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THE LINEAR DEPENDENCY STRUCTURE OF
COVARIANCE NONSTATIONARY TIME SERIES *

Will Gersch

Department of Information and Computer Sciences
University of Hawaii

Honolulu, HI 96822

ABSTRACT: The linear dependence, feedback and causality structure of covariance

nonstationary time series is developed. At every instant in time. the amount of linear

dependence between time series vectors is expressible as the sum of the amount of feed-

back from the first time series vector to the second, the amount of feedback from the

second time series to the first and the amount of instantaneous feedback. The

parametric modeling of multivariate covariance nonstationary time series and the com-

putation of their interdependency structure from the fitted model are also treated. The

time series is modeled by a multivariate time varying autoregressive (MVTVAR) model. S

The fitted MVTVAR model yields an instantaneous power -;pectral density (IPSD)

matrix, The IPSD is used in computing the linear dependency .tnructre of nonsTatiorary

time series. An example of the modeling and the determination of instantaneous causal-

ity from a human implanted electrode seizure event EEG is .hown 

KEYWO)RDS Inftormation tlheor tinie 0eries.. it1-v ry ing :1o1iei. .i titreressio.

feedback. cau ,ality, lct rteIcphalograI .

This work was completed while the author was a National Research Council Senior

Associate at the Naval Postgraduate School.. . - -..
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1. INTRODUCTION

The linear dependence, feedback and causality structure of covariance nonstationary time

series is developed. The parametric modeling of multivariate covriance nonstationary time series

and the computation of their interdependency structure from the fitted model are also treated.

The analysis is applied to a spontaneous human epileptic seizure event electroencephalogram

(EEG).

The structure of multivariate stationary time series has been of interest in econometrics,

oceanography, meteorology, engineering and statistics. System quantities such as the transfer

function between time series and quantitative measures such as the amount of information betewen

time series and the amount of feedback are of interest. In the analysis of econometric data and

human epileptic seizure data, the presence or absence of causality are additionally of interest. The

modeling of multivariate stationary time series has been treated for example in Gelfand and

Yaglom 1959, Caines and Chan 1975, Gustafson , Ljung and Soderstrom 1977, Gevers and Wertz

1982 and Geweke (1982). -

A statistical interpretation of causality in stationary time series from nonrepeated experi-

ments appears in Wiener 1956, Granger 1963, Caines and Chan 1975, Geweke 1982 and references

therein. In stationary time series econometric data, driving or causality is usually defined to mean

the presence of a "feedback free" condition. In stationary time series epileptic event EEG data.

causality has been defined operationally as the detection of a delay of one time series with respect

to the causal time series, Brazier 1972, Gotman 1983. In covariance nonstationary EEG data. the

,tJe,clive , anialysis is the t-stimation of the amount of inforryation. thv ariu nt .of feedback and

the detection of causality, all at an instant in time. The inference of linear dependency, feedback
S

and causality in nonstationary time series are new topics

The determination of the int rdependon, ies bet, en tht, e.ectricil arti, it. .t ifferent lrain

sites is a subject of current interest, in EE(; analysis The recent work of .eins et al 193. in

event related potentials (ERPs) and of Mars and Lopes da Sik a 1983., Sa io and Ilarashinia 1981.



Innouye et al 1983 and Gotman 1983 in ongoing or background EEGs is evidence of that interest.

The literature on multivariate nonstationary time series modeling is surprisingly sparse when

we consider the fact that many natural and social science phenomena are nonstationary. Rosen-

berg 1973, Sarris 1973 and Swamy and Tinsley 1980 are studies in the econometrics literature on

modeling time series with time-dependent stochastic parameters. Except for Bohlin 1976. (scalar

nonstationary time series), these methods have not been applied to the analysis of nonstationar)

EEGs. The approach described here, a deterministic regression modeling of multichannel nortia-

tionary time series, differs from the stochastic regression coefficient modeling methods described in

the literature cited above.

The complex demodulation analysis by Walter 1968 was very likely the first nonstationar.

time series analysis of the EEG. Subsequent nonstationary analyses were by Kamabata 197:;

(overlapping periodograms) and Bohlin 1976 and Isaksson 1975 (nonstationary time series models

and Kalman filter algorithms). An indirect approach to the analysis of nonstationary covariance

time series is to segment them into locally stationary time series segments and to model the seg-

ments separately as stationary time series. Bodenstein and Praetorious 1977. Sagan and Sanderson

1980 and Benveniste and Basseville 1984 and references therein. None of the aforementioned ana-

lyses treat multichannel EEGs.

In Section 2 the linear dependency structure of stationary time series, the linear dependency

structure of co,6ariance nonstationary time series and the concept of causality are treated. In Sec-

tion 3 the modeling of covariance nonstationary time series by the MVTVAR method is described

Nn application Ot MV'rV \ll modeling f hurrian imjplanted eiectrode epileptic seizure event ,lata

and the detection of causality is demonstrated in Section 4. Section 5 is a Summary and )iscus-

sion.

2
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2. LINEAR DEPENDENCY STRUCTURE IN MULIVARIATE TIME SERIES

2 i BACKGROUND. STRUCTURE IN STATIONARY TIME SERIES.

