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Abstract This paper presents a technique for reverse engi-
neering, a software system generated from a concurrent
unified modeling language state machine implementation.
In its first step, a primitive sequential finite-state machine
(FSM) is deduced from a sequence of outputs emitted from
black box tests applied to the systems’ input interface. Next,
we provide an algorithmic technique for decomposing the
sequential primitive FSM into a set of concurrent (orthogo-
nal) primitive FSMs. Lastly, we show a genetic programming
machine learning technique for discovering local variables,
actions performed on local and non-binary output variables,
and two types of intra-FSM loops, called counting-loops and
while-loops.

Keywords Machine Learning · Concurrent UML state
machines · Concurrency decomposition · Genetic program-
ming · Reverse engineering

1 Introduction

A finite state machine (FSM) is a mathematical model of
computation that consists of a finite set of states and intercon-
nection state transitions. An FSM transitions from one state
to another in response to an external input event. An FSM
also has (optional) actions that are executed within states or
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as transitions are traversed; actions are in the form of binary
assignments to output variables. The software implementa-
tion of an FSM is straightforward; it typically consists of a
single state variable to store the present state, and a set of
if-statements, one per transition of the FSM.

There is ample motivation to reverse engineer FSMs, with
applications ranging from security [4,13] and verification [3,
5] to the representation of client-side behavior of rich Internet
applications [2].

Unified modeling language (UML) state machines extend
FSM basic behavior with features such as: state nesting, state
machine concurrence (orthogonality), local variables, tran-
sition guards, flowcharts within state machines, non-binary
outputs, and action specified using a textual action language.
UML state machines and corresponding software implemen-
tation techniques are reviewed in Sect. 2.

This paper is concernedwith the reverse engineeringUML
state machine software implementations from black box test
evidence.

In [9], the author proposed a white-box technique for
extracting the underlying UML statechart structure of an
FSM. This technique does not discover local variables, tran-
sition guards, flowcharts within state machines, non-binary
outputs, or textual actions. In contrast, in addition to dis-
covering these artifacts, our technique assumes no a priori
know-how of the internal structure of the FSM.

Angluin’s well-known L* algorithm [1] learns an un-
known regular language over a known alphabet and produces
a deterministic finite-state automaton (DFA) that accepts it.
DFAs have binary accept/reject outputs manifested by the
DFA’s final states. DFAs have any number final and non-
final states, where states are used as a form of internal
memory, typically for counting purposes. In contrast, our
technique is applied to UML state machines where binary
and/or non-binary outputs as well as local variables are used
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118 D. Drusinsky

for memorization/counting. We apply machine learning to
learn counting-related attributes.

Genetic programming (GP) is a technique whereby com-
puter programs are encoded as a set of genes that are then
modified (evolved) using an evolutionary algorithm. GP is
inspired by biological evolution and its fundamental mech-
anisms; GP software systems implement an algorithm that
uses randommutation, crossover, a fitness function, andmul-
tiple generations of evolution to resolve a user-defined task.
GP can be used to discover a functional relationship between
features in data (symbolic regression), to group data into
categories (classification), and to assist in various AI appli-
cations, such as the design of electrical circuits, antennae,
or quantum algorithms. GP is applied to software engineer-
ing through code synthesis, genetic improvement, automatic
bug-fixing, in developing game-playing strategies, and more
[7]. GP is overviewed in Sect. 2.3.

In this paper, we describe a technique for reverse engi-
neering UML state machine software implementations given
black box test evidence. The proposed technique consists of
three main parts. In Sect. 3, we reverse engineer a primitive
underlying FSM using black box testing of the underlying
UML system under test (SUT). In Sect. 4, we describe a
technique for decomposing that primitive FSM into a collec-
tion of orthogonal FSMs; after doing so we test each FSM
independently of the others and apply white-box testing to
generate data for the final, machine learning, step. In Sect. 5,
we describe a genetic programming technique for reverse
engineering intra-FSM local variables, complex actions per-
formed on non-binary outputs, and two types of loops, called
counting-loops and while-loops.

