

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

OPTIMIZATION OF MULTI-JUNCTION SOLAR CELLS

FOR SPACE APPLICATIONS MODELED WITH

SILVACO ATLAS

by

James S. Walsh

June 2018

Thesis Advisor: Sherif N. Michael
Second Reader: Matthew A. Porter

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of

information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE

June 2018

3. REPORT TYPE AND DATES COVERED

Master's thesis

4. TITLE AND SUBTITLE

OPTIMIZATION OF MULTI-JUNCTION SOLAR CELLS FOR SPACE

APPLICATIONS MODELED WITH SILVACO ATLAS

5. FUNDING NUMBERS

6. AUTHOR(S) James S. Walsh

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

N/A

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (maximum 200 words)

Dual junction solar cells are used in space applications for their high efficiency. In this thesis, we model

an indium gallium phosphide/gallium arsenide dual-junction solar cell. The solar cell is modeled using

Silvaco ATLAS software. Solar cell layer thicknesses and doping concentrations were varied to find

optimum efficiency parameters for the solar cell under a variety of radiation conditions. These radiation

conditions mimic the damage done at various orbits around Earth for an arbitrary mission length of 12 years.

The optimization process resulted in an improved efficiency of 15.1% to 22.4%.

14. SUBJECT TERMS

dual junction, solar cell, optimization, NOLH, Silvaco, radiation

15. NUMBER OF

PAGES
 139
16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

OPTIMIZATION OF MULTI-JUNCTION SOLAR CELLS FOR SPACE

APPLICATIONS MODELED WITH SILVACO ATLAS

James S. Walsh
Lieutenant, United States Navy

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 2018

Approved by: Sherif N. Michael

Advisor

Matthew A. Porter

Second Reader

R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Dual junction solar cells are used in space applications for their high efficiency. In

this thesis, we model an indium gallium phosphide/gallium arsenide dual-junction solar

cell. The solar cell is modeled using Silvaco ATLAS software. Solar cell layer

thicknesses and doping concentrations were varied to find optimum efficiency parameters

for the solar cell under a variety of radiation conditions. These radiation conditions mimic

the damage done at various orbits around Earth for an arbitrary mission length of

12 years. The optimization process resulted in an improved efficiency of 15.1% to 22.4%.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. SOLAR CELLS FOR SPACE APPLICATIONS1

B. PAST WORK AT NPS ..2

C. OBJECTIVE ..2

D. ORGANIZATION ...3

II. BACKGROUND AND THEORY ..5

A. SEMICONDUCTORS ...5

1. Generation Rate and Recombination ...7

2. Semiconductor Materials and Doping ...8

B. PN JUNCTIONS ..10

C. SOLAR CELLS ..12

1. Solar Spectrum ...13

2. Solar Cell Operation ..14

D. DUAL-JUNCTION SOLAR CELLS ...16

1. Manufacturing..17

2. Tunnel Junctions ..18

E. RADIATION ..19

1. Damage Mechanisms ...20

III. METHODOLOGY ..23

A. MODELED CELL ...23

B. SILVACO ATLAS ...25

1. Mesh ..26

2. Electrodes..27

3. Contact ..27

4. Traps ...27

5. Beam ..28

6. Changes from Model Cell ..28

C. OPTICAL PARAMETERS ..29

1. Aluminum Gallium Arsenide ..30

2. Indium Aluminum Gallium Phosphide36

D. MOBILITY ...42

E. RADIATION MODEL ..53

1. Density ...54

2. Materials ...54

3. Displacement Energy Threshold ..55

 viii

4. Trap Type, Energy, and Capture Cross-section55

5. Radiation Initial Energy ..56

6. Radiation Flux ..56

F. OPTIMIZATION ...58

IV. RESULTS ...61

A. INITIAL CELL MODELING ..61

B. PRE-IRRADIATION OPTIMIZATION...62

C. LOW EARTH ORBIT PERFORMANCE ..63

D. GEOSYNCHRONOUS ORBIT PERFORMANCE64

E. CHANGES IN OPTIMUM PARAMETERS WITH

RADIATION DAMAGE ...65

V. CONCLUSIONS AND FUTURE WORK ...67

APPENDIX A. SAMPLE SILVACO SCRIPT WITH RADIATION69

APPENDIX B. SAMPLE TRAP PROFILE FILE ..73

APPENDIX C. SILVACO SCRIPT GENERATOR ..75

APPENDIX D. ALGAAS OPTICAL FILE GENERATOR ..89

APPENDIX E. INALGAP OPTICAL FILE GENERATOR95

APPENDIX F. MOBILITY CALCULATOR ..101

APPENDIX G. MOBILITY CALCULATOR BINARY DATABASE109

APPENDIX H. MOBILITY CALCULATOR TERTIARY DATABASE113

APPENDIX I. MOBILITY CALCULATOR QUATERNARY DATABASE115

LIST OF REFERENCES ..117

INITIAL DISTRIBUTION LIST ...121

 ix

LIST OF FIGURES

Figure 1. Simplified Bandgap Structure for a Semiconductor Material.

Adapted from [5]..5

Figure 2. Two-Dimensional Representation of Direct and Indirect Bandgaps6

Figure 3. Real Band Diagram for GaAs. Source: [6]. ...7

Figure 4. Electron Promoted to Conduction Band. Adapted from [5].8

Figure 5. n-type Doped Semiconductor. Adapted from [5].10

Figure 6. Field Development across a PN Junction. Source: [5].11

Figure 7. Diode Current as a Function of Voltage. Source: [5].12

Figure 8. Solar Spectrum at AM0 and AM1.5. Source: [7].13

Figure 9. Current-Voltage Relationship of a Solar Cell in Light. Adapted from:

[8]. ..15

Figure 10. Quantum Efficiency of a Dual-junction Cell. Adapted from [4].16

Figure 11. Dual-junction Cell with No Tunnel Junction ...18

Figure 12. Tunnel Junction Current Voltage Relationship. Source: [9].19

Figure 13. Dual-Junction Solar Cell with Tunnel Junction ...19

Figure 14. Lattice Damage Caused by Electron Impingement21

Figure 15. Modeled Cell Profile. Source: [4]. ...24

Figure 16. Experimental Data for Modeled Cell. Adapted from [4].25

Figure 17. Mesh Density Profile ...27

Figure 18. Cell Modeled in Silvaco...29

Figure 19. Experimental Data of Real Part of Dielectric Constant for AlGaAs.

Source: [12]. ...34

Figure 20. Real Part of Dielectric Constant for AlGaAs Created from Adachi

Model. Adapted from [12]. ..34

Figure 21. Real Part of Dielectric Constant for AlGaAs Existing in Silvaco35

 x

Figure 22. Experimental Data of Imaginary Part of Dielectric Constant for

AlGaAs. Source: [12]...35

Figure 23. Imaginary Part of Dielectric Constant for AlGaAs Created from

Adachi model. Adapted from [12]. ..36

Figure 24. Imaginary Part of Dielectric Constant for AlGaAs Existing in

Silvaco..36

Figure 25. Experimental Data of Real Part of Dielectric Constant for InAlGaP.

Source: [13]. ...39

Figure 26. Real Part of Dielectric Constant for InAlGaP Created from Adachi

model. Adapted from [13]. ...40

Figure 27. Real Part of Dielectric Constant for InAlGaP Existing in Silvaco40

Figure 28. Experimental Data of Imaginary Part of Dielectric Constant for

InAlGaP. Source: [13]. ..41

Figure 29. Imaginary Part of Dielectric Constant for InAlGaP created from

Adachi Model. Adapted from [13]...41

Figure 30. Imaginary Part of Dielectric Constant for AlGaAs Existing in

Silvaco..42

Figure 31. Trapped Electron Fluxes. Source: [10]. ...57

Figure 32. Geostationary Electron Fluxes. Source: [10]. ..58

Figure 33. Predicted Optimum Example ...60

Figure 34. Results of Model versus Experimental Current-Voltage Curves.

Adapted from [4]..62

 xi

LIST OF TABLES

Table 1. Fitting Parameters for AlGaAs. Adapted from [12].33

Table 2. Fitting Parameters for InAlGaP. Adapted from [13].38

Table 3. Gallium Arsenide Mobility Modeling Constants. Adapted from [15].44

Table 4. Aluminum Arsenide Mobility Modeling Constants. Adapted from

[15]. ..45

Table 5. Gallium Phosphide Mobility Modeling Constants. Adapted from

[15]. ..46

Table 6. Indium Phosphide Mobility Modeling Constants. Adapted from [15].47

Table 7. Mobility Parameters for GaAs ...50

Table 8. Mobility Parameters for AlAs ..51

Table 9. Mobility Parameters for AlP ..51

Table 10. Mobility Parameters for GaP ...52

Table 11. Mobility Parameters for InP...52

Table 12. Bowing Parameters for Alloy Bandgaps. Adapted from [17]....................53

Table 13. Material Densities Used ...54

Table 14. Trap Energy Levels. Adapted from [27], [28]. ..56

Table 15. Trap Capture Cross-Sections. Adapted from [27], [28].56

Table 16. Results of Model versus Experimental Data. Adapted from [4].61

Table 17. Pre Irradiation Optimal Cell Parameters ..63

Table 18. Low Earth Orbit Optimum Cell ...64

Table 19. Geo Synchronous Optimum Parameters ..65

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AlAs aluminum arsenide

AlGaAs aluminum gallium arsenide

AlInP aluminum indium phosphide

AlP aluminum phosphide

GaAs gallium arsenide

GaP gallium phosphide

Ge germanium

GEO geo-synchronous orbit

InAlGaP indium aluminum gallium phosphide

InGaP indium gallium phosphide

InP indium phosphide

IV current-voltage

LEO low-earth orbit

NIEL non-ionizing energy loss

NPS Naval Postgraduate School

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to show appreciation for the Naval Postgraduate School staff members

who helped me in my research efforts: my advisor Professor Sherif Michael, my second

reader Mathew Porter, the Research Computing Lab Manager Ray Chatten, the Hamming

Systems Architect Bruce Chiarelli, and Professor Tomas Lucas in the Operations Research

Department.

I would also like to thank my children, Austin, Ainsley, and Addison, for their

support and patience during this time.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. SOLAR CELLS FOR SPACE APPLICATIONS

The ability to provide consistent, reliable power to space based systems is of vital

importance. The cost of launching fuel or batteries from Earth into orbit represents a huge

financial burden that can hinder any space-based mission. Currently, solar cells, which are

much lighter than chemical fuel, are used to provide power to orbiting systems. The cost

associated with producing state-of-the-art multi-junction solar cells generally prohibits

their use for terrestrial applications; this is not true for space applications. The relatively

high cost of putting any cell into space dictates that the additional cost of a multi-junction

solar cell relative to a single-junction solar cell is immaterial compared to the savings in

weight. Improved efficiency in solar panel design will lead to a lower weight for power

generation, a lower surface area exposed to orbital debris, and the ability to utilize

equipment with higher power demands.

The nonlinear interaction of solar cell parameters such as doping levels, layer

thicknesses, and material composition make finding optimal cell parameters a non-trivial

task. Sophisticated computer software, using numerical approximation to solve a nonlinear

set of differential equations, which model solar cell operation must be used to simulate the

efficiency of a specific solar cell design with specific parameters. Further improvement can

be achieved by direct simulation of solar cells with variations of the parameters. Analyzing

a large number of simulation results gives a picture of what parameter values lead to the

highest efficiency cell at a fraction of the cost of manufacturing myriad solar cells with

different characteristics.

For a space application, radiation damage to the cell and its effect on power

generation must be considered. In this work, end-of-life efficiency, or the efficiency after

a certain amount of time exposed to radiation determined by orbit, is the parameter around

which the solar cell is optimized. It is generally assumed that the most efficient cell before

being irradiated remains the most efficient cell after irradiation. To the best of the author’s

 2

knowledge, this thesis research is the first optimization to account for radiation damage

and test that theory.

B. PAST WORK AT NPS

Several theses have examined solar cell optimization at the Naval Postgraduate

School (NPS). Panayiotis Michalopoulos [1] successfully modeled several solar cells using

Silvaco ATLAS (Silvaco) in 2003. This research consisted mainly of demonstrating good

agreement between modeled cells and tested cells, as well as finding theoretical optimal

parameters based on the physics driving solar cell efficiency. In 2017, both Raymond

Kilway [2] and Silvio Pueschel [3] continued this work. They showed that solar cells could

be optimized by simulation, utilizing either a genetic algorithm or nearly orthogonal Latin

hypercubes. The latter method proved to be superior and is the method utilized in this

thesis.

C. OBJECTIVE

The goal of this research is four fold. Firstly, a solar cell with known parameters

and output characteristics is modeled to verify simulation results match real-world data.

Secondly, a radiation model is applied to the solar cell to simulate the damage done to the

cell while in orbit around the Earth. Thirdly, a set of parameters is determined by using

optimization software and tools to maximize cell efficiency at the end of life. Finally, a set

of generic tools is created to facilitate duplication of the optimization and modeling

methods that can be used with any arbitrary solar cell and with any arbitrary parameters,

including those parameters not optimized in this research (such as molar composition).

The solar cell modeled is a dual-junction indium gallium phosphate (InGaP) /

gallium arsenide (GaAs) cell fabricated and tested at Ohio State University [4]. A triple-

junction or even a five-junction solar cell gives better efficiency and offers more

opportunities for optimization, but in-depth data for these advanced cells are not available

for research. Meeting the first goal of having a realistic simulation requires a thoroughly

documented cell be used.

 3

D. ORGANIZATION

In Chapter II, we cover the physics of semiconductors, solar cells, and radiation

damage as well as the theory behind the optimization techniques used. Chapter III is

dedicated to methodology: Silvaco Atlas and its many dependent files, radiation modeling,

and optimization tools. Results and conclusions are discussed in Chapters IV and V,

respectively. Areas of future improvements are discussed both in applicable sections and

as a collection of recommended future work in Chapter V.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND AND THEORY

A. SEMICONDUCTORS

All electronic fundamentals rely on the concept of energetically restricted electrons.

The allowed energy levels of electrons can be grouped into bands with bandgap
gE , or

large swath of forbidden energy levels, separating them. The band of energies higher than

the bandgap is called the conduction band, and the band below is called the valence band.

The absence of electrons in allowed states in the valence and are called holes and treated

as particles with a positive charge and mass similar to the mass of an electron. A simplified

band diagram of a semiconductor is shown in Figure 1. Notice that some electrons already

occupy the conduction band. This is because at thermal equilibrium, some electrons

naturally have a large enough energy (equal or greater than the bandgap energy) to exist in

the conduction band.

Figure 1. Simplified Bandgap Structure for a Semiconductor Material. Adapted

from [5].

In a real semiconductor, energy is not the only parameter that restricts the state of

electrons. A momentum k also defines the shape of the valence and conduction bands. In a

direct bandgap material, the lowest energy point of the conduction band shares a momentum with

 6

the highest energy point on the valence band. In an indirect bandgap material, there is a

momentum offset between these points. Both types of bandgap materials are depicted

in Figure 2.

Figure 2. Two-Dimensional Representation of Direct and Indirect Bandgaps

This two dimensional structure is much more complicated in real life as compared

to Figure 2, with GaAs, a direct bandgap material, having the structure shown in Figure 3.

This complicated band structure gives rise to a highly energy dependent affinity for certain

wavelengths (or energy) photons in a material. This property of semiconductors is explored

further in Chapter III, Section C.

The curvature of these energy bands in relation to momentum leads to a

phenomenon that greater incremental additional energy is required to give the same

increase in momentum. To simplify the equations that govern semiconductor behavior, this

is accounted for by using an effective mass for electrons and holes. This is an additional

fraction of the rest mass of an electron, given as a unitless coefficient.

 7

Figure 3. Real Band Diagram for GaAs. Source: [6].

1. Generation Rate and Recombination

An electron can be promoted from the valence band to the conduction band if it

receives the correct amount of energy and momentum. This momentum is provided in the

form of phonons, which are packets of acoustic momentum traveling though the bonds

between atoms in the lattice. These phonons are naturally occurring at all values of

momentum, leaving the only consequence of an indirect bandgap being that only a portion

of the valence electrons that receive the correct amount of energy are promoted to the

conduction band. An intrinsic amount in of free, or conduction band, electrons exist in a

 8

pure semiconductor due to energy available due to temperature of the material. Energy

added to the material creates more of these free electrons. This energy can be in the form

of increased temperature, electric field, or electromagnetic packets of energy called

photons. Each promoted electron also leaves behind a hole; a one-dimensional

representation of this is shown in Figure 4.

Figure 4. Electron Promoted to Conduction Band. Adapted from [5].

The creation of free electron and hole pairs is not a static event. Electron-hole pairs

are continuously created as a function of time, and electrons and holes are continuously

combining as electrons lose energy as a function of time. The intrinsic level of free

electrons is the steady-state value across time. The generation and recombination of these

electron hole pairs is of critical importance for solar cells.

2. Semiconductor Materials and Doping

With the properties of semiconductors established, we now explore which types of

materials display these properties. Group IV elements, like silicon and germanium, are

natural semiconductors. Group III-Group V compounds, like aluminum arsenide or gallium

 9

arsenide, also display these properties. Group II-Group VI compounds display these

properties as well, though none are explored in this thesis.

