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Finite difference approximations for the determination 
of dynamic instability 

By G. J. HALTINER, U.S. Naval Postgraduate School Monterey, California 

(Manuscript received May 27, 1963) 

ABSTRACT 

Approximate forms of the vorticity and thermal equations are linearized and combined 
to  yield a second-order partial differential equation for the amplitude of harmonic 
perturbations. Finite-difference approximations for the derivatives yield a homo- 
geneous system of algebraic equations; and the condition that its determinants vanish 
for a non-trivial solution yields the “frequency” equation, which may be solved to  
give the phase velocities of the harmonic waves. Solutions are obtained for zonal 
currents in which the wind varies vertically and horizonally and for a variety of 
conditions with respect to grid distances, latitude and current width. Generally speak- 
ing, the computations showed that decreasing the latitude and shear and increasing 
the static stability were all destabilizing influences, not without some exceptions, how- 
ever. In  addition, very short waves were found to be stable; however, instability was 
found for very long waves, including a retrogressive unstable mode. Moreover, multiple 
unstable modes were found for many wavelengths. 

Calculations based on actual observations of the jet stream in December show it to 
be dynamically unstable, both baroclinically and barotropically, with one mode of 
maximum instability at a wavelength of about 3000 to 4000 km and a secondary 
maximum at about 10,000 km. 

1. Introduction 

The dynamic stability of parallel currents has 
been a subject of interest to hydrodynamicists 
and meteorologists for a long time. With regard 
to the meteorological aspects, a classical paper 
by CHARNEY (1947) provided the first analysis 
of the Stability of baroclinic currents with 
vertical shear. On the other hand, Kuo (1949), 
following the work of C. C. Lin, determined 
the necessary and sufficient condition for dyna- 
mic instability in a non-divergent barotropic 
jet. The baroclinic case has received much at- 
tention including the recent work of GREEN 
(1960) and BURQER (1962), the latter clarifying 
the relationship between instability and wave- 
length of the perturbation. Both CHARNEY 
(1951) and POCINKI (1955) have considered the 
problem of vertical shear superimposed on a 
horizontal jet structure with the general con- 
clusion that the vertical shear, with its con- 
comitant horizontal temperature gradient and 
the conversion of potential energy to kinetic 
energy, is primarily responsible for the develop- 

ment of the typical large-scale unstable waves 
observed in the atmosphere. Very recently 
CHARNEY & STERN (1962) developed stability 
criteria for the case of an “internal jet” which 
is stable when the gradient of potential vorticity 
in isentropic surfaces does not vanish. On the 
other hand, if it vanishes on a closed isopleth 
of constant mean zonal vorticity the jet is 
unstable. 

In all of the investigations cited above the 
differential boundary value problem is highly 
complicated and it is very difficult, to obtain 
information concerning the solutions and phase 
velocities and their relationship to the charac- 
teristics of the basic current, that is, latitude 
wavelength, etc. To obtain such information it 
has frequently been necessary to resort to ap- 
proximation methods. The latter have con- 
sisted mainly of utilizing finite differences for 
approximating certain derivatives or using a 
finite Fourier series to achieve this end. For 
example, WIIN-NIELSEN (1961) utilized the 
Fourier series method to determine the stability 
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231 DETERMINATION OF DYNAMIC INSTABILITY 

properties of the divergent quasi-barotropic 
model for a jet-type current. HALTINER & 
SONG (1963) made some comparisons between 
the finite-difference and finite-Fourier methods 
for several quasi-barotropic models with both 
single- and double-jet currents. On the other 
hand, THOMPSON (1953), WIIN-NIELSEN (1959- 
1962), and others have used finite-differences 
for vertical derivatives in two- and three-level 
models to examine baroclinic flows. 

In this study finite-difference approxima- 
tions are utilized for both vertical and lateral 
derivatives in order to investigate zonal flows 
possessing both horizontal and vertical shear. 
The static stability, latitude, and grid distances 
are varied somewhat so as to determine their 
effects on the dynamic stability of harmonic 
waves. 

2. Derivation of the  basic equations 

The vorticity equation will be approximated 
by the following conventional form: 

Here V = k x V Y ,  7 is the mean coriolis para- 
meter and o =dp/d t .  Next the first  law of 
thermodynamics for adiabatic motions may be 
written 

g+ V - V T - u ' w = O ,  
at 

(3) 
R T  aT 

with 
P C D  PP'  

The further approximation 

a\r 
ap ap 
3 = f - ,  (4) 

together with the hydrostatic equation relating 
geopotential 4 and T ,  permits equation (2) to 
be expressed as 

( 5 )  

Equations (1) and (5) constitute a pair of 
equations in the unknows Y and o. Next these 
equations are linearized with Y = ( y ,  p )  + Y' 
(2 ,  y ,  p ,  t )  and w = w ' ( z ,  y ,  p ,  t ) ,  with the result 

(7)  

9 (8) 
aaY' a aY' aUaY' _ _  + U - - - - - - + + o ' = O  
at ap ax ap ap ax 

where U = U ( y ,  p )  represents the basic current. 
Now assuming harmonic solutions of the form 

and sub- ~ ' = A ( y , p ) e ' p ' f - C t ' , w ' =  W ( y , p ) c  
stituting into equations (7) and ( 8 )  leads, res- 
pectively, to 

Lp(t- c t )  

aA aU ia 
( U - c ) - - - A - -  W = O .  (10) 

ap ap P 

For boundary conditions it will be assumed that 

A=O, a t y = O  and y = D .  (11) 

W =0, at p = O  and p = p ,  = 1000 mb. 