2 Background: concurrent UML state machines
and genetic programming

2.1 Concurrent UML state machines

UML state machines are state diagrams augmented with
state hierarchy, flowcharts within state diagrams, event-
guard annotation of state transitions, local variables, binary
and non-binary variables (i.e., local and I/O variables), and
actions assigning values to local and I/O variables using a
local, text-based computation.

UML state machines also cater for concurrency (also
referred to as orthogonality) within any state of the state
machine. This paper is concernedwith concurrent UML state
machines where concurrency is allowed only on the top most
level of state hierarchy.

Figure 1 illustrates the behavior (Fig. 1a) and input/output
(I/O) interface (Fig. 1b) of a concurrent UML for a car’s body
logic. The input interface consists of a set � of input events,
� = {engineOn, engineOff, timer_fire, radioOn, radioOff,
changeVol}. The output interface consists of a set of output

variables O= {radioOff, volume, lock, unlock, doCalibrate},
where all but volume are considered binary command (event)
outputs, such as lock = 1 meaning “lock the car.” The dis-
tinction between binary and non-binary outputs is important
because, in the first step of our algorithm (Sect. 3), it pro-
duces a primitive FSM using binary output information only.
This assumption is relaxed in later steps. In Sect. 3, we also
consider the earliest assignment made to a non-binary output
as a binary output; for example, the action setVolume(MIN)
depicted in state RadioOff shown in Fig. 1a is exhibited as
volume = 10 in test outputs; hence, the first assignment
made to volume within the test (volume = 10) is considered
a binary output.

The UML state machine shown in Fig. 1a consists of two
orthogonal FSMs, one named Engine and the other named
Radio. These two FSMs are indeed orthogonal because the
state transitions in one do not depend on states in the other.

The Engine FSM implements the following functionality:

• It counts the number of successive times the engine has
been turned on and off; when that count reaches a certain
number (MAX_ENGINE_COUNT) the state machine
issues a binary calibration output command (doCali-
brate).

• When the engine is turned on (off), the doors are locked
(unlocked), using a binary lock and unlock output com-
mands, respectively.

• The radio is automatically turned off some time (at least
15min) after the engine had been turned off. This is done
using a binary radioOff output command.

Note that engineOn and engineOff are events, nEngine-
Count is a local (non-binary) variable. Note how UML tran-
sitions are annotated using the event[guard] notation, such
as engineOff [nEngineCount==MAX_ENGINE_COUNT ],
which means that the transition fires when event engineOff
occurs, but only under the condition that the (local) variable
nEngineCount equals the constant value MAX_ENGINE_
COUNT.

Using the StateRover [12] notation, local variables such as
nEngineCount are declared in a local variables box, depicted
in the bottom of Fig. 1.

The Radio FSM controls the radio’s volume as fol-
lows. The car contains a volume button that emits an event
called changeVol. When the radio is on, then every time the
changeVol event occurs, volume is incremented as speci-
fied by a computation that takes place within the VolChange
flowchart activity box. The FSM then proceeds to one of the
two possible next states via the flowchart decision polygon.

Often, state-changing event sets in each FSM are mutu-
ally exclusive. For example, in the car example shown in
Fig. 1, the event set for the Engine FSM is {engineOn, engi-
neOff, timer_fire} whereas the event set for the Radio FSM is
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Fig. 1 A concurrent UML state machine for car: internal behavior and I/O interface. a car’s internal behavior: UML state diagram. b The car’s
input/output (I/O) interface
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{radioOn, radioOff, changeVol}. Each event set is referred to
as FSM event set, or FSM events. The concurrence discovery
algorithms of Sect. 4 assumes that the intra-FSM event sets
are mutually exclusive.

In the sequel,wewill distinguishbetween a statemachines’
basic behavior and its extended UML behavior. Basic
behavior consists of states, transitions labeled with sym-
bols (events), and state actions that assign binary outputs.
Extended UML behavior extends basic behavior by enabling
transition guards, local variables, and a textual action lan-
guage, all discussed below. Sections 3 and 4 are concerned
with reverse engineering an FSM’s basic behavior, whereas
Sect. 5 is concerned with reverse engineering its extended
UML behavior.

