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Error Probabilities of Fast Frequency-Hopped FSK 
with Self-Normalization Combining in a Fading 

Channel with Partial-Band Interference 
R. Clark Robertson, Senior Member, IEEE, and Tri T. Ha 

Abstract-An error probability analysis is performed for a 
binary orthogonal frequency-shift-keying (FSK) receiver em- 
ploying fast frequency-hopped spread-spectrum waveforms 
transmitted over a frequency-nonselective slowly fading chan- 
nel with partial-band interference. Diversity is performed using 
multiple hops per data bit. A nonlinear combination procedure 
referred to as self-normalization combining is employed by the 
receiver to minimize partial-band interference effects. Each di- 
versity reception is assumed to fade independently according to 
a Rician process. The partial-band interference is modeled as 
a Gaussian process. Thermal noise is also included in the anal- 
ysis. 

Diversity is found to completely negate degradation of the 
self-normalized receiver caused by partial-band interference 
regardless of the strength of the direct signal component; al- 
though, for signals with a large bit energy-to-interference noise 
density ratio and a very strong direct component, nonlinear 
combining losses dominate receiver performance and negate 
any enhancement obtained with diversity if the level of thermal 
noise is too high. In addition, diversity offers definite receiver 
performance improvement when the direct signal component is 
weak. The self-normalized receiver is very sensitive to fading 
channels, evincing a significant performance degradation as 
compared with its nonfaded performance. For severe channel 
fading, the performance of a conventional noncoherent binary 
FSK receiver with diversity is generally either equivalent or 
superior to the performance of the self-normalized receiver with 
the same order of diversity. 

I.  INTRODUCTION 
HIS paper presents an error probability analysis of a T fast frequency-hopped binary orthogonal frequency- 

shift-keying (FFH/FSK) system with noncoherent detec- 
tion for communications over channels with both fading 
and partial-band interference. The FFH/FSK transmitter 
is assumed to perform L hops per data bit, thus achieving 
a diversity of L levels. At the receiver, the dehopped sig- 
nals are demodulated by a bandpass filter followed by a 
quadratic detector. Self-normalization combining is used 
to nonlinearly combine the outputs of the quadratic detec- 
tors of the two branches of the FSK demodulator to form 
the L diversity signals, which are then combined to obtain 
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the decision statistics. The self-normalized, noncoherent 
quadratic detector is examined in [ I ]  for channels with no 
fading. In self-normalization combining, the reciprocal of 
the sum of the outputs of the two quadratic detectors is 
used to normalize the output of each detector before the 
L hop receptions are combined. As a result, the output of 
each detector when a hop contains a large amount of in- 
terference will be smaller than the output when interfer- 
ence is not present, and the hops without interference will 
have a greater influence on the decision statistics than hops 
containing interference. A block diagram of the FFH/FSK 
receiver with self-normalization combining is shown in 
Fig. 1. 

We assume that each dehopped signal fades indepen- 
dently; that is, we assume that the smallest spacing be- 
tween frequency hop slots for a bit is larger than the co- 
herent bandwidth of the channel [ 2 ] - [ 4 ] .  We also model 
the channel for each hop as a frequency-nonselective 
slowly fading Rician process. Hence, we assume that the 
signal bandwidth is much smaller than the coherence 
bandwidth of the channel and that the hop rate is much 
greater than the Doppler spread of the channel [ 2 ] ,  [3]. 
As a result, the dehopped signal amplitude is a Rician 
random variable, and the dehopped signal can be consid- 
ered as the sum of two components: a nonfaded (direct) 
component and a Rayleigh-faded (diffuse) component. 

