
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1975-07

System Test Methodology Vol. I

Bradley, G.H.; Howard, G.T.; Schneidewind, N.F.;
Montgomery, G.W.; Green, T.F.
Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/63316

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NPSSSSS7 507 2 A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

SYSTEM TEST METHODOLOGY VOL. I

by

G. H. BRADLEY

G. T. HOWARD

N. F . SCHNEIDEWIND

G. W. MONTGOMERY

T . F . GREEN

July 1975

Approved for public release; distribution unlimited

Prepared for:
Naval Air Development Center
Warminster, Pennsylvania

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Isham Linder
Superintendent

Jack R. Borsting
Provost

This work herein was supported by the Naval Air Development
Center, Warminster, Pennsylvania.

Reproduction of all or part of this report is authorized.

Da d A. Schrady, Chai an
Department of Operatio Research

and Administrative

Prepared by:

Robert Fossum
Dean of Research

&

•

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA.GE (When D•I• Bnl•t•d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER r· GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NPS55SS75072
4, TITLE (_,d Subtlll•) S. TYPE OF REPORT 6 PERIOD COVERED

SYSTEM TEST METHODOLOGY VOL. I Technical Report
a. PERFORMING ORG, REPORT NUMBER

7, AUTHOR(•) ' •• CONTRACT OR GRANT NUMBER(•)

G. B. Bradley G. w. Montgomery
G. T. Howard T. F. Green
N. F. Schneidewind

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA 6 WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, Ca. 93940 N62269/75/RQ/02014

.
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Air Development Center Julv 1975
13. NUMBER OF PAGES

Warminster, Pennsylvania
, MONITORING AGENCY NAME 6 ADDRESS(II dlll•,_,I ltoOI Contrallln, Ollie•) 11. SECURITY CLASS. (of Ihle t•)torf)

UNCLASSIF~ED
1S., DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16, DISTRIBUTION STATEMENT (ol lh,_ Ra,>otl)

Approved for public release; distribution unlimited.

17, DISTRIBUTION STATEMENT (ol th• ebeltact ant•,..d In Bloclt 20, II dllletant ,,_ Reporf)

Ill, SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reHtH elde II neceHatJ' .,d ld•ntlly by llloclt numflar)

20. ABSTRACT (Conllnue on ,. • ., ••• ,. II ftDCDH.rJ' and tdentll)' ,.,. fllodr ,.,...,..,,

The Naval Postgraduate School has conducted a research project
during the period 30 June 1974 to 30 June 1975, entitled System
Test Methodology under the sponsorship of the Naval Air Develop-
ment Center. A progress report was submitted on 15 January 1975.
The purpose of this project was
for conducting system tests of
software systems.

DD FORM
I JAN 731 1473 EDITION OF I MOV II IS OHOLETE

5/N 0102•014•U0l I .

to develop a methodology and tools
avionics or other complex hardware/

.

UNCLASSIFIED
SECURITY CLAUl,iCATION OF THIS PAGE (ft_, Data .,_,_.ad)

UNCLASSIFIED
-:. 1:.t.URITY CLASSIFICATION OF THIS PAGE:(WJ,_, Dete Bnte,.d)

20. Continuation

Two areas which received major emphasis were prototype
testing and maintenance testing. A methodology for conducting
prototype tests was developed. In addition, a simulation ~odel
was prepared for aiding the designer and tester in identifying
and diagnosing faults which may occur during prototype t~sting.

A maintenance testing methodology, which involves the use
of tests to partition faults into subsets, was developed for
identifying faults. In addition to the above areas, research
was undertaken to develop models for investigating the relation­
ship between error detection capability and program structure
in computer software, using simulation and analytic approaches.
The models would be employed during software design for identify­
ing program structures with poor error characteristics and during
test planning for the purpose of allocating test resources in
accordance with error characteristics.

In addition to the progress and final reports, computer prq­
gram source decks and operating instructions for the system
(prototype) test simulation and the software error detection
(simulation and analytic) models have been provide~ to WADC.

Lastly, three national conference proceedings publications
and presentations and two Master of Science in Computer ScienQe
theses have resulted from this research project.

...
UNCLASSIFIED

'

•

I.

II.

III.

IV.

V.

VI.

VII.

•

TABLE OF CONTENTS

Introduction

Prototype Testing

Maintenance Testing

Software Error Simulation

Analytical Results for the Error Detection Model

Issues in System Testing

Conclusions and Recommendations

List of References

I-1

II-1

III-1

IV-1

V-1

VI-1

VII-1

R-1

•

•

INTRODUCTION

The Naval Postgraduate School has conducted a research project

during the period 30 June 1974 to 30 June 1975, entitled System

Test Methodology under the sponsorship of the Naval Air Development

Center. This is the final report of the project. A progress report

was submitted on 15 January 1975.

The purpose of this project was to develop a methodology

and tools for conducting system tests of avionics or other complex

hardware/software systems.

Two areas which received major emphasis were prototype testing

and maintenance testing. _ These topics are covered in Section I

and Section II, respectively. A methodology for conducting proto­

type tests is described in Section I. In addition, a simulation

model is presented for aiding the designer and tester in identifying

and diagnosing faults which may occur during prototype testing.

A description of this model is contained in Appendix A.

The maintenance testing methodology presented in Section III

involves the use of tests to partition faults into subsets, so that

the actual fault can be identified . In addition to the above areas,

research was undertaken to develop models for investigating the

relationship between error detection capability and program structure

in computer software. A simulation approach and an analytic approach

are described in Section IV and Section V, respectively. The models

would be employed during software design for identifying program

structures with poor error characteristics and during test planning

I-1

for the purpose of allocating test resources in accordance with

error characteristics. An example of applying the error simula­

tion model to an actual FORTRAN program appears in Appendix B;

directions for use of the model will be found in Appendix C; and

a listing of the simulation program is contained in Appendix D.

A description of the analytic model computer program appears in

Appendix E.

Various issues in testing which are germane to maintenance

testing and recovery from errors are described in Section VI.

The major conclusions which resulted from each research

effort and recommendations for possible applications and future

work will be found in Section VII.

In addition to the progress and final reports, computer

program source decks for the system (prototype) test simulation,

the error simulation model, and the analytic error detection model

have been provided to NADC.

Lastly, three national conference proceedings publications

(References 9, 12, and 17) and presentations and two Master of

Science in Computer Science theses have resulted from this research

project.

I-2

II. PROTOTYPE TESTING

A. MOTIVATION FOR SYSTEM TEST METHODOLOGY

Software is the major expense in computer systems today. As

an example, the Air Force allocated between one billion dollars and

one and a half billion dollars in 1972 for software development. This

was about three times the annual expenditure on computer hardware and

accounted for four to five percent of the Air Force budget for the

year. Boehm [10, 11] indicates that these high figures are representa­

tive of the industry as a whole. He predicts that by 1985 software

expenditures in the Air Force will account for ninety percent of the

total ADP system costs. Of this enormous amount of money spent on

software, a disproportionately large share was spent on testing and

the trend is not one of improvement. Boehm states that "during the

1970s the Air Force can expect to spend almost half of its software

budget for military space operations on the checkout and test phases

of computer program implementation: two to three times as much as

it will pay for having the program coded." With such an effort in­

vested in testing software, it should be relatively error free but

this has not been the case historically. The Apollo Manned Spaceflight

Program had one of the most tested systems in the world, yet major

software failures occurred in Apollos 8, 11, and 14. The failure on

Apollo 11 occurred in the extremely critical phase of lunar landing.

The situation is no better in other areas; each new release of OS/360

has approximately 1000 new software errors. It is not necessary to look

at such large complicated systems to discover that present testing is

inadequate. The person who has not had an encounter with a computer

program error such as an incorrect billing is an unusual person in

II-1

today's society. Since testing consumes such a large proportion of

the resources allocated to system development and has produced such

poor results, it is time to develop a new approach to system testing.

B. TESTING PROBLEMS

1. Multiplicity of Testing Activities

Many of the terms used in the area of testing are subject to

a wide variety of interpretations. The word "testing" has been mis­

used and many non-testing activities have been associated with the

word. T~sting may be defined to be the process of determining if a

system meets the stated functional specifications. Quite often de­

bugging is thought of as a testing activity. This is incorrect.

Debugging starts with a known error and works towards a correction

[131. Recently, a significant body of literature and activity have

been addressed to designing computer programs in a structured fashion

in order to eliminate or minimize the occurrence of software errors

[14, 15]. The theme of some of these efforts is that if we design

programs correctly through structured programming, there will be very

little need for testing. Although these efforts do a lot to reduce

the potential for errors, they do not act as a substitute for testing.

Other testing activities include verification, validation,

certification, proof of correctness, and performance testing. Hetzel

[13] discusses these activities in relation to program testing. Veri­

fication is concerned with the program's logical correctness based on

execution of the program in a test environment. Validation is concerned

with the logical correctness of a program in a given external environ­

ment. Certification implies an authoritative endorsement that a

II-2

program is of a certain quality. A proof of correctness deals with

the logical correctness without regard to the environment. Performance

testing involves an evaluation of the performance properties of a com­

puter program or system, such as resource utilization. Each of these

activities has much to offer. The problem arises when one of the

approaches is assumed to equate to complete testing. It is clear that

improved software quality must be approached from several fronts:

improved design techniques, improved programming management and improved

methodology.

