“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1987-06

The Linear Dependency Structure of
Covariance Nonstationary Time Series

Gersch, Will

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/63325

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ““ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library



TINE SERIESCU) NAVAL POSTORADUA
GERSCH JUM 87 NPS-33-87-006

I
k
3
g
g
£
E

y
NONSTAT IONARY
MONTEREY CA W




22
Iy

I

28
===

Ei

14

~

i

o |

1.25

——

I




| LA A T R e R M T Al Sl S S L AR AL A T 00 N 2R UL s N3 J0yn gt Bat Re® Ga® Dot a™ Bat £00 Ra: ool Aol Ael Bal uol ol o ol o ~ e

ME FiLE Copy A ,

NPS55-87-006

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

y
e
o
'Y

LR N
PR
LAY

e

!

| 4

P
& %

.
e

P
4§ 5
»

o

AD-A186 548

- NOV 271987 -y ¢

\ .

A=

TECHNICAL REPORT =

THE LINEAR DEPENDENCY STRUCTURE OF
COVARIANCE NONSTATIONARY TIME SERIES

WILL GERSCH

. JUNE 1987
Approved for public release; distribution is unlimited. i:

Prrepared for:
Naval Postgraduate School Ty
Monterey, CA 93943-5000 oo

P K TR PR Py S

G A




R A i S S
r o 2k ik oda- okl ara 08 a0h- nig kg LATAE"aTas et ayte ta-aiate A gL NIEL ARSI aip JHE R LR SR SR R A A R R A

rm—————a iy i e T

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral R. C. Austin K. T. Marshall
Superintendent Acting Provost

Reproduction of all or part of this report is authorized.

/ /// / 7/;/@

WL (GERSEH

Nat1ona] Resear h Council
Senior Associate

Naval Postgraduate School

Thi< report was prepared by:

Reviewed by: Released by:

/ //Q / Vs A
PETER PURDUE JMES M F;«EMGLN

Professor and Chairman . .
. tin ean of Informati and
Department of Operations Researc Po] 7 Sciences Lv_///jy

.................




R Y

B Tl

ML

- YWWITLLRN'Se

SECURITY CLASSIFICATION QF ThiS PAGE

CetavVa

-

LIV ha Mt AN A AR

REPORT DOCUMENTATION PAGE

Ta. REPORT SECURITY CLASSIFICAT ON
UNCLASSIFIED

b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIF.CATION AUTHORITY

> DISTRIBUTION AVAILABILITY OF REPORT
Approved for public release; distribution

2b JECLASS FICAT'ON: DOWNGRAD NG SCHEDULE

unlimited.

NPS55-87-006

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

60 OFFiCE SYMBOL
(If applicable)
Code

7a NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, and 2IP Code) -

8a. NAME OF FUND'NG SPONSORING
ORGANIZAT'ON

8b OFFICE SYMBOL
(If applicable)

3 PROCUREMENT .NSTRUMENT DENT:FICATION NUMBER

B¢. ADDRESS iCity, State ang Z!P Code)

10 SOURCE OF FUNDING NUMBELRS

NGRe _NiT
ACCESSION NO

PROGRAM PRCLECT TASK
ELEMENT NO NO NO

TITLE dncrude Cecurnity Jlassiticitiont

THE LINEAR DEPENDENCY STRUCTURE OF COVARIANCE NONSTATIONARY TIME SERIES

12 PERSONAL AL THOR(S)
Gersch, Will

13a TYPE QF REPORT

'Ib T ME COVERED

'S PA%% COUNT

14 DATE QF REPORT |Year, Month, Day)
AR

Technical 230M 0
16 SUPPLEMENTARY NOTATION
17 COSA™I CODES '8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
cED | GR0LP | 5_8 GAOLP Information theory, time series, time-varying model,
| I autoregression, feedback, causality, e]ectroencepha]ogram.
T3 ABSTRACT Conntipue on celerse o necessary and agentify by biock number)

The linear dependence, feedback and causality structure of covariance nonstationary time
series is developed. At every instant in time, the amount of linear dependence between
time series vectors is expressible as the sum of the amount of feedback from the first

time series vector to the second, the amount of feedback from the second time series to the
first and the amount of instantaneous feedback, The parametric modeling of multivariate

Covariince nonstationary time series ind the Computation )f tvelr nterdenendency structure
from the Fitted model ire 1ls0 ‘reated. The “ime series is modeled by i multivariate <ime
varying autoreqressive MVTVAR, mnodei. The “itted MVTVAR moce! yields in instantanesus

power spectral density (IPSD) matrix, The IPSD is used in computing the linear dependency
structure of nonstationary time series. An example of the modeling and the determination
of instartaneous causality from a human implanted electrode seizure event EEG is shown.

IR EIEYEE SEYTHACT 0 R Ty A (AT 0t
BX “c.ans-65 8 ot [ anes a4y qer () ore osers | UNCLASSIFIED
J2a MNANT ) HE et e sty o 2D TELEPHONE (Indlude Ared Code) | 200 vaFv in v A0
w111 Gersch (4081646-2594 Lode 58
T Ty e oLsen yrtoexnausted SEC 27 0 ANS AT O [ PR

DD FORM 1473, 4~ e

L

LRAT Y )

PLPCPST o ¢

‘oo a4




THE LINEAR DEPENDENCY STRUCTURE OF
COVARIANCE NONSTATIONARY TIME SERIES *

' Will Gersch
Department of Information and Computer Sciences
University of Hawaii
Honolulu. HI 96822

ABSTRACT: The linear dependence, feedback and causality structure of covariance
nonstationary time series is developed. At every instant in time. the amount of linear
dependence between time series vectors is expressible as the sum of the amount of feed-
back from the first time series vector to the second, the amount of feedback from the
second time series to the first and the amount of instantaneous feedback. The
parametric modeling of multivariate covariance nonstationary time series and the com-
putation of their interdependency structure from the fitted model are also treated. The
time series is modeled by a multivariate time varying autoregressive (MVTVAR) model.
The fitted MVTVAR model vields an instantaneous power spectral density (IPSD)
matrix, The [PSD is used in computing the linear dependency structure of nonsrationary
time series. An example of the modeling and the determination of instantaneous causal-

ity from a human implanted electrode seizure event EEG is <hown

KEYWORDS: Information theory. time <eries. tune-varving modei. autoregression.

feedback. causality. electroencephalogram.