Note that the car system contains two guards-dependent
loops, one in each member FSM. The Engine FSM loop (two
loops actually) is conditioned on the local integer variable
nEngineCount to decide whether to calibrate or not. The
Radio FSM depends on an output non-binary variable (vol-
ume). In Sect. 5, wewill use genetic programming to discover
themathematical formulae assigned to these variables aswell
as the associated guards.

2.2 Concurrent UML state machine implementation

A trivial and highly inefficient implementation strategy for
concurrent UML state machines is to convert such a machine
into a single equivalent sequential finite statemachine (FSM).
This approach induces an FSM state set that is the Cartesian
product of the states in each set, an inefficiency caused by
essentially ignoring the design information available in the
original concurrent state machine.

Alternatively, there are two prevailing implementations
that preserve the UML diagrams’ concurrence within the
implementation code, as follows:

1. The implementation suggested by the author [6] repre-
sents concurrence as an array of state variables, with
intra-FSM transitions inducing state changes to their
respective state variables.

2. The object-oriented approach of [14] uses classes to
implements state hierarchy (super states), such as the
EngineOff state of the Engine FSM in Fig. 1. More
specifically, each superstrate, along with its intra-state
transitions, is implemented as an object in memory.

With both approaches, an input sequence such as seq =
engineOn, radioOn, changeV ol, engineO f f induces a
sequence of interleaved state changes. For example, given
the present state pair of <EngineOff/Off, RadioOff> (in the
Engine FSM and Radio FSM, respectively), the state change
sequence induced by seq is: <EngineOff, RadioOff>,
<EngineOn, RadioOff>, <EngineOn, RadioOn/Volume>
,<EngineOn, RadioOn/Volume>, <EngineOff, RadioOn/

Volume>. Note that the transitionRadioOn/Volume toRadio-
On/Volume occurred via the flowchart box and flowchart
decision polygon and was accompanied by a change to the
volume output variable.

Clearly, as shown by the above example, the state change
sequence induced by an input test is an interleaving of the
FSM states changes for all FSMs within the UML state
machine.

2.3 Genetic programming

GP is amachine learning technique whereby a computer pro-
gram, algebraic function, or some other learning object is
encoded as a set of genes that are then evolved using an evo-
lutionary genetic algorithm (GA) [11]. In this paper,we apply
GP to learnUML statemachine extended behavior, including
variables, actions, and transition guards related to a reversed-
engineered UML state machine; details of these learning
objectives are provided in Sect. 5.2. Using this domain of
discourse as an example, a genetic programming algorithm
consists of all or most of the following steps [8]:

1. Randomly create an initial population of individual
FSMs, each being a primitive FSMwhose basic behavior
is augmented with the machine learning objective enti-
ties pertaining to an extended UML behavior, namely:
local variables, actions, and transition guards. Using GP
terminology, we also refer to these learning objectives as
genes.

2. Iteratively perform the following sub-steps on the popu-
lation, until the termination criterion is satisfied:

a. Test each FSM in the population and determine its
fitness; the fitness criterion is defined in Sect. 5.

b. Select a subset of FSMs from the population with
a probability based on fitness to participate in the
genetic operations of (c).

c. Create new individual FSMs for the population by
applying the following genetic operations with spec-
ified probabilities:
i. Reproduction: copy the selected individual FSM

to the new population.
ii. Crossover: create new offspring FSMs for the

new population by recombining randomly cho-
sen learning objective entities from two selected
FSMs.

iii. Mutation: create one new offspring FSM for the
new population by randomly mutating a ran-
domly chosen learning objective entities of one
selected FSM.

After the termination criterion is satisfied, the single best
individual FSM in the population produced during the run is
designated as the output result.
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3 Synthesis of a primitive underlying FSM using
black box testing

Black box testing is the process of repeatedly injecting the
SUT with input events declared in its input interface (e.g.,
the interface shown in Fig. 1b) without assuming knowledge
of the SUT’s internal design or behavior. In this section, we
reverse engineer a primitive FSM from the observations gen-
erated by executing a black box test suite. The resulting FSM
will be primitive in the following sense:

1. It will be flat and sequential, i.e., it will contain no con-
currence or nested states.

2. It will contain no local variables.
3. All output variables will be binary. State actions on those

outputs will consist of binary assignments only.
4. State transitions will be annotated with events from the

input interface.