2 •. Test Design

There are many fundamental questions that must be answered in

designing a test of an information processing system. One such ques­

tion is what should be tested? Too often a tester ends up testing

an incomplete or modified version of the system that is easier to

test than the real system. Often the tester is faced with a large

set of input combinations to be tested. In this case, the question

becomes: How can a subset of the test i nputs best be selected to

thoroughly test the system? Another important issue is how should

the test efforts be organized? It is important to obtain the most

information about the system from every test run. It is important to

establish test data recording procedures at this time in order to

insure that all error information will be recorded. This can be accom­

plished by properly organizing the tests in a logical sequence. Tests

should be related to types and sources of errors. Gruenberger [161

states that 11part of the art of testing is knowing when to stop

testing." This exposes a two sided question the test designer must

II- 3

face: When is the test finished and what can be said about the

system when testing is stopped?

All these questions are further compounded by the fact that

there can be no set rule. Every system requires an original test

procedure designed to fit its special requirements. Gruenberger

suggests "that the intellectual effort to test a program is of the

same order as that which created it."

This section presents a test methodology that will help

answer these questions. A model is presented that will serve as a

framework for the construction of a logical approach to system testing.

C. A MODULAR APPROACH TO PROTOTYPE TESTING

A modular approach to prototype testing offers many advantages

for the design of the test and the development of the system. The

modular design involves breaking a large system into many small part~

called modules. The intra-module functions are independent; however,

modules interact by means of standard interfaces. Each module performs

a major function of the system.

Modularity improves system design and software portability.

To an extent, modules may be transferred among machines

and operating systems. With standardization of modules, they may be

shared among many applications. With modules being shared in this

manner, the programming effort is reduced and the reliability of mo­

dules is increased since the modules will be tested with each appli­

cation. The modules may be expanded more easily and changes are easier

to incorporate since the effect of a change is localized.

Testability is significantly improved when a modular approach

is used. Testing of different modules may be carried out in parallel.

II-4

..

Standardization of modules yields a set of assertations that may

be used as test criteria for the modules. Modules may be compiled

separately and can be stored in a program library and accessed inde­

pendently. Modularity allows testing early in the construction of a

system. Each module may be tested as soon as it has been constructed

instead of waiting for the whole system to be completed before

starting to test. Since modules may be reused in future systems,

future programming and testing efforts are reduced.

A modular system was chosen for the prototype test model

in order to take advantage of the above desirable properties of

modularity.

MODEL DESCRIPTION

A. THE FUNCTIONAL MODULE CONCEPT

1. Module Definition

When representing a system with the functional model, the

lowest element of the system is the module. Since the word module has

had wide use throughout the computer industry, it is necessary to

completely define the application of the word as used in the model.

A module is an entity that performs a function within the system. A

function is an activity performed by the system such as a fast Fourier

transform. The physical embodiment of a module is the wiring and

circuit boards of hardware, or the source or object programs recorded

on punched cards or magnetic tape or programs resident in memory, for

computer software. By defining a module in terms of functions, a

module is freed from the distinction of being only hardware or software.

II-5

A module receives inputs and transmits outputs across a boun­

dary. A boundary consists of a location within the system at which

the inputs to a module or the outputs from a module may be measured.

In order for the tester to assess these inputs or outputs the boundary

must be identifiable. In order to accommodate this requirement for

an identifiable boundary, it is necessary to consider the composition

of modules. The composition of two modules would be a module per­

forming the same functions as the original two modules. For example,

one module might be a fast Fourier transform and the other a digital

filter module. If it is impossible to identify a point to measure the

output from the filter module to the Fourier transform module, the

two could be considered as one module that performs the functions of

filter and transform. Thus, the entire system could be viewed as a

module or a module could be considered to be a small unit of program

code. The proper level for identifying modules will be indicated by

the functions performed by the system.

A module will be assumed to be free of internal errors for

system test purposes . This assumption is predicated on the fact that

all modules will receive extensive individual unit testing before the

system is assembled. If an error still exists within a module, the

test system will detect it only as the error affects intermodule

communication. Assuming that the test plan is sufficient to detect

all errors external to a module, the only way an error could go un­

detected would be if its actions were confined to the module itself.

The system may now be described as a collection of modules

which has external inputs and external outputs. The selection of

modules must be such that every portion of the entire system is

II-6

represented by a module and no portion is represented by more than

one module.

In performing its function, the module utilizes system re­

sources. These resources may be in the form of data, control signals,

or physical resources including both hardware .and software units.

Thus a resource is an element of the system that is used by modules

in performing a function of the system. Resources have two types of

attributes. One type deals with the usage of the resource, which is

the amount or size of the resource that is assigned or available

to be assigned. The other type deals with resource contents, such

as the contents of a memory location or the value of a particular

control signal. Resources have states. These states indicate the

status of the resource. Some examples of the state of a resource

are: reading, writing, idle, file empty, file half full, or memory

region assigned.

2. Task Definition

The work to be performed by a module may be represented as an

ordered or random series of tasks. Tasks are the sub-functions per­

formed by a module. A sub-function consists of a step in the algorithm

which the module must execute in order to carry out its function.

Examples of tasks are the computation of a simple function, storing

the result in memory and outputting the result to the printer. This

usage of the word task is synonymous with the use of the word "process"

as it is used in the operating system literature. The precedence of

tasks is determined by the algorithm the module must execute. These

precedence constraints may be linear or they could include branching

with or without cycles. It is also possible to have no precedence

II-7

constraints. In this case any task could be executed whenever the

resources were available.

In order to execute a task, the module goes through a series

of states. The state of a module is the status of the module at a

given time. A partial list of states that a module can enter includes:

compute, wait for memory, wait for input/output, wait for CPU, idle,

input processing, wait for another module to complete a task, wait

for a resource, and interrupted state. The particular state of a

module is a function of the set of inputs to the module, resource

states,· and its previous state. The outputs of a module are a func­

tion only of the state of the module. A primary state is a state

that a module is required tQ enter in order to perform a task. Primary ·

states include compute, input processing and output processing. A

secondary state is a state in which the module accomplishes no wprk.

Examples of secondary states would be blocked state, wait for input

or wait for CPU. The system state is the set of module states. The

system state changes when one or more modules changes state.

3. Model Notation

The following is a list of symbols used to describe the model.

Each symbol is followed by the definition of that symbol as it is

used in this system of notation.

* i ----- Module designation,

* . J .
].

* k.
].

Current state of module i,

Next state of module i,

* Iijt -- Vector of inputs at module i when module is in
state j and input starts at time t,

* Oikt' - Vector of outputs from module i after the module
has transitioned to state k and output starts
at time t' ,

II-8

* T. 'k l.J
Time at which transition of module i from state
j to state k occurs,

* ~T .. -- Amount of time which module i spends in state j,
l.J

* R.. Set of resources used by module 1 when in state
J.J

j ,

* (11,12,·••11) .. n J.J
State of n resources when module i

is in state j ,

* (t
1
,t

2
, .•• ,t) .. -- Time which module i uses n resources

n J.J
when in state j .

4. Model as a Directed Graph

It is possible to represent a system as a series of directed

graphs. One graph would be required for each module. The nodes of the

graph would represent module · states and the arcs would represent state

transitions. Other information could be portrayed on the graph. The

state dependent information could be associated with the node. This

would include the current state of the module, the set of resources used

by the module in that state, the state vector for the resources used

by the module, the vector of inputs to the module, the vector of out­

puts from the module and the amount of time the module spends in the

state. The arcs could be labelled with the time that the module requires

to transition from the source state to the destination state as is

shown in Figure II-1. In this figure, the module i transitions from

state j to state k at time T ijk •

These directed graphs would give the tester a convenient means

of visually representing the activity of the module. The tester might

prefer to show only the primary states of the module and the idle state

instead of showing all possible states of the module.

II-9

a

Rij

(11 • 12 • · · · ' 1n) i j

1i jt

Figure II.l. Directed Graph of Module States

II-10

5. Time Domain of a Module

A property of a module is that it uses the resources of the

system only at certain times. One of the major problems of testing

computer systems is to identify when two or more modules will be com­

peting for the same resources. The problem is further compounded if

the system possesses multiple CPU's which are running asynchronously.

The concept of time domain will be useful to address this problem area.

A time domain of a module consists of the times that resources are in

use. A graph of the time domains of the modules of the system would

be a useful abstraction of the system for the analysis of the timing

problem. The resources of the system could be represented on the

vertical axis with time expanding along the horizontal axis from the

origin. Each area so represented should be labelled with the module

and the amount of the resource required. The time domain of a module

would be represented by the summation of the areas formed by the pro­

duct of resources used by the time duration of use. Any intersection

of time domains would represent a potential error only if the total

demands of the modules exceed the maximum resources available.

One problem with this representation is to find a timing

system that applies to all modules when modules are operating asyn­

chronously. In this case the time axis would be the elapsed time from

some critical event in the system. The changes in system state would

be referenced to this event.

If we define a change in system state as any change in module

state, it is possible to consolidate the module state representation

into a system state representation and show resource usage conflicts

in terms of system states as indicated in Figure II-2. In this figure

II-11

SYSTEM STATES
SYSTEMS

RESOURCES

s, s~ s~ ' S4 S5
I

one unit Rl
I I

I

six units R2

two units R3

four uni ts R4

three units RS

Time

Figure II.2. Resource Conflicts vs. System State

II-12

there are five types of resources available to the system. They

are labelled Rl through RS. The amount of each resource is indicated

on the vertical axis. For example, there are six units of R2 available.