* This work was completed while the author was a National Research Council Senior
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1. INTRODUCTION

The linear dependence, feedback and causality structure of covariance nonstationary time
series is developed. The parametric modeling of multivariate covariance nonstationary time series
and the computation of their interdependency structure from the fitted model are also treated.

The analysis is applied to a spontaneous human epileptic seizure event electroencephalogram

(EEG). -~ . )

The structure of multivariate stationary time series has been of interest in econometrics,
oceanography, meteorology, engineering and statistics. System quantities such as the transfer
function between time series and quantitative measures such as the amount of information betewen
time series and the amount of feedback are of interest. In the analysis of econometric data and
human epileptic seizure data, the presence or absence of causality are additionally of interest. The
modeling of multivariate stationary time series has been treated for example in Gelfand and
Yaglom 1959, Caines and Chan 1975, Gustafson , Ljung and Soderstrom 1977, Gevers and Wertz

1982 and Geweke {1982).

A statistical interpretation of causality in stationary time series from nonrepeated experi-
ments appears in Wiener 1956, Granger 1963, Caines and Chan 1975, Geweke 1982 and references
therein. In stationary time series econometric data, driving or causality is usually defined to mean
the presence of a "feedback free" condition. In stationary time series epileptic event EEG data.
causality has been defined operationally as the detection of a delay of one time series with respect
to the causal time series, Brazier 1972, Gotman 1983. In covariance nonstationary EEG data, the
vbjective of analysis 1s the estimation of the amount of information. the amount of feedback and
the detection of causality, all at an instant in time. The inference of linear dependency, feedback

and causality in nonstationary time series are new topics

The determination of the interdependencies between the electrical activity at Jdifferent brain
sites is a subject of current interest in EEG analysis. The recent work of Gevins et al 1983 in

event related potentials (ERPs) and of Mars and Lopes da Silva 1983, Saito and Harashima 1983,
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Innouye et al 1983 and Gotman 1983 in ongoing or background EEGs is evidence of that interest.

The literature on multivariate nonstationary time series modeling is surprisingly sparse when
we consider the fact that many natural and social science phenomena are nonstationary. Rosen-
berg 1973, Sarris 1973 and Swamy and Tinsley 1980 are studies in the econometrics literature on
modeling time series with time-dependent stochastic parameters. Except for Bohlin 1976. (scalar
nonstationary time series), these methods have not been applied to the analysis of nonstationary
EEGs. The approach described here. a deterministic regression modeling of muiltichannel nonsra-
tionary time series, differs from the stochastic regression coefficient modeling methods described in

the literature cited above.

The complex demodulation analysis by Walter 1968 was very likely the first nonstationary
time series analysis of the EEG. Subsequent nonstationary analyses were by Kawabata 1972
(overlapping periodograms) and Bohlin 1976 and Isaksson 1975 (nonstationary time series models
and Kalman filter algorithms). An indirect approach to the analysis of nonstationary covariance
time series is to segment them into locally stationary time series segments and to model the seg-
ments separately as stationary time series. Bodenstein and Praetorious 1977. Sagan and Sanderson
1980 and Benveniste and Basseville 1984 and references therein. None of the aforementioned ana-

lyses treat multichannel EEGs.

In Section 2 the linear dependency structure of stationary time series, the linear dependency
structure of covariance nonstationary time series and the concept of causality are treated. In Sec-
tion 3 the modeling of covariance nonstationary time series by the MVTVAR method is described
An application of MVTVAR modeling of human implanted eiectrode epileptic seizure event data

and the detection of causality i1s demonstrated in Section 4. Section 5 1s a Summary and [iscus-

sion.
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2. LINEAR DEPENDENCY STRUCTURE IN MULIVARIATE TIME SERIES )

2.1 BACKGROUND. STRUCTURE IN STATIONARY TIME SERIES.

The quantitative measure of the amount of information between discrete random variables,
Shannon 1948, is the intellectual precedent for the quantitative measure of the amount of informa- '
tion in one time series about time series. The measure of the the amount of information between
two vectors of continuously distributed random variables X and Y. Shannon’s amount of mutual .