The quantitative measure of the amount of information between discrete random variables,

Shannon 1948. is the intellectual precedent for the quantitative measure of the amount of informa-

tion in one time series about time series. The measure of the the amount of information between

two vectors of continuously distributed random variables X and Y. Shannon's amount of mutual

information. is given by,

30- 30

In 12 1.1), fx. it.y) and fr(z),fv(y) are respectively the joint probability distribution func-

tion of the vector random variables X and Y and the marginal probability density functions of X

and 1'. 1,.. is .1 measure of the amount of dependence between the random vectors X and 1'.

Equation (2.1.1) is the negative of the entropy of the "true" distribution fX, y with respect to an

assumed distribution fXyfy. Also I,. is the dissimilarity or information divergence between the

alternative joint probability distribution fy,.y and the factored or independent probability

descriptions fV. y f.,f 1 of the vector random variables X. V. Kullback 1958. Formally.

(2.1.1) is equal to the amount of information, on the average, per observation, to reject the null

hypothesis that the random vectors X. Y are independent.

Gelfand and N'aglom 1959 computed (2.1.1) for the ease of X. Y stationary, jointly normally

dtltriiqvd into eries Let 2{It)} be a vector of tine -eri s that is partit ioned into the two com-

potent vect r t Itto, series, z(t ) (t)1 . Let the power spectral de,,sity matrix of {z(t))

be written in the partitioned form

I'z(f) '(f)

',;z(f) szf ~ f (2.1.2)

3
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" Alternate forms of the Shannon-Gelfand-Yaglom (S-G-Y) measure of the amount of information

between the two vectors of time series are, (Gelfand-Yaglom 1959),

1 '/2

= J ln(I S.(f)l /I Szz(f)[ I Svy(f)l )df (2.1.3)

1/2

/-, fln(I S( sf(f)s / (f)S(f)l)df
-12

1/2

Iz, - f ln[x- Z(]
-1/2

In (2.1.3, A i enotes the determinant of the matrix A and the symbol denotes the ,ompiex

conjugate transpose. The first formula in (2.1.3) mirrors the joint distribution versus the product

of independent distributions in (2.1.1). In the second formula in (2.1.3), the term in the denomi-

nator is the residual spectral density of the time series {x(t)} after the removal by regression of

the influence of jy(t)}. If the two time series are independently distributed, {y(t)} does not

influence {x(t)}, the denominator of the second term is identical to the numerator and 1,,y is

zero, as expected. The third formula in (21.1) is a special case of the amount of information

between two scalar time series {X(t)) and {y(t)}. expressed in terms of the spectral coherence at

frequency f. 117,,(/). The last. formula in (2.1.9) is particularly useful in or analv;s of causal-

ity.

It should be noted that the information theoretic i,,, and [.V.y formulas hold only for the

case of jointly normal "ime series or jointly normal random variables. OtherwA ise 1: ! \

ha., an interpretatiofn is a rneasiire .)f inear dependence bet een Time series ( random variables.

(eweke l .)2 obtains ot her useful properties of the linear dependenc. tiruciture bet ween

jointly stationary time serie!. To illustrate those properties we need consider several alternatt\e

linear projections of the tine -series {JX(t) and { y (I First we ssume that the time series

{z(t)} has an AR representation.

4
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t =zt - zt T ar[zt] - -=(2.1.4)
=1 E 0y2

The terms 1z2 and ty2 are defined below. Define four different linear projections of xi on the

past of xt, upon the pasts of xt and Yt upon the past of xt and the present and past of yt and

upon the past of xi and the past and future of yt- That is, let

(2.1.5)

il.t - Alm t-m, X2,t = Xj - A2,.mXt-m - B2, Yt-"
r'n m=1 rn-i

00 00 00 Oc

,. -t  ZA3,mx m - B3my m" 4.t Xt  V A,.,nXt- n v B17 ryt r,.

m=! m=O m=1 m= -0

var[..j] -

Also, identify linear projections of {y(t)} in a similar manner.

(2.1.6)

tJ~~ ~~ 1. 'n " /t E " t rn, Y2 t dt -' Y . t 
( 
2, t m

Mr-I m I ri

0 00 OC 00

Y',r -t , "' ,MY t - Z C.mb m Y4,1 - r- , C 4,,, (- '4.,,Yt in-
I M-O 1

No%. in a natural way. define: (i) The amount of feedback from the time series { yt to the

tire series. { .rt !. .t , (ii) The amount of feedback from the time series {xt to the tine series.

{yt}. lz . and (iM) The amount of instantaneous feedback between the t iie series Jxt and {Y.".

l.Tr, by

", '.". : ,. • .:_,.-- . .-;. .,. :-, . -.-.. _ .. . .. : . . :i .: <:- ,-: _ : -: . .. - : : . ,5



(2.1.7)

nII,,

-. From (2.1.5), these feedback quantities also have specific interpretations as the amount of informa-

tion in the jointly Gaussian distributed time series case or as amounts of linear dependencies in the

general case. More emphatically, in the jointly normal time series case, feedback is information'

A theorem proved in Geweke 1982, (the measure of linear dependence between Stationarv

time series is the sum of the measure of linear feedback from the first series to the second, linear

- feedback from the -second to the first and instantaneous feedback), is,

Theorem:

I, Y I. - y Y .1 I.-I

with

I) , 171 t (1 'z l J "2 41) ln l'- li  u 1 (2 19)

iii) I, lnO L',31 'I +l E,4(1 E- I E-,1)

-1,2 Y

That, is. each of the amount s of linear dtepen.dence and arnounts of feedback can be comyputled from

ihc r' s iual iatrco.s ,fthre t trrer jcr itn thi, , ,,.ris- r ') an, :W I

Proof: (Sinilar to (e.eke I9M)2 F'rorm ('2 i 3)-(2 I 7( Ov l,ser , e hat

-- yl 1. 1 ,1 I

(,,) 1F ,. ,.,,rr tr,-,,, r.,, ,, ( '.. (, -  _ , . ,- ,+: , " ' . E ,,A " , 1 j, .,I

, (i(



(iii) follows by symmetry from (ii).

