroleo and M. Brandt-Pearce
Detection and estimation of LFMCW radar signals
IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1, pp. 405–418,
Jan. 2012.

[21] S. O. Piper
Homodyne FMCW radar range resolution effects with sinu-
soidal nonlinearities in the frequency sweep
In Proc. IEEE Int. Radar Conf., 1995, pp. 563–567.

[22] B. Boashhash and P. J. Black
An efficient real-time implementation of the Wigner-Ville dis-
tribution
IEEE Trans. Acoust., Speech Signal Process., vol. ASSP-35,
no. 11, pp. 1611–1618, Nov. 1987.

[23] S. Kay and G. F. Boudreaux-Bartels
On the optimality of the Wigner distribution for detection
In Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Tampa, FL, USA, 1985, pp. 27.2.1–27.2.4.

[24] B. Carlson, E. Evans, and S. Wilson
Search radar detection and track with the Hough transform. I.
System concept
IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 1, pp. 102–108,
Jan. 1994.

[25] T. O. Gulum, A. Y. Erdogan, T. Yildirim, and L. Durak-Ata
"Parameter extraction of FMCW modulated radar signals using
Wigner-Hough Transform
In Proc. IEEE 12th Int. Symp. Comput. Intell. Informat., 2011,
pp. 465–468.

[26] T. O. Gulum, A. Y. Erdogan, T. Yildirim, and P. E. Pace
A parameter extraction technique for FMCW radar signals us-
ing Wigner-Hough-Radon transform
In Proc. IEEE Radar Conf., 2012, pp. 0847–0852.

[27] A. Y. Erdogan, T. O. Gulum, T. Yildirim, L. Durak-Ata, and P. E.
Pace
Defining the effective threshold using modified Wigner-Hough
transform in FMCW signal detection
In Proc. IEEE 21st Signal Process. Commun. Appl. Conf., 2013,
pp. 1–4.

[28] T. O. Gulum, P. E. Pace, and R. Cristi
Extraction of polyphase radar modulation parameters using a
Wigner-Ville distribution-Radon transform
In Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2008,
pp. 1505–1508.

[29] D. Malnar, V. Sucic, and Z. Car
Optimizing the reference signal in the Cross Wigner-Ville dis-
tribution based instantaneous frequency estimation method
In Proc. DAAAM Int. Symp. Intell. Manuf. Autom., 2014, vol.
100, pp. 1657–1664.

[30] T. K. Hon, A.F. Gonzalez, and A. Georgakis
Enhancing the readability of the Wigner distribution by exploit-
ing its cross-terms geometry
In Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2013,
pp. 6254–6258.

[31] R. Watson
Use one figure of merit to compare all receivers
Microw. RF, vol. 26, no. 1, pp. 99–102, 1987.

[32] J. B. Y. Tsui, R. L. Shaw, and R. L. Davis
Performance standards for wideband EW receivers
Microw. J., vol. 32, no. 1, p. 46–54, 1989.

[33] J. Tsui
Digital Techniques for Wideband Receivers, 2nd ed. Raleigh,
NC, USA: SciTech Publishing, 2004.

[34] A. Y. Erdogan, T. O. Gulum, L. Durak-Ata, T. Yildirim, and P. E.
Pace
Digital chirp rate adaptation for increased FMCW interception
performance in Hough based transforms
In Proc. Radar Conf., 2014, pp. 1–5.

342 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 53, NO. 1 FEBRUARY 2017



A. Yasin Erdogan (S’12–M’16) received the B.S. degree from Turkish Naval Academy,
Istanbul, Turkey, in 1998, the M.S. degree from Naval Postgraduate School, Monterey,
CA, USA, in 2004, and the Ph.D. degree from Yildiz Technical University, Istanbul, in
2015, all in electrical and computer engineering.

He is currently working for the Turkish Naval Research Center Command (TNRCC),
Istanbul, as the Chief Engineer. He is mainly working on sensor, weapon, command
and control development, and integration projects. Prior to his assignment to TNRCC, he
served four years onboard naval platforms as a Commissioned Officer. His current research
interests include radar signal processing, EW, EW systems, noise radar, and time-frequency
analysis.

Taylan O. Gulum (S’12–M’15) received the B.S. degree from Turkish Naval Academy,
Istanbul, Turkey, in 2001, the M.S. degree from Naval Postgraduate School, Monterey,
CA, USA, in 2007, and the Ph.D. degree from Yildiz Technical University, Istanbul, in
2016, all in electrical and computer engineering.

He is currently working for the Turkish Naval Research Center Command (TNRCC),
Istanbul, mainly in electronic warfare systems development and integration projects, radar
cross section (RCS) measurement and analysis campaigns. Prior to his assignment to
TNRCC, he served four years onboard naval platforms as a Commissioned Officer. His
current research interests include RCS measurement, test, estimation and analysis, ship
radar signature management, radar signal processing, EW systems and EW tactics, and
time-frequency signal analysis.

Lutfiye Durak-Ata (S’93–M’04–SM’10) received the B.Sc., M.Sc., and Ph.D. degrees in
electrical and electronics engineering from the Department of Electrical and Electronics
Engineering, Bilkent University, Ankara, Turkey, in 1996, 1999, and 2003, respectively.

She worked in the Statistical Signal Processing Laboratory of Korean Advanced In-
stitute of Science and Technology (KAIST) until 2005. She worked in the Department
of Electronics and Communications Engineering, Yildiz Technical University, Istan-
bul, Turkey, from 2005 to 2015. She was a Visiting Research Scholar in the Depart-
ment of Electrical and Computer Engineering, University of Pittsburgh, in 2008. Since
September 2015, she has been working in Informatics Institute, Istanbul Technical Uni-
versity, Maslak, Turkey, where she is currently a Full Professor. Her research interests
include time-frequency signal processing, statistical and adaptive signal processing and
communications theory.

Dr. Durak-Ata is a member of the EURASIP and one of the Local Liaison Officers of
Turkey since 2009.
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