There are two resource conflicts portrayed in this system. One occurs

in system state s2 . Here one module requires four units of resource

R4 and another module requires two units of R4. The conflict occurs

because there are only four units of R4 available. The conflict is

denoted by a cross-hatched area. The other conflict is in system

state s4 • A module has requested six units of resource R3 when only

two units are available to the system.

The construction of such a graph would be infeasible to do by

hand for a real system. A program could be written to produce this

type of graph from the time domains of the modules. On this graph

the computer could identify resource usage conflicts.

B. APPLICATION OF MODEL TO TESTING

1. Functional Specifications

One of the more difficult processes in producing reliable

software is translating user requirements into meaningful design

specifications. Boehm, Mcclean, and Urfrig [4] vividly demonstrate

the magnitude of the problem in their study of a large software project.

The authors divided errors into two classes. These were design errors

and coding errors. An error was considered a design error only if its

correction caused a corresponding change to the design specifications.

Of the total errors, 64 percent were design errors. This alone is

enough to illustrate the need for a valid method of design specifica­

tion. Even more disturbing was the time frame within the testing in which

II-13

the errors were discovered. Of the 54 percent that were not discovered

until the acceptance, integration or delivery phases of testing, 45

percent were design errors. The remaining nine percent were coding

errors. Errors discovered in these latter stages are more difficult

to correct than those discovered during the coding stage. Thus, it

is necessary to have a good system of describing design specifications.

The functional model provides such a system.

When the functional model is used, the user should be requi~ed

to define all functions of the system. The functional specifications

would consist of a statement of the activities of the system and the

associated inputs and outputs. By requiring functional specifications,

designers are assured of having a complete detailed description of the

system at _the beginning of the project. This should reduce the number

of design errors.

It is possible to over specify the design of a system. This

could prevent the designer from choosing the most efficient method

of designing the project. It could also introduce errors into the

system design, if the user does not have a thorough knowledge of

computers. This problem is avoided. by using functional specifications.

Details are presented as functions of the system, which is the area

in which the user is most knowledgeable. The implementation of the

functions is left to the designer, who is in a better position to

determine the proper method.

Another pitfall of system design may be avoided by using func­

tional specifications. Frequently, test specifications are not avail~

able early in a project because testability is not considered to be a

design parameter. Instead, test requirements are formulated as an

II-14

afterthought when it is too late to influence the design (SJ. Func­

tional test specifications are defined as test specifications which

are based on testing the stated functions and observing the corres­

ponding outputs of the system. Functional specifications should be

incorporated in the test specifications. Detailed design should not

commence until this information is available.

2. Documentation

The need for complete and usable documentation should be a

primary concern of anyone involved with system design, programming

and testing. Poole [6J states "that the lack of good documentation

usually means that testing is not performed as thoroughly as it

should be and debugging is that much more complicated." Another use

of documentation is for the maintenance of the system. Since the

life of a system is much longer than the development phase, the designers

will probably not be available to help maintain the system. In addi­

tion, many people may have access to the software. All changes which

result must be documented.

The use of the functional model helps to provide adequate

documentation throughout the life of the system. The concept is to

force documentation to be an integral part of system development. Two

documents have already been discussed. These are the functional speci­

fications and the functional test specifications. These documents

should form a segment of the documentation. These should be system­

atically updated as changes are made to the system.

The documentation should include other information as well.

This could include a data base containing information about all errors

II-15

that were found in the system to da~e. Unfortunately, there is a

tendency to ignore this aspect and to think of this type of informa­

tion as something to discard once the error has been corrected [6].

Every incident must be recorded because an outage that may

appear insignificant to the user could be an important indicator

once it is properly analyzed. The data base could be used to identify

modules that are the source of the majority of errors. This class­

ification could be used to direct future testing and debugging. It

could also be used to determine which modules are the most unreliable.

This woulq provide a starting point for improving the reliability of

the system. This would be particularly applicable if the module that

is most critical to the system's operation is also the most unreliable.

The data base could also be classified as to type of errors. This

would be valuable information when designing a similar system.

Another form of documentation that should be incorporated into

the plan for system testing is assertions. These are statements that

are introduced into the code by the programmer. These state a fact

about the design of the program. These statements may be treated as a

comment card or used to produce code to check for the validity of the

assertions. The appropriate action would be determined by a parameter

passed to the complier. Two types of assertions could be employed

within the model. The first would be global assertions. These would

be in the form of specifications for intermodular actions of the

system. An example of such an assertion would be:

ASSERT RANGE OF ALL ARRAY INDICES ISO TO 100.

The other level of assertions would be local. The local assertions

would be defined by the programmer but within the design specifications.

II-16

An example of a local assertion would be:

ASSERT RANGE OF I IS 10 TO 20.

These assertions could be a permanent feature in the program.

They could be activated on the local level to help test a module or

on the global level to aid in introducing a change to the system. As

such, these assertions would form an important part of the system

documentation.

3. Test Inputs

Ideally, it would be proper to exhaustively test a system.

This implies that every path in the logic of the program be executed

and tested. Shoeman [8] demonstrates that this will normally be im­

possible due to the large number of inputs required. The problem

presented involved exhaustively testing an assembly language program

which solved for the roots of a quadratic equation Ax
2 +Bx+ C = O.

The computer was assumed to have a 12 bit word ·length and integer

arithmetic was used. All syntactical errors had been eliminated and

all known special cases such as A= 0 and imaginary roots had been

accounted for. The input space to exhaustively execute this program

involved 64 x 109 combinations of A, B, and c. The program had a run

time of 240 microseconds per execution. The time to complete the

entire execution of the program over the input space would have been

approximately 5,000 hours. To test a program, solutions must be

verified by some independent means such as a desk calculator or a

different algorithm. This should be done in as many different ways

as possible, since there is some probability that two independent

approaches will result in the same wrong solution. Obviously,

exhaustive testing is infeasible for even a small program.

II-17

The problem the tester must solve is how to best select

the subset of test inputs from the universe of possible inputs.

A method for selecting the inputs for a test is to first identify

and rank the modules in a system by the criticality of the modules

to the mission success. It is seldom the case that all modules are

equally valuable. A technique for determining criticality is to

ascertain the consequences to the mission of a module malfunction.

A malfunction in some modules would cause a mission abort, while

others would result in a degraded mode of operation. The modules

are ranke~ according to criticality. This is based on the criticality

of module outputs. The time spent in testing each module can then

be allocated using this ranking. The time allocation can be further

refined by ranking the criticality of each sub-function of the module .

This would be based on the criticality of the sub-function to the

performance of the function by the module .

There are other factors that can be used to rank modules

for testing purposes. One such crtieria would be forcasted errors.

Schneidewind [9] has developed a model of the occurrence of errors

detected during functional testing of command and control software.

It would be possible to rank modules in order of forecasted errors.

Work is progressing in the area of developing relationships between

program structure , program complexity and the ability to detect

errors in a program [12]. Another method of obtaining such a ranking

would be through the use of simulation. Critical modules could be

identified by their high rate of failure in the simulation.

Once the amount of testing resources allocated to each module

has been determined, the proper number of inputs for testing each

II-18

module can be estimated. The problem then becomes one of selecting

the inputs to thoroughly test each module. The module represents

a function which maps the set of inputs into the set of outputs.

The inverse mapping could be used to obtain the set of inputs. Given

this set of inputs, test cases are selected in order to cover the

input set and the program as thoroughly as possible. Particular

attention must be given to inputs that are involved in the control

flow of the program. Once this has been done, unusual cases are

investigated. A possible source of unusual cases would be indicated

by the set of inputs. Values are picked that are combinations of the

extremes of the range of inputs.

4. System Representation

Having developed the notion of a module, it is necessary to

investigate the method that will be used to represent a system as

a collection of modules. A system is comprised of asynchronously

operating application software modules, hardware modules and

executives. Figure II-3 gives a generalized representation of a

processing system. The system represented in this figure is com­

prised of two asynchronously operating executives, A and B. These

are connected to two separate control buses noted by Control Traffic

Bus A and Control Traffic Bus B. Each bus connects the application

software modules and hardware modules that are controlled by the

executive on the bus. An example of the traffic on this bus is a

hardware generated interrupt occurring at the conclusion of an

input/output operation. A subsystem is comprised of one exec­

utive, the modules that it controls, and the control bus

II-19

H

7
N
0

.------Contro 1 Traffic Bus_! ________ 1_ - - - - - - -- - -- -- -- - - - - 1 -
Control Traffic Bus A_ _ ____ - - - - - - -J - - - - - - - - - - - - - -
r------ l r-----~ ~- ~
I
I

I
I I
L+

~

External
Inputs

Application

Executive A

Executive B

Software
Module 1

Subsystem A

'I'

.J1

Application
Software
Module 2

Subsystem B

'I'

.J,

Application
Software
Module 3

Subsystem A

---,,.-

It

Message Traffic Bus

Figure II.3- Generalized Representation of
a Processing System

-------- - A'-

--r- - --I- - --r-----
:

Hardware Hardware Hardware .

~ Module l Module 2 Module 3 :
Subsystem A Subsystem B Subsystem A .

. . . .
X 1: j,

Application
Software
Module N

Subsystem B

-1'

w

Output

-----'It"

----+-

Hardware
Module N

Subsystem B

:r.

•

connecting the modules to the executive. There is a message traffic

bus connecting all modules. An example of the traffic on this bus

is a module passing a computed value to another application module.

External inputs and outputs are identified .