The interference that we consider in this paper is par- 
tial-band interference, which may be due to a partial-band 
jammer as well as other unintended narrowband interfer- 
ences. The interference is modeled as additive Gaussian 
noise and is assumed to be present in both detectors of the 
FSK demodulator for any reception of the dehopped sig- 
nal with probability y .  Thus, y represents the fraction of 
the spread bandwidth being jammed [ I ] .  The probability 
that the interference is not present in both detectors is 1 
- y. If N 1 / 2  is the average power spectral density of in- 
terference over the entire spread bandwidth, then y - ' N l / 2  
is the power spectral density of partial-band interference 
when it is present. In addition to partial-band interfer- 
ence, we assume that the spread bandwidth is also cor- 
rupted by thermal noise and other wideband interferences 
which we model as additive white Gaussian noise. The 
power spectral density of this wideband noise is defined 
as N 0 / 2 .  Hence, the power spectral density of the total 
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BANDPASS QUADRAT I C  - 
DETECTOR '2k 

F I L T E R  

Fig. 1, Self-normalization combining FFH/FSK receiver. 

noise , . / 2  is y - ' N , / 2  + N o / 2  when interference is pres- 
ent and N o / 2  when interference is not present. The equiv- 
alent noise bandwidth of the bandpass filters in both 
branches of the self-normalized FSK receiver is taken to 
be B Hz. As a result, for each hop the signal is received 
with noise of power a: = ( y - ' N ,  + No) B with probability 
y when interference is present and with noise of power 
U: = NOB with probability 1 - y when interference is not 
present. 

The bit rate is defined as Rb = 1 / T b  where the duration 
of a bit interval is taken to be Tb seconds. Hence, for a 
diversity of L hops per bit, the duration of a hop interval 

result, the average energy per hop Eh = ST,, where S is 
the average signal power, and the average energy per bit 
Eb = LE,,. The signal power-to-noise power ratio is re- 

iS Th = T b / L  and the hop rate is Rh = 1 /TA = LRb. AS a 

lated to Eh/NT and to Eb/NT by: 

(1) - z= -= -  

Since there is no other modulation of the carrier, the 
equivalent noise bandwidth of the signal is equal to the 
hop rate. Hence, the minimum equivalent noise band- 
width of the bandpass filters in each branch of the self- 
normalized FSK demodulator is the hop rate, and in this 
paper we use B = Rh. 

s EhRh EbRh 
@ k  NTB LNTB' 

11. ANALYSIS 
Our analysis concerns the derivation of the bit error 

probability versus the bit energy-to-interference density 
ratio for the receiver in Fig. 1, given the Rician statistics 
of the fading channel. The analysis thus requires the 
knowledge of the statistics of the sampled outputs xik ,  i = 
1, 2 of the quadratic detector for a given hop k of a bit 
and, furthermore, of the normalized samples Z;k, i = 1, 2 
before diversity combining. We will show that the prob- 
ability density functions of the random variables x ; k  and 
z ; k  that represent the samples X;k and Zik can be derived 
analytically. 

Let U: represent the noise power in a given ..op k o ' a 
bit. We assume that the signal is present in branch 1 of 
the FSK demodulator. Then, the conditional density of 
the random variable X l k  at the output of the quadratic de- 
tector given a signal amplitude h a k  is given by [ 5 ] :  

where U ( a )  is the unit step function, a k  is a Rician random 
variable representing the fading of hop k of a bit, Zo(*) 
represents the modified Bessel function of zero order, and: 

U: = NOB with probability 1 - y 

U: = (y-IN,  + N o ) B  with probability y. (3) 

The probability density function of the Rician random 
variable ak is [ 5 ] :  

. 

where a2 is the average power of the unfaded (direct) 
component of the signal, and 2a2 is the average power of 
the Rayleigh-faded (diffuse) component of the signal. 
Hence, the total average signal power of hop k of a bit is 
a' + 2 a 2  and, in this paper, is assumed to remain con- 
stant from hop to hop. Note that if a2 = 0, the channel 
model is a Rayleigh fading model, and if 2 a 2  = 0 there 
is no fading. 

The probability density function of the random variable 
X l k  is given by: 

f X , k ( x l k )  = ~ o ~ f X , , ( . l k ~ u k ) f ~ ~ ( a k )  d'k* ( 5 )  
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Substituting (2) and (4) into (3, we get: where p i  = U: + 2a2.  Combining (10) and ( l l ) ,  we get: 

which can be evaluated analytically to yield 16, p. 7181: which can be evaluated to yield 16, p. 7211: 

The probability density function of the random variable (13) 
X,, of hop k of a bit that corresponds to the sampled out- 
puts of branch 2 of the demodulator (Fig. 1) that contains 
no signal is obtained from (7) by replacing xlk with x,, 
and letting a* = 2a2 = 0 to yield: 

We now define Pk = a’/.: as the signal-to-noise ratio of 
the nonfaded (direct) component of hop k of a bit and E k  
= 2a2/a; as the signal-to-noise ratio of the Rayleigh- 
faded (diffuse) component of hop k of a bit. Thus, (13) 
can be written as: 1 

J Z l k ( i . l k J  - 
Since no signal is present in branch 2,  fading has no effect 

- Z l k )  0 I Z l k  I 1. 