Doping is the process of deliberately adding impurities to a semiconductor. While

these impurities may become interstitial defects in the lattice structure, the more common

outcome is that they replace an atom within the lattice. If a dopant is a Group III or Group

V element, it does not result in a lattice site with additional or fewer electron bonds with

its neighbor atoms, but rather the bond is the same as with the semiconductor, with the

extra hole or electron becoming free. For example, adding a Group V element, such as

arsenide, to silicon at a level at
1610 impurities per cubic centimeter (cm−3), gives additional

electrons much more numerous than the intrinsic level of electrons in pure silicon at room

temperature  10 310 cmin  . Adding these two together gives the result of ~
1610 electrons

per cm−3; essentially, the concentration of holes or electrons is equal to the concentration

of acceptor (Group III) or donor (Group V) dopants. An important consequence of this is

that in the example of arsenide doped silicon, the number of holes (also 1010 cm−3) does

not remain constant but decreases due to the relationship

 2

inp n (1)

where and are the thermal equilibrium concentration of free electrons and holes. In

this example the electron concentration is 1016 cm−3, and the hole concentration is 104 cm−3.

As almost all free charge carriers are now electrons, which are negatively charged, this is

called an n-type or n-doped semiconductor, while a semiconductor with a Group III

(acceptor) type dopant is a p-type or p-doped (for the positive charge of a hole)

semiconductor. The case of an n-type doped semiconductor is depicted in Figure 5.

n p

 10

Figure 5. n-type Doped Semiconductor. Adapted from [5].

B. PN JUNCTIONS

A doped semiconductor is already a semiconductor device. If contacts are attached

to a doped semiconductor and a voltage applied, current flows in the semiconductor as the

charge carriers move in response to the applied electric field. Because there are much fewer

charge carriers than in a conductor, current does not flow as efficiently as in a wire,

meaning it is acting as a resistor. Something more interesting happens if we connect a

p-doped and n-doped semiconductor together. Across the barrier of the junction between

the doped regions, also called a diode, a concentration gradient of charge carriers exists.

Much like dye dispersing though water, this gradient causes electrons to diffuse from the

n-doped region to the p-doped region and holes to diffuse in the other direction. This

movement of charge carriers is called diffusion current. When this occurrs, the previous

assumption of space charge neutrality, where the numbers of protons and electrons in any

given area are equal, is no longer true. The dopant atoms cannot move from their lattice

sites and, thus, contribute to a local electric field. The concept of space charge neutrality is

depicted by

 A Dn N p N   (2)

where is the concentration of acceptor dopants and is the concentration of donor

dopants as given in [5]. The relationship shown in Equation (2) remains true for the

AN DN

 11

semiconductor as a whole but is no longer true locally near the junction. As electrons settle

into the holes present on the p-doped side of the junction and leave the n-doped side, these

areas become devoid of charge carriers. This region around the junction, which contains

very few carriers, is called the depletion region. While this diffusion is occurring, the field

developed across the junction creates a current, called drift current, in the opposite direction

of diffusion current. As more and more stationary charged dopants are relieved of their free

neutralizing charge carriers, this field becomes stronger and stronger until the magnitude

of drift and diffusion currents are equal, at which point no further exchange of charge

carriers occurs across the junction [5]. A visual representation of this process is shown in

Figure 6.

Figure 6. Field Development across a PN Junction. Source: [5].

The region of ionized dopants at the junction is known as the depletion region. The

voltage drop across the depletion region is called the built-in voltage. As an external

voltage is applied across the junction, minority carrier (electrons in the p-type region and

holes in the n-type region) concentration vary exponentially with the magnitude of the

voltage [5]. This relationship is given by

 exp a
p p

qV
n n

kT

 
  

 
 (3)

and

 12

 exp a
n n

qV
p p

kT

 
  

 
. (4)

Equations (3) and (4), respectively, describe the minority carrier concentrations,
pn and

np , as functions of applied voltage aV , temperature T, and charge q. The constant k is

Boltzmann’s constant. Because current across a device is proportional to the minority

carrier concentration, current in the device rises and falls exponentially with applied

voltage. This relationship is given as

 0 exp 1aqV
I I

kT

  
   

  
 (5)

where I0 is the reverse-bias steady-state current value. This relationship is shown visually

in Figure 7.

Figure 7. Diode Current as a Function of Voltage. Source: [5].

C. SOLAR CELLS

A solar cell, or photovoltaic device, is a semiconductor device that directly converts

photons into electrical current and voltage. The primary source of these photons is the sun

itself.

 13

1. Solar Spectrum

The intensity of photons output by the sun is relatively constant as a function of

time and varies as a function of wavelength. The shape of this spectrum remains the same

at all points in space, though the magnitude of the curve as a whole is shifted up or down

with distance from the sun. As photons move away from the sun, they cover a greater and

greater surface area, which grows proportionally as the square of the distance from the sun.

Given the distance from the sun, every location on Earth or in an earth-bound orbit is

essentially the same, so the change in power based on distance is trivial at any point on

earth or earth orbit. The relative intensity of photons at each wavelength, where intensity

is taken as the number of photons per unit area per unit time, changes as the light moves

through a medium such as Earth’s atmosphere. Because we are primarily interested in only

two regions, space, where there is no atmosphere, and the surface of the earth, with a full

atmosphere to interfere with the light spectrum, we give these two spectra special names:

AM0 (space) and AM1.5 (the surface of the earth). The relative spectra at each of these

levels of atmosphere is shown in Figure 8.

Figure 8. Solar Spectrum at AM0 and AM1.5. Source: [7].

 14

The wavelength of a photon is directly related to the energy of the photon through

the well-known relationship

 c E , (6)

where is the reduced Plank’s constant, c is the speed of light, E is photon energy, and

 is the wavelength of the photon.

The spectrum is important in designing a solar cell. The closer a semiconductor’s

bandgap matches a portion of solar spectrum, the more light from those wavelengths is

absorbed. It is obvious that few to no photons with energies below the bandgap for a

material are absorbed since this would give electrons a forbidden amount of energy. It is

less obvious, but equally true, that energies high above the bandgap are also seldom

absorbed in a semiconductor.

2. Solar Cell Operation

A solar cell is nothing more than a PN junction that is intended to be exposed to

light. The operation of a solar cell is a process in which photons enter into the

semiconductor, promoting valence charge carriers into the conduction band. These excess

carriers (excess compared to the amount a doped material has without light exposure) are

then swept by the built-in field of the junction to contacts at the edge of the semiconductor.

This current, called photocurrent, can then power an external circuit. This makes the cell a

power source.

With no current flow, the voltage of the cell is the built-in voltage. Conservation of

energy dictates that as current increases, voltage must decrease using the same exponential

relationship discussed in relation to Equation (5). This relationship is shown visually in

Figure 9, where OCV is open circuit voltage and
SCI is short circuit current, the maximum

possible voltage and current, respectively, a cell can produce. Power is calculated as current

multiplied by voltage, meaning the maximum power point occurs at the knee of the current-

voltage (IV) curve. A theoretical, but unachievable, maximum power is the intersection of

OCV and
SCI , which is visually represented by a perfect rectangle. How much of that

theoretical rectangle is filled by the actual IV curve is called the fill factor (given as a

 15

percent filled). The efficiency of a cell is given as a ratio of the maximum power point

(usually given as watts or milliwatts per square centimeter) to total solar power available

in an area (which is constant under ideal weather conditions at about 100 mW per square

centimeter on earth and 135 mW per square centimeter in space), given as a percentage.

Open circuit voltage is set by the built-in voltage of the material and, thus, by the bandgap.

Efficiency is related to short circuit current. Photocurrent is a function of recombination, a

situation where excess electrons and holes combine with each other and are no longer

available for power generation, which can occur as band-to-band recombination or defect

mediated recombination. A visual representation of solar cell current as a function of

voltage is shown in Figure 9.

Figure 9. Current-Voltage Relationship of a Solar Cell in Light.

Adapted from: [8].

From these relationships, it is clear that finding the most efficient cell thickness is

a balancing act, as a thinner cell requires less time for charge carriers to reach the contacts,

reducing recombinations, but also gives photons less distance to create free carriers to

begin with.

 16

D. DUAL-JUNCTION SOLAR CELLS

Given the previous discussion of solar cell operation, any single solar cell cannot

capture the large spectrum of solar energy to convert to useful electrical energy. The

bandgap of a material limits its usefulness to a limited range of the full solar spectrum. To

capture more of the light emitted by the sun, additional solar cells are needed, each with a

peak affinity for light at a different wavelength. Using an array of these, it is possible to

capture almost every part of the spectrum. Of course, to actually gain in efficiency, this

needs to be done without increasing the area of the cell; therefore, the cells must be stacked

vertically. In such a configuration, one part of the spectrum is absorbed by the top cell and

the rest of the photons pass through to the lower cells, and so on. The quantum efficiency

of the solar cell modeled is shown in Figure 10. This quantum efficiency is a representation

of how well each junction in a multi-junction solar cell absorbs a particular part of the light

spectrum. Ideally, these would be two distinct and non-overlapping curves, as is the case

in Figure 10.

Figure 10. Quantum Efficiency of a Dual-junction Cell.

Adapted from [4].

 17

In a tandem (dual-junction) or multi-junction cell, carrier generation works exactly

as in a single-junction solar cell. The location of carriers generated, however, takes on a

new importance. Cells in a dual-junction configuration are connected in series and current

is limited to the smallest current producing element in the series. To minimize wasted

current, both cells in a dual-junction cell should produce about the same amount of current.

The highest bandgap element in a dual-junction or multi-junction cell should be placed on

the top, absorbing only the highest energy photons, and allowing all lower energy photons

to pass through to the lower cells to contribute to the photogeneration rate in the lower

cells. In Figure 10, the curve on the left represents the top junction, with its peak absorption

at a lower wavelength and higher energy.

The component cells being connected in series may limit current through the cell

but will drastically raise the voltage at which the cell operates. The open circuit voltage for

a multi-junction cell can be estimated by adding the open circuit voltages of the component

cells, which themselves are the built-in voltages created across the junctions and mostly a

property of the materials used as the semiconductors.

1. Manufacturing

Solar cells can be stacked in one of two ways. First, they can be mechanically

stacked, where a complete cell is put on top of another complete cell. Because metallization

exists between the cells, they are actually connected in parallel, eliminating the issue of

current limitations discussed in the principles of operation for tandem cells. This method

is prohibitively expensive and difficult for all but a few test cells to be built.

The second method, and the method used in the cell explored in this thesis, is to

grow the cells atop of one another, epitaxially. While this process is much more difficult

and expensive than producing a single junction solar cell, its cost lies within the realm of

affordability for space applications. In theory, this type of dual-junction cell looks like the

cell depicted in Figure 11, but there is a major problem. As shown in Figure 11, simply

stacking one cell on top of another inadvertently creates a reverse-biased junction between

the two cells. This junction creates an electric field in the opposite direction of the fields

created by the component cells and renders the total solar cell nonfunctional. Fortunately,

 18

a special type of PN junction, called a tunnel junction, can be inserted between the cells to

alleviate this problem.

Figure 11. Dual-junction Cell with No Tunnel Junction

2. Tunnel Junctions

A tunnel junction occurs where a PN junction is so heavily doped that it ceases to

operate as a normal diode. This situation occurs when both sides of the junction become

degenerate, meaning the fermi levels are inside the valence and conductions bands

themselves [9]. A full understanding of fermi levels and band physics across a junction is

necessary to fully understand the principles of operation of a tunnel junction, but only the

characteristics of these junctions are discussed in this thesis. The current-voltage

characteristics of a tunnel junction are displayed in Figure 12. When this diode is reverse

biased, it does not completely block current but instead acts as a resistor; therefore, when

properly biased, current can pass through in the reverse direction of a normal diode [9].

This allows such a diode to be placed between cells in a multi-junction solar cell in the

reverse direction of the component PN junctions without destroying the current of the

overall cell. This eliminates the accidental creation of a normal PN junction in the reverse

direction, as in Figure 13.

 19

Figure 12. Tunnel Junction Current Voltage Relationship. Source: [9].

Figure 13. Dual-Junction Solar Cell with Tunnel Junction

E. RADIATION

The space environment is especially grueling for electronic devices. A magnetic

field encompasses the earth that traps charged particle radiation (electrons, protons, and

heavy ions) in orbit. This area of high radiation is called the Van Allen belt. Proton and

 20

heavy ion radiation is especially damaging, but this can be used to protect electronics. As

these heavier particles are so damaging, they quickly lose kinetic energy and stop posing a

threat. This process is so rapid and takes place over such a short distance that the top layers

of a solar cell, such as antireflective coating, window layers, and contacts, end up shielding

the vulnerable layers underneath. Electrons, being equally charged but much less massive

than protons or heavy ions, lose energy much more slowly. These particles can travel

straight through a solar cell, depositing energy while they do so, but leaving with some

energy remaining. While the deposited energy can cause damage in all areas of the cell, in

this thesis we focus on damage in the actual solar cell junctions, not in other supporting

elements.

In order to have as useful a tool as possible for modeling the space environment for

solar cells, radiation flux (incident events per square centimeter per second) are calculated

for two orbital paths and as a function of length of time exposed. Stassinopoulos and

Raymond [10] present radiation information for two distinct orbits, low-earth orbit (LEO)

and geosynchronous orbit (GEO). Low-earth orbit is much lower than GEO, and only

extends to about 2,000 km above the earth, while GEO is ~35,800 km from the earth. The

flux at LEO is much greater than the flux at GEO due to the density of magnetic field lines

closer to the earth [10].

1. Damage Mechanisms

The rate that a charged particle deposits energy in a material as a function of depth

into the material is known as stopping power [11]. There are three distinct methods by

which energy is deposited [11]. The first mechanism is radiative, when an electron slows

down and gives off energy in the form of photons. The second method is ionization, when

a fast moving electron excites and imparts enough energy on a bound electron to free it

through electric field interactions [11]. The third form is non ionizing energy loss, or NIEL

[11]. This occurs when an electron deposits energy directly into the nucleus of an atom

through non-elastic collision. If enough energy is given to the nucleus to break the bond

between it and its neighbor atoms, the atom is moved out of its crystal lattice site [11].

 21

NIEL deposition is detrimental and creates permanent damage in solar cells. A

simple representation of this type of damage is displayed in Figure 14. When an atom is

knocked from the lattice, it leaves behind a site vacancy. The atom must still reside

somewhere, and since all other sites are occupied, it ends up in a space that is not part of

the lattice. This is called an interstitial defect. The vacancy and interstitial defects are

known as a Frenkel Pair [11]. Both the vacancy and interstitial defect are spots, which

allow a hole and electron to recombine, lowering the photocurrent and efficiency. This

mechanism causes a solar cell to become less efficient the longer it is exposed to radiation.

Figure 14. Lattice Damage Caused by Electron Impingement

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

III. METHODOLOGY

A. MODELED CELL

The cell modeled in this work is a dual-junction InGaP-GaAs cell fabricated at Ohio

State University [4]. This cell was chosen for several reasons. While the cell is a

dual-junction cell, such a cell has all the properties of more advanced multi-junction cells;

thus, any techniques for optimizing a dual-junction cell directly translate to a multi-junction

solar cell. In addition, an exact profile of the layer thickness, composition, and doping

profile in the cell is given in [4] as well as data about the cell performance. Due to the

difficulty, expense, and time needed to design and fabricate a solar cell, especially one for

space applications, companies who manufacture them carefully guard the exact properties

of the design. This data allows for an accurate physics-based model of the cell to be

constructed with minimal assumptions.

The top junction of the cell is an InGaP cell (49% indium phosphide (InP), 51%

gallium phosphide (GaP)) with an indium aluminum gallium phosphide (InAlGaP) (47%

InP, 37.1% aluminum phosphide (AlP), 15.9% GaP) window and back surface field layer.

The bottom junction is a GaAs cell with an InGaP (49% InP, 51% GaP) window and an

aluminum gallium arsenide (AlGaAs) (70% aluminum arsenide (AlAs), 30% GaAs) back

surface field layer. The two junctions are separated by a GaAs tunnel junction. The contact

layer on top of the cell is also made of GaAs, as is the bottom buffer layer. The entire solar

cell is grown on germanium (Ge) buffer and a silicon germanium (SiGe) substrate. A

representation of the cell, not to scale, with all layer thicknesses, composition, doping type,

and doping amounts is shown in Figure 15.

 24

Figure 15. Modeled Cell Profile. Source: [4].

The measured current-voltage relationship under AM0 illumination and the short

circuit current, open circuit voltage, fill factor, and efficiency of the fabricated cell are

shown in Figure 16. Notice that while several curves are given, we are only focused on the

closed box curve for GaAs at AM0 and only interested in the AM0 column for the chart of

values for the purposes of this thesis. It is immediately obvious that this cell is not

particularly good, with an 18.6% efficiency. This can be attributed to the goal of the team

when manufacturing this cell, testing a new substrate. The parameters have not been

optimized, the ten percent metal coverage is far higher than the two percent standard

coverage, and the antireflective coating present on all solar cells is especially bad on this

cell. It reflects about ten percent of the light across all wavelengths [4]. The industry

standard is to reflect about two percent. While these factors contribute to an

underwhelming efficiency, they are relatively unimportant for optimization. Obviously, the

less shadowing and reflected light, the higher the efficiency. Moreover, making those

changes raises efficiency linearly and does not change the values of layer thicknesses or

doping levels that give an optimum output.

 25

Figure 16. Experimental Data for Modeled Cell. Adapted from [4].