information. 1s given by,

)
+20~ 20
L, - f}"y'y(.r.y)ln(fx‘y(z.y) fyieifyly))dzdy. {2.1.1)
T -0
In (2.0.1), fx yl{Z.y) and [x(Z),fy(y) are respectively the joint probability distribution func- .
tion of the vector random variables .X and Y and the marginal probability density functions of .X
and Y. [z.y 15 2 measure of the amount of dependence between the random vectors X and Y. '
Equation (2.1.1} is the negative of the entropy of the "true" distribution fX.Y with respect to an )
assumed distribution [y fy. Also Iz.y 1s the dissimilarity or information divergence between the :
alternative joint probability distribution /.\’.Y and the factored or independent probability ;
descriptions fo = f"rfy of the vector random variables X.Y. Kullback 1958. Formally. .
{2.1.1) 1s equal to the amount of information. on the average. per observation, to reject the null
hypothesis that the random vectors X.Y are independent. ’
Gelfand and Yaglom 1959 computed {2.1.1) for rhe ~ase of X.Y stationarv. jointly normally
Jistributed time sertes. Let { (1)} be a vector of time series that is partitioned nto the rwo com-
ponent vector time series, (1) [I(t). y(t)]T. Let the power spectral density matrix of {z(t)} .
be written in the partitioned form .
" S (f) S () o2 )
U s S0 B ;
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Alternate forms of the Shannon-Gelfand-Yaglom (S-G-Y) measure of the amount of information

between the two vectors of time series are, (Gelfand-Yaglom 1959),

1/2
Iz,y = f ln(' Szz(f)' //l Szz(f)l | Syy(f)' )df (2.1.3)
-1,2
1/2
L, = f In(] S (/)] /] Sz (f)=Suy(£) Sy (£)S2y (D] ) df -
-1/2
1/2
Ly =~ [ mi-wh()lds
-1/2
In (2.1.3). | 4| denotes the determinant of the matrix A and the symbol " denotes the rompiex

conjugate transpose. The first formula in (2.1.3) mirrors the joint distribution versus the product
of independent distributions in (2.1.1). In the second formula in (2.1.3), the term in the denomi-
nator is the residual spectral density of the time series {r(t)} after the removal by regression of
the influence of {y(t)}. If the two time series are independently distributed, {y(t)} does not
influence {z(?)}. the dencminator of the second term is identical to the numerator and Iz’y is
zero, as expected. The third formula in {2.1.1) is a special case of the amount of information
between two scalar time series {Z(1)} and {y(¢)}. expressed in terms of the spectral coherence at
frequency f. n".?x,(f)- The last formula in (2.1.3) is particularly useful in cur analysis of causal-
iy.

It should be noted that the information theoretic Iz'y and [,\'.Y formulas hold only for the
case of jointly normal *ime series or jointly normal random variables. Otherwise [-',/ ( Iy )

has an interpretation as a measure of iinear dependence between 11me series { random variables |,
§

Geweke 1982 obtains other useful properties of the linear dependency structure between
jointly stationary time series. To illustrate those properties we need consider several alternative
linear projections of the time series {Z{t)} and {y(!)} First we -ssume that the time series

{:(I)} has an AR representation.
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m=1 y2

b 4

(2.1.4)

11

The terms ¥, and Eyz are defined below. Define four different linear projections of Z, on the
past of I;, upon the pasts of z, and Yy, upon the past of z, and the present and pas. of y, and

upon the past of z; and the past and future of y,. That is, let

{2.1.5)
x o x
it =4 - YA pTi, i =4~ N Arnlim— ¥ Bony m
m=1 m=1 m -1
) oo 00 x
Iy = Iy — E ABmll m E B'imyt m Tet = & E 41'n'l'! m S B-t.myf .
m= m=0 m=1 m=-20
- ©
var[‘rx,l] T o~za
Also, identify linear projections of {y(¢)} in a similar manner.
(2.1.6)
x x x
Yre T8 B CimYeom Yoo - 4t Y Gy om CCnyim
m- m-=1 m- 1
x ) o0 oc .
Yse = I Y Cm¥im o D Camlt o me Yar - %~ L Cim¥iom = Y Com¥i me .
m 1 m =0 m | m=-20 =
var[y“,] ) Eyl' ®

Now. in a natural way. define: (i) The amount of feedback from the time series {y,} to the

time series. {r;} Iv .z- {it) The amount of feedback from the time series {x,} to the time series. .
[ ]

{yb. 1, .y and (in) The amount of instantaneous feedback between the time series {I,} and {y,}.
R t 8

1”1 by
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(2.1.7)

Iy—'z = ln(lizll”iz’zl)’ Izay = ln(léyl|/|§y2|)' Izy = ln('iﬂ' ,/lizill)'

From (2.1.3). these feedback quantities also have specific interpretations as the amount of informa-
tion in the jointly Gaussian distributed time series case or as amounts of linear dependencies in the

general case. More emphatically, in the jointly normal time series case, feedback is information!
. - -

A theorem proved in Geweke 1982, (the measure of linear dependence between stationary

time series is the sum of the measure of linear feedback from the first series to the second, linear

feedback from the second to rhe first and instantaneous feedback]). is,

Theorem:
Ly, L., I, .. -1y (2.1.3)
with
l) Iz,y = 171(’ Szll //l SM' ) = ln(l Eyll /I Sy4| ) (2.1.9)

H) I -1 ln(]iﬂlliz:l) B I'l(!iy3| I‘:u4l)

1) 11 sy ln( ‘:rll / én") 171(] é"" ! | é”"l )

(| Sl TS50 IS, 00

w) I,
That is. each of the amounts of linear dependence and amounts of feedback can be computed from

the residual matriees of the ditfferent projections of the e weries 200 and g

Proof:  (Simlar  to Geweke 1982 From (201 3)-(21 7] we observe  that
In(|<,,]  in(] < “:yl“ Then. (1S, 0 S, 0 Inf '.::_,,H:u,{ S and
/rl(l iylw’ ‘ ‘_\:‘”“ } In{ Sl ) i:_',l‘ ‘ ‘_: ! by svmier sy
(n) By construction of (2.1 %) L L_» (":.,/_.l('T ~0 'S‘, ;{ " i,/_- .‘;:‘ which fead.
to (n)

6




(iii) follows by symmetry from (ii).