(iv) Follows from I NIz31 1 = and symmetry.

Another important result in Geweke 1982 is that the feedback quantities can be additively

decomposed in frequency. For example.

1/2
,gz f l, -(f df•  (2.1.10) .

Similar additive relationships hold for dependence and the other feedbacks. Equality holds in

(2.1.13) under mild technical conditions on the regression coefficients that are straightforward to

verify. see Geweke 1982 for details. (The invertibility of the time series model is the issue

involved.).

Consider the first and fourth projections of the time series {x(t)} in (2.1.5). Let S,(f), be

the power spectral density computed from the regression of {z(t)} on its own past. Let

S11 Z,'(f), be the power spectral density computed from the regression of {z(t)} on its own past

and the past and future of {y(t)}. Then, Iy-,(f) the feedback from {y(t)} to {x(t)} is,

I[ - .(f ) = In ( I S z (f )l I  S -I  X 'Y fM "(2 1 . 1

For -xample. when y Iy) } ioes not influence or feedback on lf )j. the spe-tral density

S ' f) will be identical to S,(f), the spectral density computed from {z(t) alone. Then the

ratio in (2.1.11) is one and hence I (f) is zero. again as expected.

There fre two important ,xtensions 4t the resulls in (2 1-'2. 1.1). I) The results hold

under -ondIitioning or partial regre.ssion .,f the ;eries ,r(t ) ,n another ,octor of time ;eries

{ (t)J, Geweke 19.. 2) The results hold for nonstationary tite series Some of those results for

nonstationary tite series are discussed in Section 2.2. A MVTVAP roefficient model which per-

rtits estimation of these results is discussed in Section 3.

7.
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2.2 THE LINEAR STRUCTURE OF COVARIANCE NONSTATIONARY TIME SERIES

Here we extend the notation and results on the structure of stationary time series in Section

4' 2.1 to nonstationary covariance time series. Assume an MV'TVAR representation for the time

series z(t), again with z(t) = [x(t)y(t)]T.

00

Zt V AmtZt-m 'Et, E[ct] 0. E[ct-k~tf = s,-k.t (2.2.1)
m=1

with

= T ,.

where E2.t and T. are defined below.

Define A (f.t), the polynomial operator,

00

A(f,t) I - am.texp[-27rmf]. (2.2.2)
m=1

Then in a natural way, as an extension of the definition of power spectral density for stationary

time series. define the instantaneous power spectral density, (IPSD), matrix in terms of the

MVTVAR model,

S(f.t) -= A(f,t)'-tA(f,t) - ' (2.2.3)

(The on-ept of an instanianeous power spectral density was introduced in Page 1952. The most

notable development since Page 1952 appears to be by Priestly 1965,1967. Priestly 1981, Chapter

11 i., a revie% of the literature. By the way of contrast. Page and Priestly are both frequency

d,,rain p-tral rier hods, while he \1V'V XI* k? i 1,ararn.el ri ,,d! miwel hod) A

As we did in the cast, of stationary time series. identifN lin ,r project ions of Xt

8



(2.2.4)

0C x 0

l t - E Alm,ittm, 2,t = X- A 2mXt-m - B2m,tyt-m,
m=1 m=1 m=1

00 00 Oc3

X3.t =t - Z A3m,tX - B3.,,tYt-m, 4,t t - A4m.tt-m - Z B 4 m,tYt_.
m=l m=O M= rn=-C

var[Ij 5

Also in a similar manner, identify linear projections of { Yt }

(2.2.5)

YZt It CIM,tt-m" Y2.,t Yt - Z C2 t't- - Z D'm,'Yt-m"
Ml rnl 1

1.t Yt C3m,tXf-m D3m,tYt-m, 4,t Yt C4mt t-m - r 4mtYt-m .m=l m=0 m-l m=-Oc

var[ j,tj ] It

Then using algebra, we obtain results for nonstationary time series that are analogous to those

obtained for stationary time series. The amount of linear dependence at time t between {xt } and

yt,,},the amount ,f feedback at time t from I yt} to {'x}, the amount of feedback at time t from

J

{x, to Iyt }. and the instantaneous amount of feedback at time t from 4.,) to {yt} satisfy:

z ,t -Il , -vt  t (2.2.6)

Iz.,J.t 171r 1 : I, T

Z~ .t t2 1., ,,
71 T." T



The main result in (2.2.6) is that at each instant in time, the amount of linear dependence between

time series is the sum of the amount of linear feedback from the first series to the second, linear

feedback from the second to the first and instantaneous feedback. Also, as in stationary time

- series, in nonstationary time series, there is an additive decomposition of the feedbacks with fre-

quency. For example

t~zt J I_,(f )df. (2-2.7)

An example of a relationship between the linear dependency measures for nonstationary and

-"at ionary m ree ieries is

T

z b f iz,,dt (2.2.8)
T0

The other nonstationary linear dependencies satisfy similar relationships.