Listing 1 contains a snippet of the output generated by
black box testing of the UML state machine shown in Fig. 1.
For example, at time t = 0 the machine emits the binary
outputs timerRestart, unlock, and radioOff, and assigns of
the initial value 10 to the non-binary output variable vol-
ume. Next, at time t = 1, following the event engineOn, the
machine emits the binary output lock.

Listing 1. A snippet of the snippet of the output 
generated by black-box testing of the UML state 
machine of Figure 1.

The primitive FSM induced by such a test output is
straightforward, as depicted in Fig. 2. Each set of binary
output assignments emitted at a certain time stamp is con-

sidered a state, such as the output set {timerRestart, unlock}
being emitted at time t = 20 in Listing 1, and the output set
{lock} being emitted at time t = 30; in Fig. 2, these induced
states are denoted as timerRestart$unlock and lock, respec-
tively.1 State outputs in the primitive FSM are obvious. State
transitions are also deduced explicitly from the test output:
a pair of successive induced states in the test, such as timer-
Restart$unlock and lock in Listing 1, induces a transition the
primitive FSM; the transition event is the event listed in the
test (e.g., at time t = 30 the event is engineOn).

Formally, the generated primitive FSM consists of the
FSM states and transitions of a classical FSM; i.e.,

• A set of primitive states: S, where a state s ∈ S contains
a set o(s) of binary assignments to output variables.

• A set of state transitions: T, where a transition t ∈ T is
annotated with an event of Σ .

Since our SUT is an implementation of a concurrent
UML state machine, tests consist of sequences of interleav-
ings of intra-FSM events. There are several test generation
approaches that can help unveil the primitive FSM represen-
tation of the SUT; the following a few brief summaries of
two such techniques:

1. Perfect Interleaving Testing (PIT). The PIT approach
generates a test suite that contains all possible interleav-
ings of events declared in the SUT’s input interface; in
Sect. 4 we also use PIT to perform FSM decomposition,
i.e., to discover concurrence within the primitive FSM.
Suppose the maximal length of any test in the suite is n,
then given an input interface �, perfect interleaving test
suite consists of |�|n test sequences. Clearly, such expo-
nential growth is unmanageable even for moderate sized
n’s. Hence, to use PIT, onemust use very short tests, such
as using n = |S|. If |�|n is nevertheless prohibitively
large, the FSM decomposition technique discussed in
Sect. 4 can nevertheless be appliedwith non-perfect inter-
leaving testing.

2. A random black box testing based technique.

a. Use random testing to induce a primitive FSM S.
b. Discover new states, as follows:

i. For each state s ∈ S, use graph algorithm such as
depth-first search to discover all simple paths in
S that lead to s. Each such transition-sequence
p = t1, t2, . . ., tm induces a sequence of input
events, e = e1, e2, . . ., em, where ei is the event
for transition ti .

1 The initial state of the primitive FSM is the only state that is not
induced by outputs of a one constituent FSMwithin theUML statechart,
but rather is induced by outputs of all constituent FSMs.
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ii. For each such sequence e:
1. Derive |�| new tests from e, each test being

an extension of e with an event from �.
2. Test S uses these |�| tests. Given a test testi ,

let o be the output set generated by the last
step of the testi . If for all s ∈ S, o(s) �= o,
it means that a new state s’ has just been
discovered, where o(s’) = o; add s’ to S
and proceed to (i).

Note how the primitive FSM shown in Fig. 2 is non-
deterministic. For example, state lock has two outgoing
transitions labeled engineOff. The reason for this non-
determinism is that the original UML state machine had two
transitions labeled engineOff [cond] and engineOff [!cond],
respectively, where cond is a Boolean guard; such transi-
tions usually control loops within the UML state machine.
In Sect. 5, we describe a procedure for discovering loop-
controlling UML state transition guards.