(iv) Follows from | iwl | iy2| = | i] and symmetry.

Another important result in Geweke 1982 is that the feedback quantities can be additively

decomposed in frequency. For example.

L.,> [ I_.(ndr (2.1.10)

Similar additive relationships hold for dependence and the other feedbacks. Equality holds in
{2.1.13) under mild technical conditions on the regression coefficients that are straightforward to
verify. see Geweke 1982 for details. (The invertibility of the time series model is the issue

involved.}.

Consider the first and fourth projections of the time series {I(t)} in (2.1.5). Let Sz(f), be
the power spectral density computed from the regression of {J:(t)} on its own past. Let

Sz| z‘y(f), be the power spectral density computed from the regression of {I(t)} on 1its own past

and the past and future of {y(t)}. Then, Iy4z(f). the feedback from {y(t)} to {z(t)} is,

Iy-z(/) = [n( Sz(/)l!"’|51(z,y(f)|)' (2.1.11)

For exampie. when {y{t)} does not influence or feedback on [£(f)}. the specrral density
S, }.y(f) will be identical to S,(f). the spectral density computed from {z(¢)} alone. Then the

ratio in (2.1.11) is one and hence Iy ,,,(f) is zero. again as expected.

There 1re two important extensions of the results in (2 1.41-:2.1.11}1. 1) The resuits hold
under conditioning or partial regression of the series {r(£}.y(t)} on another vector of time series
{w(t)}. Geweke 1984, 2) The results hold for nonstationary time series. Some of those results for

nonstationary time series are discussed in Section 2.2. A MVTVAR roeflicient model which per-

mits estimation of these results is discussed in Section 3.
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2.2 THE LINEAR STRUCTURE OF COVARIANCE NONSTATIONARY TIME SERIES

Here we extend the notation and results on the structure of stationary time series in Section

2.1 to nonstationary covariance time series. Assume an MVTVAR representation for the time

series 2(!), again with z(t) = [z(t)y(t)]T.

o0 ~ —
2= Y Az, € E[fz] =0, E[‘t*kftT] = Et5t+k.t (2.2.1)

m=1

with

. ., G
Sz = T 7
Y
where iZ.t and ng.t are defined below.
Define A (f.t), the polynomial operator,
)
A(ft) =T- Y A, cexp[—-27mf]. (2.2.2)
m=1

Then in a natural way, as an extension of the definition of power spectral density for stationary
time series. define the instantaneous power spectral density, (IPSD), matrix in terms of the

MVTVAR model,

S(fu) = A(f)7'S, A(f 1) (2.2.3)

IThe ~oncept of an instantaneous power spectral density was introduced in Page 1952, The most
notable development since Page 1952 appears to be by Priestly 1965.1967. Priestly 1981, Chapter
11 1. a review of the literature. By the way of contrast. Page and Priestly are both frequency

domain spectral methods, while the MV TV AR IPSD s 1 parametrie model method )

As we did in the case of stationary time series. 1dentify lincar projections of {r,}

. B PR . - . “
- . [ - . . -

B T - T I R IR AR
TR AT, O AL U, PR, TR W, B W W WA )




(2.2.4)

oC
Iyp =% — mz_lAlm.tl't—ms Iyt = Ip —

1+

3%
I
3

Azm,zl't-m -

) m,tyt~mv

I8
I8

[o.0} o o)
Py =1 - U AgmtZi-m — AgmiZiom — 2 By Vi_m-
m=1 m=—2

OBSm,tyt-m’ Ly = Iy —

s 1=
var(f ] =, .
Also in a similar manner. identify linear projections of {y;}

(2.2.5)

x x
Jie Y Elclm.tyt—m~ g’.’.t =Y Z CZm.tItv
m=

xX o0 a0 ¢
Ysg = Y - ) sz,tftfm N 20D3m.tyt—m’ Ya¢ = ¥t — z ComiZi-m ~ ) Dy i¥t-m-
m= m=

var[g;,] = T, ;.

Then using algebra, we obtain results for nonstationary time series that are analogous to those
obtained for stationary time series. The amount of linear dependence at time ¢ between {I,} and
{y.}. the amount of feedback at time ¢t from {y,;} to {Z;}. the amount of feedback at time { from

{x,} to {y,}. and the instantaneous amount of feedback at time t from {r,} to {y,} satisfy:

y—z1.t Izy.r (2.2.6)

fept Int o 1S ) Ing Tx,: T.’.:] !
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The main result in (2.2.8) is that at each instant in time, the amount of linear dependence between
time series is the sum of the amount of linear feedback from the first series to the second. linear
feedback from the second to the first and instantaneous feedback. Also, as in stationary time

series. in nonstationary time series. there is an additive decomposition of the feedbacks with fre-

quernicy. For example

I -z.t’\/)fly—~z.t(f)d/- (2.2.7)

An example of a relationship between the linear dependency measures for nonstationary and

stationary time series 1s

T
1
Ly == ill_y,,dz (2.2.8)

The other nonstationary linear dependencies satisfy similar relationships.