(14) 

1 
on X2k.  

A.  Probability Density Function of the Normalized 
Random Variables 

Z j k ,  i = 1 ,  2 is given by: 

1 + E k ( 1  - Z l k )  

AS illustrated in Fig. 1 ,  the normalized random variable F~~ the special 
reduces to: 

of Rayleigh fading, P k  -+ 0 and (14) 

where it is apparent that 0 I Zik I 1. Introducing the 
auxiliary random variable Vk = Xlk + X,, and using the 
Jacobian of the transformation J = U ; ’ ,  we obtain the 
probability density function of Zlk as: 

B. Probability ofBit Error 

the presence of partial-band interference is [ 11: 
The bit error probability for the receiver in Fig. 1 in 

f z l i ( Z ~ k )  = iom ukfxIkxzr[ukZ~k, Vk(1 - Z d ]  duk (10) 

wherefX,rXzl (xlk, xZk) is the joint probability density func- 
tion of the independent random variables XI, and X2k.  
Since Xlk and X,, are independent random variables, 
f ~ ~ ~ ~ ~ ~ ( x ~ k ,  x2k) is obtained from the product of (7) and (8) 
as : L 

where Ph ( i )  is the conditional bit error probability given 
that i hops of a bit have interference. Let the combined 
sampled outputs of each branch of the FSK demodulator 
in Fig. 1 be represented by the random variables: 

Z, = C z , ~ ,  i = 1, 2. (17) 
k =  I 1 + 2a2 

Since Z,, = 1 - Zlk, then from (9) we have: 

L 

z, = c (1 - Z,k) = L - z,. 
k =  I 
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Therefore, the conditional bit error probability given that 
i hops of a bit have interference is: 

Pb( i )  = Pr (2, < & J i )  = Pr (2, < L/2) i ) .  (19) 

Let fgl’,(Zlk) be the probability density function of Zik as- 
suming that hop k of a bit has interference. Hence, 
fgl’,(Zlk) is obtained from (14) with U: = (?-‘NI + No)B. 
Similarly, let f f t i  ( Z l k )  be the probability density function 
of Zlk when hop k of a bit has no interference. Then 
fg’,(Zlk) is given by (14) with U: = N O B .  From (17), since 
the random variables corresponding with each hop are as- 
sumed to be independent, the conditional probability den- 
sity of 2, given that i hops of a bit have interference is 
given as: 

f Z i  ( z l )  i) = [ f S ’ , ( Z l k ) ] @ ’  @ Zlk ( z lk) l@(L- i )  (20) 
where @i represents an i-fold convolution. Now, from 
(19), we can use (20) to obtain the conditional bit error 
probability given that i hops of a bit have interference as: 

L / 2  

Pb(i) io f Z , ( z l l i )  dz l .  (21) 

111. NUMERICAL PROCEDURE 
We have obtained numerical results for L = 1, 2, 3, 

and 4 hops/bit. For slow hopping (L = l ) ,  the change of 
variables 

in (14) allows (21) to be evaluated analytically to obtain: 

1 exp [ “1. 
Pb(i) = - 

2 + t k  2 + t k  
As expected, (23) is identical to the bit error probability 
of a conventional noncoherent FSK demodulator with no 
self-normalization for a Rician fading channel. The prob- 
ability of bit error for L = 1 is now obtained by evaluating 
(23) for the two cases of the hop jammed and the hop free 
of interference and the results used in (16). The probabil- 
ity of bit error for L = 2 is obtained by integrating 

~ ~ f ~ ~ ( u ) f $ ~ ( z l  - U) du dz l  (24) 

numerically for each of the three cases of both hops 
jammed ( j  = k = 1), both hops free of interference ( j  = 
k = 2), and one hop jammed and the other unjammed ( j  
= 1, k = 2). The results of these computations are then 
used in (16). 