This representation of a system has many useful applications

to testing. The model may be used to verify the correct functioning

of two types of intermodule communication. The first is message

traffic. The traffic on the message bus could be checked against the

functional test specifications for correctness. The second concerns

control traffic. The traffic on the control buses could be checked

in a similar manner. Other problem areas that could be investigated

using the model include:

* Are the various state transitions possible, based on
the values of the resource states?

* Are there any blocked or deadlocked states?

* Are the amounts of time in each state excessive?

* When a module state transition occurs, are the resource
state vectors correct?

* Are there times that a module holds resources excessively?

SIMULATION

A. A SIMULATION OF THE MODEL

A simulation of the model was constructed. The simulation was an

event store type of simulation. It was written in FORTRAN IV to run

on the Naval Postgraduate School's IBM 360/67. The simulation used

the model representation with the user providing a description of the

system to be simulated . This description required the number of

II-21

modules, the number of tasks, the precedence among tasks, number of

resources and resource usage. A complete description of the simulation

appears in Appendix A.

The simulation showed that the model could represent a system.

A simulation of this nature could be useful in testing.

B. USE OF SIMULATION IN TESTING

1. Investigation of Timing Problems

Timing problems are extremely difficult to investigate in a

real system due to the fact that any test equipment installed internal

to the system disturbs the timing of the system. Equipment installed

external to the system may not be able to gain the required information

either because of synchronization or access problems. By using a

simulation of the system, the tester may observe various timing para­

meters. The tester is able to observe timing problems that could not

be observed on the real system. This is accomplished without dis­

turbing the timing of the real system.

Another problem area that could be investigated through the

use of simulation is the reaction of the system to various rates

of input. In the simulation it is possible to vary the mean time

between arrival of inputs. This parameter could be decreased on

each run to determine the maximum input rate that the system could

receive and still process an acceptable number of inputs. Another

method would be to plot average time to process a complete input

versus input rate. This graph could be used to determine an acceptable

range of input rate. This method of analysis could be used when testing

a system that has to produce periodic outputs, such as a system with

II-22

a graphic display that has to be refreshed at a specified rate.

If the time that a module spends in a particular state is

expressed as a variable instead of a constant, a simulation would

be an invaluable aid to the tester in investigating the operation

of the system. One approach would be to observe the operation of

the simulated system with all modules functioning at the maximum time

duration. Another method would be to use various combinations of

module operating times to determine under what circumstances the

system would fail or performance would be degraded. This can easily

be done on a simulated system but would be impossible to do on a real

system because the tester would be unable to control the time a module

spends in a state.

Another timing problem facing the tester is the system clock

rate. Often the tester would like to slow the system down or perhaps

speed it up in order to observe some particular action of the system.

This would be important if the tester was unable to measure the output

of a real module because another output arrived before the first out­

put could be measured. In a real system, it may be impossible to

change the timing of each component of the system by the same amount.

This would be particularly difficult in a multi-executive system.

With simulation, the tester is able to adjust the timing of the system.

Some problems do not occur until the system has processed a

large number of inputs. The tester may not be able to cycle the

real system through a large number of inputs due to lack of time or

equipment availability. However, in a simulation, the time scale may

be greatly compressed, allowing the tester to cycle the system many

II-23

times. This would greatly increase the probability of discovering

latent bugs. Similarly, in a simulation the user's ability to specify

the initial state of the system allows starting tests under some

artibrary condition that might only be achieved in an actual system

by running for a long period.

2. Fault Insertion

Dijkstra [11 contends that "testing can only determine the

presence of errors, not their absence." One approach would be to

know the reaction of the system to every possible error and combination

of errors. Using this knowledge, one could simply observe the reaction

of the system and state what errors were or were not present. Unfor­

tunately, the set of every possible error, combination of errors and

system reaction is an immense set. Therefore, it is impracticable to

prove the absence of faults by using the above approach. However,

this approach using simulation, could be used to greatly expand the

subset of errors that the tester could detect.

The tester may purposely introduce a fault into the simulated

system. The reaction of the system to this fault could be catalogued

for later reference. This information could be used to identify

modules that are affected the most by a class of errors. This set

of modules would be noted for special testing. This information could

also be used to ensure the validity of the test plan. If the group

of tests included in the test plan did not encompass the reactions

observed in the simulation, then the tests would not be able to detect

particular faults.

3. Partial System Simulation

Frequently the tester will not have the time, assets, or moti­

vation to perform a simulation of the entire system to be tested. In

this situation, simulation of certain parts of the system may be

II-24

desirable or the tester could choose to simulate the entire system

in less detail. Campbell and Heffner [2] relate a case history

illustrating this point. A simulation model was constructed of a

system being developed. The skeleton system was working before the

model was debugged. When the model was finally working, no one

was certain which version of the real system the simulation results

were meant to represent. However, some of the designers used simple

simulations that they developed to study certain aspects of the system.

The authors concluded that "ambitious large-scale models generated

by professional model makers are less helpful than simpler work done

by the system developers themselves." A simulation with less detail

was more useful in this case than a complete simulation.

Quite often in prototype testing, a module or modules will

not be present when the tests are scheduled to commence. This could

be due to late delivery or to a module being modified after prelimi­

nary testing proved the module needed modification. This could also

be caused by a planned action such as phased delivery. A simulation

of this module would allow the tests for the rest of the system to

continue. Simulating the missing module would be particularly easy

if the system had been described in the form of a functional model.

If all the information required to functionally represent the model

is present, then a simulation can be constructed from this information.

Another use of simulation involving less than the whole system

is the use of a test data generator. When a system is tested in the

laboratory, it may be necessary to simulate the inputs to a system.

Since there is no reason to believe that all modules will be present

during the entire test phase, the tester may desire to have the test

II-25

data generator simulate the output from any module. Thus,

the test data generator could also substitute for any missing module

as the system was being tested. Not only would the generator act as

an output generator, but it would also act as the termination for

module outputs which are intended for missing modules. If these out­

puts must be accounted for, because the operation of the partial

system would not be entirely representative of the operation of the

complete system. Notice that this procedure is applicable to a top

down testing approach because the test data generator could simulate

inputs from dummy modules.

4. Pitfalls of Simulation

After having spent much time and effort to develop a simulation,

the tester may find that the simulation addressed the wrong problem or

solved no problem at all. The validity of a simulation is the con­

sistency between the simulation and the real system it represents.

Proof of the validity of a simulation is almost impossible, especially

if the real system has not been constructed. By the time the real

system has been constructed and the validity of the simulation has been

disproved, irrevocable decisions may have been made based on test data

from the simulation.

Although validity is a major problem in simulation, it is by

no means the only problem. A list of problem areas that may cause a

misunderstanding of the system being simulated is presented in Fishman

[3]. These include incorrect input parameter specification, influence

of initial conditions on data and misuse of estimates. The author

provides suggestions on ways to control these problems.

II-26

Prototype testing may result in design changes. Each change

requires a change in the simulation model. If the tester has not

allowed for such an occurence in budgeting simulation resources,

the model would not represent the real system. Also,

there would be a time lag in modifying the model. This could have

a serious effect on the test schedule if this contingency is not

included in the test plan.

APPLICATION OF MODEL TO PROTOTYPE TESTS

A. APPRO~CH

1. Test Plan

In order to apply the functional model to the problem of

prototype test it is necessary to develop a test plan. A test plan

should be created as part of the design plan. As a minimum the test

plan should discuss the following major elements:

* define modules,

* define module states,

* identify inputs and outputs for each module state,

* identify module interfaces,

* identify tasks,

* define resources and resource states, and

* identify resource usage for each module state.

The test plan must also include the system functional specifications

and functional test specifications. In addition, it should include

the test procedures. This would identify acceptance criteria, such

as the allowable divergence between desired and actual output values,

time duration of tests, allowable number and types of malfunctions,

II-27

number and distribution of test replications, and methods for checking

test results. The test plan should identify major testing milestones.

These would identify major sections of testing that must be completed

before system development can continue.

The test plan should document the subsystems that will be

tested. This will require the development of a method of isolating

a subset of the system to test it without the effects of the remaining

system being introduced. These identified subsets of modules are

called subsystems and will be used to test the system in stages.

Besides the modules in a subsystem, the test plan must also

define a set of measurements which will indicate whether correct

outputs are being produced for given inputs and define the hardware

and software locations of the measurements. The plan must describe

how to instrument the system in order to obtain these measurements.

The test plan should develop some organizational structure.

This would include who is to do the testing and the resources to be

used in testing. The plan should include who is responsible for main­

taining the documentation. This would include test data, error

information, design changes and test modifications.

2. Subsystem Testing

The modularity of the model allows the user to commence

testing at an early date. This will require the testing of a subsystem.

The subsystem is defined in the test plan and testing will commence as

soon as all the modules of the subsystem are available. This is

illustrated in Figure II-4. In this figure there are two application

modules in the subsystem that are ready to be tested. The only hardware

II-28

r
/

Simulated Control Inputs
of Other Modules - ------.----------

- - - - '"'1 -, - - - - - - -,
l - - - Control Outputs to Other

Modules (Break here.

*

I I I I
I Transfer to Executive.)

Control
Input Signal

Application
Software

Module One

Application
Software

Module Two Input/Output
Measurements

Message Outputs to Other
Modules (Break here.
Transfer to Executive.)

Simulated Message Inputs
of Other Modules

Executives

Test Data
Generator

Simulated External Inputs

I L ___ _ -.
I

Hardware

Module One*

This is the only hardware required for
functioning of application modules one
and two .