(128) 

When substituted into equation (lo), the 
vertical boundary conditions (12a) show that 

aA aU 

ap 
( U - c ) - - - A - 0 ,  at p = O  and p - p o .  

(12 b) 

The function W is easily eliminated from the 
system (9) and (10) by differentiating the latter 
with respect to p ,  giving the following equation 
in A :  

f a %  
- p ' ( U - c )  - -- 

a PP' 

(13) 
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232 a. J. HALTINER 

This equation is to be solved for A ,  subject to 
the boundary conditions (11)  and ( 1 2 a )  for 
given distributions of the basic flow U and the 
related static stability u. 

If the vertical variations of U ,  A ,  and u 
are omitted, equation (13) reduces to the 
familiar linearized equation for non-divergent 
barotropic perturbations. On the other hand, 
disregarding the lateral variation of U and A 
leads to an equation for purely baroclinic 
disturbances. In any case the lateral boundary 
conditions (11)  impose a finite lateral extent. 

Equation (13) may now be reduced to a 
system of algebraic equations by utilizing a 
finite Fourier series to represent A or by ap- 
proximating the derivatives of A by finite 
differences. The latter method will be applied 
here, since it appears to be somewhat simpler 
with respect to the determination of the phase 
velocities. The atmosphere will be divided 
vertically into N layers, each of pressure 
thickness P, with the adjacent pressure levels 
designated from 0, at p = 0, to N ,  corresponding 
to p = 1000 mb. Similarly the lateral direction 
will be subdivided into increments of width d .  
At this point it will be further assumed that 
the perturbations are laterally symmetrical 
with respect to the center of the basic current. 
Hence only half of the channel need be con- 
sidered, and it will be divided into M bands 
with the center of the current denoted by the 
index j = 0, and the northern boundary by the 
index j = M .  

Use of the usual centered difference approxi- 
mations for the derivatives in (13) results in 
the following system of homogeneous algebraic 
equations: 

= O  ( j = O ,  1, ..., ( M  - 1); k =  1 , 2  ,..., ( N  - 1)) .  

(14)’ 

The lateral boundary condition (11) and the 
assumption of lateral symmetric require: 

A,*k=O (k=O, 1 ,..., N ) ;  and A~- l ,k=Al ,k .  

(15) 

Finally the vertical boundary conditions 
( 1 2 a )  lead to 

Here a backward and a forward difference were 
used, respectively, for the derivatives a t  the 
vertical boundaries. 

The condition that the homogeneous system 
(14), (15)  and (16)  possess a solution for the A’s 
is that the determinant of the coefficients 
vanish. This yields the “frequency equation” 
for the phase velocity c, the value of which 
can be calculated for given distributions of 
wind, static stability and also latitude, wave- 
length, etc. These phase velocities, in turn, can 
then be used with the values of the A’8 to con- 
struct the complete solution. In  this study the 
stability characteristics, as indicated by these 
wave velocities, are of primary interest. A 
series of computations was made for a number 
of different distributions of zonal wind and 
static stability, as well as varying wavelength, 
latitude and grid length. 

LORENZ (1960) has shown by application of 
the Gauss divergence theorem that for the system 
(l) ,  (2) to conserve energy (excluding the kinetic 
energy of the vertical motion), the static stability 
parameter IJ must be treated as a function of p at 
most. To conform with these results, the subscript 
j on u in (14) must be considered as superfluous. 

3. Results 

The first zonal wind field considered is 
represented by the following matrices of zonal 
velocity (Table 1)  and static stability (Table 2). 
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TABLE 1. Zonal wind velocity U in mlsec with 
pressure and latitude increasing with the vertical 

and horizontal indices k and j .  