With the changes made to allow simulation of the cell in Silvaco, there are nine

layers available for manipulation. Each layer has a thickness and doping level, totaling 18

parameters to optimize.

B. SILVACO ATLAS

Silvaco ATLAS, or Silvaco, is a program to calculate the solution to the differential

equations that govern semiconductor behavior. Because this set of differential equations is

nonlinear, there is no method known to analytically solve them as a function of location

(in our solar cell, only one dimension, depth into the cell, exists, though Silvaco can handle

two and three dimensional semiconductors as well). It is relatively easy, however, to check

if a given candidate solution is correct. If a solution is known in one location, then the

solution to a location sufficiently nearby should be similar. Silvaco applies this logic

throughout the cell to attempt to find solutions at all specified locations. Silvaco iteratively

checks candidate solutions using Newton’s method to refine the candidate each iteration

until the difference between sequential candidates is less than a certain threshold. At this

point Silvaco reports this candidate as the correct solution.

Silvaco uses a scripting language to input the design of the semiconductor device

to be tested. The rigid nature of the scripting language makes it ideal for programmatically

generating scripts with slight variations to be tested for optimizing a design.

 26

1. Mesh

Silvaco attempts to find a solution for the semiconductor equations at specified

points and uses the last specified point solution as the starting point for finding a solution

for the current location. This means that the distance between any two sequential points

must be small enough that the difference in solution values is small. This must be balanced

with the fact that each additional solution location requires Silvaco to conduct additional

calculations, increasing simulation time. This leads to the conclusion that the test points

must be very densely packed where electric field, materials, and doping levels are

changing, such as at the junctions. Where these parameters are relatively constant, such as

in the bulk of the layers, the primary characteristic affecting charge carrier concentration

and current is bulk resistance, which reduces current linearly. In these bulk regions in the

layers, test points can be spaced relatively widely in order to reduce simulation time.

Silvaco requires these test points to be specified as a mesh, or grid, of points to

check. These points are specified by x and y coordinates. For the x values, since this is

really a single-dimension structure and there are no changes from left to right across the

cell, only three columns of test points are used, one on the left edge, one in the middle, and

one on the right. The y values of these points must take into account the location of the

junctions. As the layer thicknesses change, the location of the points also changes,

requiring dynamically created meshes for each simulation. The profile used for these

simulations was very dense around the edge of the layers (where the junctions occur), with

a concentration that would give 100 points if it encompassed the entire layer. This gradually

was reduced to a medium concentration (a value that would give 50 points if it

encompassed the layer) at 20% of the distance from the junction. Finally, this gradually

fades to a very light concentration (ten points per layer concentration) at 50% of the

distance from the edges of the layer, as shown in Figure 17.

 27

Figure 17. Mesh Density Profile

2. Electrodes

The electrode statements usually only contain the anode at the top of the cell and

the cathode at the bottom. For this model, two additional contacts are used, one that covers

the top layer of the tunnel junction and encroaches slightly into the bottom layer, and one

that connects the bottom layer of the tunnel junction to the InGaP window of the bottom

cell, as shown in Figure 18.

3. Contact

Contact statements allow a contact resistance to be specified as a resistance between

the contact and the cathode. For the anode, this becomes an in-series resistance and is used

to fine tune the simulation to the experimental data. For the tunnel-junction contacts this is

a parallel path to the cathode and is set at some arbitrarily large number (
1810) to prevent

this path from affecting the series path through the tunnel junction for current.

4. Traps

Trap statements allow trap-site concentrations and parameters to be specified.

These are treated by Silvaco as dopants, but poor dopants that allow recombination of free

electrons and holes. In Section E (Radiation Model) of this chapter, we give more

information about the creation of these statements.

 28

5. Beam

The beam statements are used to specify details about the light source. The beam

intensity was set to 81% to account for the antireflective coating and metal shadowing in

the model cell.

6. Changes from Model Cell

The cell modeled has several changes made to it compared to Figure 15. The top

layer, the GaAs contact layer, was removed. This layer is only present beneath the metal

contacts and not on the parts of the cell exposed to light. To account for the effect of the

shadowing created by the metal contacts, which [4] reported covered 10% of the cell, the

intensity of the light beam in the simulation was reduced by 10%. To account for the resistance

added by this contact layer and the connection between the layer and the metal contact (which

Silvaco models as unrealistically perfect), a resistance was added to the top contact (the anode)

in the model. The GaAs tunnel junction layers, layers six and seven, are not something that

Silvaco can model consistently. To alleviate this problem without sacrificing the accuracy of

the model, these layers were replaced by a sandwich of two perfect contacts with an exposed

area of GaAs remaining. This sandwich allows perfect voltage and current transfer across the

contacts, and the exposed GaAs doping can be adjusted to simulate the resistance the tunnel

junction adds. The downside to this solution is that optimization of the tunnel junction is

impossible. Once properties are found to match the test data, that section is set in stone. Even

with this restriction, this represents a huge improvement in tunnel-junction modeling. Previous

solutions have been to turn the entire area into a metal contact, ignoring the resistance of the

junction and allowing light to pass through undisturbed. The resistance sandwich approach

leaves GaAs as the material so it absorbs light just like the real junction does. Finally, the Ge

and SiGe bottom layers are discarded. Lueck’s team was researching a less expensive

manufacturing technique of growing this cell on these materials instead of the conventional

GaAs [4]. That research is irrelevant to the optimization undertaken in this thesis. Cells were

fabricated and tested in [4] with a traditional GaAs substrate, and that is the cell and data used

to fine tune and verify the modeled cell. The cell modeled in Silvaco with the changes made is

shown in Figure 18.

 29

Figure 18. Cell Modeled in Silvaco

C. OPTICAL PARAMETERS

To determine the rate and location of generated electron/hole pairs, it is necessary to

have an accurate description of the photon absorption coefficient in materials used in the solar

cell. This absorption coefficient is a function of photon energy level (or photon wavelength).

For each of the materials used in the solar cell modeled, experimental data was gathered from

performing spectroscopic ellipsometry. Spectroscopic ellipsometry provides optical dielectric

response at several wavelengths of light. This data was then modeled mathematically using a

curve fitting function. While any type of curve fit will work (an infinite series of polynomials,

an ordered set of points, etc.), work by Adachi [12], and his team [13] argues for a semi-

predictive method using physical models of absorption by expanding about critical points in

the electronic structure of a material corresponding to bandgap energies
0E , 1E , and

2E as

well as the split off energies corresponding to these points. A non-dispersive term  was also

added to account for higher energy levels [12], [13]. Silvaco was found to have satisfactory

models for GaAs. Silvaco also comes packaged with an adequate example file for InGaP. For

the more complex materials, InAlGaP and AlGaAs, Silvaco does not have satisfactory models

that fit experimental data well. Adachi’s model was used to generate the index of refraction n

 30

and the extinction coefficient k that Silvaco uses to describe absorption and reflection in each

material as a function of photon wavelength. The n and k values are related to the dielectric

function as, respectively,

 

0.5
0.5

2 2

1 2 1

2
n

    
 
 
 

 (7)

and

 

0.5
0.5

2 2

1 2 1

2
k

    
 
 
 

, (8)

where ε1 and ε2 are the real and imaginary parts of the dielectric function [12],[13].

1. Aluminum Gallium Arsenide

For AlGaAs, the dielectric function about
0E is

  
 

       
0.5 0.5

2 0 0 0 02

1
1 1

2
so

A
E H E H     



   
         

   

 (9)

and

      
1.5

1.5 0
1 0 0

0 0

1

2
so

E
AE f f

E
   

   
   

    

 , (10)

where A,
0E and 0 0E   are fitting parameters, represents the reduced Plank’s constant,

and  is the radial frequency of the photon [12]. The parameters
 y

H ,
 

f


,
0 , and

so

are calculated in [12] as

  
1 for 0

0 for

y
H y

y

 
  

  
, (11)

        
0.5 0.52 2 1 1 1f H           

 
, (12)

 0

0E


  , (13)

and

 31

0 0

so
E


 

 
. (14)

For the 1E transition,

    2

2 1 1 1 1B H      (15)

and

   2 2

1 1 1 1ln(1)B      (16)

were used to calculate the dielectric function. In Equation (15) and Equation (16), 1B is a

fitting parameter and 1 is either [12]

 1

1E


  (17)

or

 1

0

j

E




 
 . (18)

In Equation (18),  is a broadening parameter. For the
2E transitions the dielectric

function is [12]

  
 

2
2 2

2 2 2

2 21

C 
 

  


 
 (19)

and

  
 

 

2

2

1 2
2 2 2

2 2

1

1

C 
 

  




 
. (20)

For Equations (19) and (20), C and  are fitting parameters and
2

 is calculated as [12]

 2

2E


  . (21)

There is an indirect gap transition to account for,

  
 

     
2

2 2
1 1ID

g q g c

D
E H H     


     (22)

where D is a fitting parameter, ID

gE is the indirect band gap, and
q is phonon energy

(taken to be 0; in general, phonons contribute a great amount of momentum while

contributing negligible energy) [12]. Adachi solves for
g and

c with

 32

 c

cE


  (23)

and

g ID

g qE








. (24)

The dielectric function  for AlGaAs is the sum of all the 2 terms multiplied by the

imaginary number j, added to the sum of all 1 terms and 
[12]. The real and imaginary

parts of  are then 1 and 2 , respectively [12].

The parameters used to fit these equations to experimental data are presented in

Table 1. Adachi gives many values for each of these parameters to account for different

molar concentrations for aluminum and gallium. The information presented in Table 1 and

used in the solar cell model are for 0.7 Aluminum and 0.3 Gallium [12].

Plots of the real and imaginary parts of the dielectric constant from experimental

data, the Adachi model, and what already exists in Silvaco are displayed in Figure 19

through Figure 24.

 33

Table 1. Fitting Parameters for AlGaAs. Adapted from [12].

Parameter Value Units

0E 2.42 eV

0 0E   2.73 eV

1E 3.43 eV

2E 4.7 eV

ID

gE 2.03 eV

A 23.30 1.5eV

1B 5.41 no units

 0.12 eV

C 1.76 no units

 0.103 no units

D 8.1 no units

 -0.3 no units

 34

Figure 19. Experimental Data of Real Part of Dielectric Constant for AlGaAs.

Source: [12].

Figure 20. Real Part of Dielectric Constant for AlGaAs Created from Adachi

Model. Adapted from [12].

 35

Figure 21. Real Part of Dielectric Constant for AlGaAs Existing in Silvaco

Figure 22. Experimental Data of Imaginary Part of Dielectric

Constant for AlGaAs. Source: [12].

 36

Figure 23. Imaginary Part of Dielectric Constant for AlGaAs

Created from Adachi model. Adapted from [12].

Figure 24. Imaginary Part of Dielectric Constant for AlGaAs Existing in Silvaco

2. Indium Aluminum Gallium Phosphide

Adachi et al. [13] also determined a fitting function for the dielectric constant for

InAlGaP. This model has fewer equations because the real and imaginary parts are not

separated; rather the functions are complex, combining real and imaginary parts. As with

 37

AlGaAs, critical points corresponding to distinct energy levels are expanded about. Adachi

uses [13]

      
1.5

1.5 0
0 0 0 . .

0 0

1

2
s o

E
E AE f f

E
  

  
    

    

, (25)

      
0.5 0.52

0 0 0 02 1 1f          
 

, (26)

      
0.5 0.52

.2 1 1s o s o s o s of          
 

, (27)

 0
0

0

E j

E


 
 , (28)

and

 0
. .

0 0

s o

E j

E


 


 
 (29)

to find the
0E transitions. In these equations, A,

0E ,
0 , and 0 0E   are fitting parameters

and E is the energy level of the photon [13]. The 1E transition is found from

    2 2

1 1 1 1ln 1E B      (30)

and

 1
1

1

E j

E


 
 , (31)

where parameters 1B , 1E , and 1 are for fit [13]. Adachi uses [13]

  
2

2
2 2 2

2 2

CE
E

E E jE
 

  
 (32)

and

  
 

 

2

2

2 2 2

2

C E
E

E E jE















   
 (33)

to solve for the
2E transitions. For this energy level, C , C ,

2E , 2E  ,
2 , and  are

fitting parameters.

 38

The dielectric constant for InAlGaP is the sum of 0 , 1 , 2 ,  , and nondispersive term

 [13]. Fitting parameters for these equations are given in Table 2. Once again, Adachi

list several values for different molar fractions. Those presented in Table 2 and used in the

solar cell model are for 0.375 aluminum, 0.125 gallium, and 0.5 indium[13].

Table 2. Fitting Parameters for InAlGaP. Adapted from [13].

Parameter Value Units

0E 2.38 eV

0 0E   2.45 eV

A 11 eV1.5

0 0.03 eV

1E 3.6 eV

1B 4.4 no units

1 0.26 eV

2E 4.85 eV

C 1.7 no units

2 0.82 eV

0E  5.02 eV

C 0.5 no units

 0.7 eV

 0.4 no units

 39

Plots of the dielectric constant for InAlGaP as a function of photon energy for

experimentally determined values, the values given by the Adachi model, and the built in

files Silvaco uses if no user defined data is input are contained in Error! Reference source

not found. through Figure 30. It is obvious that while the shapes are mostly correct, the

values natively assumed by Silvaco are not close to being correct.

Figure 25. Experimental Data of Real Part of Dielectric Constant for InAlGaP.

Source: [13].

 40

Figure 26. Real Part of Dielectric Constant for InAlGaP Created from Adachi

model. Adapted from [13].

Figure 27. Real Part of Dielectric Constant for InAlGaP Existing in Silvaco

 41

Figure 28. Experimental Data of Imaginary Part of Dielectric Constant for

InAlGaP. Source: [13].

Figure 29. Imaginary Part of Dielectric Constant for InAlGaP created from

Adachi Model. Adapted from [13].

 42

Figure 30. Imaginary Part of Dielectric Constant for AlGaAs Existing in Silvaco

D. MOBILITY

The ability for an electron or hole to move through a material is a function of both

the alloy mole fraction as well as the doping level of the material. Silvaco calculates the

mobility for electrons and holes (
n and

p , respectively) as a function of doping for

binary materials but does not have built in models for mobility dependence upon doping

concentration for tertiary or quaternary materials. While mobility has a fairly small effect

on overall efficiency, there is no good reason for ignoring the contribution doping makes

to mobility for tertiary or quaternary layers. To this end, the cell in question was modeled

with mobilities for InGaP, AlGaAs, and InAlGaP which take into account alloy mole

fraction and doping concentration. The equations to calculate these values come mostly

from work performed by Sutherland and Hauser [14] in 1977. Since that time, further

research has refined their findings, and those advances have been incorporated into their

calculation method for this model.

Sutherland and Houser assume a doping dependent function for the binaries

constituting a material are already known; i.e., for AlGaAs, the doping dependent

mobilities for both AlAs and GaAs are known, where AlGaAs is a blend of these two

binaries. To find these baseline binary values, the Caughy-Thomas model was used to

 43

model the dependence of mobility on doping and temperature [15]. Electron and hole

mobilities in [15] are calculated from

2 1

1

300 300

300
1

300

n n

n

nn

n n

n n

CRITn

T T

T K K

K T N

K N

 





 

 

   
   

       
    

   
   

 (34)

and

2 1

1

300 300

300
1

300

p p

p

p
p

p p

p p

CRITp

T T

T K K

K T N

K N

 





 

 

   
   

       
    

        

, (35)

where T is temperature in Kelvin, N is doping concentration, and 1 ,
2 ,

CRITN as well

as exponents  ,  ,  , and  are constants of the material [15]. The values of these

parameters for the materials used in the solar cell being modeled are listed in Table 3

through Table 6.

 44

Table 3. Gallium Arsenide Mobility Modeling Constants. Adapted from [15].

Parameter Value Units

1n 500

   

2cm

V s

1p 20

   

2cm

V s

2n 9400

   

2cm

V s

2 p 491.5

   

2cm

V s

n 0 no unit

p 0 no unit

n −2.1 no unit

p −2.2 no unit

n −1.182 no unit

p −1.14 no unit

n 0.394 no unit

p 0.38 no unit

CRITnN 166.0 10 cm−3

CRITpN 171.48 10 cm−3

 45

Table 4. Aluminum Arsenide Mobility Modeling Constants. Adapted from [15].

Parameter Value Units

1n 10

   

2cm

V s

1p 10

   

2cm

V s

2n 400

   

2cm

V s

2 p 200

   

2cm

V s

n 0 no unit

p 0 no unit

n −2.1 no unit

p −2.24 no unit

n −3 no unit

p −1.464 no unit

n 1 no unit

p 0.488 no unit

CRITnN 175.46 10 cm−3

CRITpN 173.48 10 cm−3

 46

Table 5. Gallium Phosphide Mobility Modeling Constants. Adapted from [15].

Parameter Value Units

1n 10

   

2cm

V s

1p 10

   

2cm

V s

2n 152

   

2cm

V s

2 p 147

   

2cm

V s

n 0 no unit

p 0 no unit

n −1.6 no unit

p −1.98 no unit

n −0.568 no unit

p 0 no unit

n 0.8 no unit

p 0.85 no unit

CRITnN 184.4 10 cm−3

CRITpN 1810 cm−3

 47

Table 6. Indium Phosphide Mobility Modeling Constants. Adapted from [15].