---,

Hardware

Module Two*

Figure II-4. Prototype Test Configuration

II-29

Input/Output
Measurements

that is required for the functioning of the modules is Hardware

Module One and Hardware Module Two. These are connected to the applica­

tion software modules by a test data generator. This is a program that

will simulate external inputs and message inputs from missing modules.

The set of external inputs and input sequence is based on typical opera­

tional scenarios and the criticality of the various modules to mission

success. Another required program is the control input signal genera­

tor. This works in conjunction with the executive and generates simu­

lated control inputs for the missing modules. In some cases this pro­

gram could be developed to replace the executive itself during early

testing, when the executive may not be available. The locations where

input/output measurements are made are identified.

The system under test will be expanded as testing proceeds.

When the next application subsystem becomes available, it and the

hardware it uses would be added to the system. The subsystem could

consist of a single module or a group of modules. The intent is to

test the system in stages, starting with the minimum number of modules,

and increasing the number of modules as testing progresses, until the

entire system is available.

II-30

III. MAINTENANCE TESTING

A.. INTRODUCTION

In this section we focus exclusively on the problem of

maintenance testing. By maintenance testing we mean the testing

which is done after a system has been released and placed into

operational use. This is distinguished from prototype testing which

is done on the original or prototype system for the purpose of deter­

mining whether the system actually constructed meets the design

specifications and performance requirements established in the earlier

stages of the development process. Prototype testing is essentially

a certification process. Maintenance testing, on the other hand, is

directed toward the question of whether a particular copy of a system

remains in the same condition as it was when first placed in service.

Our goal is to present a method which might be used as the

basis of maintenance testing. The idea of partitioning which we con­

sider here is not a new idea. It has been explored and developed

extensively in the context of testing digital circuitry [18], but

it has apparently not been examined in the context of systems testing

or software testing. After the idea is presented, a discussion of

some of the problems in applying the method in a real testing situation

is included.

B. DISCUSSION OF SYSTEM FAULTS

We define a system fault as any hardware or software condition

which causes the system to deviate from its design specification in an

observable manner. Observations can be made at several levels from

III-1

the component level to the functional level. In this section we are

not concerned about the level at which observations are made, but we

do make some additional assumptions about the nature of system faults

and it is important that these be clearly understood.

We assume that the faults under consideration are non transient

in the sense that, whatever condition or fault occurs, it remains

until corrected. Thus spurious results are not observed in the testing

procedure. This means that when given the same initial state of the

system the same input test conditions always produce the same test out­

put. Thus the tests are repeatable in the sense that the system being

tested is not changing during the test period. In a real testing

situation it is often the case that apparently spurious results are

obtained. The practical difficulty in reproducing them generally lies

in the inability to reproduce the test conditions exactly. This often

occurs because a sequence of tests interact. Earlier tests may change

memory or write over critical values or otherwise change the state

of the system. Thus for purposes of our discussion we will assume

that the system under test has a reset capability so that the state

of the system is the same before each test. The system may contain

a fault, but it contains the same fault until fixed. The effect of

this reset assumption is to make each test in a series of tests act

independently so that exactly the same information is obtained by

applying test 1 and then test 2 as is obtained by applying first

2 then 1.

In our discussion of partitioning we assume:

a) the set of all faults under consideration can be

enumerated. We denote the faults by f 1 , • • • ,fn and

we let f 0 denote the condition of no fault,

III-2

b} any fault in the system remains in effect until it is

corrected {so that test results are repeatable as dis­

cussed above},

c) the system being tested contains at most one fault,

d) the system being tested is reset to some initial state

before the application of each test.

The most restrictive of these assumptions is probably the

first. In a complex system the number of things which can go wrong

is immense and, to be able to detect and isolate individual faults,

considerable precision is required to distinguish among the many

similar faults.

The assumption that the system contains only a single fault

when tested can perhaps be justified by assuming that the test procedure

is repeated frequently, so that each fault is detected before others

occur. This is obviously invalid for massive failures in which a

number of faults arise simultaneously from the same cause. On the

other hand, if certain combinations of faults are thought to be likely,

they can be handled by defining them at the outset as a single fault.

C. DISCUSSION OF PARTITIONING

We denote by T.,
l.

i = l, .•• ,m the tests which can be applied

to the system. It is convenient to think of the maintenance test

procedure as being applied to a system containing an unknown one of

the faults f., j = O, .•• ,n.
J

The purpose of the tests is to determine

which of the conditions f
0

, ••• ,f
0

exists in the particular system

under test.

The testing procedure consists of applying a sequence of

tests to the system. Each test results in some observable outcome.

III-3

We assume that there is a finite set of possible outcomes which we

designated Ok k = l, ••• ,p.

If we had a single test which was powerful enough, there would

be a distinct outcome associated with each fault. Such a test would

be comprehensive in the sense that no other tests would be required

to isolate the fault. Such a test is said to have full resolution.

A test of this type would be very extensive and complicated and,

although it fits within our discussion here, our thinking is oriented

toward less comprehensive tests. Thus we will suppose that the tndi­

vidual tests under consideration do not provide full resolution, but

to be useful they must provide some resolution among the faults.

Figure III-1 illustrates the process of applying test

a system containing fault fj with the result that outcome Ok is

System
with fj • outcome Ok

Figure III-1. A Typical Test.

observed. It is necessary to fully characterize the performance of

each test Ti in the presence of the faults f.,
J

and we imagine

to

that for each test the resulting outcome is known in the presence of

each fault. This is illustrated in Figure III.2.

fo fl f2 f3 f n

T.
l. 03 01 02 01 03

Figure III-2. Typical Test Results for Test T .•
l.

III-4

The data of the type shown in Figure III-2 can be obtained

in several ways. These include:

a) analysis of the system design,

b) experimentation with a real system,

c) simulation of the system behavior.

The first method relies on the system designers, engineers, and pro­

grammers to determine from their knowledge of the system how it will

behave in the presence of each fault under consideration, The experi­

mental method involves obtaining a fault-free copy of the system,

inducing the desired faults, applying the tests and recording the

results. The simulation method is nearly the same as the experimental

method except that the observations are taken not from the real system

but from a model of it, probably a computer simulation.

It is not intended that the tests, when applied to a system

containing an unknown fault, result in a pass or fail. Some faults

produce the same outcome under test T.
1

as the fault-free system.

For example, the results in Figure III-2 indicate that £0 and

fn both produce outcome o3 , but it would be misleading to apply

Ti to a system, obtain o3 , and claim that the system passed that

test. Actually, the test T.
1

is unable to discriminate between

The application of a single test serves to partition the set

of all possible faults into p mutually exclusive and collectively

exhaustive subsets corresponding to the p possible outcomes.

For notational purposes we denote the set of all faults which

produce outcome k when subjected to test i by Sik. Thus when

III-5

test i is applied with the result Ok we can conclude that the

fault actually present is one of those in set Sik" This is illustrated

in Figure III-3.

All
Faults

Figure III-3.

1-::-7
~

Partitioning the Faults with Test T ..
l.

Further testing can be applied to the sets Sik" Suppose Tj is

applied. This will result in one of the test outcomes say Or with

the conclusion that the system under test contains one of the faults

which is in both the sets sik and s. .
Jr

The maintenance test problem is to select an efficient set of

tests which can successively partition the set of possible faults in

smaller and smaller sets so that ultimately the actual fault can be

isolated. Possible criteria for test selection will be discussed after

the examples.

D. SEQUENTIAL AND COMBINATIONAL TESTING

In any testing situation where a sequence of testsis to be

applied to a system the question will arise whether later tests in

III-6

the sequence are to be selected on the basis of the results from

earlier tests or not. The case where earlier test results do influence

the selection of later tests is called a sequential testing procedure,

otherwise combinational.

Sequential testing is a more powerful method in that fewer tests

will generally be required to isolate a fault since the sequential nature

of the procedure allows the selection of later tests which are more

capable of discriminating among the remaining possible faults. Combi­

national procedure~ although independent of observed test results, may

be easier to implement in checking out a software system since less

storage space is required to store the tests and less logic required

to implement them.

Examples

To illustrate the ideas of partitioning consider the following

data used in examples 1 and 2. The table entries 1, 2, and 3 refer

to outcomes o1 , o2 , and o3 •

fo fl f2 f3 f4 fs f6 f7 £8

Tl 1 2 2 1 3 2 1 1 3

T2 2 2 2 2 3 2 1 1 2

T3 2 l 3 1 2 2 3 2 3

T4 1 3 3 2 2 2 3 3 3

TS 2 3 l 3 3 l 3 2 2

T6 3 2 3 2 2 1 1 2 1

Table III-1. Data for Examples land 2.

III-7

Example 1: A Combinational Test Procedure

In this example we illustrate the result of applying tests

T1 , T2 , T3 in that order to a system containing one of the faults

£0 , ••• ,£8 • The results are portrayed as a test tree. See Figure III-4.

Notice that the application of T1 partitioned the faults

into three sets: The first, associated with outcome o1 , containing

faults f
0

, f 3 , f 6 and f 7 • Subsequent application of T
2

further

partitioned this set into two sets containing faults f
6

and f
7

associated with outcome o1 and faults £0 and £3 associated with

o2 • Notice that o3 is not possible since the actual fault in this

case is known (after applying T1) not to be f 4 • The test T
2

is ineffective in the event that T1 yields outcome o2 •

All T
Faults 1

Figure III-4. Test Tree for Example 1.

III-8

Example 2: A Sequential Test Procedure

In this example different tests are applied depending on the

outcome of previous tests. The test tree is shown in Figure III-5.