0 0  0 0 0 0 0 0 

1 0 2.00 7.50 15.00 
2 0 4.00 15.00 30.00 
3 0 1.80 6.75 13.50 
4 0 1.20 4.50 9.00 
5 0 0.80 3.00 6.00 
6 0 0.47 1.75 3.50 
7 0 0.20 0.75 1.50 
8 0  0 0 0 

klj 6 5 4 3 

22.50 
45.00 
20.25 
13.50 
9.00 
5.25 
2.50 
0 

2 

28.00 
56.00 
25.00 
16.80 
11.20 
6.50 
2.80 
0 

1 

30.00 
60.00 
27.00 
18.00 
12.00 

7.00 
3.00 
0 

0 

In  addition, f = 1.03 x 10-4sec-1 and = 1.63 x 
10-*"sec-1cm-' (corresponding to 45 degrees 
latitude), d =250 km, P =125 mb, and the 
total width of the basic current D is 3000 km. 
This particular velocity distribution was chosen 
to correspond to the function U = B(l -cos 
2ny/D) ,  with B = 30 m/sec at the level of maxi- 
mum wind. This field satisfies Kuo's condition 
for barotropic instability and has been in- 
vestigated to some extent previously (WIIN- 
NIELSEN, 1962; HALTINER, 1963). The tempera- 
ture field was determined first by taking the 
1000 mb values as well as a vertical sounding 
near the center of the jet from some mean 
values for 12 days in December (1946). The 
remainder of the temperature distribution was 
determined by the geostrophic thermal wind 
relation, and finally the stability parameter 
was calculated from the temperature field. The 
computed static stability field showed a few 
slightly super-adiabatic values just below the 
tropopause surmounted by a sharp inversion. 
To avoid these abnormalities, the u field was 

TABLE 3. Complex values of wave velocity as a 
junction of wavelength for Case 1, M = 3 (d = 500 

k m ) ,  N = 4  (P  =250 mb). 
Zonal wind is given by Table 1 and mean static sta- 
bility U in the last column of Table 2 (alternate values 
only). Case 2 is similar to Case 1 except that the zonal 

wind is a linear function of pressure. 

c ( m l s )  

L(103 krn) Case 1 Case 2 
~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16-25 

none 
7.30 k 0.31 i 
none 
none 
17.62 f 2.05 i 
15.78 f 2.70 i 
14.29f2.13i 
none 
none 
none 
none 
none 
- 0.22 k0.41 i 
- 0.84f 0.83 i 
- 1.41 f 0.73 i 
none 

none 
16.43 k 1.47 i 
21.78 k 1.51 i; 6.18 k 1.43 i 
21.11 f 1 . 7 9 i  
20.49 k2.63 i 
19.22 f 3.97 i 
17.89 k 4.57 i 
16.75k4.70.3 
15.78 f 4.58 i 
14.98 k 4.29 i 
14.29 f 3.90i 
13.69 F 3.42 i 
13.15f2.84i 
12.60k2.08 i 
10.80 * 1.09 i 
no computation 

smoothed somewhat in the vicinity of the 
tropopause, with the results shown in Table 2. 
The last column shows the horizontally averaged 
values u for each pressure level. 

Next, wave velocities were determined for a 
number of different cases with several values of 
P and d.  Table 3 gives only the complex values 
(ci + 0 )  for Case 1 corresponding to d = 500 km 
(M = 3); and P = 250 mb (N = 4), and for wave- 
lengths ranging from 1000 to 25,000 km. 
Progressive unstable waves are found for 
wavelengths of 5000 through 7000 km, while 
slowly retrogressive waves with considerably 

TABLE 2. Static stability a in M T S  units. 

103 
107.9 
54.50 
0.20 
4.74 
3.13 
2.00 
1.08 
1 .oo 
5 

103 
107.8 
52.70 
0.60 
4.79 
3.12 
2.00 
1.10 
1.05 
4 

103 103 
108.5 112.4 
48.70 41.40 

1.25 2.40 
4.91 5.12 
3.11 3.12 
2.02 2.15 
1.14 1.18 
1.11 1.15 

3 2 

103 
113.5 
31.70 
3.75 
5.37 
3.12 
2.22 
1.22 
1.20 

1 

103 
112.1 
21.9 

5.50 
5.65 
3.15 
2.01 
1.58 
1.25 

0 

103 
110.0 
42.54 
2.17 
5.08 
3.12 
2.08 
1.19 
1.13 

a 
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TABLE 4. Wave velocities ( m / s )  for Case 3,  
M = 3  (d =500 k m ) ,  N = 4  ( P  =250 m b )  for zonal 
wind of Table 1 (alternate values only),  a of 

Table 2 and a wavelength of 600 km.  

Case 1 
(a! 

Case 3 
( b )  

60.00 
45.00 
41.14 
15.00 
15.78f2.70i 
8.12 
7.00 
5.97 
5.25 
3.25 
1.88 
1.75 

- 0.27 
- 22.51 

60.00 
45.00 
40.74 
15.00 
16.38 k 2.35 i 
9.16 
7.00 
6.65 
5.25 
2.27k0.11 i 

1.75 
- 0.83 
- 22.67 

smaller amplification factors are found for 
wavelengths of 13,000 through 15,000 kilo- 
meters. For each of the above wavelengths 
only one of the 15 eigenvalues was complex 
and the real values of c ranged from 60 m/s to 
- 22.5 m/s. 