Parameter Value Units

1n 400

   

2cm

V s

1p 10

   

2cm

V s

2n 5200

   

2cm

V s

2 p 170

   

2cm

V s

n 0 no unit

p 0 no unit

n −2 no unit

p −2 no unit

n −1.5275 no unit

p −1.86 no unit

n 0.47 no unit

p 0.62 no unit

CRITnN 173 10 cm−3

CRITpN 174.87 10 cm−3

 48

No information exists to model AlP. Static values of 60 cm2/V∙s for
n and 450

cm2/V∙s for
p are assumed based on data available in [16]. This information is not sourced

and is only used due to the absence of better available information. As more research into

this material is done, this should be updated for a more accurate model.

Sutherland and Hauser argue that to account for composition, hole mobility be

calculated using [14]

  
 

 

1.5
*

2 2

2 2

1.5
*

1 1

,
1 1

p p

h l

p

p

h l

m

N C

m


 



 

 
 

 
 

 
 

. (36)

In Equation (36),
2 p is the doping dependent mobility of the second material (GaAs in

AlGaAs) given by Equation (35), N is the doping concentration, C is the molar fraction

of the first material (AlAs in AlGaAs), *

2pm is the effective mass of holes in the second

material, and 2h and 2l are static dielectric constants of material 2 [14]. The parameter
*

pm is an effective mass for holes in the composite material, which has a value calculated

by [14] as

* * *

1 2

1 1C C

m m m


  . (37)

Both h and l are dielectric constants that are functions of composition with values

calculated by [14] as

 

 

1 2

1 2

1 2

1 2

1 1
1 2 1

2 2

1 1
1 1

2 2

C C

C C

 

 


 

 

     
      

     
    

     
    

. (38)

Holes have both a heavy and light effective mass. The combined effective mass for

the heavy (*

hpm) and light (*

lpm) holes used in Equation (37) is found from [15]

  
2

* *1.5 *1.5 3
p lp hpm m m  . (39)

The equation Sutherland and Hauser give for electron mobility is [14]

 49

  , (1)n d d i dN C R R     . (40)

Electron mobility is split between a direct d and an indirect i term. These terms are

calculated in [14] using

  
 

 

1.5
*

2 2

2 2

1.5
*

1 1

,
1 1

n nd

h l

d

nd

h l

m

N C

m


 



 

 
 

 
 

 
 

 (41)

and

  
 

 

1.5
*

1 2

1 1

1.5
*

1 1

,
1 1

n ni

h l

i

ni

h l

m

N C

m


 



 

 
 

 
 

 
 

. (42)

In Equations (41) and (42), *

ndm and *

nim are the direct and indirect effective masses,

respectively, of electrons. All other terms are analogous and calculated the same way as in

Equation (36), with a subscript of 1 indicating the parameter is a property of the first

material and a subscript of 2 denoting that the parameter is a property of the second material

[14]. The ratio between these terms
dR is calculated with [14]

1.5

*

*

1

1 exp

d

gd gini

nd

R
E Em

m kT


   

    
  

. (43)

The parameter T in Equation (43) is temperature in Kelvin, k is Boltzmann’s constant,

and
gdE and

giE , are, respectively, the direct and indirect bandgaps [14]. Vurgaftman et al.

[17] has found

    1 21 1g g gE C E CE C C      (44)

to be the correct calculation of composite bandgap. The bowing parameter  was used to

give a more accurate model than a linear interpolation between the two materials’ bandgaps

(both direct and indirect) [17].

 50

Quaternary mobilities are calculated in the same manner, with the first and second

material being the tertiary composites that are blended together. For example, for InAlGaP,

first aluminum indium phosphide (AlInP) is solved for, followed by InGaP. These two

blends are then the first and second material used in Equations (36), (41), and (42).

Equation (44) was still used to calculate the composite bandgaps of the quaternary.

The base material properties are given in Table 7 through Table 11. Due to the large

number of materials and the large number of parameters needed for each material,

numerous sources were used solely for these reference values. These sources include a

book on III-V compound semiconductors by Madelung et al. [18], limited research

conducted by Saliev [19] on the properties of AlP, and the NSM database [20], which

contains various semiconductor properties.

Table 7. Mobility Parameters for GaAs

Parameter Value Units Source

*

ndm 0.067 no unit [17]

*

nim 0.85 no unit [17]

*

lpm 0.082 no unit [20]

*

hpm 0.51 no unit [20]

h 10.89 no unit [20]

l 13.2 no unit [18]

gdE 1.1519 eV [17]

giE 1.981 eV [17]

 51

Table 8. Mobility Parameters for AlAs

Parameter Value Units Source

*

ndm 0.15 no unit [17]

*

nim 0.19 no unit [18]

*

lpm 0.16 no unit [18]

*

hpm 0.81 no unit [18]

h 8.16 no unit [18]

l 12 no unit [18]

gdE 3.099 eV [17]

giE 2.24 eV [17]

Table 9. Mobility Parameters for AlP

Parameter Value Units Source

*

ndm 0.22 no unit [17]

*

nim 0.793 no unit [19]

*

pm 0.7 no unit [16]

h 8.06 no unit [18]

l 9.8 no unit [16]

gdE 3.63 eV [17]

giE 2.52 eV [17]

 52

Table 10. Mobility Parameters for GaP

Parameter Value Units Source

*

ndm 0.13 no unit [17]

*

nim 1.12 no unit [20]

*

lpm 0.14 no unit [20]

*

hpm 0.79 no unit [20]

h 9.11 no unit [20]

l 11.1 no unit [16]

gdE 2.87 eV [17]

giE 2.35 eV [17]

Table 11. Mobility Parameters for InP

Parameter Value Units Source

*

ndm 0.0795 no unit [17]

*

nim 0.88 no unit [17]

*

lpm 0.089 no unit [20]

*

hpm 0.6 no unit [20]

h 9.61 no unit [20]

l 12.5 no unit [20]

gdE 1.4236 eV [20]

giE 2.273 eV [17]

 53

Bowing parameters for the tertiary and quaternary materials are presented in Table

12. The parameter C in this table refers to molar concentration.

Table 12. Bowing Parameters for Alloy Bandgaps. Adapted from [17].

Material Bandgap Bowing Parameter

AlGaAs
gdE 1.31 .127C 

giE 0.055

AlInP
gdE −0.48

giE 0.38

InGaP
gdE 0.65

giE 0.2

InAlGaP
gdE 0.18

giE
giE remains constant with a

value equal to the value of

gdE at C = 0.55

E. RADIATION MODEL

A radiation model was integrated into the Silvaco scripts using a radiation modeling

tool [21] created at NPS. This tool takes all relevant data discussed in the subsections of

this section and generates displacement trap density profiles for Silvaco to reference. As

each atom in each material has both a profile for the interstitial dislocation and the vacancy

dislocation, many files are created. To keep the number of files manageable, only the solar

cell regions have these traps taken into account. This results in ten files being created per

simulation, two each for the indium, gallium and phosphide in the top InGaP cell and two

 54

each for the gallium and arsenide in the GaAs bottom cell. This tool works by combining

data specified by the user with information from the ESTAR electron stopping power

database [22] to calculate the stopping power at every point within the entire cell. From

this, an energy profile of the electron radiation was generated for each point in the cell. In

the solar cell regions, the profile was used in conjunction with data from the SR-NIEL

online database [23] to calculate the NIEL in these regions. The NIEL values were then

used to create the trap density files for Silvaco.

1. Density

Each binary material in the cell has a density the radiation modeling tool uses to

calculate stopping power in that region. The density of materials is commonly available;

the exact values used are displayed in Table 13. A linear interpolation of density is then

calculated using the molar concentrations of the binaries in the tertiary or quaternary

material.

Table 13. Material Densities Used

Material Density (grams/cm3)

InP 4.81

GaP 4.14

AlP 2.85

GaAs 5.32

AlAs 3.71

2. Materials

This input requires the names of the unique materials used in the cell in a format

that give the atomic symbol of the element and its relative weight in the material. For

example, InAlGaP is specified as “In_0.235_Al_0.1855_Ga_0.0759_P_0.5”.

 55

3. Displacement Energy Threshold

The threshold energy required to displace an atom from its lattice site is specified

here. Values for the energy required to displace a gallium or arsenide atom from GaAs

were found by D. Pons et al. [24] to be 10.0 eV and 15.5 eV, respectively. Threshold

energies for AlGaAs were found by K. Gartner [25] to be 23.0 eV, 14.5 eV, and 15.5 eV.

For InGaP, Y. Okuno’s team [26] conducted a study that placed the displacement threshold

energies at 4.0 eV, 10.0 eV, and 9.0 eV. No information exists for InAlGaP, so energies

near the values for the individual atoms in the other materials was used. The energies used

were 4.0 eV, 20.0 eV, 10.0 eV, and 9.0 eV. The accuracy of these estimates are of little

consequence as they are used to calculate the NIEL in an area where the displacement

damage is not modeled and only used to obtain an accurate energy profile. As NIEL is an

extremely small portion of the energy lost by an electron compared to radiative and

ionizing loss, any reasonable numbers can be used.

4. Trap Type, Energy, and Capture Cross-section

These parameters, like the parameters for mobility, were available for GaAs, but a

complete list of these values does not exist for InGaP, the other material for which traps

were calculated. Schultz and Lilienfeld [27], [28] calculated energy levels for gallium and

arsenide interstitial and vacancy defects in GaAs as well as for InP and GaP using ab-initio

simulation [27], [28]. The values for InP and GaP were used to estimate the energy levels

for the traps in InGaP. Values used for the trap energy levels are contained in Table 14.

Energies are given in eV, I denotes the interstitial trap energy, and V indicates the vacancy

trap energy. The type of trap, acceptor or donor, was determined by looking at the location

of the energy level. Those closest to the conduction band were considered acceptors, and

those near the valence band were considered donors. The capture cross sections for the

gallium and arsenide interstitial defects in GaAs and the phosphide interstitial defect in

InGaP were also found in [27] and [28] and are shown in Table 15. All other capture cross

sections were defined to be 1014 cm2 as a best guess (a value in the range of those found

for materials for which values exist).

 56

Table 14. Trap Energy Levels. Adapted from [27], [28].

GaAs InGaP

Ga As In Ga P

I V I V I V I V I V

0.7 0.27 0.35 0.36 1.2 0.5 1.2 0.5 0.89 1

Table 15. Trap Capture Cross-Sections. Adapted from [27], [28].

Interstitial Capture Cross-section (cm2)

Gallium in GaAs 121.9 10

Arsenide in GaAs 156.2 10

Phosphide in InGaP 144 10

5. Radiation Initial Energy

Electron radiation energy exists at a wide array of values in space. It is common

practice, however, to use a value of 1.0 MeV as a representative value for testing space

application electronics. The radiation modeling tool only allows for a single energy value,

making 1.0 MeV the obvious choice. Displacement damage, the damage mechanism of

interest, is highly energy dependent; future work can improve the radiation modeling tool

to account for the entire range of electron radiation energy values to give a more accurate

result.

6. Radiation Flux

To find the total radiation flux, charts presented in [10], specifically the charts based

on the AE8 data on electron radiation developed by NASA, were integrated across all

energies and averaged across all orbit inclinations. This has the effect of giving a

representative flux at a given distance from Earth as a delta function of one energy

 57

(1.0 MeV) instead of the actual distribution. These charts are presented as Figure 31 and

Figure 32. Values of
111.2 10 cm2 s−1 and

92.5 10 cm2 s−1 were calculated for LEO and

GEO, respectively.

Figure 31. Trapped Electron Fluxes. Source: [10].

 58

Figure 32. Geostationary Electron Fluxes. Source: [10].

F. OPTIMIZATION

The method of genetic algorithm optimization is an iterative process. This iterative

property means that to conduct thousands of simulations takes a large amount of time.

Instead of this, the optimization of this cell was done using the nearly orthogonal Latin

 59

hypercube tool created by Sanchez [29]. This tool predetermines any number of test

parameters that are uniformly spaced across all dimensions to equally sample all areas of

the design space. These predetermined points have the property of orthogonality, meaning

that interactions between the parameters can be determined after the simulations are run.

The tool requires a high and low boundary condition for every parameter. In order

to ensure the optimum falls within these boundaries, a broad range was chosen. For each

thickness, the minimum value was 20% the original value in the cell presented by [4] and

the maximum was double the initial value. The doping concentrations for each layer were

given a minimum value of 1016 cm−3 and a maximum of
193.2 10 cm−3, scaled

logarithmically. For the number of points to test, 2056 was chosen somewhat arbitrarily,

based on this being a large number to partially fill the design space and a multiple of 257,

the number of points the tool provides for a single rotation of the variables.

From this set of 2056 test candidates, an equal number of Silvaco files were created.

These files, as well as the supporting optical files, were sent to the Hamming

Supercomputer. The Hamming allows multiple simultaneous processes to run in parallel.

Running 15 simulations at a time (limited by the number of Silvaco licenses available at

NPS), the total time to run all simulations was under three hours.

The resulting log files were then downloaded from the Hamming and parsed to

compile the output data for all of the simulations. Some simulations resulted in very low

efficiencies, either negative or well below 1%. These occurred when the simulation did not

work and Silvaco returned partial results from the top cell of the dual-junction only. As the

number of these nonworking cells was small compared to the number of cells with valid

results (<1% of the test simulations), these results were purged without much investigation

into the cause of the problem.

The results were then input into JMP, a statistical analysis tool. This tool was used to

fit each parameter to a quadratic model vs efficiency. JMP then created a predicted optimum

set of values for the parameters. A screenshot of JMP being used to predict an optimum cell is

presented in Figure 33. In Figure 33, the red numbers are the predicted optimum values,

thicknesses in microns and doping concentrations in dopants per cubic centimeter.

 60

Figure 33. Predicted Optimum Example

This predicted optimum cell was then simulated in Silvaco. The result of the first

optimization run was always a much worse cell than the initial model. Initial optimization

runs showed the values predicted are all edge values, either the maximum or minimum

possible value for the parameter. This was taken to mean the initial range was too large for

the number of points tested. The predicted optimum values were used then to shrink the

range of each parameter, halving or nearly halving it in the direction of the prediction. With

these as the new highest and lowest boundary values, another set of 2056 test points was

created, and the process repeated.

The second run always (for every radiation condition) returned a cell that improved

on the model cell but with many parameters still pegged high or low. At this point, a further

shrinking of the test space was done. This was done in the same manner as before for

boundary predicted optimums and in a narrow range about the predicted optimum for

predictions that were not on a boundary. The results of this third set of simulations resulted

in a cell slightly improved from the second set. Further iterations of this process would

theoretically continue to approach a true optimum.

 61

IV. RESULTS

A. INITIAL CELL MODELING

To verify the accuracy of the model, the values for the two degrees of freedom,

anode contact resistance and the bottom tunnel junction doping concentration (used to

control tunnel junction resistance), were found. A trial and error method was used until the

Silvaco results matched the experimental data within 5%. The values found for these

parameters were unique to this cell, and should not be used in any other. The anode

resistance value was found to be 2e9 cm , while 1e11
3cm
 was found to be the doping

concentration that gave a resistance for the tunnel junction that resulted in a matching of

simulated output parameters with experimental data. The closeness of fit to the

experimental data is presented in Table 16 and Figure 34.

Table 16. Results of Model versus Experimental Data. Adapted from [4].

Experimental Model Difference (%)

Jsc (mA/cm2) 13.08 12.53 -4.2

Voc (V) 2.34 2.38 1.7

FF (%) 82.5 86.58 4.9

η (%) 18.6 19.3 3.8

 62

Figure 34. Results of Model versus Experimental Current-Voltage Curves.

Adapted from [4].

B. PRE-IRRADIATION OPTIMIZATION

Given the process outlined in the optimization section of methodology, the first

pass at optimization resulted in a reduction in efficiency to 17.78% from an initial value of

19.34%. The second optimization resulted in an improvement to 19.43%, and a final pass

gave an efficiency of 22.73%, an improvement from the base model of 3.39%. The

optimum parameter values for this optimized cell are contained in Table 17.

 63

Table 17. Pre Irradiation Optimal Cell Parameters

Layer 1: InAlGaP 0.006 microns 19 310 cm

Layer 2: InGaP 0.1 microns 19 32.09 10 cm

Layer 3: InGaP 0.3 microns 19 310 cm

Layer 4: InAlGaP 0.006 microns 18 33.16 10 cm

Layer 7: InGaP 0.008 microns 19 33.16 10 cm

Layer 8: GaAs 0.7 microns 18 310 cm

Layer 9: GaAs 2.5 microns 17 33.16 10 cm

Layer 10: AlGaAs 0.06 microns
18 33.16 10 cm

Layer 11: GaAs 0.8 microns 18 33.16 10 cm

C. LOW EARTH ORBIT PERFORMANCE

For low earth orbit characteristics, a mission length of 12 years was chosen. The

non-optimized model cell was then simulated with the radiation damage it would sustain

at this orbit for this length of time. Predictably, efficiency dropped to 17.57%.

The first, second, and third optimization passes resulted in efficiencies of 12.33%,

21.08%, and 21.50%, respectively. This is a total gain of 3.93% in efficiency. The

parameters for the optimum cell are shown in Table 18.