2.3 CAUSALITY IN TIME SERIES

The emphasis of the applications of structure in stationary time series in Geweke 1982 is on

feedback botAwen economic time series. As shown in Section 2.2 instantaneous feedback (linear

dependency1 b.tween nionstationary time series, can be expressed in simple formulas. Indications

of ways of estimating those linear dependencies from nonstationary time series are shown in Sec-

tion 3. The emphasis here is on a concept of causality between time series. The motivation for

hi ec r ton is the .t.terrinat ion of causality in implanted ,lect rode l'.( data in humrnans observed

during epileptic seizures. Our concept of causality between time series is different than the "feed-

back free''" ondition definition used in econonetrics ((Ce%%eke 19S2 and references therein) and the

tirr , pr, 'o',,'r, ', t, d'irto iise'l in th, .iralvsi f ,pileptic (xN,,n l (, lata lrazir 1972. (;,mmu

194:1,) v ( detinf causality in Iterrm s of t h e N- - arid citditI ola I -C- ' riwasures bt,,ween tlln+

eries. (onsider the : tui series or ectors of true serie-, .r lf) . { y(f) I and j t(t)} As,trne

I)



that there is pairwise linear dependence between the series. That is,

I,, 70, IZ. - , Iy,, u) 0. (2.3.1)

Now assume that each pair of time series is conditioned on the excluded third time series and the

following results are obtained.

1, O .=0, W I Y :-0. 'IL, = 0. (2.3.2)

From (2.3.2), removing the influence of {w(t)} from {x(t)} and {y(t)} leaves that pair of time

series linearly related. Similarly. removing the influence of {y(t)} from {x(t)} and {w(t)}

',eaves that pair of time series linearly related. However, removal of the influence of .r( t)} from

{y(t)} and {w(t)} leaves that pair uncorrelated. Thus the series {x(t)} uniquely explains the

linear relationships between three series. We say that under the conditions in (2.3.1) and (2.3.2)

that the time series {x(t)} is causal to the time series {y(t)} and {w(t)}. (A mathematical

model that exhibits the properties in (2.3.1)-(2.3.2) is in Gersch 1972.)

Epileptic event EEGs tend to be characterized by concentrations of spectral energy in a nar-

row frequency band and causality or driving may not be present during an entire seizure. We are

thus motivated to exploit the instantaneous additive decomposition of linear dependence in (2.2.6)

and adapt rhe definition of causality in (2.:;.1) and (2.3.2) to a letinition of oausaity at 3ome par-

ticular frequency f.. and the time instant t.

Let, the Il1Sl) matrix of the three nonstationary time series {x (t )y(t )u.(t)} be expressed

SII (fti int I r(fI.

S(ft) Uf) (f.t -t,,f(f.t) (233)

1.1t) ,, . , if.t t



Several additional ingredients are needed for our causality analysis. The following are

defined: WzV(f.t ) , the instantaneous spectral coherence between the two generic time series

{x(t),Y(t)) at time t and frequency f, and the instantaneous partial spectral coherence

S. 1 .,(ft), SYYy (f.t) and Sy w(f.t), respectively the instantaneous spectral density of

1)} 'tonditioned on ( t)} the instantaneous ;pectrai density of {yit)} conditioned on

{tv(t)}, and the the instantaneous cross spectrum between (z(t)) and {y(t)} at time t and fre-

quency f conditioned )n at(0. In terms of The omponents ,f the pertrai .tensity matrix in

(2.3.3) these are given by

U I ( f " 
- f m -t I 2U;

S (f.t I S 9(f t i( i t,(f.t

Slyl ,V(ft) S:y(f.t);,j.(f.t) S,,(f.t

The instantaneous partial spectral coherence between the generic time series {.(t).y(t)}

conditioned on the time series { i'(tt} at time t and t and frequency f. computed from the instan-

taneous partial spectra in (2.3.4) is

Now, using the additive frequency domain deotiip.,sition proert% ,f fe'dback betwen tirne

series (2.2 7), and our definition of causality in (23.1) and (2 3.2) %%e dein- the series {.r(t )j to he

;1. t t, .Irh'e it-t t ,t :'reiii,n f I It +ri , if t , tho i.t1,, 2 t, ,' iit i ns are

sat Isfied

t I (f j

1 r iii th t i hr I if at i if i 2 1 I-I C" I) I t 111 ±-fi ti ir 11 4i C 8 u11 I I 11 61 11 -1111%;i1h-'tt

12
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to the following conditions on spectral coherences and partial coherences

2 i-

;,y(fA.t) 0 1 .(fA.t) 0, Y,(f.4 ,t) 0r 0, (2.3.7)

)tff, ~~~0 U, 2(At 0 ,

Thus the identification of causality at frequency fA at time t is determined by the detection of

zero partial instantaneous coherence. This definition of causality at an instant in time is a general-

ization of a related concept for stationary time series introduced in Gersch and Goddrd 1970 and

used in (ersrh 1972 (Cersch and Tharp 1976 and Brillinger 1976

The listributon , herencr, and partial coherence is treatpd in lannan 197(1. Brullnkr

1974 and Koopmans 1974. For our purposes the most important result is the distribution of a

transformed version of the partial spectral coherence in the vicinity of zero partial coherence. A

convenient form of that result, Koopmans 1974, is given by

(V- 1) 4" (/)
F W "i F 2 2  1 (2.3.8)

Rly Z~.)