Most previous studies of baroclinic instability 
assumed a simple zonal wind profile in the 
vertical; for example, U has been taken as a 
linear function of pressure or height. In order 
to get some indication of the effect of the 
vertical jet-type structure, the computations 
were repeated for wavelengths 1 through 15 
with conditions identical to Case 1 save that 
the zonal wind was made to vary linearly with 
pressure from zero at  1000 mb and reaching 
the same values as the row, k =2,  in Table 1, 
and then continuing to increase at the same 
rate up to k = O .  Thus the zonal winds for the 
column j =0, 20, 40, 60, and 80 m/sec a t  k = 

TABLE 5. Wave velocities (mls) for a wavelength of 6000 k m  as Q function of horizontal grid index 
for  zonal winds of  Tables 1 and 6 and static stability a of Table 2. 

Those values marked with an asterisk are exactly equal to the zonal wind velocities at certain mesh 
points, namely at k = 2  and 6 in Table 1 and at k = 1 and 3 in Table 6. 

M = 2, N = 4 M = 3, N =  4 M = 4 , N = 4  M = 5, N =  4 M = 6, N = 4 

60.00* 

30.00* 

29.35 

13.99 
8.51 

7.00* 

4.08 
3.50* 

- 4.02 
-23.01 - 

60.00* 

45.00* 
41.14 

15.00* 
15.78 k 2.70 i 

8.12 

7.00* 

5.97 
5.25* 

3.25 

1.88 
1.75* 

-- 0.27 
22.51 - 

60.00* 
51.21* 
47.76 

30.00* 

29.12 

12.94k3.78i 

8.79* 
7.91 k 0.28 i 
7.00* 
6.80 

5.98* 

3.80 
3.50* 
2.645 

1.05 
1.026* 
0.44 

22.33 - 

60.00* 
54.27* 
51 59 

39 27* 
37.24 
20.95 
20.93* 

11.53 k 2.43 i 
10.88 
7.94 

7.00* 
6.93 
6.33* 
5.82 
5.73* 
5.12 

4.58* 
2.54 
2.42* 
1.90 

0.72 f 0.03 i 

0.67* 

22.25 - 

60.00* 
56.00* 
53.93 
45.00* 
42.79 
30.00* 

29.33 
15.00* 
14.39 k2.53.i 
12.79 
8.50 
8.01 k 0.39 i 
7.00* 
7.02 
6.50* 
5.66 
5.25* 
4.45 
4.00* 
3.82 
3.50* 

1.81 
1.75* 
1.15 k 0.17 i 
0.47* 
0.46 

22.21 

Tellus X V  (1963), 3 



DETERMINATION OB DYNAMIC INSTABILITY 236 

TABLE 6. Zonal wind velocity U (mle) for the 
cmea, n = 4 ,  N = 4  (upper), and M = 5 ,  N = 4  

(lower). 

0 
1 
2 
3 
4 

k l j  

0 0  
1 0  
2 0  
3 0  
4 0  

i lk 5 

0 
0 
0 
0 
0 
4 

0 
5.730 
1.720 
0.669 
0 

4 

0 0 0 0 
8.790 30.0 51.210 60.0 
2.640 9.0 15.360 18.0 
1.026 3.5 5.980 8.0 
0 0 0 0 

3 2 1 0 

0 0 0 0 
20.730 39.270 54.270 60 
6.220 11.780 16.280 18 
2.420 4.580 6.330 7 
0 0 0 0 

3 2 1 0 

8, 6, 4, 2, and 0, respectively. The results, 
which are labeled Case 2 in Table 3, are markedly 
different in several respects. Firstly there is 
more instability including two unstable modes 
for L = 3000 km; and secondly the instability is 
shifted toward longer wavelengths. This seems 
to suggest that the vertical jet-like structure is 
perhaps as important as the horizontal jet 
characteristics with respect to dynamic in- 
stability. 

In order to determine the effect of a change 
in mean latitude, and also as partial check on 
the numerical method, the mean latitude was 
changed from 45" to 60". The comparatively 
minor changes in the parameters 7 and B 
constitute an indirect indication of the effect of 
round-off errors during matrix inversion. The 
phase velocities for a wavelength of 6000 km 
are shown in Table 4 with column (a )  cor- 
responding to 45" and ( b )  60". In general the 
values correspond very closely. The higher 
latitude yields an additional unstable mode 
with the phase velocity (2.27 + 0 . l l i )  m/s. Al- 
though the imaginary part is rather small, 
there is an indication here of greater instabilit,y 

TABLE 7. Complex values of wave velocity (m/s) 

corresponding to the higher latitude. On the 
other hand, the primary unstable mode shows 
a slightly smaller imaginary part, namely a 
decrease from 2.70i to 2.36i.  In this connection, 
some other computations with a decreased 
parameter corresponding to 75" gave larger 
ti's, a shift in the maximum c i  toward longer 
wavelengths and slightly faster eastward pro- 
pagation. 