We classify every primitive FSM transition t ∈ T as one
of two types:

1. Original transition A transition that exists in the original
concurrent UML state machine, i.e., in one of its member
FSMs. For example, the transition timerRestart$unlock
→engineOn lock shown in Fig. 2 is an original transi-
tion because it is actually the transition Off →engineOn

EngineOn in the Engine FSM shown in Fig. 1.
2. Interleaved transition A transition results from the order

of output-emissions in the interleaved testing. Such tran-
sition does not exist in the original concurrent/orthogonal
UML state machine; it actually connects two states that
reside in orthogonal FSMs. For example, the transition
doCalibrate →radioOff radioOff$volume = 10 shown in
Fig. 2 is an interleaved transition.

Note that given our black box approach, we do not have a
priori knowledge of this information. Nevertheless, in Sect. 3
we will be using the following property.

The interleaved transitions property: consider a concur-
rent UML state machine with cconc concurrent, member
FSMs: FSM1,FSM2, . . .,FSMcconc. Let events (FSMi ) be
the events triggering transitions of FSMi , and let Ai →evt Bi
be an original transition in FSMi . Under the perfect inter-
leaved testing assumption, an induced primitive FSM will
contain an interleaved transition labeled evt from every state
of every FSM j , j �= i , to Bi .

4 Discovering concurrent FSMs within a primitive
FSM

In this section, we present a technique for discovering a
decomposition of the primitive FSM into concurrent/ortho-

gonal FSMs. In the first step, we create a data structure
called the 1-hot transition table (abbreviated as 1HTT).
It is a straightforward table with |S| + 2 columns as fol-
lows:

• |S| columns called source-state columns, one per state of
the primitive FSM.

• An event column.
• A target state column.

Each row of the 1HTT represents a set of states of
the primitive FSM, denoted χ(evt.s2), that share the same
event (evt) and target state (s2); formally χ(evt.s2) =
{s1 ∈ S|∃t ∈ T s.t. t = (s1 →evt s2)}. In the (one
and only one) 1HTT row for the <event, target state> pair,
<evt, s2 >, the 1HTT contains a 1 per state in χ(evt.s2).
Figure 3 depicts the 1HTT for the primitive FSM shown in
Fig. 1.

Let the dimensions of the 1HTT be: w1HTT columns and
h1HTT rows; for Fig. 3 these dimensions are w1HTT = 8
and h1HTT = 9. The last 2 columns of the 1HTT are the
event and target state columns; the number of source-state
columns is denoted ws1HTT, where ws1HTT = w1HTT −
2.

To discover the decomposition of the primitive FSM into
concurrent FSMs, we will decompose its 1HTT in a manner
that reveals interleaved transitions based on the interleaved
transitions property. Hence, we define the following decom-
position of a 1HTT:

Perturb rows and columns of the 1HTT such that:2

a. There exists integersm, n such that: 2 < m < ws1HTT −
1, and 2 < n < h1HTT-1.

b. All 1HTT cells [1 : m, 1 : n], i.e., the top left corner,
contain 1’s.

c. All 1HTT cells [m+1 : ws1HTT, n+1 : h1HTT], i.e., the
bottom right corner, contain 1’s.

d. For every row of each such rectangle, the target state is
not one of the source states within that rectangle.

e. The event sets related to the rows of one rectangle are
mutually exclusive to those of the other rectangle.

When the 1HTT is decomposable with some pair of num-
bers m, n we say that m and n are the 1HTT decomposition
parameters.

An alternate decompositiondiscovers top right/bottom left
rectangles of 1’s. All decomposition algorithms presented in
the sequels search for either type.

The generic 1HTT transformation is to shuffle the rows
and columns until the 1HTT decomposition condition is sat-
isfied.

2 Row and column numbers are 1-based.
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Fig. 2 Primitive FSM induced
by perfect interleaved testing of
the input UML state machine.
The white state is the initial
state. The state without a name
is such because it has no outputs

Fig. 3 1HTT for the primitive
FSM shown in Fig. 2. The
source and target state with an
empty name corresponds to a
state shown in Fig. 1 with no
output actions. Note that the
table does not contain rows for
transitions from the initial state
shown in Fig. 2

Fig. 4 A 1HTT transformation
version of the 1HTT shown in
Fig. 3; the rectangles depict a
1HTT decomposition

Figure 4 depicts the transformed and decomposed version
of the 1HTT shown in Fig. 3. For example, the lock target
state of row 1 is not a source state within the top left triangle,
complying with condition (d).