 64

Table 18. Low Earth Orbit Optimum Cell

Layer 1: InAlGaP 0.006 microns 18 33.16 10 cm

Layer 2: InGaP 0.025 microns 19 32.57 10 cm

Layer 3: InGaP 0.35 microns 19 31.51 10 cm

Layer 4: InAlGaP 0.006 microns 18 310 cm

Layer 7: InGaP 0.02 microns 18 33.16 10 cm

Layer 8: GaAs 0.8 microns 18 310 cm

Layer 9: GaAs 3.2 microns 17 36.31 10 cm

Layer 10: AlGaAs 0.05 microns
18 33.16 10 cm

Layer 11: GaAs 0.8 microns 19 33.16 10 cm

D. GEOSYNCHRONOUS ORBIT PERFORMANCE

For the geosynchronous data, again a mission length of 12 years was used. The

lower radiation flux of a geosynchronous orbit resulted in efficiencies that mimicked the

pre-irradiation cell very closely. The initial model had an efficiency of 19.28% (slightly

lower than the pre irradiation efficiency of 19.34%). The values of efficiency after the first,

second, and final passes were 14.37%, 21.84%, and 22.19%, respectively. This final

optimum efficiency is slightly lower than the non-irradiated optimum efficiency and much

greater than the low earth orbit optimum efficiency, exactly as expected. Parameters found

to be optimum for this solar cell at this orbit are contained in Table 19.

 65

Table 19. Geo Synchronous Optimum Parameters

Layer 1: InAlGaP 0.006 microns 18 31.58 10 cm

Layer 2: InGaP 0.05 microns 19 33.16 10 cm

Layer 3: InGaP 0.31 microns 19 32.09 10 cm

Layer 4: InAlGaP 0.015 microns 17 35.01 10 cm

Layer 7: InGaP 0.02 microns 19 33.16 10 cm

Layer 8: GaAs 0.45 microns 19 310 cm

Layer 9: GaAs 1.9 microns 17 33.16 10 cm

Layer 10: AlGaAs 0.07 microns 18 35.01 10 cm

Layer 11: GaAs 0.44 microns 18 31.58 10 cm

E. CHANGES IN OPTIMUM PARAMETERS WITH RADIATION DAMAGE

The optimum cell pre irradiation was also tested with the damage equivalent to 12

years in a low earth orbit, with an end of life efficiency of 21.492%, nearly identical but

slightly lower than this optimum cell (taken to three decimal places, it has an efficiency of

21.497%). This cell’s parameters, with no radiation taken into account, result in an

efficiency of 22.42%, smaller than the optimum for a non-irradiated cell.

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

V. CONCLUSIONS AND FUTURE WORK

This work started with four goals. The first goal was to verify modeling capability

by matching a real world solar cell to a model cell with the same parameters. With these

models, a cell was simulated using Silvaco ATLAS, matching real world data within 5%

along four separate outputs: short circuit current, open circuit voltage, fill factor, and

efficiency. While this solution allowed this model to be validated, it is obviously better to

have a full model for the tunnel junction. The resistance value used was accurate only for

this cell. A full tunnel junction model will not only allow optimization of this component

but also allow new dimensions of optimization, such as adding or changing whole solar

cell junctions.

The second goal was to implement a radiation model to test end-of-life efficiency.

This model, and its integration into simulations, was a resounding success. Data matched

exactly with predicted outcomes, with radiation damage reducing cell efficiency. This is

closely tied into the third goal of optimizing a solar cell for end-of-life performance. Not

only was this done, but based on this model, it was shown that the cell with the highest

efficiency at beginning of life is not the cell that has the highest efficiency at the end of

life. This unintuitive result should be immediately validated by further research. If this

conclusion holds true across many different designs of solar cells, manufacturing of space

application solar cells should be modified to account for this.

The last goal, the goal of building a tool kit capable of automating this process

across a dimensions of optimization used in this thesis as well as future potential

dimensions of optimization has also been successful. The tools created are capable of

determining an optimum cell under any radiation conditions within a day. The tools used

were made overly generic, allowing optimization of molar compositions of the materials

used or, with few changes, optimization of a completely new cell design.

Further research should focus on four areas. The most obvious would be extending

the parameters optimized to include new vectors, such as molar concentration of the

materials in the cell. The second sphere of research would be to conduct fundamental

 68

physics research on exotic semiconductor materials. Many values for the radiation model,

and some values for the mobility model, were assumed values because research does not

currently exist on the actual values. The third major research area would be model

improvement. A more accurate tunnel-junction model was discussed, but it is not the only

opportunity for improvement. The cell modeled for this thesis was essentially a one-

dimension cell; a more realistic, but much more computationally expensive, model would

be a two-dimension cell with a real top contact, or even a three-dimension model. This

would show the effects of current moving longer distances to get to the contacts. The last

focus area for further research is to actually manufacture the cells designed in this work

and perform real-world testing on them to validate the predicted results.

 69

APPENDIX A. SAMPLE SILVACO SCRIPT WITH RADIATION

go atlas simflags = "-P 8"

mesh

x.mesh location = 0.000000 spacing = 0.333333

x.mesh location = 1.000000 spacing = 0.333333

y.mesh location = 0.000000 spacing = 0.003930

y.mesh location = 0.031440 spacing = 0.000786

y.mesh location = 0.039300 spacing = 0.000393

y.mesh location = 0.056060 spacing = 0.001676

y.mesh location = 0.081200 spacing = 0.008380

y.mesh location = 0.106340 spacing = 0.001676

y.mesh location = 0.123100 spacing = 0.000838

y.mesh location = 0.167520 spacing = 0.004442

y.mesh location = 0.234150 spacing = 0.022210

y.mesh location = 0.300780 spacing = 0.004442

y.mesh location = 0.345200 spacing = 0.002221

y.mesh location = 0.353780 spacing = 0.000858

y.mesh location = 0.366650 spacing = 0.004290

y.mesh location = 0.379520 spacing = 0.000858

y.mesh location = 0.388100 spacing = 0.000429

y.mesh location = 0.393100 spacing = 0.000500

y.mesh location = 0.400600 spacing = 0.002500

y.mesh location = 0.408100 spacing = 0.000500

y.mesh location = 0.413100 spacing = 0.000250

y.mesh location = 0.418100 spacing = 0.000500

y.mesh location = 0.425600 spacing = 0.002500

y.mesh location = 0.433100 spacing = 0.000500

y.mesh location = 0.438100 spacing = 0.000250

y.mesh location = 0.443020 spacing = 0.000492

y.mesh location = 0.450400 spacing = 0.002460

y.mesh location = 0.457780 spacing = 0.000492

y.mesh location = 0.462700 spacing = 0.000246

y.mesh location = 0.538240 spacing = 0.007554

y.mesh location = 0.651550 spacing = 0.037770

y.mesh location = 0.764860 spacing = 0.007554

y.mesh location = 0.840400 spacing = 0.003777

y.mesh location = 1.424000 spacing = 0.058360

y.mesh location = 2.299400 spacing = 0.291800

y.mesh location = 3.174800 spacing = 0.058360

y.mesh location = 3.758400 spacing = 0.029180

 70

y.mesh location = 3.792640 spacing = 0.003424

y.mesh location = 3.844000 spacing = 0.017120

y.mesh location = 3.895360 spacing = 0.003424

y.mesh location = 3.929600 spacing = 0.001712

y.mesh location = 4.039260 spacing = 0.010966

y.mesh location = 4.477900 spacing = 0.054830

region num = 1 material = InAlGaP x.min = 0.0 x.max = 1.0 y.min = 0.000000

y.max = 0.039300 x.comp = 0.371 y.comp = 0.159

region num = 2 material = InGaP x.min = 0.0 x.max = 1.0 y.min = 0.039300 y.max

= 0.123100 x.comp = 0.49

region num = 3 material = InGaP x.min = 0.0 x.max = 1.0 y.min = 0.123100 y.max

= 0.345200 x.comp = 0.49

region num = 4 material = InAlGaP x.min = 0.0 x.max = 1.0 y.min = 0.345200

y.max = 0.388100 x.comp = 0.371 y.comp = 0.159

region num = 5 material = GaAs x.min = 0.0 x.max = 1.0 y.min = 0.388100 y.max

= 0.413100

region num = 6 material = GaAs x.min = 0.0 x.max = 1.0 y.min = 0.413100 y.max

= 0.438100

region num = 7 material = InGaP x.min = 0.0 x.max = 1.0 y.min = 0.438100 y.max

= 0.462700 x.comp = 0.49

region num = 8 material = GaAs x.min = 0.0 x.max = 1.0 y.min = 0.462700 y.max

= 0.840400

region num = 9 material = GaAs x.min = 0.0 x.max = 1.0 y.min = 0.840400 y.max

= 3.758400

region num = 10 material = AlGaAs x.min = 0.0 x.max = 1.0 y.min = 3.758400

y.max = 3.929600 x.comp = 0.7

region num = 11 material = GaAs x.min = 0.0 x.max = 1.0 y.min = 3.929600 y.max

= 4.477900

electrode name = anode top

electrode name = cathode bottom

electrode name = TJ_Top material = GaAs x.min = 0 x.max = 1.0 y.min = 0.388100

y.max = 0.415600

electrode name = TJ_Bottom material = GaAs x.min = 0 x.max = 1.0 y.min = 0.435600

y.max = 0.438100

doping p.type uniform concentration = 8.737758e+17 region = 1

doping p.type uniform concentration = 7.009709e+17 region = 2

doping n.type uniform concentration = 1.655008e+16 region = 3

doping n.type uniform concentration = 1.363955e+17 region = 4

doping n.type uniform concentration = 2e19 region = 5

doping p.type uniform concentration = 1e11 region = 6

doping p.type uniform concentration = 1.851825e+19 region = 7

doping p.type uniform concentration = 6.378227e+17 region = 8

 71

doping n.type uniform concentration = 2.119337e+17 region = 9

doping n.type uniform concentration = 1.547035e+17 region = 10

doping n.type uniform concentration = 1.154782e+19 region = 11

material mun = 51.239071 mup = 70.917663 region = 1

material mun = 1837.857246 mup = 72.481755 region = 2

material mun = 3332.813147 mup = 136.447213 region = 3

material mun = 51.731188 mup = 112.499094 region = 4

material mun = 793.005146 mup = 22.527853 region = 7

material mun = 258.726820 mup = 85.157429 region = 10

material mat = InAlGaP index.file = AlGaInP.nk

material mat = InGaP index.file = InGaP_ex.nk

material mat = AlGaAs index.file = AlGaAs.nk

material material=InGaP affinity = 4.08

material material=AlGaAs affinity = 3.54

contact name = TJ_Top resistance = 1e18

contact name = TJ_Bottom resistance = 1e18

contact name = anode resistance = 2e9

trap acceptor e.level = 1.200000 degen = 1 sign = 1.000000e-14 sigp =1.000000e-14

f.density = 20_1246_2_In_Vprofile.lib

trap donor e.level = 0.500000 degen = 1 sign = 1.000000e-14 sigp =1.000000e-14 f.density

= 20_1246_2_In_Iprofile.lib

trap acceptor e.level = 1.200000 degen = 1 sign = 1.000000e-14 sigp =1.000000e-14

f.density = 20_1246_2_Ga_Vprofile.lib

trap donor e.level = 0.500000 degen = 1 sign = 1.000000e-14 sigp =1.000000e-14 f.density

= 20_1246_2_Ga_Iprofile.lib

trap acceptor e.level = 0.890000 degen = 1 sign = 4.000000e-14 sigp =4.000000e-14

f.density = 20_1246_2_P_Vprofile.lib

trap acceptor e.level = 1.000000 degen = 1 sign = 1.000000e-14 sigp =1.000000e-14

f.density = 20_1246_2_P_Iprofile.lib

trap acceptor e.level = 0.700000 degen = 1 sign = 1.900000e-12 sigp =1.900000e-12

f.density = 20_1246_6_Ga_Vprofile.lib

trap donor e.level = 0.270000 degen = 1 sign = 1.000000e-14 sigp =1.000000e-14 f.density

= 20_1246_6_Ga_Iprofile.lib

trap acceptor e.level = 0.350000 degen = 1 sign = 6.200000e-15 sigp =6.200000e-15

f.density = 20_1246_6_As_Vprofile.lib

trap donor e.level = 0.360000 degen = 1 sign = 1.000000e-14 sigp =1.000000e-14 f.density

= 20_1246_6_As_Iprofile.lib

models region = 5 analytic

models region = 6 analytic

 72

models region = 8 analytic

models region = 9 analytic

models region = 11 analytic

models print srh fermi optr auger bgn temp = 300.0

method newton itlimit = 50

beam num = 1 x.origin = 0.50 y.origin = -1 angle = 90 am0 wavel.start = 0.28 wavel.end

= 3.5 wavel.num = 500 reflect = 1

output con.band val.band opt.intens

solve init

solve b1 = 0.01

solve b1 = 0.10

solve b1 = 0.81

log outfile = testcell_20_1246.log

solve name = anode vanode = 0.000 vfinal = 0.100 vstep = 0.030

solve name = anode vanode = 0.100 vfinal = 1.500 vstep = 0.300

solve name = anode vanode = 1.500 vfinal = 2.800 vstep = 0.010

log off

quit

 73

APPENDIX B. SAMPLE TRAP PROFILE FILE

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

#include <malloc.h>

#include <string.h>

#include <template.h>

int acc_trap(double x,double y,double z,double *density)

{

if(y<0.058900)

{

*density=0;

}

else if((y >= 0.058900) && (y <= 0.843400))

{

*density = 8.291865e-02*pow(y,2.0)+-1.773639e+07*y+6.246270e+10;

}

else if(y > 0.843400)

{

*density=0;

}

return(0);

}

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX C. SILVACO SCRIPT GENERATOR

-*- coding: utf-8 -*-

"""

Silvaco scripting

@author: jswalsh

"""

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt

import sys

from mobility import mobility_triplet,mobility_quad

import xlrd

import MultilayerNIELCalculator

User Inputs

_Name = "Check" # Model or testcell or Check

Batch = 22

Radiation = 0 # 0 or 1

Orbit = "LEO" # "LEO" or "GEO"

MissionLength = 12 # Length in years

Convert from Logspace to a number

def _Doping(Power):

 a = Power % 1

 b = Power - a

 c = np.power(10.0,a)

 string = "%fe%d"%(c,b)

 doping = float(string)

 return doping

Radiation Model

def _testdpar(Orbit,length_in_years):

 if Orbit == 'LEO':

 flux = 1.2e11

 elif Orbit == 'GEO':

 flux = 2.5e9

 else:

 76

 print("Orbit not recognized")

 exit()

 testdpar = flux*length_in_years

 return testdpar

Display Parameters

if _Name == 'testcell':

 View = 0

else:

 View = 1

Computer parameters

if _Name == 'testcell':

 Cores = 8

else:

 Cores = 2

Quality of life Parameters

V1 = .1

V2 = 1.5

Voc = 2.8

Vstep1 = .03

Vstep2 = .3

Vstep3 = .01

beam1 = .01

beam2 = .1

heavy = 100 # Mesh thickness

medium = 50

light = 10

Static Parameters

Layer =

["InAlGaP","InGaP","InGaP","InAlGaP","InGaP","GaAs","GaAs","AlGaAs","GaAs"]

TJ_top_Thickness = float(.025)

TJ_top_Doping = "2e19"

TJ_bot_Thickness = float(.025)

TJ_bot_Doping = "1e11"

Temp = 300

 77

Width = 1

Reflectivity = .19

RHeader = 2 # Number of rows for header in Parameters_x.xlsx

CHeader = 1 # Number of rows for header in Parameters_x.xlsx

Setting up the optimization parameters

if _Name == "testcell":

 xl_workbook = xlrd.open_workbook("C:\\Users\\LT Walsh\\Documents\\Python

Scripts\\NOHL\\Parameters_%d.xlsx"%(Batch)) # Open the workbook

 xl_sheet = xl_workbook.sheet_by_index(0) # Using NOLH for up to 22 factors

if _Name == "Model":

 xl_workbook = xlrd.open_workbook("C:\\Users\\LT Walsh\\Documents\\Python

Scripts\\NOHL\\Model.xlsx") # Open the workbook

 xl_sheet = xl_workbook.sheet_by_index(0)

if _Name == "Check":

 xl_workbook = xlrd.open_workbook("C:\\Users\\LT Walsh\\Documents\\Python

Scripts\\NOHL\\Checkcell.xlsx") # Open the workbook

 xl_sheet = xl_workbook.sheet_by_index(0)

Runs = xl_sheet.nrows - RHeader # Number of rows

Thickness = np.zeros((Runs,len(Layer)))

Doping = np.zeros((Runs,len(Layer)))

for row_idx in range(RHeader,Runs+RHeader): # Offset for header

 for col_idx in range(CHeader,xl_sheet.ncols): # Offset for blank column

 cell_obj = xl_sheet.cell(row_idx, col_idx) # Get the cell

 if col_idx in range(CHeader,CHeader+len(Layer)):

 Thickness[row_idx-RHeader,col_idx-CHeader] = float(cell_obj.value)

 elif col_idx in range(CHeader+len(Layer),CHeader+(2*len(Layer))):

 Doping[row_idx-RHeader,col_idx-(CHeader+len(Layer))] =

_Doping(cell_obj.value)

Mobilityp = np.zeros((Runs,len(Layer)))

Mobilityn = np.zeros((Runs,len(Layer)))

for j in range(Runs):

 for i in range(len(Layer)):

 if Layer[i] == "InAlGaP":

 mat_1 = "AlP"

 mat_2 = "GaP"

 mat_3 = "InP"

 triplet_name_1 = "AlInP"

 triplet_name_2 = "GaInP"

 quad_name = "AlGaInP"