The purpose of the next series of computations 
was to determine the effects of decreasing the 
horizontal and vertical mesh size while main- 
taining the same overall current width and 
depth, as well as the other parameters. Table 5 
gives the phase velocities for a wavelength of 
6000 km, mean latitude of 45", vertical index, 
N =4, and horizontal indices from M = 2  (d = 

los km) to M = 6, (d =250 km). The zonal 
winds for the M =2, 3, and 6 cases are to be 
found in Table 1, corresponding to every third 
column, every second column, and all columns, 
respectively. The zonal velocity fields for M = 4 
and 5 which are analytically determined with 
respect to the lateral direction, are given in 
Table 6. These are included because a number 
of the phase velocities (indicated with an 
asterisk) given in Table 5 are trivial roots cor- 
responding to zonal velocities a t  mesh points 
a t  levels k = 1 and 3 in Table 6, and k = 2 and 
6 in Table 1. 

Table 5 shows the expected increased number 
of roots with an increased number of subdivi- 
sions in the horizontal. Of particular interest is 
the appearance of several unstable modes for 
this particular wavelength. The most unstable 
mode has an eastward propagation speed of 
approximately 13 to 14 m/s, while the other 
unstable modes have much smaller amplification 
factors. There is quite good continuity of the 
various roots with increasing number of sub- 
divisions; however, indications of convergence 
are not always apparent, a feature which is 

for zonal winds of Tablea 1 and 6 and mean static 
stability a of 'Table 2 for a wavelength of 6000 km & a function of horizontal and vertical grid indices. 

M = 2 , N = 4  M = 3 , N = 4  M = 4 , N = 4  M = 5 , N = 4  M = 6 , N  = 4  M = 3 , N = 8  M = 6 , N = 8  

none 15.75k2.78i 12.94k3.78i 11.53f2.43i 14.39f2.35i 15.85k3.15i 14.44k3.21 i 
7.91 f 0.28 i 8.01 f 0.39 i 7.86 k 2.34 i 7.62 k2.35 i 

5.31 k1 .23 i  4.77f0.71 i 
3.04 k 0.58 i 

0.72 k0.03 i 1.15 f 0 . 1 7  i 1.58 f0.53 i 1.42 k 0.29 i 
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TABLE 8. Similar to Table 7 ,  but for special conditions a8 indicated. 

Case 4 Case 5 Case 6 
( a U / a p  = 0, M = 3, N = 8, L = 6)  (aU/ap  = a U / a p  = 0, M = 3, N = 8, L = 6) 

u = 2 MTS units 

(aU/ay = 0, M = 3, N = 8)  

L = 6  
7 

(T = 20 MTS units 0 = 2 MTS units a = 20 MTS units 

10.39 f 0 . 5 2  i 28.93 k 8.81 i 20.55 f 6.20 i 1 6 . 6 5 f 6 . 7 7 i  9.21 k 5.57 i 
9.33 k 2.47 i 10.88 f 2 60 i 16.65k6.77i  7 .53L 1 .57i  
4.88 k 0.19 i 5 . 5 0 f 4 . 1 7  i 6.57 k 1.24 i 

1.71 k 0 . 1 2 3 i  

somewhat clouded by the addition of five roots 
for each unit increase of M .  

Table 7 gives only the complex phase velo- 
cities for the examples of Table 5 and in addi- 
tion several cases with greater vertical resolu- 
tion, namely, for M = 3, N = 8 and M = 6, N = 8. 
Again it may be noted that the number of un- 
stable modes increases with increasing number 
of mesh points, culminating in five conjugate 
pairs of complex eigenvalues for the M = 6, 
N =8 case. There appears to be fair continuity 
with respect to the propagation speeds of 
roughly 14, 8, 5 and 1 m/s; however, the 
imaginary part of the phase velocity appears to 
fluctuate somewhat more, particularly in the 
rather large leap from N = 4 to N = 8. 

Next some special cases were computed with 
uniformity of U and/or u in the lateral or 
vertical direction. Case 4 in Table 8 gives the 
complex values of c for L =6000 km and the 
velocity field of Table 1 ,  but with constant 
static stability values of 20 and 2 MTS units, 
respectively. The lower static stability has one 
more (dynamically) unstable mode and ap- 
pears generally more dynamically unstable, in 
conformance with earlier studies. This is also 
brought out by comparison to Table 7 with a. 
Perhaps the most unusual aspect here is the 
appearance of the root c = 28.93 5 8.81 i, which 
is considerably larger than any other value, 
both with respect to propagation speed and 
amplification factor. 

Case 5 corresponds to uniformity of U and a 
in the vertical direction (barotropy) with the 
U values taken a t  the level of maximum wind, 
i.e., the third row (k =2)  of Table 1. Here the 
number of unstable modes is sharply decreased 
as compared to the baroclinic cases. There 
appears to be no simple explanation for the 
appearance of an additional phase velocity of 
20.55 h6.20i  in the barotropic example with 

higher static stability. Perhaps, the reader 
should be reminded here that even though the 
basic current is barotropic, the disturbances 
are not assumed vertically uniform, nor are 
vertical motions neglected a priori as in some 
of the previous barotropic studies mentioned 
earlier. 