In (2.3.10). il is the number of degrees of freedom in the F distribution with 2 and 2(v 1)

dp'-grees ,,f freedom in the numerator and denominator respectiv.ly

13



3. A MULTIVARIATE TIME VARYING AR COEFFICIENT MODEL AND

LINEAR DEPENDENCY COMPUTATIONS

A parametric model is assumned for the time series. The successful use of autoregressive (AR)

models in stationary time series analysis motivates consideration of a time-varying AR coefficient

model for nonstationary covariance time series modeling. Denote the D component row vector at

time n by x~n)- [x,(n ) ,.... D(n))T . Then, the multivariate time-varying AR. (MVTV"AR),

model is

x(n) - 41,nz(n- 1) - a, z(n-2) ... - A,,x(n-p) - ((n). (3.11)

E ( f( n) ) = 0 , E ( c ( n tk ) f( n, ) T) - ( , . . .

In (3.1 1), the 1A,.ni-I .... p; n= I..N} are DxD coefficient matrices. The pxDxDxNV unk-

nown AR model parameters and the NxD(D- 1), 2 parameters in V(n). n 1. in the model in

(3.1.t) are t~o be estimated. There are more parameters than data, so least squares or maximum

likelihood methods for estimating the unknown parameters will not yield useful results The unk-

nown parameters can be modeled implicitly. A strategy for economizing on the number of param-

eters to be estimated is to consider the€ vector of time series one' component at a time and to regre-ss

that time series upon a lagged version of itself and up n he other -orinponent , 4 the %oct,r 4

i tle series in an rtr hognal polyfontial least squares miethod Of oTmIdoling That Is., express each 4

the elenents in t he, tnatrix of tirre varying .. I? r'<efficients as a linear c~omtbinatio>n of ay .J opt hog-

r oi ,+nl hy ,ic't'l fn irr. I t oe wv h re .J a '1r111 wlintii,er "<,ttla", to N. i iP t iiu er hcf , -

; 1at ,i1, 1+uog !ti-' i1-thod .IN t i l as p \ i)'.] ,',w licri'nt- are' htt,', . , e:1.h ,,f I he i) c..t',i,ti it0

turie+ ,eri,, If this nuin ,+r is ,,mall I-ornlp.;lred to .N. a rea -na,, fda,+ m ,-,, l 'anl 1,,- ftied', TIhe' i, al

rnirniter 4 titiel re. ie nt, in the rnill l i titor ) 1)s./ 1 haI rttinler .: ,,,iil rai l,, tiifll.r

than th', tizlilnh r of irntilicit 0 cetficrent III I IP x . TIh,. VI' \ I\ ? \ ,itl:l

14
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. . . . . I
Ain 'a~j(i*n) , r,k=l .... D(32

a,k(i,n) = j rk( z,jYf(j ,n), 1'=1_. .p

f(J,n) = D( 01 n =0. I1I ~...V

In (3.1.2), a7 k(i,fl) r,k=l,...,D are the elements of the time %.arying AR coefficient matrix

A4, i=L ... p: n =1...N. Also in (39.1.2) n(' = n '(n-s)!. V~~- .V!. (N-a)I' where n! is ni fac-

torial and N is the number of data points. The functions f(j'.n) that we use in (3.1.2), are the

discrete orthogonal Legendre polynomials.

The orthogonal polynomials satisfy

ZfUj,n)f(k~n) 0.kj.(.l39

The first three discrete orthogonal Legendre polynomials are

f 0,n 1, f(1,n) I - 2n/.N, f (2.n) =I -6n/ N -6n(n - 1)f N(N 1 ). (31. 4)

F rom ("1.12.1I), fitting the NIVTVAR model (311.with the zeroth iegree LeL'erdre polynomnial is

equivalent to fitting a stationary coefficient multivariate autoregressive (NIVAR) model.

Orthogonal poly nomital- least squares inodeline of wcalar time series; isinv trne-%arinv

coefficient models appears in Kozin 1977 and ( renier 1'),3. (;t'rs(h and Kit agawa 19S:' isa

extension of that method to the fitting of mutltivariate tone series using mu tlt ivariat e t uric-%arying

AR coefficient ( \IVTV AR) models to economic data. In that modeling, the orthovlio'nal p' 'R r,11 iiial

1-ast qtiar~s .riuIittat ion,; were reailiy' ri -i llous,,i,,ldor traun~f~rrtia!in 'rt i. ki

AWstatistic A kaike 1974. orthogonal polynomial niodel degr~e nai' d ir 'iil"t '"l'octi.q'i

(Fo'r ni,e dvtails oni the rnoleling ritWd e, Xrr and Kitavawn

arwous linear d''(pvncn\ rela ir i 111 (2 ;ir, tnprii . ki'' l' fititiii' -f \1\ 1\ \1? rii. d-i.