Condition (e) corresponds to the assumption made in
Sect. 2, that intra-FSM event sets are mutually exclusive.
1HTT decomposition is a decomposition of the states and
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events of the primitive FSM into two sets, corresponding to
the states and events of two orthogonal FSMs.

Conditions (a–d) reflect the interleaved transitions prop-
erty, as follows. Consider an arbitrary cell in row r of one
of the rectangles. It maps a source state in one orthogonal
FSM to a target state s in another FSM via a transi-
tion whose event is evt; given the interleaved transitions
property, all source states in the same FSM should have
a transition with event evt and target state s—indeed,
according to the 1HTT decomposition condition, the entire
portion of row r contained in that rectangle contains
1’s.

The 1HTT transformation induces two orthogonal FSMs,
as follows:

• Target states associated with the top (bottom) rectangle
are target states of the first (second) FSM.

• All 1’s outside the two rectangles correspond to local
transitions within the corresponding FSMs.

• In each FSM, the state that appears the earliest in the test
output is declared as the initial state of that FSM.

Figure 5 depicts the two concurrent FSMs induced by the
1HTT shown in Fig. 4.

Given a decomposition into two FSMs, the same pro-
cedure can be applied recursively to each FSM, further
decomposing it.

4.1 1HTT transformation algorithms

The following twoconcrete algorithms implement thegeneric
1HTT transformation.
Algorithm A: a brute force search.

• Algorithm A.1; used if |�| ≤ |S|. There are 2|�| subsets
of �; For each �′ ⊆ �; do:

1. Move the rows of the 1HTT such that the rows whose
event column values belong to �’ reside above rows
whose event column values belong to � − �’.

2. Search for a column number k, 2 < k < ws1HTT − 1
such that k and |�′| are parameters of a valid 1HTT
decomposition. If such a k exists then stop; a valid
1HTT decomposition has been discovered.

• Algorithm A.2; used if |S| ≤ |�|. There are 2|S| subsets
of S; For each subset S′ ⊆ S do:

1. Move the columns of the 1HTT such that the columns
whose source-state column values belong to S’ reside
to the left of columns whose source-state column val-
ues belong to S − S’.

2. Search for a column number k, 2 < k < h1HTT − 1
such that k and |S′| are valid 1HTT decomposition

condition parameters. If such a k exists then stop; a
valid 1HTT decomposition has been discovered.

Algorithm B:

• Algorithm B.1:

1. Shuffle the 1HTT rows so that they are sorted by a
descending total number of 1’s in the source-state
entries of each row.

2. Shuffle the 1HTT columns so that all 1’s of the first
row are packed on the left.

3. Perform step 2 of Algorithm A.2.

• Algorithm B.2:

1. Shuffle the 1HTT columns so that they are sorted by
the descending total number of 1’s in the source-state
entries of each column.

2. Shuffle the 1HTT rows so that all 1’s of the first col-
umn are packed on the top.

3. Perform step 2 of Algorithm A.1.

Step 3 of these algorithms is not guaranteed to discover
a valid 1HTT decomposition. However, these algorithms are
much faster than the brute force Algorithm A.

This algorithm is expected to be effective when the num-
ber of states in one of the orthogonal FSMs is greater than
the combined number of states in all others. For exam-
ple, there are 4 versus 2 states in the two FSMs shown in
Fig. 5, respectively. Hence, every row of the 1HTT whose
<event,target state> pairs belong to the FSM shown in
Fig. 5b is expected to have more 1’s than rows of whose
<event,target state> pairs belong to the FSM shown in
Fig. 5a.