Case 6 considers what might be t.ermed pure 
baroclinic instability, that is, without lateral 
shear. The values of U and a were taken at  the 
center of the jet, corresponding to j = 0  in 
Tables 1 and 2. Nevertheless, the lateral boun- 
dary condit,ions still prevail so that the distur- 
bances are of finite width. The results for L = 6 
are given in Table 8. Comparison to Table 7 
( M  =3,  N = 8 )  shows one more unstable mode 
in the latter, where lateral shear is also present. 
It should be noted, however, that the stability 
parameter differed somewhat in the two cases, 
primarily near the level of maximum wind. 

With respect to the reliability of the method 
used here, there are perhaps two main aspects. 
One concerns the replacement of the dif- 
ferential equation by a system of algebraic 
equations and thus involves truncation errors 
originating from the finite difference approxi- 
mations to derivatives, while the second pertains 
to errors resulting from the iterative methods 
used for the inversion of the large-order matrices 
associated with the algebraic system. A brief 
discussion of the second point is given in an 
appendix at  the end of the paper. 

In general it is difficult to estimate the 
reliability of numerical methods because ana- 
lytical solutions are not available for the 
models considered here. A check was made for 
one of the low order barotropic cases by com- 
paring the roots obtained by the method used 
herein to those gotten by an entirely different 
method. The comparison was very good indeed. 
Also WIIN-NIELSEN (1962) provided an ana- 
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TABLE 9. Average zonal Wind (mls) and atatic 
stability parameter ( M T S  units), U / a  for 12 
cmea in December 1916 aa taken from “Jet 
Streams in  the Atmosphere” published by the 

U.S. Navy. 

0 10/23.0 16/23.0 20123.2 40/20.0 22.7 
1 5/22.8 11/22.9 25123.2 67/20.9 22.7 
2 414.25 6l4.25 17/4.55 49/4.10 4.32 
3 3/2.62 5/2.41 13/2.12 16/2.20 2.31 
4 3/1.95 4/1.74 511.44 5/1.10 1.57 

- k / j  3 2 1 0 U 

lytical solution for the case of a constant zonal 
current U = 10 mlsec and variable static 
stability, cr = 2  ( p o / p )  MTS units. The wave 
velocities he obtained are as follows: c =4.57, 
7.80, 8.86, and 9.31 m/s for L =6000 km; and 
1.51, 7.42, 8.77, and 9.28 m/sec-l for L =  
28,000 km. The above perturbations, however, 
were of infinite lateral extent whereas in the 
present model, they are of finite width. Never- 
theless, the results were very similar. All roots 
computed by the present method were real as 
above, and for M = 3, N = 4, the 15 roots ranged 
from 2.53 to 10 m/sec-’; while for M = 3, N = 8, 
there were 27 real roots with exactly the same 
range. It should be mentioned that there were 
some multiple roots; for example, the value, 
c = 10 m/sec = U ,  had a multiplicity of six in 
both runs. It ma,y be recalled here that Haur- 
witz waves of finite lateral width move some- 
what slower than the corresponding Rossby 
waves of infinite lateral extent, which may 
account for the slightly lower propagation 
speed. 

Next some computations were made with 
data based entirely on observation. Table 9 
gives the zonal wind and stability parameter for 
an average jet derived from twelve observation 
times in December 1946 extending from the 
center of the jet at  45 to 60”N. The zonal 
winds and stabilities for k = 0 are taken from 
about 100 to 150 mb. This data was obtained 
from “Jet Streams of the Atmosphere”, 
NAVWEPS 50-1P-549, published by the Chief 
of Naval Operations, U.S. Navy. Table 10, 
Case 7, gives the phase velocities for unstable 
waves for wavelengths from 1000 to 15,000 km 
utilizing these zonal winds and 0 values. Two 
unstable modes appear for most wavelengths. 
The first mode has a maximum cI near values 

Tellus XV (1963), 3 

16 - 632894 

TABLE 10. Wave velocitiea for umtable wavea for 
the zonal wind U and mean static stability cr of 

Table 9,  M = 3 ,  N = 4 .  

L( lo3 km) Case 7 c(m/s) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16-25 

none 
22.93 k 4.03 i 
33.26 k 8.01 i 
29.52 k 10.05 i 
26.57 f. 10.04 i 
24.24k 9.243 
22.42k 8.22i 
21.05k 6.63i 
20.37f 4.54i 
20.96f 2.61 i 
22.18f 1.93i 
22.75f 1.84i 
23.06f 1.77i 
23.28f 1.71 i 
23.43 k 1.66i 
none 

18.23 f 5.16 i 
14.94 k 2.66 i 
5.73k1.88i 

14.68 f 2.42 i 
13.57f3.53i 
12.48k3.84i 
11.64f3.83i 
10.98 f 3.67 i 
10.46 f 3.44 i 
10.07 f 3.17 i 

of L of 4 and 5; then c1 decreases steadily up 
through L = 15. The eastward propagation 
speeds here appear somewhat large compared 
to the normal movement of the upper air 
troughs. The propagation speeds of the second 
unstable mode are more realistic, but the 
amplification rates are definitely smaller up 
through L =9000 km. It is interesting to 
compare Table 10 to Table 3. Firstly, Case 7 
shows greater instability than both Cases 1 
and 2, but especially the former. From bhe 
various examples studied this appears to be 
partly due to the greater shear exhibited in 
Table 9 and also due to the assumed velocities 
at k = 0, a t  least in comparison to Case 1, where 
negative vertical shear is very marked above 
the level of maximum wind. This negative 
shear appears to have a stabilizing influence. 