Thiat 1,,, 7', ... . art' ohtairw fri the tit ,f th' \1A IX \lt 1, tll ib vW '
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Then Es', F, - C, T 2 ., CT. From (2.2.6), " , .gThtl', , can

, = 4.91 t! IE , I t, I The terms a

be obtained by the fit of M\,TVAR models to r(t) and y(t) respect ivelN, Using these quantities iII

(22.6) each of the terms 1 I, 0 is -Y. ., and 1 c an be omputed.

Also. the IPSD can be estimated by adapting the ,efintlon in (2 2 3 2) to the finit- Iae

order fitted %1VTVAR model For the tited %\1\V \1R lt udei 4 !aw ,rer V, ietine the pol. no-

mial operator

M

..4(J.t) I 1 e,,,.t, 2t ,,/ ( 4)

T 'hen. .etinv he " tI ;titt ttritfLt 'tl ,. ,'" -[htr,-tniij i'tt, r Iltia Ft ,\ I 0'TI-, A !h,

MVTVAR model,

The spectral coherence and partial s.pectral c-,hernre at frequenc J t the t iri i t ant t can .

computed using t he eSio Maed I I' I)

1 6
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4. AN EXAMPLE, ANALYSIS OF A HUMAN EPILEPTIC EVENT EEG

We illustrate a case in which an epileptic focus was located and determined to be present

during a short time interval from an analysis of an epileptic EE(; event from deeply implanted

electrodes in a human. (About 60 of individuals with epilepsy have seizures initiated from an

anatomically localized brain region or seizure focus. The focus initiated seizure propagates through

the brain, Hauser and Kurland 1975 Many of these individuals do not respond to drug treatment.

" In uvh individuals, if a unique anatomical site from which the seizures emanate can be localized to

an operable site, they may be suitable candidates for surgical treatment to remove the seizure focus

and potentially relieve the individual from seizures. Anderman 1987.) Figure 1 illustrates data

from a 7-second 6 site data record of the electrical activit) at the dramatic onset oif a spontaneous

seizure event. (This data was supplied bv Jeffrey 1) Lieb, '('..A Reed Neurological Researh

'enter. The original data %., obtained at a 200 sample second rate. The data used for analysis

was rate reduced t( 50 sartples per second ) The objective of the analysis was to determine

%hether anr ,ne of the observed anatomical recording sites could be inte-rpreted as "driving" )r

heing cauisal t) the electri al at vi( at the other recording sites The data Is COtTIplex. and there

is ro , '-.,us vi, ual ,hii. that ntight tinna tiiguoisl, ileintif an nitiating or driving, li- or ,dentifk

A hen ,riviun I, i ,pr ,nt

I
t
' ,I etri l " ,f thei i,itt.ai ' r :ii- , t o' ' I 's 'il- i;ti the ..- i1 irii jrt .. ..

h i ' title-, 'ri . h n+rg,'- Ait i m P ie,, t'lh :tihl',.- 1 ns,,l'.- t f, toIirLo f I \ \ 'I \' " i'.I ' Ii.

[it a ld a '.Ii ,seql tt l,.pe t ral analsis ,iriv th I I'.SI)

I ' i t ,n rj'.- :sol i .l 1 ' r i " t rmo ',i.' ! h-, i i Ii- Ii,. - 't, i.

L iioti- , 'll 1 2 a n i I Ii',oire I In l giure 2 vs i [, or i, 11,\%,-..1 , ' I I, , t ii tl

" ' - -. ,- fr, *wl r , t I ,'- ;tt it ' .2 i' I i2 ' .i , 'r ai r-, Ir ,, lit t, i I,, \I\ I\ \I:

, . f Ih , ,l- 1 i t :ri I arll ,r r,, r,.- i ,,\ -h 1r: , + . I , ,.r

,: r 12 .Ir't 2 i ;t 7 27 1lrI ant 7 i , \ t I- , .

i. - , ro t . ,n t o i lto .ilt ih, ,li-tnt . , i.t h.-.o t , .w,\ :r I r. -f I
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Later in the record the emergence of a spectral peak at 4.25 Hertz can be observed in each channel.

A current practice is to analyze epileptic event EEG's of no less than 6.25 second duration in

overlapping 2.5 second intervals by classical windowed periodogram spectral analysis methods as if

the time series in each 2.5 second interval were stationary, Gotman 1983,1987, Lieb et al. 1987.

(The windowed periodogram methods used by Gotrman and Lieb do not have the the time-

frequency resolution properties necessary to capture the transitory characteristics of the rapidly

changing epileptic event VEG data.)

We identify causality or driving at an instant in time by a frequency domain analysis using

the estimated IPSD via the concept described in Section 3. Computational results of both the

evolving spectral coherence and evolving partial spectral coherence for each of the three possjble

pairs of three different data channels at successive one second time instants are shown in Figure 3.

The computational results are used to determine whether and when one channel drives the other

t wo.