Notice that in this case, particularly when T1 yielded o2 , the

later tests could be selected to make best use of the information

already available.

All
: Faults

Figure III-5. Test Tree for Example 2.

Reflecting on these possible test trees raises several ques­

tions: Should the test procedure be sequential or combinational, how

shall possible test sequences be compared and what is the 11best 11

III-9

procedure? For example, if the system is very likely to be fault-

free, then a test sequence which begins with T4 is attractive

unless T4 is very expensive or time consuming. On the other

hand T4 is nearly worthless if the probability of having a condition

other than fo is large. After considering one more example, we will

address these questions of test selection by considering several

possible test objectives.

Example 3:

This example illustrates the application of the methodology

described to a small program. The program is an interactive game

which is played on a programmable pocket computer, in which the

computer selects a four digit random number which is concealed from

the user. The user makes a guess and the program returns a code

number which provides information regarding the accuracy of the guess.

The code contains information on the number of digits in the guess
'

which are correct and correctly placed as well as on the number of

digits which are numerically the same as some digit in the number

selected by the computer.

For the purpose of this example the portion of the program

which produces the random number is not used. The example deals

only with that part of the program which produces the coded output

number. A functional flow chart of the program is given in Figure

III-6. The actual machine implementation will not be discussed here.

All the subscripts on N should be interpreted mod (4).

The program assumes the four digits of the actual number

selected by the computer are N1 , N2 , N3 , N4 in that order. The

four digits of the guess are w1 , w2, w3 , w4 , respectively.

III-10

Test 1
Wk=Nk

Code = Code+ sj

enter

l
I read in
! wl w2 w3 w4

J,
Set k=O I

,. ____ .1, _
I Set Codea:Q

I
j,

I Let
I

k=k+l

Test 0
k=5

~no

yes

yes

Code = Code+ 1

Stop, Output is "CODE"

2 no

es Test 3
> no

W ""N

yes

<'.: -- - ---'---------·-___ _J
Figure III-6. Functional Flow Chart for Example 3 .

III-11

The following faults were defined:

fo = no fault
* f =

1
test 1 always yields 0 yes. 11

f2 = test 1 always yields "no. "

f3 = test 2 always yields II yes."

f4 = test 2 always yields II no. n

fs = test 3 always yields .. yes. "

f6 = test 3 always yields "no. It

f7 = test 4 always yields "yes."

fa = test 4 always yields "no. II

fg = program fails to check 4
th digit in guess (change 5 to

4 in test 0)

flO =

fll =

£12 =

The last three faults were machine dependent. Two
had to do with memory locations which always returned
a zero. The other fault was the disablement of one
of the machine functions. Each was induced by a
software change.

Ten tests were defined and run with each of the above faults.

Each test involved entering a number into the machine location where

the random number is stored and then entering a "guess." The value

of the coded output was the outcome of the test.

The ten tests defined by the nwnber entered and the number

guessed were:

*The use of the word "test" in this context refers to the tests in
the flow chart, not the maintenance tests.

III-12

Tl T2 T3 T4 TS

enter 1111 1111 1111 0123 0123

guess 1111 1234 0011 0000 0123

T6 T7 TB Tg TlO

enter 0123 0123 0011 0011 0011

guess 3012 0011 1111 1234 0011

The experimental test results are shown in Figure III-7.

fo fl £2 £3 f4 fs £6 £7 fa f9 flO fll £12

Tl 20 20 4 20 20 20 20 20 20 15 5 2 20

T2 5 20 1 8 8 8 5 8 5 5 0 0 8

. T3 10 20 2 12 12 12 10 12 10 5 5 10 12

T4 8 20 3 8 5 8 7 8 7 7 l 20 4

TS 20 20 0 20 20 20 20 20 20 15 5 5 8

T6 4 20 4 4 0 4 4 4 4 3 1 5 8

T7 8 20 3 8 5 8 7 8 8 11 l 10 4

TS 12 20 4 12 11 12 12 12 12 7 5 2 4

T9 1 20 1 4 2 4 1 4 1 5 0 0 4

TlO 20 20 4 20 20 20 20 20 20 3 5 10 12

Figure III-7 . Test Results for Example 3.

.

III-13

The test results given in Figure III-7 reveal that no two of

the tests produce the same output for every fault. However, three

of the faults (£3 , f 5 , f 7) produce the same output for every test.

Thus no test plan using these ten tests will be able to distinguish

among these faults.

Just to illustrate the method, an unknown one of the thirteen

programs, each of which contained one of the faults £0 , ••• ,£12 ,

was loaded and testing was undertaken to determine which program it

was. The test tree used is shown in Figure III-8.

Since the number of possible outcomes is fairly large (12),

relatively few tests are required for fault isolation. In this

example only two were required to determine that fault 10 was present.

E. TEST OBJECTIVES

It is generally true that the testing procedure is limited

by time available, computer storage, and other considerations . We

will present several criteria by which test sequences can be evaluated.

We assume that each test has an associated cost, perhaps the time

required to implement the test.

If we can assume that we have a probability distribution over

the set of possible faults so that we know the probability that each

fault is present, we can select the test sequence to minimize the

expected cost of testing. In this case the test sequence could be

arranged to seek the most likely faults first, since testing will

terminate upon the discovery of a fault. Alternatively, the objective

might be to select the smallest set of tests (or minimum cost set)

such that the probability of identifying any fault is at least a,

where a is some preset parameter.

III-14

Figure III-8. Test Tree for Example 3.

III-15

If no prior knowledge is available about the probability of

the various faults, we might want to select the sequential or com­

binational test sequence with full resolution and minimum cost.

Another point of view might be to imagine that a budget (perhaps

time) is available for testing and the objective is to select the

test procedure which is capable of identifying the largest number

of faults.

Many other variations of these ideas are possible, and thorough

consideration must be given to the test objectives before appropriate

test sequences can be selected.

F. DISCUSSION

The partitioning method just described is a general approach

to systems maintenance testing. The practicality of the method

depends on the extent to which the fault assumptions hold and the

extent to which tests can be devised to discriminate among the faults.

The issue of resetting the system to an initial state before the

application of each test is also crucial. If it is impractical to

reset the system after each individual test in a series of tests, then

it is possible to redefine the entire series of tests as a single

test. If this is done, the reset assumption is met. Of course, the

new test which is in reality a series of tests, is much more compre­

hensive than any of the original tests alone. The data in Figure

III-2 must, of course, be constructed for the new single test, not

the individual tests.

The applicability of the method obviously depends on the

ability to collect the data shown in Figure III-2 and this in turn

III-16

requires either a thorough analysis of the system by its designers

and builders or experimentation with a fault-free system (or a

model of it). The prototype system during its testing should be

carefully checked out and thoroughly instrumented, and may approach

a fault-free system. Practical considerations however imply that

the fault-free system might never be obtained; nevertheless, the

partitioning method can proceed with the understanding that the

system defined by f 0 is the standard whether it is fault-free or

pot.

The definitions of the faults to be considered must be

unambiguous and, if the data in Figure III-2 is to be gathered by

the experimental method in which faults are induced into an otherwise

fault-free system, the faults must have some physical realization in

the hardware or software. It is not sufficient to define a fault as

"something is wrong with the memory unit" or "the data bus is not

working properly." Fault definitions must be much more precise than

this. The level of detail at which a fault must be defined probably

leads to an enormous number of faults in any practical application

and it is in this area that sound judgment must be exercised to

prevent the approach from becoming unmanageable.

A first attempt at applying this method to a complex system

might concentrate on only one class of faults, for example control

faults or branching faults. If a flow chart were available, each

decision point could be identified and the possible branches from

that point listed. A fault would correspond to always selecting one

of the branches or never selecting one of the branches. With con­

sideration limited to this class of faults the number of faults would

III-17

remain manageable. However an item to keep in mind is that while our

discussion assumes that the only faults which can occur are those pre­

cataloged faults, it may be that some other fault has actually occurred.

The behavior of the system is not known for such an occurrence and

unless it produces some outcome other than 01 , ••• op, we will

erroneously identify the fault as being in our catalog.

III-18

IV. SOFTWARE ERROR SIMULATION

Much of the software development costs,which were mentioned

in Section II, are for testing, debugging and intggration; a significant

part of the costs after releasing the software are for correcting

errors. Thus there is current interest in the error characterist~cs;

number, type (overflow, sequence control) and location of ooftware

errors in a program. It is generally accepted that computer programs

with a complex structure, that is one with a high incidence of branch

instructions and loops, are harder to debug and test and more errors

persist after release than for programs with a more simple structure.

An error simulation model1 is presented here which investigates the

relationship of program structure to error detection and test eff0rt.

_Since structure can be controlled during the design phase

and measured through all phases of a computer project, the study

of the relationship between structure and error characteristics is

valuable to the manager of a software project. Complex program

structures with poor error characteristics should be avoided. Poor

error characteristics result when many errors are located in conplex

structures in such a way that error detection would prove difficult

during testing. In cases where complex program structures may be

necessary to help meet program size or speed limitations, it is

useful to have an indication of the additional testing which may be

caused by complex structures. It is also useful to be able to compare

the error characteristics of design alternatives that have different

program structures.

1The suggestion to use a simulation model to study software error
detection was given by Dr. Samuel Litwin, a consultant to the Naval
Air Development Center.

IV-1

NEED FOR RELIABLE SOFTWARE

A. SOFTWARE COSTS

The production of software can be divided into three phases:

*
*

*

analysis and design,

writing programs and

test and integration.