The computations were also carried out in- 
cluding the lateral variation of static stability 
as given by Table 9. Although the permission 
of lateral variation of static stability results in 
an energetically inconsistent model, it was felt 
that some useful information might be inferred. 
In  any event, the phase velocities were very 
nearly equal to those of Table 10. 

Next the computations were conducted with 
a vertically uniform zonal wind with values 
corresponding to k = 1 in Table 9. The static 
stability parameter is constant at  a = l O  MTS 
units and other parameters remain fixed. The 
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TABLE 11. Wave velocities for unstable waves for a vertically uniform zonal wind with horizonta 
shear corresponding to the level k = 1 in  Table. 9. 

~ ( 1 0 3  km) c(m/s) 

1 none 
2 none 
3 3 3 . 1 3 f  9 .39i  35.29 f 6.90 i 
4 3 2 . 6 7 k  9 .73i  36.55 f 4.04 i 28.64 k 11.21 i 
5 30.82 f 10.71 i 35.78 f 6.02 i 24.71 f l 0 . 6 9 i  
6 2 9 . 5 2 f  11.09i 35.30 f 6.89 i 2 1 . 2 3 f  8 .70i  
7 2 8 . 5 9 f 1 1 . 2 2 i  34.97 f 7.38 i 1 7 . 0 5 f  4.79.1’ 
8 27.91 f 11.25 i 34.76 k 7.68 i I2 .00k 4 . 2 0 i  
9 24.40 f 11.24 i 34.60k 7.89 i 9.51 f 2 . 3 7 i  

10 27.02 f 11.21 i 34.49 f 8.03 i 
11 2 6 . 7 l k l l . l S i  34.40 f 8.13 i 
12 2 6 . 4 8 f 1 1 . 1 4 i  34.34 f 8.21 i 
13 26.29 f 11.11 i 34.28 f 8.27 i 
14 26.13 k 11.08 i 34.24 k 8.32 i 
15 26.01 f l l . 0 6 i  34.21 k 8.36 i 

results in Table 11 show pronounced barotropic 
instability at  the level of maximum wind and 
maximum horizontal shear. The computations 
were then repeated with the larger static 
stability of 22 MTS units. The results generally 
showed a marked reduction in the degree of 
instability with mostly smaller values of ci  and 
a maximum of two unstable modes. It hardly 
need be stated that computations with winds 
corresponding to other levels (other than the 
maximum wind), where the horizontal shear is 
less, give less instability. Thus the so-called 
“barotropic instability” resulting from hori- 
zontal shear may be expected to be most pro- 
minent near the level of maximum wind. On 
the other hand vertical shear is large throughout 
a sizable portion of the troposphere. 

Concluding remarks 

The dynamic stability characteristics of zonal 
currents have been obtained by a numerical 
evaluation of the phase velocities of harmonic 
waves based upon finite-difference approxima- 
tions of the linearized thermal and vorticity 
equations. The resultjs bear out some of the 
conclusions of earlier models and indicate that 
a decrease in the parameter, static stability, 
horizontal and vertical shear are generally 
destabilizing influences, but not without some 
exceptions. 

The particular examples studied here, in- 
cluding observed data on the jet stream in 

December, exhibited both baroclinic and baro- 
tropic instability; and the latter i s  by no 
means negligible, particularly a t  the level of 
maximum wind. Perturbations of short wave- 
length, about 1000 to 2000 km, were found to 
be dynamically stable; however, a t  other wave- 
lengths, there were rather wide differences 
among the various cases. I n  Case 1 maximum 
instability was found a t  a wavelength of about 
6000 km, then there was a band with no un- 
stable waves between 8000 and 12,000 km, 
followed by some very slow retrogressive waves 
with slight instability range 13,000 to 15,000 
km. An interesting feature was the striking 
change in the character of the dynamic in- 
stability when the vertical jet structure was 
eliminated by allowing the zonal wind to in- 
crease linearly with pressure. Also the stability 
properties of the more or less hypothetical 
Case 1 differed considerably from those based 
strictly on observational data. 