2.3 CAUSALITY IN TIME SERIES

The emphasis of the applications of structure in stationary time series in Geweke 1982 is on
feedback between economic time series. As shown in Section 2.2 instantaneous feedback {linear
dependency) between nonstationary time series. can de expressed in simple formulas. Indications
of ways of estimating those linear dependencies from nonstationary time series are shown in Sec-
tion 3. The emphasis here is on a concept of causality between time series. The motivation for
this section is the Jdetermination of causality in implanted electrode EEG data in humans observed
during epileptic seizures. Our concept of causality between time series is different than the “feed-
back free' condition definition used in econometrics (Geweke 1982 and references therein) and the
time precedence defimtion used in the analysis of epideptic event EFEG Jata {Brazier 19720 Gotman

19%3)  We define causality in terms of the S-G-Y and conditional S-G-Y measures between time

series. Consider the 3 time series or vectors of time series, {rit)} {y(t )b oand ()} Assume

10




that there is pairwise linear dependence between the series. That is,

Iz,y #0, Iz.w 70, Iy,w #0. (2.3.1)

Now assume that each pair of time series is conditioned on the excluded third time series and the

following results are obtained.

Iz‘y!w :0. II.w!y 2‘“—0. I:I.IL“I = 0. (232)

From (2.3.2), removing the influence of {w(t)} from {z(¢)} and {y(t)} leaves that pair of time
series linearly related. Similarly. removing the influence of {y(t)} from {r(t)} and {w(t)}
leaves that pair of time series linearly related. However, removai of the infuence of {I{l)} from
{y(t)} and {w(t)} leaves that pair uncorrelated. Thus the series {z(t)} uniquely explains the
linear relationships between three series. We say that under the conditions in {2.3.1) and (2.3.2)
that the time series {Z(t)} is causal to the time series {y(t)} and {w(t)}. (A mathematical

model that exhibits the properties in (2.3.1)-(2.3.2) is in Gersch 1972.)

Epileptic event EEGs tend to be characterized by concentrations of spectral energy in a nar-
row frequency band and causality or driving may not be present during an entire seizure. We are
thus motivated to exploit the instantaneous additive decomposition of linear dependence in (2.2.6)
and adapt the definition of causality in {2.2.1) and {2.3.2} to a defimition of causaiity at some par-

ticular frequency f4 and the time instant f.

Let the IPSD matrix of the three nonstationary time series {.r(i).y(t).u'(t)} be expressed

M ocomponent form.

S lf ) S, (f8) S0
‘S(f't) - s‘yjr(ft) Suy(/’) Syu-(fj) . (2 K1 3)
‘\'u-zlf'[) ‘\'vuy(/-” -\.".”.lf_f)
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Several additional ingredients are needed for our causality analysis. The following are
defined: ﬂ"fy(f.t), the instantaneous spectral coherence between the two generic time series
{I(!),y(l)} at time f and frequency f, and the instantaneous partial spectral coherence
S., w(f,t). Syy w(.f.t) and Szy u(ft) respectively the instantaneous spectral density of
{z(t)} conditioned on {w(t]} the instantaneous spectral density of {yrt)} conditioned on
{w(t)}. and the the instantaneous cross spectrum between {z(t)} and {y(t)} at time t and fre-
quency [ conditioned on Lw{t]}. In terms of the components of the -pectrai fensity matrix in

(2.3.3) these are given by

S

[ 4

H'_-.‘y\f“[ to- ~ u(/-“ )| .\':‘_l‘,”’ I.\.‘/yiff-f )
SII 71,’(/‘t)
Sy wl bl = S, (S0 WEf.1))

Szy\ u.-(fvt) ’ b:y(ft)\y:(ft) .qwu,(f.t)

S, - Whift)

The instantaneous partial spectral coherence between the generic time series {r(t).y(t)}
conditioned on the time series {1(t)} at time t and ¢ and frequency f. computed from the instan-

taneous partial spectra in (2.3.4) 1s

! CP N S
i Ittt Tyy v

Now, using the additive frequency domain decomposition property of feedback between time
series (2.2.7). and our definition of causahty in (2.3.1) and (2 3.2} we detine the series {r{t)} 1o be

4

causal o the <orijes 1Ulf§_ll'(/‘ 1l fvr(‘qllf'll("'. ‘/‘ oame S oaf the forlowing onditions are

satisfied

I, ALy 200 1

N

fol 200 1 f) -0, (236)

.

Ir.y m:(f,.l) - 0. Izgp u {‘fi) 0. lv, D 1,:(]-1 ! 0.

From the third equation in (21 3) we seen thar the defintion of causality o (25 6810 equinalent

12
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to the following conditions on spectral coherences and partial coherences

W2, (fal) 700 WEL(Jad) 200 W.,(fa.t) =0, (2.3.7)

: ”’zz.y w(/A't) # 0. wvf'w y(fA't) = O‘W’;w 1(/,4’” = 0. 1

Thus the identification of causality at frequency /A at time f is determined by the detection of
zero partial instantanevus coherence. This definition of causality at an instant in time is a general-
ization of a related concept for stationary time series introduced in Gersch and Goddard 1970 and

used in Gersch 1972 Gersch and Tharp 1976 and Brillinger 1976

The fistribution of ~oherence and partial coherence 15 treated in Hannan 1970, Briilinger 1

-

1974 and Koopmans 1974. For our purposes the most important result 1s the distribution of a

transformed version of the partial spectral coherence in the vicinity of zero partial coherence. A

Bl

convenient form of that result, Koopmans 1974, is given by

(-1 Wy L)
[1 - w'zzy :(f)]

2.2(v-1) (2.3.8)

In (2.3.10). U is the number of degrees of freedom in the F distribution with 2 and 2(v- 1)

degrees of freedom in the numerator and denominator respectively
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3. A MULTIVARIATE TIME VARYING AR COEFFICIENT MODEL AND

LINEAR DEPENDENCY COMPUTATIONS

A parametric model 1s assumed for the time series. The successful use of autoregressive (AR)
models in stationary time series analvsis motivates consideration of a time-varyving AR coefficient
model for nonstationary covariance time series modeling. Denote the D component row vector at

time n by z{n) = (r,(n)....zp(n))7. Then. the multivariate time-varying AR. (MVTVAR).