Data on how time, effort and money are divided among these three

phases gives some indication of why software production is so costly.

The fraction of time, effort and money for each phase differs from

application to application; however, data from some large projects

show similar experience. Estimates are given in [19] and [20] for

some military command and control systems: Analysis and design is

about 35 percent, writing programs 15 percent and test and integration

50 percent. For space projects the estimates are 35, 20, 45 percent.

For the IBM 360 operating system the estimates are 35, 15, 50 percent.

Data for business application indicates less for testing and integra­

tion and more for analysis and design than the above data. The sur­

prising amount of time, effort and money for test and integration is

often the item most underestimated in planning computer projects, as

described in [12]. •

B. DEFINITIONS

In the field of software engineering there is little agreement

on the definition of terms, such as the definition of software

reliability. In order to make the understanding of this paper easier,

the following definitions will be adhered to in as much as possible.

IV-2

1. Terms

Software reliability is the probability that a computer pro­

gram will perform its intended function for a specified time interval

under stated operating conditions, [21].

Reliability prediction is intended to provide an estimate of

future probability of successful operation.

Testing is an effort to determine the presence of software

errors, not their absence.

Software error is a mistake in program design or implementation

which leads to undesirable results during program execution.

Module is a particular physical combination of program instruc­

tions that is independent of others with respect to compiling, assembling

and loading and which performs a specific function.

Program is a set of modules.

Program complexity may be described by characteristics such

as program size, incidence of branch instru::tions, incidence of loops,

incidence of subroutine calls and variety of instructions.

Non-branch instructions may be either computational or input/

output instructions.

Structured programming is a programming technique, [22] in

which a program with one entry and one exit can be written using only

the following programming progressions:

*
*
*

Sequence

IF THEN ELSE

DO WHILE

Directed graph is a geometric graph, consisting of nodes and

arcs, with a direction of traversal associated with each arc.

IV-3

C. CLASSIFICATION OF ERRORS

Software errors are classified as follows:

* M~stakes in logic at the flow chart level,

*

*

*

*

*

*

Computation and assignment,

Sequencing and control,

Input/output,

Declarations,

Keypunching/clerical errors committed in writing

instructions on coding sheets,

New errors introducted as a result of design changes:

unexpected side effects caused by changes,

logical flaws in change to design,

inconsistencies between changed design and implementation,

inconsistencies in original and changed hardware

D. TESTING AND ERROR DETECTION

The life cycle of a program is composed of the following

phases:

* Design and analysis,

* Module development and testing,

* System integration testing,

* Functional testing,

* Maintenance.

The cost of error detection and repair during system integration

testing is three times that of testing an individual module during

module development testing, [23]. Therefore, the objective should be

to reduce the number of errors detected during system integration test­

ing and increase the number (proportion) discovered during module

development testing.
IV-4

In many moderate and large computer projects, a programmer

writes and debugs a module and then gives it to a test group. The

test group tests the module, integrates it with other modules and

then continues testing. The module is tested by supplying an input

to the module and then comparing the outcome to the known correct

outcome. If there is a mismatch between observed and correct output,

an error has been detected. When an error is detected the module

is given to a programmer who locates and corrects the error and then

returns the module to the test group. Notice the distinction between

testing, which is supplying inputs and observing outputs, and debug­

ging, which is the highly individualized detective work needed to

locate and correct errors. In debugging, the programmer needs a

detailed knowledge of the structure and operation of the module. The

tester is frequently unaware of module structure and operation; he

needs only to understand the function of the module.

Most computer programs have a large number of potential inputs;

each may exercise a program in a different way. The sequence of in­

structions of the program that results from a particular input is

called the "path'" or "thread" associated with that input. Testing by

submitting inputs to the program checks only the paths associated with

those inputs. For programs with a very large number of inputs, testing

can be only a relatively small sampling of all possible inputs, as

described in [12).

ERROR DETECTION MODEL

A. NEED FOR A MODEL

Testing is a critical part of software projects because it

measures and affects the final quality of the software and it consumes

IV-5

a large part of project time and resources. Testing also reveals

the strengths and weaknesses of the analysis, design and coding of

the software and gives an estimate of the success or failure of the

software after release. Thus, it is important to understand the

testing process and to understand the relationships between testing

and the various decision variables that may be controlled during

analysis, design and coding.

A difficult facet of program testing involves the selection

of inputs. The tester, who generally is not the person who wrote

the code, does not know the specific path that an input will execute.

Presently there is no software tool that would automatically allow

the tester to force an input to follow a certain path. Some test

systems allow the tester to select whichever instruction is to follow

the previous one. In this way a particular path is followed, (24).

This is obviously a slow and cumbersome way to check out all, or many,

of the possible paths in a program.

Obviously, inputs should be chosen so that a high percentage

of the critical paths of the program will be exposed to testing.

However, this objective must be weighed against the cost of machine

time for debugging and the cost of programming personnel for error

correction. A related matter is the determination of when to stop

testing. It is usually infeasible to subject a program to all possible

input combinations because of resource constraints. Various software

packages are available for recording and analyzing the following

types of data: count and frequency distribution of types of instructions

executed; indication of code which is not executed; and indication of

code which is impossible to reach, [25}. Although this type of

IV-6

instrumentation is helpful for tracing program behavior, once a set

of inputs is selected, it does not solve the problem of selecting

the number and type of inputs in the first place, [17].

Thus, there is a need for a model to examine the relationships

between the number of inputs and paths traversed, for a given program

structure, and the number of remaining errors, fraction of the program

exposed to testing, execution time and repair time. It is of interest

to determine the number of inputs required to achieve a specified

number of remaining errors for various structures, when the same

number of original errors is used with each structure. In addition

it is desirable to identify programming structures which have complex­

ities that make it difficult to detect errors.

B. BASIC MODEL DESCRIPTION

1. Model Characterist•ics

Program complexity may be described by characteristics such

as program size, incidence of branch instructions, incidence of loops,

incidence of subroutine calls and variety of instructions. Another

view of program complexity can be obtained by considering the structure

of the program to be a series of nodes, arcs and loops in the form

of a directed graph as shown in Figure IV-1.

In the directed graph used in the simulation model, nodes

represent connection points where parts of the program may merge

and/or branch and arcs represent a sequence of nonbranching instruc­

tions such as computation and input/output. Instructions are located

in arcs and errors are located in some of the instructions. An input

defines a path from the start node to an exit node. Beginning at the

IV-7

Figure IV-1. Directed Graph Representation of a Program.

IV-8

start node an input causes execution of the instructions on its path,

consuming test time, until an error is encountered. After the error

is thus detected, it is repaired, consuming repair time. There is,

however, some risk that the repair will introduce a new error in some

instruction. Restarting at the initial node execution is begun again

with the same input. This process is repeated until there are no

errors on the path.

Some relative measures of program complexity which are appli­

cable to a directed graph representation of program structure are:

• ratio of actual number of arcs to the maximum possible

number of arcs,

• ratio of nodes to arcs,

• ratio of loop arcs to total arcs.

The size of a program is a measure of complexity in an absolute sense.

In terms of a directed graph structure, size is determined by the

number of nodes, which establishes the number of branch points in a

program, and by the number of arcs, which establishes the degree of

straightline coding between branch points. Increasing values of the

above relative and absolute measures represent increasing program

complexity.

2. Model Simulation

The error detection model was written in FORTRAN IV and has

been developed and used on the Naval Postgraduate School's IBM 360/67

computer. The program has been executed 40 times in the production

mode. The simulation program consists of 639 FORTRAN statements,

requiring 194,000 bytes of main memory and executes in 40 to 55 seconds,

depending on the type of simulation involved. The directions for use

IV-9

of the error simulation program are listed in Appendix C and the

FORTRAN listing for the simulation model is in Appendix D. The

directed graph was input to the simulation as a node-arc incidence

matrix. Lacking detailed information about the distributions of the

pertinent variables in actual systems, there were no statistical

dependencies among the variables established. Thus, the random varia­

bles were chosen to be independent and to possess the Markov property~

This also makes the model more tractable for obtaining an analytical

solution.

The number of instructions per arc is an independent exponen­

tial random variable truncated to an integer. Errors are inserted by

making the number of instructions between errors an independent expo­

nential random variable, which results in a Poisson distribution of

errors per interval of instructions. Errors are inserted by scanning

the arcs of the node-arc incidence matrix by columns until the count

of instructions from the last error equals the random number .

An input is a sequence of random numbers that determines which

arc to traverse at each branch node. For each branch node the proba­

bility of taking each arc is equal . This could be changed to test

the sensitivity of error detection to different branch probabilities .

The repair times for errors are exponentially distributed.

If many programmers work on error repair with each repairing only a

small number of errors, the effect of experience on error repair may

be small so that a constant repair rate corresponding to the exponen­

tial distribution would be appropriate. If few programmers work on

repairs, experience would be a factor and an increasing repair rate

distribution would be appropriate. For example, the log-normal is

IV-10

sometimes used to represent the distribution of hardware repair time,

[261 •

The execution times of instructions are exponentially distrib­

uted. It was assumed that the execution time of an instruction does

not depend on past instruction times. This assumption may not hold

if the programmer tends to sequence his instructions in certain patterns.

When errors are repaired, the potential introduction of new

errors is simulated. New error insertion is based on the ratio of the

number of instructions changed by error repair to the total number of

instructions in the arc. The arc where the new error is to be inserted

is determined on an equal probability basis.