 C_inner = .7

 78

 C_outer = .5

 N = float(Doping[j,i])

 Mobilityn[j,i],Mobilityp[j,i] =

mobility_quad(mat_1,mat_2,mat_3,triplet_name_1,triplet_name_2,quad_name,C_inner,

C_outer,Temp,N)

 elif Layer[i] == "InGaP":

 C = .51

 N = float(Doping[j,i])

 Mobilityn[j,i],Mobilityp[j,i] = mobility_triplet('GaP','InP','GaInP',C,Temp,N)

 elif Layer[i] == "AlGaAs":

 C = .7

 N = float(Doping[j,i])

 Mobilityn[j,i],Mobilityp[j,i] = mobility_triplet('AlAs','GaAs','AlGaAs',C,Temp,N)

Radiation Model

if Radiation == 1:

 defaultcs = 1e-14

 densInP = 4.81

 densGaP = 4.14

 densAlP = 2.85

 densGaAs = 5.32

 densAlAs = 3.71

 material1 = "In_0.235_Al_0.1855_Ga_0.0759_P_0.5"

 material2 = "In_0.245_Ga_0.255_P_0.5"

 material3 = "Ga_0.5_As_0.5"

 material4 = "Al_0.35_Ga_0.15_As_0.5"

 density1 = 0.47*densInP+0.371*densAlP+0.159*densGaP

 density2 = 0.49*densInP+0.51*densGaP

 density3 = densGaAs

 density4 = 0.7*densAlAs+0.3*densGaAs

 Td1 = ['4','20','10','9']

 Td2 = ['4','10','9']

 Td3 = ['10','15.5']

 Td4 = ['23','14.5','15.5']

 traptype1 = [['A','D'],['A','A'],['A','D']] # not used

 traptype2 = [['A','D'],['A','D'],['A','A']]

 traptype3 = [['A','D'],['A','D']]

 traptype4 = [['A','D'],['A','A'],['A','D']] # not used

 79

 trapener1 = [[1,1],[1,1],[1,1]] # not used

 trapener2 = [[1.2,.5],[1.2,.5],[.89,1]]

 trapener3 = [[.7,.27],[.35,.36]]

 trapener4 = [[1,1],[1,1],[1,1]] # not used

 trapcapn1 = [[defaultcs,defaultcs],[defaultcs,defaultcs],[defaultcs,defaultcs]] # not used

 trapcapn2 = [[defaultcs,defaultcs],[defaultcs,defaultcs],[4e-14,defaultcs]]

 trapcapn3 = [[1.9e-12,defaultcs],[6.2e-15,defaultcs]]

 trapcapn4 = [[defaultcs,defaultcs],[defaultcs,defaultcs],[defaultcs,defaultcs]] # not used

 trapcapp1 = [[defaultcs,defaultcs],[defaultcs,defaultcs],[defaultcs,defaultcs]] # not used

 trapcapp2 = [[defaultcs,defaultcs],[defaultcs,defaultcs],[4e-14,defaultcs]]

 trapcapp3 = [[1.9e-12,defaultcs],[6.2e-15,defaultcs]]

 trapcapp4 = [[defaultcs,defaultcs],[defaultcs,defaultcs],[defaultcs,defaultcs]] # not used

 matdata = [[material1,density1,Td1,traptype1,trapener1,trapcapn1,trapcapp1],\

 [material2,density2,Td2,traptype2,trapener2,trapcapn2,trapcapp2],\

 [material3,density3,Td3,traptype3,trapener3,trapcapn3,trapcapp3],\

 [material4,density4,Td4,traptype4,trapener4,trapcapn4,trapcapp4]]

 mutocmconv = 1e-4

 numatom = [0,3,2,0] # 0 and 3 collumns for layers not simulated

 stackmat = [0,1,0,2,1,2,3,2]

 stackcout = [False,True,False,False,False,True,False,False]

 Erad = 1

 testdpar = _testdpar(Orbit,MissionLength)

 stackSPdat =

MultilayerNIELCalculator.fetch_stack_material_SPdat(matdata,float(Erad))

Deckbuild creation

for j in range(Runs):

 if _Name == "testcell":

 Name = "testcell" + "_%d_%d" %(Batch,j)

 directory = 'C:\\Users\\LT Walsh\\Documents\\Python

Scripts\\Deckbuilds\\Batch_%d\\'%(Batch)

 Script = open(directory + '%s.in'%(Name), "w")

 if _Name == "Model":

 Name = "Model_Cell"

 80

 directory = 'C:\\Users\\LT Walsh\\Documents\\Python

Scripts\\Deckbuilds\\Model_Cell\\'

 Script = open(directory + '%s.in'%(Name), "w")

 if _Name == "Check":

 Name = "Check_Cell"

 directory = 'C:\\Users\\LT Walsh\\Documents\\Python

Scripts\\Deckbuilds\\Check_Cell\\'

 Script = open(directory + '%s.in'%(Name), "w")

 string = "go atlas simflags = \"-P %d\"\n\n" % (Cores)

 Script.write(string)

 # Radiation Model

 if Radiation == 1:

 stackthick =

[Thickness[j,0],Thickness[j,1]+Thickness[j,2],Thickness[j,3],TJ_top_Thickness+TJ_bot_

Thickness,Thickness[j,4],Thickness[j,5]+Thickness[j,6],Thickness[j,7],Thickness[j,8]]

 stackdata = []

 x0 = 0

 for i, thick in enumerate(stackthick):

 stackdata.append([stackmat[i],mutocmconv*thick,x0,stackcout[i]])

 x0 = x0 + mutocmconv*thick

 output_data =

MultilayerNIELCalculator.calc_multilayer_profiles(stackdata,matdata,stackSPdat,Erad,te

stdpar)

MultilayerNIELCalculator.gen_lib_files(stackdata,matdata,output_data,j,Batch,directory)

 # Setting up the mesh

 string = "mesh\n\n"

 Script.write(string)

 string = "x.mesh location = %f spacing = %f\n" % (0,Width/3)

 Script.write(string)

 string = "x.mesh location = %f spacing = %f\n\n" % (Width,Width/3)

 Script.write(string)

 depth = 0

 for i in range(len(Layer)):

 if i == 0:

 string = "y.mesh location = %f spacing = %f\n" %(depth,Thickness[j,i]/light)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.8*Thickness[j,i],Thickness[j,i]/medium)

 Script.write(string)

 81

 string = "y.mesh location = %f spacing = %f\n"

%(depth+Thickness[j,i],Thickness[j,i]/heavy)

 Script.write(string)

 elif i == 8:

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.2*Thickness[j,i],Thickness[j,i]/medium)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n\n"

%(depth+Thickness[j,i],Thickness[j,i]/light)

 Script.write(string)

 elif i == 4:

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.2*TJ_top_Thickness,TJ_top_Thickness/medium)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.5*TJ_top_Thickness,TJ_top_Thickness/light)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.8*TJ_top_Thickness,TJ_top_Thickness/medium)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+TJ_top_Thickness,TJ_top_Thickness/heavy)

 Script.write(string)

 depth = depth + TJ_top_Thickness

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.2*TJ_bot_Thickness,TJ_bot_Thickness/medium)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.5*TJ_bot_Thickness,TJ_bot_Thickness/light)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.8*TJ_bot_Thickness,TJ_bot_Thickness/medium)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+TJ_bot_Thickness,TJ_bot_Thickness/heavy)

 Script.write(string)

 depth = depth + TJ_bot_Thickness

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.2*Thickness[j,i],Thickness[j,i]/medium)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.5*Thickness[j,i],Thickness[j,i]/light)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.8*Thickness[j,i],Thickness[j,i]/medium)

 82

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+Thickness[j,i],Thickness[j,i]/heavy)

 Script.write(string)

 else:

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.2*Thickness[j,i],Thickness[j,i]/medium)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.5*Thickness[j,i],Thickness[j,i]/light)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+.8*Thickness[j,i],Thickness[j,i]/medium)

 Script.write(string)

 string = "y.mesh location = %f spacing = %f\n"

%(depth+Thickness[j,i],Thickness[j,i]/heavy)

 Script.write(string)

 depth = depth + Thickness[j,i]

 # Setting up region statements

 depth = 0

 string = "region num = 1 material = InAlGaP x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f x.comp = 0.371 y.comp = 0.159\n" %(Width, depth, depth+Thickness[j,0])

 Script.write(string)

 depth = depth+Thickness[j,0]

 string = "region num = 2 material = InGaP x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f x.comp = 0.49\n" %(Width, depth, depth+Thickness[j,1])

 Script.write(string)

 depth = depth+Thickness[j,1]

 string = "region num = 3 material = InGaP x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f x.comp = 0.49\n" %(Width, depth, depth+Thickness[j,2])

 Script.write(string)

 depth = depth+Thickness[j,2]

 string = "region num = 4 material = InAlGaP x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f x.comp = 0.371 y.comp = 0.159\n" %(Width, depth, depth+Thickness[j,3])

 Script.write(string)

 depth = depth+Thickness[j,3]

 string = "region num = 5 material = GaAs x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f\n" %(Width, depth, depth + TJ_top_Thickness)

 Script.write(string)

 depth = depth + TJ_top_Thickness

 string = "region num = 6 material = GaAs x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f\n" %(Width, depth, depth + TJ_bot_Thickness)

 Script.write(string)

 83

 depth = depth + TJ_bot_Thickness

 string = "region num = 7 material = InGaP x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f x.comp = 0.49\n" %(Width, depth, depth+Thickness[j,4])

 Script.write(string)

 depth = depth+Thickness[j,4]

 string = "region num = 8 material = GaAs x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f\n" %(Width, depth, depth+Thickness[j,5])

 Script.write(string)

 depth = depth+Thickness[j,5]

 string = "region num = 9 material = GaAs x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f\n" %(Width, depth, depth+Thickness[j,6])

 Script.write(string)

 depth = depth+Thickness[j,6]

 string = "region num = 10 material = AlGaAs x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f x.comp = 0.7\n" %(Width, depth, depth+Thickness[j,7])

 Script.write(string)

 depth = depth+Thickness[j,7]

 string = "region num = 11 material = GaAs x.min = 0.0 x.max = %.1f y.min = %f

y.max = %f\n" %(Width, depth, depth+Thickness[j,8])

 Script.write(string)

 # Setting up electrodes

 depth1 = Thickness[j,0]+Thickness[j,1]+Thickness[j,2]+Thickness[j,3]

 depth2 = depth1 + TJ_top_Thickness + (TJ_bot_Thickness*.1)

 depth3 = depth2 + (TJ_bot_Thickness*.8)

 depth4 = depth3 + (TJ_bot_Thickness*.1)

 string = "\nelectrode name = anode top\n"

 Script.write(string)

 string = "electrode name = cathode bottom\n"

 Script.write(string)

 string = "electrode name = TJ_Top material = GaAs x.min = 0 x.max = %.1f y.min =

%f y.max = %f\n" %(Width, depth1, depth2)

 Script.write(string)

 string = "electrode name = TJ_Bottom material = GaAs x.min = 0 x.max = %.1f y.min

= %f y.max = %f\n\n" %(Width, depth3, depth4)

 Script.write(string)

 # Setting up doping profile

 string = "doping p.type uniform concentration = %s region = 1\n" %(Doping[j,0])

 Script.write(string)

 string = "doping p.type uniform concentration = %s region = 2\n" %(Doping[j,1])

 Script.write(string)

 string = "doping n.type uniform concentration = %s region = 3\n" %(Doping[j,2])

 84

 Script.write(string)

 string = "doping n.type uniform concentration = %s region = 4\n" %(Doping[j,3])

 Script.write(string)

 string = "doping n.type uniform concentration = %s region = 5\n" %(TJ_top_Doping)

 Script.write(string)

 string = "doping p.type uniform concentration = %s region = 6\n" %(TJ_bot_Doping)

 Script.write(string)

 string = "doping p.type uniform concentration = %s region = 7\n" %(Doping[j,4])

 Script.write(string)

 string = "doping p.type uniform concentration = %s region = 8\n" %(Doping[j,5])

 Script.write(string)

 string = "doping n.type uniform concentration = %s region = 9\n" %(Doping[j,6])

 Script.write(string)

 string = "doping n.type uniform concentration = %s region = 10\n" %(Doping[j,7])

 Script.write(string)

 string = "doping n.type uniform concentration = %s region = 11\n\n" %(Doping[j,8])

 Script.write(string)

 # Material Statements

 string = "material mun = %f mup = %f region = 1\n"

%(Mobilityn[j,0],Mobilityp[j,0])

 Script.write(string)

 string = "material mun = %f mup = %f region = 2\n"

%(Mobilityn[j,1],Mobilityp[j,1])

 Script.write(string)

 string = "material mun = %f mup = %f region = 3\n"

%(Mobilityn[j,2],Mobilityp[j,2])

 Script.write(string)

 string = "material mun = %f mup = %f region = 4\n"

%(Mobilityn[j,3],Mobilityp[j,3])

 Script.write(string)

 string = "material mun = %f mup = %f region = 7\n"

%(Mobilityn[j,4],Mobilityp[j,4])

 Script.write(string)

 string = "material mun = %f mup = %f region = 10\n\n"

%(Mobilityn[j,7],Mobilityp[j,7])

 Script.write(string)

 string = "material mat = InAlGaP index.file = AlGaInP.nk\n"

 Script.write(string)

 string = "material mat = InGaP index.file = InGaP_ex.nk\n"

 Script.write(string)

 string = "material mat = AlGaAs index.file = AlGaAs.nk\n\n"

 Script.write(string)

 85

 string = "material material=InGaP affinity = 4.08\n"

 Script.write(string)

 string = "material material=AlGaAs affinity = 3.54\n\n"

 Script.write(string)

 string = "contact name = TJ_Top resistance = 1e18\n"

 Script.write(string)

 string = "contact name = TJ_Bottom resistance = 1e18\n"

 Script.write(string)

 string = "contact name = anode resistance = 2e9\n\n"

 Script.write(string)

 # Radiation model

 if Radiation == 1:

 for i in range(len(stackmat)):

 if stackcout[i]:

 matinput, atomoutput, stoichoutput =

MultilayerNIELCalculator.matinterp(matdata[stackdata[i][0]][0])

 for k in range(len(matdata[stackmat[i]][3])):

 if matdata[stackmat[i]][3][k][0] == 'A':

 string = "trap acceptor e.level = %f degen = 1 sign = %e sigp =%e f.density

= %d_%d_%d_%s_Vprofile.lib\n"

%(matdata[stackmat[i]][4][k][0],matdata[stackmat[i]][5][k][0],matdata[stackmat[i]][6][k]

[0],Batch,j,i+1,atomoutput[k])

 elif matdata[stackmat[i]][3][k][0] == 'D':

 string = "trap donor e.level = %f degen = 1 sign = %e sigp =%e f.density

= %d_%d_%d_%s_Vprofile.lib\n"

%(matdata[stackmat[i]][4][k][0],matdata[stackmat[i]][5][k][0],matdata[stackmat[i]][6][k]

[0],Batch,j,i+1,atomoutput[k])

 Script.write(string)

 if matdata[stackmat[i]][3][k][1] == 'A':

 string = "trap acceptor e.level = %f degen = 1 sign = %e sigp =%e f.density

= %d_%d_%d_%s_Iprofile.lib\n"

%(matdata[stackmat[i]][4][k][1],matdata[stackmat[i]][5][k][1],matdata[stackmat[i]][6][k]

[1],Batch,j,i+1,atomoutput[k])

 elif matdata[stackmat[i]][3][k][1] == 'D':

 string = "trap donor e.level = %f degen = 1 sign = %e sigp =%e f.density

= %d_%d_%d_%s_Iprofile.lib\n"

%(matdata[stackmat[i]][4][k][1],matdata[stackmat[i]][5][k][1],matdata[stackmat[i]][6][k]

[1],Batch,j,i+1,atomoutput[k])

 Script.write(string)

 string = "\n"

 Script.write(string)

 # Model Statements

 86

 for i in range(len(Layer)+2):

 if i in [4,5,7,8,10]:

 string = "models region = %d\t analytic\n" %(i+1)

 Script.write(string)

 string = "\nmodels print srh fermi optr auger bgn temp = %.1f\n\n" %(Temp)

 Script.write(string)

 # Method Statements

 string = "method newton itlimit = 50\n\n"

 Script.write(string)

 # Setting up the beam

 string = "beam num = 1 x.origin = %.2f y.origin = -1 angle = 90 am0 wavel.start = 0.28

wavel.end = 3.5 wavel.num = 500 reflect = 1\n\n" %(Width/2)

 Script.write(string)

 # Setting up the outputs

 string = "output con.band val.band opt.intens\n\n"

 Script.write(string)

 # Solving & Outputs

 string = "solve init\n"

 Script.write(string)

 string = "solve b1 = %.2f\n" %(beam1)

 Script.write(string)

 string = "solve b1 = %.2f\n" %(beam2)

 Script.write(string)

 string = "solve b1 = %.2f\n\n" %(1-Reflectivity)

 Script.write(string)

 string = "log outfile = %s.log\n" %(Name)

 Script.write(string)

 string = "solve name = anode vanode = %.3f vfinal = %.3f vstep = %.3f\n"

%(0,V1,Vstep1)

 Script.write(string)

 string = "solve name = anode vanode = %.3f vfinal = %.3f vstep = %.3f\n"

%(V1,V2,Vstep2)