Some of the computations displayed multiple 
unstable modes with various wavelengths. In 
general the number of roots increased with an 
increasing number of subdivisions of the funda- 
mental region. This is expected, of course, 
since the order of the matrix increases with an 
increasing horizontal and vertical indices; how- 
ever, the number of roots is not of necessity 
equal to the order of the matrix as may be 
readily shown by example. There is some 
obvious physical significance to such an in- 
crease in the number of roots. Firstly, there 

Tellus XV (1963), 3 



DETERMINATION OF DYNAMIC INSTABILITY 239 

3 

A0.o 

AO.1 

A0.N 

'40.0 

AM-1.N - 

is frequently an infinite number of eigenvalues 
associated with the analytic solution of a 
boundary-value problem; and it would appear 
that increasing the number of subdivisions 
permits more roots to appear, particularly as 
additional nodal points. Secondly, many of the 
roots may be the more or less trivial solutions 
corresponding to phase velocities equal to the 
zonal wind at  the mesh points. Nevertheless, 
this numerical approach may introduce some 
eigenvalues extraneous to the original boundary 
value problem. 

Another obvious disadvantage of such purely 
numerical methods is that the phase velocities 
are not expressed explicitly in terms of the 
properties of the basic current such as shear, 
latitude, static stability, etc., so that the role 
of each of these parameters is not so readily 
apparent. Of course, successive runs may be 
made with all parameters held constant save 
one, thus determining the influence of that 
particular parameter. But even this is obviously 
not as satisfactory as an explicit analytical 
solution; moreover, it  may require extensive 
computational effort. On the other hand, the 
numerical method does provide approximate 
phase velocities for harmonic waves in rather 
complex zonal wind fields. 

- 0  

Appendix 

The system of equations given by (14), (15) 
and (16) can be written in the following form: 

c which permit this condition to be fulfilled 
are, of course, the phase velocities of the 
harmonic waves of the meteorological system. 

If D is non-singular we can write 

( B  - c D ) A = ( B D - ' - c I ) D A = O ,  

where I is the unit matrix and D-' is the in- 
verse of D .  The condition for a non-zero solu- 
tion of A may now be seen to depend on the 
singularity of the matrix (BD-' - c I ) .  Thus the 
phase velocities of the system (14), (15) and 
(16) are just the eigenvalues of the matrix 
BD-l, and similarly its eigenvectors D A  will 
directly provide the amplitude functions A 
merely by multiplication with D-l; i.e., A = 

D-l ( D A ) .  
The problem of determining the eigenvalues 

and eigenvectors of a matrix is classical and 
there is considerable literature on the subject. 
Iterative methods, particularly suited to modern 
electronic computers, have been devised for 
application to large-order matrices. The method 
used here is described by OSBORNE (1958) and 
consists essentially of three parts. Briefly, the 
so-called power method is applied first until 
certain criteria are met, then the inverse power 
method of Wieland i R  utilized until further 
conditions are met. Finally, on finding an 
eigenvalue, the matrix is deflated. Then the 
process repeated until the continued deflation 
leads to a one-by-one matrix, which is the final 
eigenvalue. 

or briefly ( B  - c D ) A  =0, 

where c is the phase velocity, B and D are 
square matrices involving the velocity and 
static stability fields, latitude, etc., and A is 
a column vector. The necessary and sufficient 
condition for a non-zero solution of A is that 
the matrix ( B  -cD)  be singular. The values of 
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Osborne reports test cases which show an 
accuracy for the eigenvalues to five significant 
figures for a matrix of order 50. Another case 
of order 70 was being tested and was reported 
to be accurate to six places in the first 19 
eigenvalues, the remainder were yet to be 
computed at the time of writing. These reports 
attest the accuracy of the method for high- 
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order matrices. The maximum size tried thus 
far in these meteorological experiments was 
for the ( M  = 6 ,  N = 8 )  case of Table 7, which 
had 6 x 9 = 54 eigenvalues. The required com- 
puting time was slightly over one hour on a 
Control Data Corporation (CDC) 1604 com- 
puter having a core storage of 32,768 words of 
48 bits each and a typical add time of 7.2 
microseconds. 

As an illustration of the manner of conver- 
gence of the iterative scheme, the successive 
approximations for one of the complex eigen- 
values is given below: 

1.9727168 + 0.25197500i 
2.7299276 + 0.32692392i 
2.8093565 + 0.37778137i 
2.9266281 + 0.3932114% 
2.9388445 + 0.45056607i 
2.9744696 + 0.49454242i 
3.0049183 + 0.53366869i 
3.0326779 + 0.56017892i 
3.0516001 + 0.57844203i 
3.0617377 + 0.59076983i 
3.0646291 + 0.60018088i 

3.0627056 + 0.60859656i 
3.0582198 +0.61712984i 
3.0529552 + 0.62621076i 
3.0481466 + 0.63581022i 
3.0445522 + 0.64662653; 
3.0425255 + 0.65521790i 
3.0420947 + 0.66411370i 
3.0430370 + 0.67190399i 
3.0449639 + 0.67830924i 
3.0537138 + 0.70134526i 
3.0536066 + 0.70149176i 
3.0536067 + 0.70149177i 

Some roots showed somewhat greater fluctua- 
tions, at  least initially, in converging toward t,he 
final value. 
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ERRATA 

In the Abstract of this article, line 10, the word destabilizing should be stabilizing. 
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