model is
7(n) - 4, ,z(n-1) - as,z(n-2) -...~ 4, 1(n-p) - e(n). 31
E(e(n)) = 0, E(e(n+k)e(n)T) = V(n)é, 4.
In {3.11), the {4, ,i=1,..p; n=1,... N} are DxD coefficient matrices. The pxDxDx.V unk-
nown AR model parameters and the NxD(D~ 1) 2 parameters in V(n). n 1. . V in the model in

(3.1.1) are to be estimated. There are more parameters than data. so least squares or maximum
likelihood methods for estimating the unknown parameters will not yield useful results The unk-
nown parameters can be modeled implicitly. A strategy for economizing on the number of param-
eters to be estimated 1s to consider the vector of time series one component at a time and to regress
that time series upon a lagged version of itself and upon the other components of the vector of
time series in an orthogonal polynomial least squares method of modeling  That is, express each of
the elements in the matrix of time varying AR coethicients as a linear combination of say J orthog-
anal poivnomaal funcoons of time. where J s a smatl number compared 1o N rhe number of obser-
vations  Using this method as many as px s coetlicients are itted 1o each of the 1) component
tune series  If this number 12 small compared to V. a reasonable model can be titted. The total
number of titted coethicients in the model s then pxONDxd That number 1< considerably smatler
than the number of unplicic AR coetherents an (2110 py DN The MVTVAR model was

introduced i Gersch and Kuapawa 1953 More cpecitioally der
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! A, . =‘a,in), rk=1..D {3.1.2)
J -1
ark(iwn) = Ecrt(ivj)f(j!n)v i:lv-“vp
1=0

N - s
flim) = (-1 ’ . J) U nl N n=0 1N
=0

In (3.1.2), a,(¢,n) rik=1....,D are the elements of the time varying AR coeflicient matrix
sni=l..pin=1...N Alsoin (3.1.2) nl") = n!'(n—s)!. N = N' (N-4|' where n' is n fac-

torial and .V is the number of data points. The functions f(j.n) that we use in {3.1.2), are the

discrete orthogonal Legendre polynomials.

The orthogonal polynomials satisfy

N
Y IGn)flkn) = 0 k2. (3.1.5
n=0
The first three discrete orthogonal Legendre polynomials are
flOn) =1, f{im)=1-2n/N f{2.n) =1 -6n,N - 6n(n-1) NL.V-1). (5.1.4)

From (3.12.4), fitting the MVTV AR model (3.1.1). with the zeroth Jegree Legendre polynomial 1s

equivalent to fitting a stationary coefficient multivariate autoregressive (MVAR) model.

Orthogonal polynomial-least squares modeling of scalar time series using time-varvine AR

8 coefficlent models appears in Kozin 1977 and Grenter 1983, Gersch and Kitagawa 19805 15 an
extension of that method to the fitting of multivariate time series using multivariate tume-varying

AR coefticient (MVTVAR) models to economic data. In that modeling. the orthogonal polynomial

feast squares computations were realized n 2 Honsenolder transtormation georithm. \kake -

AIC statistic. Akaike 1974, orthogonal polynomial model degree and regression subset selection

\

(For more details on the modeling method, see Gerseh and Kitagawa 1083

Fach of the N0 and I, ¢ b 4 quantities that are requiresd - anpoate the natan

taneous linear dependency relations o (206) are compatabde by frone f MV TV AR mcders

That 1, ¥, i;.,. Ty, are obtamed from the it of the MV TV AR woodel o the 2o syl
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Then £, = £,, - C,T;,CT. From (228), |%,,] =
be obtained by the fit of MVTVAR models to r(¢t) and y(t) respectively. Using these quantities in

(2.2.6) each of the terms [, ,, I,., (. [, ., and [, can be computed.
Tyt 2.y ] t Ty, P

Also, the IPSD can be estimated by adapting the definition in {2 2 2)-(2 2.2} 1o the fimite lag
order fitted MVTVAR model For the titted MVTVAR moder o lag oraer ML fetine the polyno-

mial operator

M
Alfy) 1 S 1, xp  2rmf (314)

m |

Then. define the e~stimated (nstantanecus pomer <pectral lensity mate.x 0 erms ot the Brreg

MVTVAR model.

S wfn ' afa (315

The spectral coherence and partial spectral coherence at frequency f at the time instant + can be

computed using the estimated [PSD

16




4. AN EXAMPLE, ANALYSIS OF A HUMAN EPILEPTIC EVENT EEG

We illustrate a case in which an epileptic focus was located and determined to be present
during a short time interval from an analysis of an epileptic EEG event from deeply implanted
electrodes in a human. {About 60% of individuals with epilepsy have seizures initiated from an
anatomically localized brain region or seizure focus. The focus initiated seizure propagates through
the brain, Hauser and Kurland 1975 Many of these individuals do not respond to drug treatment.
In such individuals. of a unique anatomical site from which the seizures emanate can be localized to
an operable site, they may be suitable candidates for surgical treatment to remove the seizure focus
and potentially relieve the individual from seizures. Anderman 1987.) Figure 1 illustrates data
from a 7-second 6 site data record of the electrical activity at the dramatic onset of a spontaneous
seizure event. {This data was supplied by Jeffrey P. Lieb, UCLA Reed Neurological Research
Center. The original data w.s obtained at a 200 sample second rate. The data used for analysis
was rate reduced to 50 samples per second } The objective of the analvsis was 1o determine
whether any one of the observed anatomiral recording sites could be interpreted as "driving" or
being causal to the electrical activity at the other recording sites. The data 1s complex. and there
is no abvicus visual clue that might unambiguously identify an nitiating or driving <ire or identify