The probability of bit error for L = 3 and L = 4 is 
obtained by expressing the probability density function of 
the sum of the self-normalized diversity outputs with a 
Gram-Charlier series [ 5 ] .  The advantage of the Gram- 
Charlier series is that a pseudoanalytic solution for the 
conditional probability of bit error P b  (i) can be obtained 
that is much more computationally efficient as well as 
more elegant than a discrete Fourier transform approach. 

P b ( i )  = 

~ 
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The Gram-Charlier series representation of the probabil- 
ity density function of the sum of the self-normalized di- 
versity outputs is: 

(25) 

where z, and oil  are the expected value and variance of 
Z , ,  respectively, and: 

is the nth derivative of the zero-mean unity variance 
Gaussian probability density function. The function H,, ( * ) 
is a Hermite polynomial of order n defined by: 

d ”  
H n ( Y )  = exp ( y 2 )  7 exp ( - y 2 ) .  (27) 

dY 

The coefficients of the infinite series in (25) are obtained 
from: 

c, = - (-‘In im Hn(y)fy(Yli) dY (28) 2“/2n! --m 

where the probability density functionfy( y 1 i )  is obtained 
from fzl ( z ,  I i) by the linear transformation 

Y = (e). 
Hence, the coefficients of the infinite series can be eval- 
uated analytically and expressed in terms of the moments 
of the random variable Y which, in turn, can be expressed 
in terms of the moments of the random variable 2, . Since 
the random variable Z ,  is the sum of the independent Zlk’S, 
characteristic functions can be used to express the mo- 
ments of Z ,  in terms of the moments of the Zlk’S. 

Substituting (25) into (21), we obtain the “analytic” 
result: 

where erf ( e )  is the error function. Unfortunately, the in- 
finite series in (30) converges very slowly for large signal- 
to-noise ratios. Expressing (30) symbolically by the infi- 
nite series 

m 

P b ( i )  = C b, 
n = O  



~ 
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where the bn's are obtained by comparing (31) with (30) 
and b, = b2 = 0, we can write: 

m 

h(w(i )  = bnw" (32) 
n = O  

where P b ( i )  = h (1 I i). Now we can perform an Euler 
transformation on (32) to obtain a much more rapidly con- 
verging, alternative form of (30) as [7]: 

1 OD ( - l )n d, 
2n=o 2" 

Pb(i)  = - c ~ 

where 

d, = j = O  5 (-l)J+"(;) bj. 

(33) 

(34) 

Equation (33) must be evaluated once for each of the four 
possible combinations of jammed and unjammed hops that 
occur for L = 3 and once for each of the five possible 
combinations of jammed and unjammed hops that occur 
for L = 4. This requires the moments of Z l k  for both the 
jammed and unjammed cases, which are evaluated by nu- 
merical integration. The first twenty-three terms in the se- 
ries are used for L = 3, while the first eighteen terms are 
used for L = 4 .  All results presented in this paper are 
obtained by assuming that the ratio of direct-to-diffuse 
signal energy (r2/2a2 is the same for each hop k of a bit. 

IV. NUMERICAL RESULTS 
The probability of bit error as a function of the ratio of 

the direct-to-diffuse signal energy with only thermal noise 
present is shown in Fig. 2. The ratio of bit energy-to- 
thermal noise density is & / N o  = 13.35 dB. This value 
of E b / N o  corresponds to Pb = lop5 when there is no fad- 
ing or interference and L = 1 .  This corresponds to the 
signal-to-thermal noise density ratio used in [l]  and al- 
lows our results to be compared directly to the nonfaded 
results presented in [l]. As can be seen, for a2 /2a2  > 
10, nonlinear combining losses begin to dominate re- 
ceiver performance while for a 2 / 2 a 2  < 3 receiver per- 
formance for each diversity order is relatively unchanged 
as the ratio of the direct-to-diffuse signal energy ap- 
proaches the Rayleigh limit. It is interesting to note that, 
for L = 1, the direct signal component must be very large 
relative to the diffuse signal component before receiver 
performance approaches the nonfaded limit. For (r2/2a2 
= 100 and L = 1 ,  receiver performance is nearly three 
times worse than the nonfaded limit. Consequently, it is 
very important to take channel fading into account when 
comparing the performance of the self-normalized re- 
ceiver for various orders of diversity. 