4.2 Using imperfect interleaving testing

The 1HTT decomposition condition and resulting algorithms
assumes the availability of perfect interleaving testing data.
When such testing does exist, then the rectangles of the
1HTT table are expected to be incomplete. A workaround
is to apply the following changes to relax the methodol-
ogy:

1. The 1-HTT table entries in source-state columns will be
one of 1, 0, or empty, as follows:

a. An entry for a transition s1 →evt s2, i.e., the cell
whose source-state column is s1 and row has event
evt and target state s2, will contain a 1 (as was the
case so far).

b. A cell whose source-state column is s1, and its row
contains event evt and target state s3, will contain a 0
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Fig. 5 Two concurrent FSMs
induces by the 1HTT
transformation depicted in
Fig. 4. a First FSM of two
concurrent FSMs induces by the
1HTT transformation depicted
in Fig. 4. b Second FSM of two
concurrent FSMs induces by the
1HTT transformation depicted
in Fig. 4. The state with no name
corresponds to a state shown in
Fig. 1 with no output actions

if there exists a cell in the same source-state column
(s1) that contains a 1, and whose row contains event
evt and target state s2, s2 �= s3. Such entry means
that the test suite contains a test that injected event
evt when the primitive FSM was in state s1 yet that
test lead the FSM to state s2, not s3.

c. All other cells (i.e., cells whose source-state columns
have not been populated in (a) or (b)) remain unpop-
ulated, i.e., empty.

2. Refine the 1HTT decomposition requirement, so that
rather than requiring the two rectangles contain 1’s in
all entries, require that: (i) they contain either 1’s or be
empty, and (ii) P% of each rectangle must contain 1’s.
We call this decomposition 1HTT-decomposition(P%)

All above-mentioned algorithms can easily be redefined
to find a valid 1HTT-decomposition(P%) with the highest
P using a binary search strategy. Once a valid 1HTT-
decomposition(P%) is discovered, the test suite should be

augmented to test transitions that correspondwith empty cells
in either rectangle. If those empty cells all become “1” after
this additional testing, then a valid 1HTT-decomposition has
been discovered.

5 Using genetic programming to discover
non-binary variables, loop conditions, and
actions

After decomposing a primitive FSM into a set of orthogonal,
primitive FSMs, each FSM is primitive because it contains
none of the following UML features:

• Local variables
• Assignments to non-binary variables (local or output)
• Internal actions (code snippets associated with variable
assignments)

• Transition guards, i.e., transitions are triggered by events
without any restricting condition.
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In this section,we introduce a genetic programming-based
machine learning technique for discovering intra-FSM code
details (variables, actions, and transition guards) associated
with two types of loops, thereby eliminating abovementioned
non-determinism. The two types are:

1. Counting-loops A counting-loop is controlled by a pair
of transitions whose guards are in the form of cVar <

M , and cVar ≥ M , as depicted in Fig. 6a. cVar is a
local (integer) variable acting as a counter, and M is the
loop limit. Counting-loops are akin to simple for-loops
in a textual programming language such as Java or C.
Clearly, once the location of a counting-loop within an
FSM is known, the machine learning objectives are: the
increment value INCR and the loop limitM . Note that the
purpose of the assignment cVar =Mmod INCR in Fig. 6a
is to allow the machine learning algorithm distinguish
between all solutions where M mod INCR = 0, such as
distinguishing between M = 3, I NCR = 1 and M = 7,
I NCR = 2.

2. While-loops A while-loop is controlled by a similar pair
of transitionswhose guards are in the form of nbVar < M
and nbVar ≥ M . The structure of awhile-loop is depicted
in Fig. 6b. A while-loop differs from a counting-loop in
the following ways:

a. The loop control variable nbVar represents is a non-
binary output variable rather than a local counter
variable.

b. Unlike the simple incremental update of cVar, nbVar
is assigned from amachine learnable function (e.g., a
polynomial function of one or more non-binary out-
puts). This assignmentmodels the fact thatUMLstate
machines use an underlying textual action language,
such asUAL [YMP] or Java [SR], that enable amix of
conventional textual codewithin a state-basedmodel.

Counting-loops are simpler than while-loops but depend
on hidden, local variables, whereas while-loops depend on
output variables whose values are observable for subsequent
machine learning.

The remainder of this section is devoted to:

1. Discovering the location of counting and while-loops
within a given FSM.

2. Using GP to reverse engineer counting and while-loops.

5.1 Discovering the location of counting and while-loops

Ourmachine learning technique for reverse engineering such
loops within an FSM F is preceded by the following steps.