when driving s present

Uhe appearance of the indivcedaar EEG ieaces oo Foeare 1 oreveals that the ceal siructure of
the tune ~series changes waith time The analvsis ipvolves the bronyg f 2 MVTV AR odde] o the

data and a subsequent spectral analysis asing the 1PSD

The tata anabvsis wall be geseribed inoterms of the anadvas e cantane us b EG < e
Stoanneis labeled L2 andg Soan Foygure 1 In Figure 2 we <how a “harcceve” view ot the estimate
P =~TY < veraige f‘r"rlljl‘[](‘_\ computed at suycvessive 12 second otervals from the tored MV TV AL
dretel bee b hneds 12 and B0 Tmcally chere are relativeny Sharn coneertear e f e

noeach of channels 12 and 3 oar

- -
i

20 Hertz and 140 Heers Aw che B HOG oo ve thooa e

Fee o hed o vmplicade and the distnbanen 0 specrra ererey Lo e e e Ll



4
Later in the record the emergence of a spectral peak at 4.25 Hertz can be observed in each channel.
A current practice is to analyze epileptic event EEG’s of no less than 6.253 second duration in
overlapping 2.5 second intervals by classical windowed periodogram spectral analysis methods as if
"
. . . . . . - [
the time series in each 2.5 second interval were stationary, Gotman 1983,1987, Lieb et al. 1987. ¥
!
(The windowed periodogram methods used by Gotman and Lieb do not have the the time- :
frequency resolution properties necessary to capture the transitory characteristics of the rapidly =
changing epileptic event EEG Jata.) )
L
. . - . . . . . - . i
We identify causality or driving at an instant in time by a frequency domain analysis using |
i
the estimated [PSD via the concept described in Section 3. Computational results of both the 4
4
L

evolving spectral coherence and evolving partial spectral coherence for each of the three possible

pairs of three different data channels at successive vne second time instants are shown in Figure 3.

I .-

The computational results are used to determine whether and when one channel drives the other

1
tWo.
K
1" " AN G '
A view down the columns of the one second apart "snapshots” in Figure 3 illustrates the 1
changing with time structure of pairwise coherence versus frequency between pairs of -hannels and
the corresponding changing with time partial coherence versus frequency At one and two seconds
'
into the record, there are sharp coherence peaks between each of the of the channel pairs in the 1
viecmmty of hoth T 250 and 145 Hertz o The partial cobierence between channels Tand 2 and hetween
J
channels Vand 3 wirh the partialing done on the excluded third -hanne! remmam sianiticantly corree- 9
Rl
fated  That is chaonels 2 and 3 do not have mach explanatory power  On the ather hand the R
4
AT AL coherenoe Cetwesn panters S oandg Sowaen che ontduence of channer Sorermevesd o tatistn g
daetistingshable from sero over the trequency anterva between Toand TE Hertz v MV TV AR -

moedel order MO T Leyendre polvioanal order 00 0 mooded was fitred to the Y 350 daa Ueine rhae

daran 123 ¢ 250 1t and vhe 95 0 anhiderce qrervs for cerc partial cohererce s 00 Thin
oa ccmponted partial coheren e D lees rhan 00 s statstnoally G toepashatbde oo vers parninal
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We conclude that the pairwise coherence between the three channels is a consequence of the
fact that channel 1 was driving channels 2 and 3 for the first 2 seconds of the record in the viciniry
of 7.25 Hertz. The pairwise coherences and partial coherences at three seconds and subsequently
reveals a decrease in the pairwise coherence between each of the channel pairs and cessation of
driving by channel 1 of channels 2 and 2. Later in the record. the locations of the peaks of the
spectral coherence shifted to a lower frequency and the partial coherence does not indicate driving.

The reiatively low partiai coherence between channeis 2 and 3 partiaied on -hannei | rhroughout

the epoch is compatible with evidence cited by Gotman 1987

Figure 4 1s a birds eye view of the evolution of the pairwise coherences and the partial coher-
ences. This illustration was computed from the same Jdata as Figure & In general. partiai ~oher-
ences are smaller than coherences. The relatively flat partial coherence of channels 2 and 3 par-
tialed on channel 1 suggests that this kind of illustration may be a useful diagnostic aid to identify

candidate driving channels. (Gotman 1983.1987 is an alternative method of detecting driving

For the purposes of comparison, in Figure 5 we show the coherence and partial coherence
results. computed from a multivariate AR model. as if the time <eries were stationary. Such ana-
lyses yreld a blurred version of the sharp time-frequency resolution features available from an
MVTVAR-IPSD analyvsis Also, these results 4o noc detingtively impheate channel 1 as driving the

sther two -hanneis

In additien ro the data analyzed here several opiiepue EREG episodes were analy zed from
each of three different patients  In each case the forus was unambiguonsly locahized for appros-
oatedy Chiree Gopds he MY TVARAPSD tetermine § ocation -4 ne ~1\Il";‘l|¢ S were an-
sistent with anai ses done carfier and with the suceesstin ontoomes o sureieal temporai Lbectoms

serznre ehimmation g rocedures Lieboet af [as?
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5. SUMMARY AND DISCUSSION

Measures of linear dependence and feedback at each instant in time for multiple covariance
nonstationary time series have been proposed. Several new ideas are introduced. The development
is heuristic.  For jointly normally distributed stationary time series, linear dependence is
equivalent to the Shannon-Geifand-Yaglom measure of the amount of information between time
series. The concept of information at an instant in time appears to be new. The time series are
assumed 10 be represented by 1 muitivariate rime varving autoregressive {IMVTVAR) model. The
MVTVAR model is the key to the computation of linear dependency and linear feedback at each
instant 1n time At each :nstant 1n time. the measure of linear dependence 1s the sum of the meas-
ure of linear feeaback tfrom the :irst series to the ~econd. .near feedback from the second series to
the first and instantaneous feedback. The measures of linear feedback from one series to another

can be additively decomposed by frequency.