Receiver performance for specific fractions of partial- 
band interference are compared with worst-case perfor- 
mance for a relatively strong direct signal (a2/2a2 = 10) 
in Figs. 3-6 for diversities of L = 1 ,  2,  3, and 4 ,  respec- 
tively. Worst-case performance implies a composite per- 
formance obtained by computing the probability of bit er- 
ror for a fixed value of as a function of the ratio of 

Eb/N8=13.  35dB 

+ L = l  
+L=2 
+L:3 
-1.4 

10 
1 6 2  i o  1 le@ 101 le2 103  104 

a 2 / 2 0 2  

Fig. 2 .  Performance of the self-normalized receiver with no partial-band 
interference as a function of the amount of fading with E b / N o  = 13.35 dB 
and L = 1 ,  2 ,  3, and 4. 

D a 

Eb/N;13.35 dB L - I  a 2 / 2 a z  = 18 

-0- 7 - 1  
-+ 1 ~ 0 ~ 2 5  
U 7=0.1 
-c- 1=0.01 
S a l i d  L ine :  Worst  Case 

B 5 10 15 20 25 30 35 40 

E b / N ,  (dE1 

1 8 '  ' " " " " ' ~ " " " ' 1 ~ ~ " 1 ~ " ~ 1 ' " ' 1 1 1 ' ~  

Fig. 3. Performance of the self-normalized receiver for partial-band jam- 
. * _. P , A *= A , .-> A A ,  ^^_^ "....A ..,:+I. ..,-. r*-rora ming rracnons or y = I ,  U . L J ,  u.1 ,  mu U.UI L U L L L ~ ~ W  wlll l  w**vIJL-cLIDb 

performance for a strong direct signal with E,, /N,  = 13.35 dB and L = 1 .  

partial-band interference y to obtain the largest probabil- 
ity of bit error at that particular signal-to-interference en- 
ergy ratio. The ratio of bit energy-to-thermal noise den- 
sity is again taken to be & / &  = 13.35 dB. As can be 
seen in Fig. 3, when no diversity is used partial-band in- 
terference results in a fairly significant degradation in re- 
ceiver performance as compared with uniform interfer- 
ence from bit energy-to-interference noise density ratios 
of about 10-30 dB. Below bit energy-to-interference noise 
density ratios of about 10 dB and above about 30 dB worst- 
case receiver performance is approximately equal to re- 
ceiver performance with broadband (uniform) interfer- 
ence; that is, partial-band interference does not have a 
significant negative effect on receiver performance. It is 
interesting to note that for bit energy-to-interference noise 
density ratios less than about 10 dB, receiver performance 
improves dramatically when the interference is partial- 
band rather than uniform. This is particularly true for L 
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E t / N I  : 3 8 )  . ' 3 B !  

Fig. 4. Performance of the self-normalized receiver for partial-band jam- 
ming fractions of y = 1, 0.25, 0.1, and 0.01 compared with worst-case 
performance for a strong direct signal with E,/N,, = 13.35 dB and L = 2. 

Fig. 5.  Performance of the self-normalized receiver for partial-band jam- 
ming fractions of y = 1, 0.25, 0.1,  and 0.01 compared with worst-case 
performance for a strong direct signal with E , / N o  = 13.35 dB and L = 3. 

> 1. As can be seen in Fig. 4 ,  a diversity of two is suf- 
ficient to virtually eliminate any degradation due to par- 
tial-band interference. Except for a small range in the 
neighborhood of a bit energy-to-interference noise density 
ratio of about 20 dB, worst-case performance and the per- 
formance for uniform interference are nearly the same. 
For diversities of three and four, degradation due to par- 
tial-band interference is virtually eliminated. As can be 
seen in Figs. 5 and 6 ,  for L = 3 and L = 4 worst-case 
performance is obtained for all bit energy-to-interference 
noise density ratios when the interference is uniform. 
Hence, for the case of a relatively strong direct compo- 
nent, the performance of the fast frequency-hopped, self- 
normalized receiver is immune to degradation caused by 
partial-band interference. 