 Script.write(string)

 string = "solve name = anode vanode = %.3f vfinal = %.3f vstep = %.3f\n"

%(V2,Voc,Vstep3)

 Script.write(string)

 87

 string = "log off\n\n"

 Script.write(string)

 if View == 1:

 string = "save outfile = %s.str\n\n" %(Name)

 Script.write(string)

 string = "tonyplot %s.log -set Display.set\n\n" %(Name)

 Script.write(string)

 string = "tonyplot %s.str\n\n" %(Name)

 Script.write(string)

 string = "quit"

 Script.write(string)

 Script.close()

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

APPENDIX D. ALGAAS OPTICAL FILE GENERATOR

-*- coding: utf-8 -*-

"""

AlGaAs MDF calculation

From Adachi et al

@author: jswalsh

"""

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt

import sys

Parameter definitions

E0 = 2.42 # E0 (Bandgap) transition energy

E0_Delta0 = 2.73 # E0 + delta (VB split off) energy

A = 23.2 # Direct transition strength (matrix element)

E1 = 3.43 # E1 (Bandgap) transition energy

EgID = 2.03 # Indirect transition mechanism

B1 = 5.41 # Direct transition strength (matrix element)

B11 = 9.55 # Direct transition strength (matrix element)

Gamma1 = .12 # E1, E1 + delta broadening energy

E2 = 4.7 # E2 (Bandgap) transition energy

C = 1.76 # nondimentional strength parameter

gamma = .103 # nondimentional broadening parameter

D = 8.1 # Indirect-transition strength parameter

Einf = -.3 # nondispersive term

Eq = 0 # phonon energy

Name = "AlGaAs"

Estart = 1 # starting energy in eV

 90

Estop = 7 # ending energy in eV

Points = 1000 # number of points to use in file

Energy = np.linspace(Estart,Estop,Points)

Lamda = 1.24/Energy

PlotAll = 0 # Set to 1 to plot subsections of Epsilon

Epsilon calculations

Epsilon 2_0

Chi_0 = Energy/E0

Chi_so = Energy/E0_Delta0

Epsilon_2_0a = np.zeros(Points)

Epsilon_2_0b = np.zeros(Points)

for i in range(Points):

 if Chi_0[i]>=1:

 Epsilon_2_0a[i] = np.power(Energy[i]-E0,.5)

 else:

 Epsilon_2_0a[i] = 0

 if Chi_so[i]>=1:

 Epsilon_2_0b[i] = np.power(Energy[i]-E0_Delta0,.5)

 else:

 Epsilon_2_0b[i] = 0

Epsilon_2_0 = (A/np.power(Energy,2))*(Epsilon_2_0a + .5*Epsilon_2_0b)

Epsilon 1_0

f_Chi_0 = np.zeros(Points)

f_Chi_so = np.zeros(Points)

for i in range(Points):

 if 1>=Chi_0[i]:

 f_Chi_0[i] = (2-np.power(1+Chi_0[i],.5)-np.power(1-

Chi_0[i],.5))/np.power(Chi_0[i],2)

 else:

 f_Chi_0[i] = (2-np.power(1+Chi_0[i],.5))/np.power(Chi_0[i],2)

 if 1>=Chi_so[i]:

 f_Chi_so[i] = (2-np.power(1+Chi_so[i],.5)-np.power(1-

Chi_so[i],.5))/np.power(Chi_so[i],2)

 else:

 f_Chi_so[i] = (2-np.power(1+Chi_so[i],.5))/np.power(Chi_so[i],2)

 91

Epsilon_1_0 = (A/np.power(E0,1.5))*(f_Chi_0 +

.5*np.power(E0/E0_Delta0,1.5)*f_Chi_so)

Epsilon 2_1

Chi_1 = Energy/E1

Epsilon_2_1 = np.zeros(Points)

for i in range(Points):

 if Energy[i]<E1:

 Epsilon_2_1[i] = 0

 else:

 Epsilon_2_1[i] = np.pi*B1/np.power(Chi_1[i],2)

Epsilon 1_1

Chi_1_1 = (Energy + 1j*Gamma1)/E1

Epsilon_1_1 = (-B1/np.power(Chi_1_1,2))*np.log(1-np.power(Chi_1_1,2))

Epsilon 2_2

Chi_2 = Energy/E2

Epsilon_2_2 = C*Chi_2*gamma/(np.power(1-

np.power(Chi_2,2),2)+np.power(Chi_2*gamma,2))

Epsilon 1_2

Epsilon_1_2 = C*(1-np.power(Chi_2,2))/(np.power(1-

np.power(Chi_2,2),2)+np.power(Chi_2*gamma,2))

Epsilon 2 indirect

Chi_c = Energy/E1

Chi_g = Energy/(EgID - Eq)

Epsilon_2_ind = np.zeros(Points)

for i in range(Points):

 if 1>=Chi_g[i] or 1>=Chi_c[i] or Energy[i]<2.41:

 Epsilon_2_ind[i] = 0

 else:

 Epsilon_2_ind[i] = (D/np.power(Energy[i],2))*np.power(Energy[i]-EgID-Eq,2)

Epsilon calculations

 92

Epsilon_r = Epsilon_1_0 + Epsilon_1_1 + Epsilon_1_2 + Einf

Epsilon_i = Epsilon_2_0 + Epsilon_2_1 + Epsilon_2_2 + Epsilon_2_ind

Epsilon = Epsilon_r + 1j*Epsilon_i

Epsilon_r = np.real(Epsilon)

Epsilon_i = np.imag(Epsilon)

for i in range(Points):

 if Energy[i]<=2.41:

 Epsilon_i[i] = 0

Epsilon = Epsilon_r + 1j*Epsilon_i

n and k calculations

e1 = np.real(Epsilon)

e2 = np.imag(Epsilon)

na = np.power(e1,2)

nb = np.power(e2,2)

nc = np.power(na + nb, .5)

nd = (nc + e1)/2

n = np.power(nd,.5)

kd = (nc - e1)/2

k = np.power(kd,.5)

#Plot the figure. Based on spyder settings, plt pops out a separate

#plot window. The baseline plot settings will plot the plot inline in the

#console. You can change these settings in the Tools > Preferences menu

plt.figure(1)

plt.clf()

#plt.plot(Energy,np.real(Epsilon),'b-',label="Epsilon Real")

plt.xlim(0,9)

plt.semilogy(Energy,np.imag(Epsilon),'g-')

plt.xlabel("Energy (eV)")

plt.ylabel("Epsilon 2")

plt.show()

plt.figure(10)

plt.clf()

#plt.plot(Energy,np.real(Epsilon),'b-',label="Epsilon Real")

plt.xlim(0,8)

plt.plot(Energy,np.real(Epsilon),'b-')

plt.xlabel("Energy (eV)")

plt.ylabel("Epsilon 1")

plt.show()

 93

if PlotAll:

 plt.figure(3)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,Epsilon_2_0,'b-',label="Epsilon 2(0)")

 plt.xlabel("Energy (eV)")

 plt.ylabel("Epsilon 2(0)")

 plt.show()

 plt.figure(4)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,Epsilon_1_0,'b-',label="Epsilon 1(0)")

 plt.xlabel("Energy (eV)")

 plt.ylabel("Epsilon 1(0)")

 plt.show()

 plt.figure(5)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,Epsilon_2_1,'b-',label="Epsilon 2(1)")

 plt.xlabel("Energy (eV)")

 plt.ylabel("Epsilon 2(1)")

 plt.show()

 plt.figure(6)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,np.real(Epsilon_1_1),'b-',label="Epsilon 1(1) (real)")

 plt.plot(Energy,np.imag(Epsilon_1_1),'b-',label="Epsilon 1(1) (imaginary)")

 plt.xlabel("Energy (eV)")

 plt.ylabel("Epsilon 1(1)")

 plt.legend()

 plt.show()

 plt.figure(7)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,Epsilon_2_2,'b-',label="Epsilon 2(2)")

 plt.xlabel("Energy (eV)")

 plt.ylabel("Epsilon 2(2)")

 plt.show()

 plt.figure(8)

 plt.clf()

 94

 plt.title(Name)

 plt.plot(Energy,Epsilon_1_2,'b-',label="Epsilon 1(2)")

 plt.xlabel("Energy (eV)")

 plt.ylabel("Epsilon 1(2)")

 plt.show()

 plt.figure(9)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,Epsilon_2_ind,'b-',label="Epsilon 2(Indirect)")

 plt.xlabel("Energy (eV)")

 plt.ylabel("Epsilon 2(Indirect)")

 plt.show()

plt.figure(2)

plt.clf()

plt.plot(Energy,n,'b-',label="n")

plt.plot(Energy,k,'g-',label="k")

plt.xlabel("Energy (eV)")

plt.ylabel("n,k")

plt.legend()

plt.show()

Create .nk file

Properties = open(Name + ".nk", "w")

string = "%d\n" %(Points-1)

Properties.write(string)

for i in range(Points):

 string = "%f\t%f\t%f \n" % (Lamda[i],n[i],k[i])

 Properties.write(string)

Properties.close()

 95

APPENDIX E. INALGAP OPTICAL FILE GENERATOR

-*- coding: utf-8 -*-

"""

AlGaInP MDF calculation

From Adachi et al

@author: jswalsh

"""

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt

import sys

Parameter definitions

E0 = 2.38 # E0 (Bandgap)transition energy

E0_Delta0 = 2.45 # E0 + delta (VB split off) energy

A = 11 # Direct transition strength (matrix element)

Gamma0 = 0.03 # E0, E+del0 broadening energy

E1 = 3.60 # E1 (Bandgap) transition energy

B1 = 4.4 # Direct transition strength (matrix element)

B1x = 1.8 # 2D exciton strength parameter

Gamma1 = .26 # E1, E1 + delta broadening energy

E2 = 4.85 # E2 (Bandgap)transition energy

C2 = 1.7 # nondimentional strength parameter

Gamma2 = .82 # nondimentional broadening parameter

Gamma3 = .7 # E2 + delta broadening energy

E2_Delta2 = 5.02 # E2 + delta (VB split off) energy

C2_Delta2 = .5 # nondimentional strength parameter

Einf = .4 # nondispersive term

Name = "AlGaInP"

Estart = 1 # starting energy in eV

Estop = 5.5 # ending energy in eV

Points = 1000 # number of points to use in file

 96

Energy = np.linspace(Estart,Estop,Points)

Lamda = 1.24/Energy

PlotAll = 0 # Set to 1 to plot subsections of Epsilon

Epsilon and Exciton calculations function

def Chi(Energy, Gamma, Base_Energy_Level):

 Chi = (Energy + 1j*Gamma)/(Base_Energy_Level)

 return Chi

def f_Chi(Chi):

 f_Chi = (1/np.power(Chi,2))*(2-np.power(1+Chi,.5)-np.power(1-Chi,.5))

 return f_Chi

def f_Eps_1(B1,Chi_1):

 Eps_1 = -B1/np.power(Chi_1,2)*np.log(1-np.power(Chi_1,2))

 return Eps_1

def f_Exciton_1(B1x,E1,Energy,Gamma):

 Exciton_1 = B1x/(E1 - Energy -1j*Gamma)

 return Exciton_1

def f_Eps_2(C,Energy,Eg,Gamma):

 Eps_2 = C*np.power(Eg,2)/(np.power(Eg,2)-np.power(Energy,2)-1j*Energy*Gamma)

 return Eps_2

Epsilon calculations

Eps_0 = A / np.power(E0,1.5) * (f_Chi(Chi(Energy,Gamma0, E0)) + .5*

np.power(E0/E0_Delta0,1.5)*f_Chi(Chi(Energy,Gamma0,E0_Delta0)))

Eps_1 = f_Eps_1(B1,Chi(Energy, Gamma1, E1))

Exciton_1 = f_Exciton_1(B1x,E1,Energy,Gamma1)

Eps_2 = f_Eps_2(C2,Energy,E2,Gamma2)

Eps_2_Split = f_Eps_2(C2_Delta2,Energy,E2_Delta2,Gamma3)

 97

Epsilon = Eps_0 + Eps_1 + Exciton_1 + Eps_2 + Einf

n and k calculations

e1 = np.real(Epsilon)

e2 = np.imag(Epsilon)

na = np.power(e1,2)

nb = np.power(e2,2)

nc = np.power(na + nb, .5)

nd = (nc + e1)/2

n = np.power(nd,.5)

kd = (nc - e1)/2

k = np.power(kd,.5)

#Plot the figure. Based on spyder settings, plt pops out a separate

#plot window. The baseline plot settings will plot the plot inline in the

#console. You can change these settings in the Tools > Preferences menu

plt.figure(1)

plt.clf()

#plt.plot(Energy,np.real(Epsilon),'b-',label="Epsilon Real")

plt.xlim(0,6.5)

plt.plot(Energy,np.imag(Epsilon),'b-')

plt.xlabel("Energy (eV)")

plt.ylabel("Epsilon 2")

plt.show()

#plt.figure(10)

#plt.clf()

##plt.plot(Energy,np.real(Epsilon),'b-',label="Epsilon Real")

#plt.xlim(0,6)

#plt.plot(Energy,np.real(Epsilon),'b-')

#plt.xlabel("Energy (eV)")

#plt.ylabel("Epsilon 1")

#plt.show()

if PlotAll:

 plt.figure(3)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,np.real(Eps_0),'b-',label="Epsilon 0 Real")

 98

 plt.plot(Energy,np.imag(Eps_0),'g-',label="Epsilon 0 Imaginary")

 plt.xlabel("Photon Energy (eV)")

 plt.ylabel("Epsilon 0")

 plt.legend()

 plt.show()

 plt.figure(4)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,np.real(Eps_1),'b-',label="Eps 1 Real")

 plt.plot(Energy,np.imag(Eps_1),'g-',label="Epsilon 1 Imaginary")

 plt.xlabel("Photon Energy (eV)")

 plt.ylabel("Epsilon 1")

 plt.legend()

 plt.show()

 plt.figure(5)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,np.real(Exciton_1),'b-',label="Exciton 1 Real")

 plt.plot(Energy,np.imag(Exciton_1),'g-',label="Exciton 1 Imaginary")

 plt.xlabel("Photon Energy (eV)")

 plt.ylabel("Exciton 1")

 plt.legend()

 plt.show()

 plt.figure(6)

 plt.clf()

 plt.title(Name)

 plt.plot(Energy,np.real(Eps_2),'b-',label="Eps 2 Real")

 plt.plot(Energy,np.imag(Eps_2),'g-',label="Epsilon 2 Imaginary")

 plt.xlabel("Photon Energy (eV)")

 plt.ylabel("Epsilon 2")

 plt.legend()

 plt.show()

#plt.figure(2)

#plt.clf()

#plt.title(Name)

#plt.plot(Energy,n,'b-',label="n")

#plt.plot(Energy,k,'g-',label="k")

#plt.xlabel("Photon Energy (eV)")

#plt.ylabel("n,k")

 99

#plt.legend()

#plt.show()

Create .nk file

Properties = open(Name + ".nk", "w")

string = "%d\n" %(Points-1)

Properties.write(string)

for i in range(Points):

 string = "%f\t%f\t%f \n" % (Lamda[i],n[i],k[i])

 Properties.write(string)

Properties.close()

 100

THIS PAGE INTENTIONALLY LEFT BLANK

 101

APPENDIX F. MOBILITY CALCULATOR

-*- coding: utf-8 -*-

"""

Created on Fri Mar 30 09:54:27 2018

Electron and Hole mobility

@author: LT Walsh

"""

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt

import sys

Function definitions

def f(mu1, mu2, T, N, Ncrit, alpha, beta, gamma, delta):

 f1 = mu1*np.power(T/300,alpha)

 f2 = mu2*np.power(T/300,beta)

 f3 = np.power(T/300,gamma)

 f4 = np.power(N/Ncrit,delta)

 f5 = 1 + f3*f4

 f6 = (f2-f1)/f5

 f = f1 + f6

 return f

def mu(f, mdom, mnum, eldom, elnum, ehdom, ehnum):

 mu1 = (1/ehnum) - (1/elnum)

 mu2 = (1/ehdom) - (1/eldom)

 mu3 = f*np.power(mnum,1.5)*mu1

 mu4 = np.power(mdom,1.5)*mu2

 mu = mu3/mu4

 return mu

def _Rd(mci, mcd, Egi, Egd, T):

 k = 8.617/np.power(10,5) #Boltzman Constant

 R1 = np.power(mci/mcd,1.5)

 R2 = np.exp((Egd-Egi)/(k*T))

 Rd = 1/(1+(R1*R2))

 return Rd

def mass(m1, m2, C):

 102

 ma = C/m1

 mb = (1-C)/m2

 mass = 1/(ma +mb)

 return mass

def eps(e1, e2, C):

 eps1 = (e1-1)/(e1+2)

 eps2 = (e2-1)/(e2+2)

 C2 = 1-C

 eps3 = C*eps1

 eps4 = C2*eps2

 eps5 = 1 + (2 * (eps3 + eps4))

 eps6 = 1 - eps3 - eps4

 eps = eps5/eps6

 return eps

def _Eg_triplet(C,Eg1,Eg2,Bow_m,Bow_b):

 Bow = (Bow_m*C) + Bow_b

 Eg = (C*Eg1) + ((1-C)*Eg2) + (np.power(C,2)*Bow) - (C*Bow)

 return Eg

def mobility_triplet(material_1,material_2,triplet_name,C,T,N,quad_set=0):