A view down the columns (of the one second apart "snapshots" in Figure 3 illustrates the

rhanving ^ ih tri-, structure of pairwise coherence versus frequency between pairs of -hannels and

the rcrrespondling changin g with timne partial coherence versus frequency At onie and two secinds

int,, the r(,,rl. there are harp coherence peaks belteen each .f the ,f the -hannel pairs in th,

• t trljf ol ,, 7 2.- in-I II - H'rtz III,' pari l oher,.i, e h tv, een , anlni,., I '1" Ii "..' n l '

iarnel -i it. A , oIti :i,' artI %III ,,, ,,, i , h i i h .xcluded third h ltiiE. re.ain iqwr itti tl crr'-

atd That s ii *-iaririvl and E- . I,- nt, ha\,, t, h ,. laiia ,rx ,, r mu, I ,ii Ow tor htnl t ih

., . , r, ,-1"f I' m 1,r-.. ' , 1, 1 "'l , it h , , r. , ,u. , , )i ,, u In - i r{,'rr/ i;-i \ ,, \ I 1 \

Ita ra ir it i , -;~ i trli t Ili,- 'I-,' I . . ft ,* ... I i '. r . I f ,r ., r, i -t'l~ .I I r, ) . ," i- h)!- :I I

-In I . ...



We conclude that the pairwise coherence between the three channels is a consequence of the

fact that channel I was driving channels 2 and 3 for the first 2 seconds of the record in the vicintIN

of 7.25 Hertz. The pairwise coherences and partial coherences at three seconds and subsequently

reveals a decrease in the pairwise coherence between each of the channel pairs and cessation of

driving by channel I of channels 2 and 3. Later in the record, the locations of the peaks of che

spectral coherence shifted to a lower frequency and the partial coherence does not indicate driving.

The riativelv low partial coherence betw,'en ,hanneis 2 and 3 partiaied ,n .hannei I throughout

the epoch is compatible with evidence cited by Gotman 1987

Figure 4 is a birds eye view of the evolution of the pairwise coherences and the partial coher-

f'nces. This illustration was rompute1 from the same Jat a as Figure 3. In general. partiai ,'oher-

ences are smaller than coherences. The relatively flat partial coherence of channels 2 and 3 tar-

tialed on channel I suiggests that this kind of illustration may be a useful diagnostic aid to identify

candidate Irivine channels. ((;ottian 1983.1987 is an alternative method of detecting driving

For the purposes of comparison, in Figure 5 we show the coherence and partial coherpnce

results ,-oniput, - r,)rn a mtlt ivariate XIR m(,del. as if the time series were qtationar Such ana-

lyses )ieid a blurred versi, n of the sharp titne-fre uency reso t i,n features avaiable from an

V\'F\IAl-lPSI) analysis \ hese. hs results 1,, not itmtlv niplicate channel I as driving the

tr I t itt ,i

It, a.I Iit ,I, r ith . a -i aal.% et her,'. s,-, ra *)p i, I, ic F"lK"I epis,,des '-re aiialN zeud Iro, n

'Ch )f It hr',-, .tf-rer, t -at I, nt. It ,'ach ca.e the f-u,- W I t -4 aI iIiuu'-l h i e,l for a pr, x -

I -, I r, it. 11 111;11. a rt,/' i wlr
, -  

[. i,i , t hl 1' u t m -ui,7

Ir i)

I )I



. . . . . .

5. SUMMARY AND DISCUSSION

Mleasures of linear diependence and feedback at each instant in Lime for multiple covariance

* nonstationarv time series have been proposed. Several new Ideas are introduced. The development

* is heuristic For jointlv normally distributed stat ionary time series, linear dependence is

equivalent to the Shannon-( .etfanid-\aglom measure f the amount of information betw~een time

series. The concept of information at an instant in time appears to be new. The time series are

toie be !-epro~en ted by i niit ivariatre time V art rg -mioregressive \IVTV.AR) model. The

MVTVAH mntodel is the key to the computation of linear dependency and linear feedback at each

irist ant in tite At each !nst ant in t mi. te measure 4 linear dlependence is the sum of the meas-

- tire ot linear feel back fromt 1he :irsi eries to Thte ec 'ld.id near ficedIba(-K fromn the econd series to

the first and instantaneous fpedbaok. The mteasures of linear feedback from one series to another

can be additively decomnposed by frequencN.

The time evolution of A-R parameters in the \1VTVAR model is expressed as linear combina-

tions of dliscrete Legendre orthogonal polynomial functions of time. The MvVTVAR model is fitted

*bN a Householder transformation-Akaike ARl' met hod. The \1VTVA-R model is exploited to intro-

* duce the concept of an instantaneous power spectral densit 11 n)) Ph s is done in a nat ral w av