The time evolution of AR parameters in the MV TV AR model is expressed as linear combina-
uions of discrete Legendre orthogonal polynomial functions of time. The MVTVAR model is fitted
by a Householder transformation-Akaike AIC method. The MVTVAR model 1s exploited to intro-
duce the concept of an instantaneous power spectral density {IPSD}. This is done in a natural way
as an extension of the power spectral density computed from multivariate AR models for station-
ary time sertes. The ime-frequency resoiution properties of the MVTVAR-IPSD computations are
~harper than those obtamed by segmenting nonstationary time <eries 1nto successive stationary
segments and using windowed pertodaogram spectrai analy-is methads or by Priestly’s evolutionary

pectra metheod.

The decomposition of linear dependence 1~ an analysis of variance, but a0 this stage. a theory
of inference has not bheen developed. Potentially the MVTV AR and [PSD can be useful for invest-
eatine the istantaneoushy changine iterrelarn n-hos o weeanooraphie . metearnlogieal and other
multivariate times series phenomena as well as anvestieations it the nature of the instantane-

ously changing intea and inter ceyebiral propagatiom of epalepsy

20
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A new concept of causality at an instant in time was proposed. A related definition of
causality for stationary time series is different than the familiar "feedback free" Granger causality
in econometrics or the time precedence concept by Brazier in experimental neurophysiology. This
concept of causality at an instant in time appears to be particularly well suited for the determina-
tion of Jriving or causality in epileptic event EEGs. To date, the results of epileptic focus location
obtained by our method have been consistent with analyses done earlier and with the suceessful
outcomes of -urgical temporal lobectomy seizure elimination procedures. The perspective or
birds-eye views of coherence and partial coherence versus frequency and time appears to be a
potentially useful diagnostic for the identification of candidate driving sites. We anticipate doing
computations on other epileptic event data sets in humans and amimals and comparing results

obtained by other methods.
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LEGENDS

FIGURE 1. Intracerebral EEG during a spontaneous 7 second seizure episode. From the top to
bottom the data channels are: right {rt.) rt. amygdala. rt. ant.pes hippocampi. rt post. pes hippo-
campli.. rt, ant. parahippocampai gyrus, rt. mud. paramppocampal gyrus. ro. parahippocampai
gyrus. Analysis of the EEG on the left side of the brain did not indicate very substantial involve-
ment in epileptic activity n this epoch and s not ~shown here. The liscussion in the *ext s
confined to the analysis of the channels marked 1.2 and 3 in Figure 1

FIGURE 2. Instantaneous power spectral densities in decibels of channels 1.2 ana 3 versus fre-
quency and time in Hertz at successive 1 2 secand intervais

FIGURE 3. Instantaneous coherence (solid line) and instantaneous partial coherence (dotted linej
versus frequency in Hertz at successive 1 second intervals for 7 seconds. The number pairs before
each column of graphs indicate the channel pairs. The number triples indicate the jpartial “~oher-
ence between the first pair of numbers with the influence of the third channel cemoved from the
first two channels by regression.

FIGURE 4. Instantaneous coherence and instantaneous partial coherence vercus Trequency ir
Hertz and time at successive | second intervals for 7 seconds.

FIGURE 5. Coherence and partiai coherence (dotted linesi mputed as of the time <eries sere
stationary. The number pairs before each column of graphs indicate the channel pairs The
number triples indicate the partial coherence between the first pair f numbers with the influence

of the third channel removed from the first two channels by reoresaion
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FIGURE 1 Iutracerebral EEG during a spontaneous 7 second  seizure episode  From the top 1o
bottom the data channels are: right (rt.) rt. amygdala. rt. ant.pes hippocampi rt post pes hippo-
campi. rtooant paramppocampal gyrus. rtomod. paranippocampac gyrus. tt paranippocampal
gyrus  Analysis of the EEG on the left side of the brain did not indicate very substantial involve-
ment .n epiietc wnvity o this epoch and s aot shown ciere The iscussion nohe cext s
confined 1o the analysis of the ~hannels marked 1.2 and 3 1n Figure 1

FIGURLE 2 lnstantaneous power spectral densities in deeibeis of channeis 12 ang 5 versus fre-
quency ana tine on Hertz ar saccessive 12 secona antervals

FIGURE 3 Instanrtanecus coherence {solhid linei and instantanecus partial coherence [dotted line}
versus frequency .o Hertz at successive 1 second intervals "or 7 <econits The number narrs before
each eolumn of graphs indicate the channei pairs. The vumber rriples indicate the partial coher-
ence between the first pair of numbers with the influence of the third channel removed from the
first two channels by regression.

FIGURE {1 Instantaneous coherence and instantaneons partial coherence versus frecuency on
Hertz and time at successive 1 secnnd antervais for 7 seconds

FIGURE & Conerence and partial conerencs qoite nesi sanputed s 0 be fime ceries aers
stationary.  The number pairs before rach coiumn of graphs indicate the channel pars The

number triples indicate the partial coherence between the tirst pair of numbers with the mfluenen

of the third channel remioved fram the et two channeis Sy reoraci
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