A comparison of the worst-case performance shown in 
Figs. 4-6, with the worst-case performance with no di- 
versity ( L  = l ) ,  reveals that in all three cases the perfor- 
mance of the self-normalized receiver with no diversity is 
superior when relatively high values of interference are 
present. For ease of comparison, the worst-case perfor- 
mance with no diversity is plotted in Fig. 6. Similarly, in 
all three cases, for bit energy-to-interference noise den- 
sity ratios greater than roughly 15 dB there is a distinct 
improvement when diversity is used. This can be con- 
trasted with the nonfaded results [ 11, where diversity of- 
fers an improvement only for bit energy-to-interference 
noise density ratios greater than roughly 15 dB and less 
than roughly 32-37 dB, depending on the order of diver- 
sity. It can be seen that, for a relatively strong direct com- 
ponent, the worst-case performance for L > 1 is about 
the same. In other words, there is not a dramatic improve- 
ment in performance as L increases; although, above 
around 20 dB, L = 3 is somewhat better that either L = 
2 o r L  = 4 .  

The performance of the self-normalized receiver with 
no diversity for specific fractions of partial-band interfer- 
ence is compared with worst-case performance for a very 

-.U 

l a  I: 

\ 36 

Fig 6 Performance of the self-normalized receiver for partial-band jam- 
ming fractions of y = 1, 0 25, 0 1, and 0 01 compared with worst-case 
performance for a strong direct signal with E , / N o  = 13 35 dB and L = 4 

strong direct signal ( a 2 / 2 a 2  = 100) in Fig. 7, and in Fig. 
8 the performance of the self-normalized receiver with di- 
versities of L = 2 and L = 4 for broadband interference 
are compared with the corresponding worst-case perfor- 
mances for a very strong direct signal. Also plotted in 
Fig. 8 ,  for ease of comparison, is the worst-case perfor- 
mance with no diversity. As before, the ratio of bit en- 
ergy-to-thermal noise density is taken to be E b / N o  = 
13.35 dB. As can be seen in Fig. 7 ,  when no diversity is 
used, partial-band interference is very effective in degrad- 
ing receiver performance. As in the case of a relatively 
strong direct signal, we see in Fig. 8 that a diversity of 
four is sufficient to completely negate the degradation 
caused by partial-band interference. Also, as in the case 
of a relatively strong direct signal, for bit energy-to-in- 
terference noise density ratios greater than roughly 13 dB 
there is a distinct improvement when diversity is used. 
However, in contrast, for a very strong direct signal re- 
ceiver, performance with no diversity is markedly supe- 
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Fig. 7.  Performance of the self-normalized receiver for partial-band jam- 
ming fractions of y = 1, 0.25, 0.1, and 0.1 compared with worst-case 
performance for a very strong direct signal with ,!?,/No = 13.35 dB and L 
= 1 .  

i a 

Eb/N;13.35 dB 0 2 / 2 0 2  = 188 

J 
I 

t >. 10-' ~ ' " ' ~ ' " ' ! ' ' ' ' ~  " ' ' I  " " - " 
0 5 10 15 28 25 30 35 40 

E b / N ,  4dB)  

Fig. 8 .  Performance of the self-normalized receiver for broadband inter- 
ference compared with the corresponding worst-case performances for a 
very strong direct signal with ,!?,/No = 13.35 dB and L = 2 and 4. 

nor for bit energy-to-interference noise density ratios 
greater than 30 dB for a diversity of four and 35 dB for a 
diversity of two. This is because nonlinear combining 
losses are a factor for signals with a strong direct com- 
ponent with the result that there is an upper limit of the 
ratio of bit energy-to-thermal noise density above which 
the use of diversity degrades system performance. These 
conclusions are consistent with the results obtained for a 
nonfaded channel [ 11. Also in contrast to the performance 
obtained for a relatively strong direct signal, a diversity 
of two is not sufficient to eliminate most of the negative 
impact of partial-band interference when the signal has a 
very strong direct component. Nevertheless, in Fig. 8 we 
see that the worst-case performance with a diversity of 
two is either roughly equivalent or superior to that ob- 
tained with a diversity of four over the entire range of 
E b / N I .  This is because a receiver with a diversity of two 
suffers much less from nonlinear combining losses than 

receivers with higher orders of diversity. This is clear in 
Fig. 2. As a result of the foregoing, recalling the perfor- 
mance obtained with a relatively strong direct signal, it 
seems reasonable to conclude that receiver performance 
is not substantially enhanced by using diversities greater 
than two for signals with a direct component ranging from 
relatively strong to very strong. 