* ~as in ex\tens ion if hefi p)weNr spectral density 'wrnipiuted friurn rnt l~ariate .0 modeli for stat ion-

* ~~~rx tine (,ri#- 'liPe rifrurivresoiotin pr;.p#r:ivs f4 the \1\'T'\.\ l1- IP) cot:putiat ions are

* ~harper tha sr Ihoe' Iht mi ri-'l bt ttrient ing ntis at inary tite -cries l uicce sie st at ionar\

ewmtents, and 11sing wirtd0%el juriulg raiti pectrai anal\-os mhid r l~Priest lNs e\,.lti .nar\

Fbe lecornpsiiot 4 inear iejo-~entce it inttii\ isI' tvaraniu. t iii it tin i 1,( a i ivdr\

* ftfren, i' rtot been de%-'lqed l',tent tulI\ the. \1\ T\ \1? ;:id 1151) outi hc tieful fr in\,-ti-

1 1it tv I i' m,.ttt;i t i -f*imiiii it'rr'+'ir I . ire- ii ph -.ui 'riIt mi'..rl i i d artu tor

r tii ariato. io"n ,,rjf-, J'Iutwfii tu a, we(.l l m h'i i i- th, twit ire )f tho instautati'-

Will\ rhptinirii iti anl iter cviiral ~~a~iit4
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S

A new concept of causality at an instant in time was proposed. A related definition of

causality for stationary time series is different than the familiar "feedback free" Granger causality

in econometrics or the time precedence concept by Brazier in experimental neurophysiology. This

concept of causality at an instant in time appears to be particularly well suited for the determina-

tion of driving or causality in epileptic event EEGs. To date, the results of epileptic focus location

obtained by our method have been consistent with analyses done earlier and with the successful

,,utcomes Of ,urgical temporal lobectomy seizure elimination procedures. The perspective ,r

birds-eye views of coherence and partial coherence versus frequency and time appears to be a

potentially useful diagnostic for the identification of candidate driving sites. We anticipate doing

cornputatiuns on other epileptic event data sets in humans and animals and coniparing results

obtained by other methods.

21
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LEG ENDS

FIG;URE L. Intracerebral EEG during a spontaneous 7 second seizure episode. From the top to

* bottom the data channels are: right (rt.) rt. amygdala. rt. ant.pes hippocampi. rt post. pes hippo-

carnpi.. rt, ant. parahippocampai igyris, rt. mid. parahippocampal gyrus, rt. paraflippoCar1Tipai

* gyrus. Analysis of the EEG on the left side of the brain did not indicate very substantial involve-

mneni in opileptic aciiyi ei poch ind is not .hown icre- The iiscussion in the efxt s

confined to the analysis of the channels marked 1.2 and 3 in Figure 1

* FIGURE 2. Instantaneous power spectral densities in de-ilbels o~f -hannois 1L2 ano "' %ersus fre-

* 'luency and time in Hertz at urcessive 1 2 econd interva>

FIGU RE 3. Instantaneous coherence (solid line) and instantaneous partial coheremce (dotted line)

versus frequency in Hertz at. successive 1 second intervals for 7 seconds The nUrtifer pairs !%efore

* each column of graphs indicate the channel pairs. The number triples indicate' the 1 artjal .,her-

ence between the first pair of numbers with the influence of the third chantnel remouvedi fromt the

* first two channels by regression.

*FIGURE 4. Instant aneous, coherence and instantaneous partial conerence v r'ti1f-e 1urc\ Ir

Hertz and time at successive I second intervals for 7 secorids-

lWl(; IE i: . Coherence ALnd 'aiai ta ohi~erpnt- dot tod iie iiiiited is :f the tinie -crw k'-.'re

stationary. The n umnber pair before each cotlumtn of gralihs ind catf the rh-irn, pIair, The

num nber triples indicate the partial coherence bet ween the first pnir fI nit ller' 'A i !l the itt j~i ece

of thle b ird chatitel remnove (IFrotit the first t wo .haiitil' ,ts hN rs~
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-' otrn thfe data channels are right (rt.) rt amx gdala. rt. itt pp hipipicattipi ri lost pes hippo-

atowpi .rt ifi paraiiipp namtil Zri.rt rtiii ;ar-tfii poati rua 2>in para ii.I[,[" attyal~a

- gymus A nalysis of the FE(; on thle left side of the brain did not Indicate very su bst antia ai rtv ule-

liit . ii i c a) v1 C tIV It N . t hi poch tn .i I s riotf Ao r or Ih e I-tI i5 it If i e t .

confined to_ the anal) sis of the channels marked 1.2 and 3 in Figure 1

R-C L Hi, ItItan(titi wr'pectrai don!sitles; in iceibeis 4f ntantis 1 2 -mi 2 ersis fre-

FR FI 'RlF 3 Inst mtil ante-ius coherence (solid limet and ins tantaneous part ial coherence (lot ted linief

e rsu' freqiienc n lertz 7-it successive I perond int er\ al.; '. ir 7 e, -nti T he nuinber :a irs -,ef ,re

- ~~each coumntti uf jrapis tIndicate the channel pairs The iidiler triples indicate the partiail~hr

enre between the first pair (if tiiiters with the influence 4F the third channel removed frtt i

first twio channels b-y regressi.

FG 111, 1 nstatitaneotis co'herence and .tsvttne.iI. partial -oherence \er-u r#,it 5M

Hertz -And t ime it 'lic-essixe I vec tin! iniers al fr -'cjj

HW- HGl"n -C-tier'-tc- ti- ;artiai o wret. i,1! In", 1-11[trw~ii iti ! t te ,n -r y-r ,

'tatoi-tar\ Ile nIiUrtiber par befo re -waIch- cirij ittif AI vrtr~ inicat e ifthe hann'wi pair, I'I,

n utib er t r i;le- Irilc iarIve te part a! Icohett renlce hetw A fq theo fit la ir of n iitril'-r wrAith t he t1lli,ri'

t'* h hi bird h iit yi r'-tt If I, 'rcti rhoI[ i r t A- h ta ti ci r v-0 it
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