Fig. 6 Counting- and while-loops. a The structure of a counting-loop.
The variable cVar is local, i.e., not present in test results. bThe structure
of a while-loop. The variable nbVar is a non-binary output variable

1. Identify the location of loops to be learned within F , as
follows:

a. Search F for a state (denoted sND) that has two
outgoing transitions (called the ND-transition pair)
triggered by the same event. For example, state lock
shown in Fig. 5a has two outgoing transitions that
are triggered by the event engineOff ; likewise, the
empty-name state shown in Fig. 5b has two outgoing
transitions that are triggered by the event changeVol.

b. Find the shortest simple cycle from sND to itself.
For example, the simple cycle lock →engineOff

timerRestart$unlock →engineOn lock in Fig. 5a, or
the simple cycle changeVol →changeVol changeVol in
Fig. 5b.

2. Create and apply a white-box3 test that traverses the
abovementioned simple cycle (from sND to itself); the
test should be sufficiently long to cater for the largest
number times F could possibly repeat the cycle before
breaking out of the loop. Since this test is merely a
repeated cycle, it can be written manually or by a simple
script. We denote this test as WBTS(sND).

3 The test is actually black box in terms of the original SUT, because
the SUT’s internal structure or behavior is not assumed to be known
a priori. However, after deducing its constituent internal FSMs such a
test is white-box with respect to each such FSM.
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After performing steps 1–3, while-loop and counting-
loops within an FSM F have been identified. In both cases,
the loop is characterized by its sND state and the correspond-
ing ND-transition-pair.

5.2 Using genetic programming to reverse engineer
counting- and while-loops

The initial GP population consists of individual FSMs, each
being a primitive FSM whose basic structure (states and
transitions) is augmented with genes pertaining to machine
learning objective entities: variables, actions, and transition
guards.

More specifically, an FSM with a counting-loop has
the following machine learning objective genes, shown in
Fig. 6a:

• The loop control constant, M .
• The counting-increment delta INCR.

An FSM with a while-loop has the following machine
learning objective genes, shown in Fig. 6b:

• The loop control constant, M .
• Coefficients of the polynomial whose value is assigned
to nbVar.

Consider the generic GP algorithm presented in Sect. 2.
Given the abovementioned genes, the following settings pro-
vide specific details required for a concrete GP algorithm
implementation:

• Random generation of an individual FSM Create random
instances of individual genes where each gene has an
associated range, such as a loop guard M value being
anywhere between 0 and 1000.

• Fitness criterion for an individual FSM F

• Execute the test suite WBTS(sND) on F and on the
SUT; for each test in WBTS(sND) let cnt(test) be
the number of time stamps in which the two test-
responses (the SUT’s repose and F’s response) differ.

• The sum of all cnt(test) values is a decreasing fitness
criterion, i.e., a perfect fit is manifested by a sum of
0.

• Crossover Given two individual FSMs, F1 and F2, a new
individual FSMs F3 is created by cloning F1 and substi-
tuting some of its genes with corresponding genes from
F2, such as substituting a loop counter M in F1with the
value of the same loop counter in F2,or substituting a
polynomial coefficient in F1 with the corresponding coef-
ficient in F2.

• MutationGiven an individual FSM F1, randomly selected
genes (e.g., counting-increment delta INCR, or while-
loop polynomial coefficients) are randomly mutated by
replacing them with random values using the same pro-
cedure that was used when an individual FSM is created.

6 Conclusion

We described a technique for reverse engineering a concur-
rent UML statechart using black box testing. The technique
consists of two primary phases: an algorithmic phase for
discovering the internal composition of its constituent, con-
current, FSMs, and a machine learning phase for learning the
parameters of internal counting-loops and while-loops.

The novelty of the suggested technique is threefold:

1. A reverse engineering technique for concurrent UML
statecharts.

2. A technique for decomposing an FSM into concur-
rent/orthogonal FSMs.

3. A machine learning technique for discovering inner
loops, actions, and local variables within UML state
machines.

Additional research is needed to investigate machine
learning of more complex UML actions within UML stat-
echarts.
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