Worst-case receiver performance for a relatively weak 
direct signal (a2/2a2 = 3) is shown in Fig. 9 for diver- 
sities of L = 1, 2, 3, and 4. The ratio of bit energy-to- 
thermal noise density is again taken to be E b / N o  = 13.35 
dB. In this case, receiver performance continues to im- 
prove as the order of diversity increases; although, the 
improvement from L = 3 to L = 4 is much less than the 
improvement from L = 2 to L = 3. As expected, receiver 
performance is much worse when there is no strong direct 
signal component as compared with the case where the 
signal contains a relatively strong direct component. 

As might be expected from the results shown in Fig. 2, 
there is not a significant difference in performance as the 
ratio of direct-to-diffuse signal power varies from about 
three down to the Rayleigh limit. When there is not a 
strong direct component to the signal, partial-band inter- 
ference results in virtually no degradation of receiver per- 
formance. In this instance, worst-case receiver perfor- 
mance of the self-normalization combining receiver is 
virtually identical to receiver performance when the in- 
terference is uniform. As in the case of a strong direct 
signal, performance is dramatically improved for bit en- 
ergy-to-interference noise density ratios less than about 
10 dB when the interference is partial-band in nature. 

The curves in Fig. 10, with the exception of the curve 
represented by the broken line, are also composites, and 
provide a comparison between the case of no diversity and 
a diversity of two when E b / N o  is increased from 13.35 to 
16 dB for a weak direct signal (a2/2a2 = 3), a relatively 
strong direct signal (a2/2a2 = lo) ,  and a very strong di- 
rect signal (a2/2a2 = 100). The broken line in Fig. 10 
represents receiver performance for broadband interfer- 
ence with no diversity and a very strong direct signal. As 
can be seen by comparing Fig. 10 with previous results, 
diversity improves receiver performance substantially 
more when thermal noise is less significant. It is interest- 
ing to note that at this level of signal-to-thermal noise 
density, receiver performance for a relatively strong and 
a very strong direct signal are roughly comparable for 
E b / N I  < 25 dB. Also note that when the signal contains 
a very strong direct component and no diversity is used, 
partial-band interference results in a substantial degrada- 
tion in receiver performance as compared with the per- 
formance obtained for broadband interference, especially 
for &/NI > 10 dB. For the case where the effects of 
fading are significant, receiver performance is still rela- 
tively poor even when interference is negligible. This in- 
dicates that the self-normalized receiver should be oper- 
ated in conjunction with some form of forward error 
correction coding when strongly fading channels are ex- 
pected. 
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Fig. 9. Worst-case performance of the self-normalized receiver with di- 
versity combining and partial-band interference in a fading channel for a 
strong direct signal with & / N o  = 13.35 dB. 
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Fig. 10. Worst-case performance of the self-normalized receiver with par- 
tial-band interference for a relatively weak, a relatively strong, and a very 
strong direct signal with ,!?,/No = 16 dB and L = 1 and 2. Also shown is 
receiver performance for broadband interference with no diversity for a 
very strong direct signal. 