 # Material 1 parameters

 if material_1 == 'AlP':

 fh = open("mobility_binaries.txt", "r")

 string = " "

 counter = 0

 while string != material_1:

 string = fh.readline()

 string = string.strip()

 counter += 1

 if counter>200:

 return 0,0

 m_star_n1d = float(fh.readline())

 m_star_n1i = float(fh.readline())

 m_star_p1 = float(fh.readline())

 eps_h1 = float(fh.readline())

 eps_l1 = float(fh.readline())

 Egd_1 = float(fh.readline())

 Egi_1 = float(fh.readline())

 fh.close()

 103

 else:

 fh = open("mobility_binaries.txt", "r")

 string = " "

 counter = 0

 while string != material_1:

 string = fh.readline()

 string = string.strip()

 counter += 1

 if counter>200:

 return 0,0

 mu1_p1 = float(fh.readline())

 mu2_p1 = float(fh.readline())

 Ncrit_p1b = float(fh.readline())

 Ncrit_p1p = float(fh.readline())

 Ncrit_p1 = Ncrit_p1b*np.power(10,Ncrit_p1p)

 alpha_p1 = float(fh.readline())

 beta_p1 = float(fh.readline())

 gamma_p1 = float(fh.readline())

 delta_p1 = float(fh.readline())

 mu1_n1 = float(fh.readline())

 mu2_n1 = float(fh.readline())

 Ncrit_n1b = float(fh.readline())

 Ncrit_n1p = float(fh.readline())

 Ncrit_n1 = Ncrit_n1b*np.power(10,Ncrit_n1p)

 alpha_n1 = float(fh.readline())

 beta_n1 = float(fh.readline())

 gamma_n1 = float(fh.readline())

 delta_n1 = float(fh.readline())

 m_star_n1d = float(fh.readline())

 m_star_n1i = float(fh.readline())

 m_star_p1 = float(fh.readline())

 eps_h1 = float(fh.readline())

 eps_l1 = float(fh.readline())

 Egd_1 = float(fh.readline())

 Egi_1 = float(fh.readline())

 fh.close()

 # Material 2 parameters

 if material_2 == 'AlP':

 fh = open("mobility_binaries.txt", "r")

 104

 string = " "

 counter = 0

 while string != material_2:

 string = fh.readline()

 string = string.strip()

 counter += 1

 if counter>200:

 return 0,0

 m_star_n2d = float(fh.readline())

 m_star_n2i = float(fh.readline())

 m_star_p2 = float(fh.readline())

 eps_h2 = float(fh.readline())

 eps_l2 = float(fh.readline())

 Egd_2 = float(fh.readline())

 Egi_2 = float(fh.readline())

 fh.close()

 else:

 fh = open("mobility_binaries.txt", "r")

 string = " "

 counter = 0

 while string != material_2:

 string = fh.readline()

 string = string.strip()

 counter += 1

 if counter>200:

 return 0,0

 mu1_p2 = float(fh.readline())

 mu2_p2 = float(fh.readline())

 Ncrit_p2b = float(fh.readline())

 Ncrit_p2p = float(fh.readline())

 Ncrit_p2 = Ncrit_p2b*np.power(10,Ncrit_p2p)

 alpha_p2 = float(fh.readline())

 beta_p2 = float(fh.readline())

 gamma_p2 = float(fh.readline())

 delta_p2 = float(fh.readline())

 mu1_n2 = float(fh.readline())

 mu2_n2 = float(fh.readline())

 Ncrit_n2b = float(fh.readline())

 Ncrit_n2p = float(fh.readline())

 Ncrit_n2 = Ncrit_n2b*np.power(10,Ncrit_n2p)

 alpha_n2 = float(fh.readline())

 105

 beta_n2 = float(fh.readline())

 gamma_n2 = float(fh.readline())

 delta_n2 = float(fh.readline())

 m_star_n2d = float(fh.readline())

 m_star_n2i = float(fh.readline())

 m_star_p2 = float(fh.readline())

 eps_h2 = float(fh.readline())

 eps_l2 = float(fh.readline())

 Egd_2 = float(fh.readline())

 Egi_2 = float(fh.readline())

 fh.close()

 # Triplet bowing parameters

 fh = open("mobility_triplet.txt", "r")

 string = " "

 counter = 0

 while string != triplet_name:

 string = fh.readline()

 string = string.strip()

 counter += 1

 if counter>200:

 return 0,0

 Bow_md = float(fh.readline())

 Bow_bd = float(fh.readline())

 Bow_mi = float(fh.readline())

 Bow_bi = float(fh.readline())

 # hole mobility

 m_star_p = mass(m_star_p1,m_star_p2,C)

 if material_2 == 'AlP':

 fp2 = 450

 else:

 fp2 = f(mu1_p2, mu2_p2, T, N, Ncrit_p2, alpha_p2, beta_p2, gamma_p2, delta_p2)

 eps_h = eps(eps_h1,eps_h2,C)

 eps_l = eps(eps_l1,eps_l2,C)

 Mu_p = mu(fp2, m_star_p, m_star_p2, eps_l, eps_l2, eps_h, eps_h2)

 # electron mobility

 Egi = _Eg_triplet(C,Egi_1,Egi_2,Bow_mi,Bow_bi)

 Egd = _Eg_triplet(C,Egd_1,Egd_2,Bow_md,Bow_bd)

 if material_1 == 'AlP':

 106

 fn1 = 60

 else:

 fn1 = f(mu1_n1, mu2_n1, T, N, Ncrit_n1, alpha_n1, beta_n1, gamma_n1, delta_n1)

 if material_2 == 'AlP':

 fn2 = 60

 else:

 fn2 = f(mu1_n2, mu2_n2, T, N, Ncrit_n2, alpha_n2, beta_n2, gamma_n2, delta_n2)

 m_star_nd = mass(m_star_n1d,m_star_n2d,C)

 m_star_ni = mass(m_star_n1i,m_star_n2i,C)

 Mu_nd = mu(fn2, m_star_nd, m_star_n2d, eps_l, eps_l2, eps_h, eps_h2)

 Mu_ni = mu(fn1, m_star_ni, m_star_n1i, eps_l, eps_l1, eps_h, eps_h1)

 Rd = _Rd(m_star_ni, m_star_nd, Egi, Egd, T)

 Mu_n = (Mu_nd*Rd)+(Mu_ni*(1-Rd))

 if quad_set != 0:

 return Mu_p,Mu_n,m_star_p,m_star_nd,m_star_ni,eps_h,eps_l,Egd,Egi

 else:

 return Mu_n,Mu_p

For (Al.7Ga.3).5In.5P:

mat_1 = AlP

mat_2 = GaP

mat_3 = InP

triplet_name_1 = AlInP

triplet_name_2 = GaInP

C_inner = the concentration of Al in the (AlGa) compound, .7

C_outer = the concentration of the (AlGa) compound, .5

def

mobility_quad(mat_1,mat_2,mat_3,triplet_name_1,triplet_name_2,quad_name,C_inner,

C_outer,T,N):

fp1,fn1,m_star_p1,m_star_n1d,m_star_n1i,eps_h1,eps_l1,Egd_1,Egi_1=mobility_triplet(

mat_1,mat_3,triplet_name_1,C_outer,T,N,1)

fp2,fn2,m_star_p2,m_star_n2d,m_star_n2i,eps_h2,eps_l2,Egd_2,Egi_2=mobility_triplet(

mat_2,mat_3,triplet_name_2,C_outer,T,N,1)

 # Quad bowing parameters

 if quad_name == 'AlGaInP':

 fh = open("mobility_quad.txt","r")

 string = " "

 107

 counter = 0

 while string != quad_name:

 string = fh.readline()

 string = string.strip()

 counter += 1

 if counter>200:

 return 0,0

 Bow_md = float(fh.readline())

 Bow_bd = float(fh.readline())

 else:

 fh = open("mobility_quad.txt", "r")

 string = " "

 counter = 0

 while string != quad_name:

 string = fh.readline()

 string = string.strip()

 counter += 1

 if counter>200:

 return 0,0

 Bow_md = float(fh.readline())

 Bow_bd = float(fh.readline())

 Bow_mi = float(fh.readline())

 Bow_bi = float(fh.readline())

 # hole mobility

 m_star_p = mass(m_star_p1,m_star_p2,C_inner)

 eps_h = eps(eps_h1,eps_h2,C_inner)

 eps_l = eps(eps_l1,eps_l2,C_inner)

 Mu_p = mu(fp2, m_star_p, m_star_p2, eps_l, eps_l2, eps_h, eps_h2)

 # electron mobility

 if quad_name == 'AlGaInP':

 Egi = _Eg_triplet(.55,Egd_1,Egd_2,Bow_md,Bow_bd) # .55 determined to be

crossover, slope is 0

 else:

 Egi = _Eg_triplet(C_inner,Egi_1,Egi_2,Bow_mi,Bow_bi)

 Egd = _Eg_triplet(C_inner,Egd_1,Egd_2,Bow_md,Bow_bd)

 m_star_nd = mass(m_star_n1d,m_star_n2d,C_inner)

 m_star_ni = mass(m_star_n1i,m_star_n2i,C_inner)

 Mu_nd = mu(fn2, m_star_nd, m_star_n2d, eps_l, eps_l2, eps_h, eps_h2)

 Mu_ni = mu(fn1, m_star_ni, m_star_n1i, eps_l, eps_l1, eps_h, eps_h1)

 Rd = _Rd(m_star_ni, m_star_nd, Egi, Egd, T)

 108

 Mu_n = (Mu_nd*Rd)+(Mu_ni*(1-Rd))

 return Mu_n,Mu_p

 109

APPENDIX G. MOBILITY CALCULATOR BINARY DATABASE

name

mu1_p

mu2_p

Ncrit_p base

Ncrit_p power

alpha_p

beta_p

gamma_p

delta_p

mu1_n

mu2_n

Ncrit_n base

Ncrit_n power

alpha_n

beta_n

gamma_n

delta_n

electron effective mass direct

electron effective mass indirect

hole effective mass

epsilon high

epsilon low

Bandgap direct (gamma)

Bandgap indirect (x)

GaAs

20

491.5

1.48

17

0

-2.2

-1.14

.38

500

9400

6

16

0

-2.1

 110

-1.182

.394

.067

.85

.53

10.89

13.2

1.519

1.981

AlAs

10

200

3.48

17

0

-2.24

-1.464

.488

10

400

5.46

17

0

-2.1

-3.0

1.0

.15

.19

.80

8.16

12

3.099

2.24

AlP

.22

.793

.7

8.06

9.8

3.63

2.52

GaP

 111

10

147

1

18

0

-1.98

0

.85

10

152

4.4

18

0

-1.6

-.568

.8

.13

1.12

.83

9.11

11.1

2.87

2.35

InP

10

170

4.87

17

0

-2

-1.86

.62

400

5200

3.0

17

0

-2

-1.5275

.47

.0795

.88

.62

9.61

 112

12.5

1.4236

2.273

 113

APPENDIX H. MOBILITY CALCULATOR TERTIARY DATABASE

name

Bowing parameter slope (m value) direct

Bowing parameter constant (b value) direct

Bowing parameter slope (m value) indirect

Bowing parameter constant (b value) indirect

AlGaAs

1.31

-.127

0

.055

AlInP

0

-.48

0

.38

GaInP

0

.65

0

.20

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

APPENDIX I. MOBILITY CALCULATOR QUATERNARY

DATABASE

name

Bowing parameter slope (m value) direct

Bowing parameter constant (b value) direct

Bowing parameter slope (m value) indirect

Bowing parameter constant (b value) indirect

AlGaInP

0

.18

0

 116

THIS PAGE INTENTIONALLY LEFT BLANK

 117

LIST OF REFERENCES

[1] P. Michalopoulos, "A novel approach for the development and optimization of

state-of-the-art photovoltaic devices using Silvaco," Naval Postgraduate School,

Monterey, CA, 2003.

[2] R. Kilway, "Five-junction solar cell optimization using Silvaco ATLAS," Naval

Postgraduate School, Monterey, CA, 2017.

[3] S. Pueschel, "Optimization of an advanced multi-junction solar-cell design for

space enviroments (AM0) using nearly orthoganal Latin hypercubes," Naval

Postgraduate School, Monterey, CA, 2017.

[4] M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, A. Fitzgerald and S. A. Ringel,

"Dual-junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates

with high open circuit voltage," IEEE Electron Device Letters, vol. 27, no. 3, pp.

142-144, 2006.

[5] J. Lindmayer and C. Wrigley, Fundamentals of semiconductor devices, New York,

NY: Van Nostrand Reinhold Company, 1965.

[6] "Energy bands in crystals," what-when-how, [Online]. Available: http://what-

when-how.com/electronic-properties-of-materials/energy-bands-in-crystals-

fundamentals-of-electron-theory-part-3/. [Accessed 29 May 2018].

[7] C. Honsberg and S. Bowden, "Standard Solar Spectra," PV Education, 2008.

[Online]. Available: https://www.pveducation.org/pvcdrom/appendices/standard-

solar-spectra

[8] C. Hu and R. White, Solar cells from basic to advanced systems, USA: McGraw-

Hill, Inc., 1983.

[9] S. M. Sze and K. Ng, Pysics of semiconductor devices, Hoboken, NJ: Wiley-

interscience, 2007.

[10] E. G. Stassinopoulos and J. P. Raymond, "The space radiation environment for

electronics," Proceedings of the IEEE, vol. 76, no. 11, pp. 1423-1442, 1988.

[11] G. Was, Fundamentals of radiation materials science, New York, NY: Springer,

2007.

[12] S. Adachi, "Optical properties of AlxGa1-xAs alloys," Physical Review B, vol. 38,

no. 17, pp. 12345-12352, 1988.

https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra

118

[13] S. Ozaki, S. Adachi, M. Sato and K. Ohtsuka, "Ellipsometric and

thermoreflectance spectra of (AlxGa1-x)0.5In0.5P alloys," Journal of Applied

Physics, vol. 79, pp. 439-445, 1996.

[14] J. E. Sutherland and J. R. Hauser, "A Computer Analysis of Heterojunction and

Graded Composition Solar Cells," IEEE Transactions on Electron Devices, vol.

24, no. 4, pp. 363-372, 1977.

[15] Silvaco, Inc., Atlas User's Manual, Santa Clara, CA, 2017.

[16] Rensselaer Polytechnic Institute, "Room temperature properties of

semiconducters: III-V phosphides," [Online]. Available:

https://www.ecse.rpi.edu/~schubert/Educational-resources/Materials-

Semiconductors-III-V-phosphides.pdf

[17] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, "Band parameters for III-V

semiconductors and their alloys," Journal of Applied Physics, vol. 89, pp. 5815-

5875, 2001.

[18] O. Madelung, U. Rossler and M. Schulz, Eds., Group IV Elements, IV-IV and III-

V Compounds. Part a- Lattice Properties, Springer, Berlin, Heidelberg.

[19] A. Saliev, "Electronic properties of aluminum phosphide (AlP)," 2013.

[20] "Semiconductors on NSM," NSM Archives, [Online]. Available:

http://www.ioffe.ru/SVA/NSM/Semicond/

[21] M. Porter, private communication, NIEL calculator, Monterey, CA, 2018.

[22] National Institute of Standards and Technology, "Stopping power and range

tables for electrons," [Online]. Available: https://physics.nist.gov/PhysRefData/

Star/Text/ESTAR.html. [Accessed 2018].

[23] M. J. Boschini, P. G. Rancoita and M. Tacconi, "SR-NIEL Calculator: Screened

Relativistic (SR) Treatment for tclculating the displacement damage and nuclear

stopping powers for electrons, protons, light- and heavy- ions in materials (version

3.9.5)," [Online]. Available: http://www.sr-niel.org/. [Accessed 2018].

[24] D. Pons, P. M. Mooney and J. C. Bourgoin, "Energy dependence of deep level

introduction in electron irradiated GaAs," Journal of Applied Physics, vol. 51, pp.

2038-2042, 1980.

https://www.ecse.rpi.edu/~schubert/Educational-resources/Materials-Semiconductors-III-V-phosphides.pdf
https://www.ecse.rpi.edu/~schubert/Educational-resources/Materials-Semiconductors-III-V-phosphides.pdf
http://www.ioffe.ru/SVA/NSM/Semicond/

 119

[25] K. Gartner, "MD simulation of ion implantation damage in AlGaAs: I.

Dispacement energies," Nuclear Instruments and Methods in Physics Research B,

vol. 252, pp. 190-196, 2006.

[26] Y. Okuno, S. Okuda, M. Akiyoshi, T. Oka, M. Harumoto, K. Omura, S. Kawakita,

M. Imaizumi, S. R. Messenger, K. H. Lee and M. Yamaguchi, "Radiation

degradation prediction for InGaP solar cells by using appropriate estimation

method for displacement threshold energy," Journal of Applied Physics, vol. 122,

pp. 114901-1 - 114901-7, 2017.

[27] P. Schultz and O. Lilienfeld, "Simple intrinsic defects in gallium arsenide,"

Modelling Simul. Mater. Sci. Eng., vol. 17, pp. 1-35, 2009.

[28] P. Schultz, "First principles defect chemistry for modeling irradiated GaAs and III-

V's," Sandia National Laboratories, Albuquerque, NM, 2011.

[29] S. M. Sanchez, NOLHdesigns spreadsheet. Available online via

http://harvest.nps.edu/. [Accessed 2018]

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