Worst-case receiver performance for essentially a 
Gaussian channel ( a 2 / 2 a 2  = 1O00), a relatively strong 
direct signal ( a 2 / 2 a 2  = lo), and a weak direct signal 
( a 2 / 2 a 2  = 1) are shown in Figs. 11-13 for diversities of 
L = 1, 2 ,  and 4, respectively. The ratio of bit energy-to- 
thermal noise density is 16 dB. Also shown is the perfor- 
mance under the same conditions of fading and E,/& of 
a conventional noncoherent binary FSK receiver employ- 
ing diversity. As mentioned previously, the performance 
for slow hopping is identical for both receivers. Numeri- 
cal results for a conventional noncoherent FSK receiver 
with fast hopping are obtained by an adaptation of the 
procedure used in [8]. For a Gaussian channel, the use of 
diversity degrades the performance of the conventional 
FSK receiver, while the self-normalized receiver with di- 
versity demonstrates significant improvement as diversity 
increases. The performance degradation of the conven- 
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Fig. 11. Worst-case performance of the self-normalized receiver with par- 
tial-band interference for a Gaussian channel with E b / N n  = 16 dB and L 
= 1, 2,  and 4 as compared with the performance of a conventional non- 
coherent binary FSK receiver with diversity operating under the same con- 
ditions of fading and Eb/Nn.  
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Fig. 12. Worst-case performance of the self-normalized receiver with par- 
tial-band interference for a relatively strong direct signal with E b / N n  = 16 
dB and L = 1 , 2 ,  and 4 as compared with the performance of a conventional 
noncoherent binary FSK receiver with diversity operating under the same 
conditions of fading and E h / N o .  

tional receiver is consistent with results previously re- 
ported for Gaussian channels [9]. For a relatively strong 
direct signal, the performance of a conventional FSK re- 
ceiver with diversity is degraded as compared with no di- 
versity for E , / N ,  less than about 30 dB, depending on the 
order of diversity. On the other hand, the performance of 
the self-normalized receiver is always enhanced by diver- 
sity for E b / N I  greater than about 10 dB. The self-nor- 
malized receiver with a diversity of four is significantly 
better than the conventional FSK receiver with a diversity 
of four for & , / N I  greater than about 10 dB, especially for 
&/NI between about 20 and 30 dB. Comparing Figs. 4, 
6, and 11, we can also see that the performance improve- 
ment obtained with the self-normalized receiver with di- 
versity is dramatically better when thermal noise is less 
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Fig. 13. Worst-case performance of the self-normalized receiver with par- 
tial-band interference for a weak direct signal with Eb/No = 16 dB and L 
= 1, 2,  and 4 as compared with the performance of a conventional non- 
coherent binary FSK receiver with diversity operating under the same con- 
ditions of fading and Eb/No.  

significant. In contrast to the performance obtained for the 
Gaussian channel and the strong direct signal, the perfor- 
mance of both the conventional FSK receiver and the self- 
normalized FSK receiver is enhanced by diversity when 
channel fading is strong. In this particular case, for a di- 
versity of four the self-normalized receiver is superior to 
the conventional FSK receiver only for E b / N l  between 11 
and 24 dB, while for E b / N I  greater than 25 dB the con- 
ventional FSK receiver is significantly better than the self- 
normalized receiver. Hence, when channel fading is 
strong the use of self-normalization to improve receiver 
performance is a questionable strategy. 

ment obtained with diversity when the signal contains a 
very strong direct component if thermal noise is not suf- 
ficiently small. Consequently, in this case a diversity of 
two provides the best balance between minimizing par- 
tial-band interference effects and minimizing nonlinear 
combining losses for fading channels such that the direct 
component of the signal ranges from relatively strong to 
very strong. When thermal noise is less significant, a di- 
versity of four provides significantly better performance 
than a diversity of two for all conditions of channel fad- 
ing. For strongly fading channels, additional diversity is 
advantageous regardless of the signal-to-thermal noise ra- 
tio. Finally, superior receiver performance is obtained 
when diversity is not present for signal-to-interference 
density ratios of less than about 10 dB regardless of the 
strength of the direct signal component and the signal-to- 
thermal noise ratio. 

An interesting result is the sensitivity of the self-nor- 
malized receiver to the presence of fading. The self-nor- 
malized receiver experiences significant degradation in 
performance with even moderate fading as compared with 
the nonfaded performance. For severe fading, the perfor- 
mance of a conventional noncoherent FSK receiver em- 
ploying diversity is roughly the same as or better than the 
performance of the self-normalized receiver with the same 
level of diversity. 

The use of error correction coding should significantly 
improve the performance of the self-normalized receiver 
as should the use of a higher-order modulation scheme 
such as MFSK ( M  > 2). 
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