The simulation is written so that any distribution or parameter

can be changed for the purpose of sensitivity analysis. The choice of

distributions may have a significant effect on the simulation results

for a given structure; however, since the objective is to evaluate

results on a relative basis across various structures, the choice of

distributions does not seem to be critical.

For each input, data are collected on the number and location

of errors detected, number and location of new errors, number and

location of remaining errors, number of arcs traversed, time to execute

instructions and time to repair errors.

The simulation model was written so that it would be possible

to generate random times for each instruction executed and for each

error repaired as the simulation proceeds. However, if the instruc­

tion times and repair times are independent and identically distributed

as described above, then it is possible and computationally desirable

to count the number of instructions executed and the number of errors

IV-11

repaired and multiply these by the average instruction executing time

and the average error repair time, respectively, in order to obtain

a very good estimate of each total time.

C. MODEL ASSUMPTIONS

A basic assumption of the model is that the tester has some

knowledge of the program structure, but that for a given input he does

not know the specific path that it will execute. In actual software

projects the test group has flow charts and program listings: however,

it is infeasible to analyze this information because it may contain

thousands of lines of coding. Because of the size of the program, the

complicated internal logic and the large number of paths, the relation­

ship between inputs and outcomes is rarely understood. One example is

in the testing and maintenance of large operating systems. The rela­

tionship of inputs to outcomes is so poorly understood that even after

an error has been detected it is often difficult to determine an input

that will reproduce the error.

A further assumption of the model is that the tester gains no

information as the testing proceeds that will influence his choice of

subsequent inputs. In actual software projects the tester should try

to make best use of any information gained during testing. Various

software packages are available for recording the following types of

data: count and frequency distributions of instructions executed, indi­

cation of code that is not executed and indication of code that is

impossible to reach [25]. However, there are other factors that may

make it difficult to effectively use the information gained during

testing. For example, the test plan may be specified in advance with

IV-12

no modifications allowed or inputs may be restricted to those that

will be typical for the program in actual operation. For these

reasons the model assumptions seem reasonable as applied to functional

testing.

The probability distributions which were used are listed

below.

Property or Event

Instructions per arc

Instruction execution time

Original error occurrence

Time to repair an error

Iterations per loop

Number of instructions affected

by repair

New error occurrence

Arc selected for new error

insertion

Arc selected at branch point for

traversal

Probability Distribution

Exponential

Exponential

Exponential

Exponential

Uniform

Uniform

Uniform

(based on ratio
of instructions
changed/instruc­
tions in arc)

Uniform

Uniform

Since little is known about the type of probability distribu­

tion which is associated with the above program properties and execu­

tion events, the selection of distributions was, of necessity, based

on assumptions. However, it was felt that the assumptions were

reasonable. For example, the seeding of original errors was based on

IV-13

the number of instructions between errors being exponentially

distributed, or equivalently, the presence of an error was independent

of the presence of other errors. A second example was that instruc­

tions were placed in arcs according to an exponential distribution,

or equivalently, the number of instructions between branch points was

exponentially distributed. This implies that the number of instruc­

tions between two branch points was independent of the number of

instructions between other branch points. Although the choice of

distribution may have a significant effect on the simulation results

for a given structure, the objective was to evaluate results on a

relative basis across the various structures so that choice of distri­

bution was not critical. Although it was possible to vary both the

type of distribution and its parameters, the usual procedure was to

keep these factors constant and vary program structure, number of

inputs and input traversals.

D. MODEL USES

The model can be used to influence software design decisions

by making it possible to compare the error detection characteristics

of alternative program structures. This is valuable, since error

detection characteristics are good indicators of the time and resources

consumed by testing. The design flow charts and estimates of branch

probabilities and number of instructions can be used to specify progams

in the form of a directed graph. The program is then seeded with

errors and subjected to random inputs.

The model can also be used to identify the measure or measures

of complexity that best predict the ability to detect errors. To do

IV-14

this it is necessary to gather data from the model on the error

detection characteristics of a variety of different structures and

then do a statistical analysis. This would make it possible to

measure the complexity of different programs and then compare the

estimates of error detection characteristics. Although some data

has been generated, further work is necessary to identify good measures

of complexity.

There are other situations where it is useful to be able to

compare structures. A frequent problem is to evaluate the cost of

adding some additional feature to the program. The results of the

model can be used to compare error detection cnaracteristics of the

original and modified structure. The problem of how to allocate test

effort among structures of different size and complexity can also be

addressed.

ANALYSIS OF SIMULATION RESULTS

A. THE EFFECT OF INCREASING THE NUMBER OF INPUTS

1. Model Testing

One would expect that initially there are many errors detected

in a program with each input and then the number of errors detected

decreases as additional test inputs are used, because much of the pro­

gram is exposed to testing initially. This is illustrated in Figure

IV-2. The percent residual errors decreased stepwise as the number of

inputs increased. In the testing of actual software, after finding

many errors, there may be long periods of time with no error detection

followed by a new group of detected errors.

IV-15

~

~
~

j
IIJ
G>

er:
-t,J
s::
GJ

2
G>
~

100 ·

90

80
,. .

70 4 •

60

50

1'-0

JO

20

10

30 nodes, 50 arcs, 6 loops
'

18 original errors, 11 added errors

. .

....

o·

• •

20·

.........

JO•
Number of Inputs

-............ .

40" 50'

Figure IV-2. The Effect of Increasing Inputs on Residual
Errors.

Recall that each input in the model detected all the errors

in its path, from the input node to one of the output (terminal) nodes.

In order to explain the stepwise action in Figure IV-2 it must be

realized that although the paths through the program were, in genera~,

different from previous paths, portions of these paths may have in­

volved only arcs that have been previously traversed. The model had

well defined steps where no new arcs were tested for a number of unique

input paths, as shown in Figure IV-3. Thus it can be seen how a new

group of errors was detected when the model tested previously untested

parts of the program.

However, just because an arc has been previously tested does

not imply that it was error free. As each new detected error was

IV-16

30 nodes, 45 arcs, 6 loops

28 original errors, 17 added errors

.................
.

. . ..
•

•

•

10 20 JO 40 50

Number of Inputs

Figure IV-3. The Effect of Increasing Inputs on Arcs Tested.

repaired, there was some small probability that a new error was intro­

duced in some other portion of the program. This newly inserted error

may have been inserted in a previously tested arc. A check was made

on the coverage of the arcs by the simulation model. The structure

checked had 30 nodes, 40 arcs and 6 loops as shown in Figure IV-4.

The numbers along the arcs indicate the number of times the arc was

traversed. For example, the source arc at the top was traversed

50 times, or there were 50 different inputs. Every time an input

reached a node it had an equally likely opportunity to select any one

of the arcs emanating from the node. The simulation results bear

IV-17

this out as Figure IV-4 illustrates, where the 50 inputs traversed

the top arc and split below with 25 going to the left and 25 going

to the right. The arcs which had a backward pointing arc or loop

around them were traversed more times as shown by the number alongside

the arc representing the sum of the number of times the backward

loop was selected and the number of times the input arc was selected.

Looking at the far right hand loop, seven inputs came into the node

from above, twelve inputs came into the node from the loop and 19 of

the inputs exited the node. The parenthesized numbers indicate the

number and location of errors. The number of errors includes the

errors initially seeded and the errors inserted when repairing detected

errors.

2. Simulation Example of a Real Program.

In order for the simulation model to be of any practical

use, it had to be tested on a real program. Appendix B contains the

code and structure of a textbook FORTRAN program for computing Bessel

Functions. The column labeled "node" corresponds to the nodes in the

directed graph representation of the program in Figure IV-5. This

particular program was selected as an example of a good computational

program, since it was presented in a numerical analysis text, [26]

as an example of a poorly coded program, since a casual reading of

the code showed a lack of use of structured programming techniques.

Another reason for the selection was that the program could be broken

down into 30 nodes, which was the same as the test structures. It

also fit within the range of str-uctures tested having 43 arcs and 9

loops. The first number inside of the parenthesis represents the

number of instructions in the arc and the second number represents

IV-18

Figure IV-4. Arc Traversal and Error Patterns.

IV-19

Figure IV-5. FORTRAN Program Directed Graph.

IV-20

the number of errors, original errors plus added errors, in the

arc.

Fifty randomly selected inputs were run through the structure.

With 16 errors initially seeded, five errors, or 16.7 percent of the

total errors seeded, still remained after fifty inputs. comparing

this result with a test structure with 45 arcs and 6 loops and another

test structure with 44 arcs and 10 loops, the percent residual errors

in the FORTRAN program was high, illustrated by Figure IV-6. By

analyzing the paths each input traversed it was noted that six of the

nine loops in the FORTRAN program, all emanating from the bottom of the

graph, going to the top of the graph, were very seldom used, thus not

giving each individual input an opportunity to loop back up to the top

of the graph, and thus test more branches for a given input. This

was borne out by the results in Figure IV-7, which showed that the

percentage of arcs tested was lower for the FORTRAN program.

B. THE EFFECT OF INCREASING THE NUMBER OF ARCS

Intuitively, given two programs with the same number of nodes,

and a different number of arcs eminating from the nodes, one would

expect that the program with the greater number of arcs, or the more

complex program, would have the higher percentage of residual errors.

By the same reasoning one would expect the more complex program to

have fewer arcs tested with a given number of inputs.

Fifty random inputs were used on each of the following program

~ructures. Each structure contained thirty nodes and six loops.

Retaining the concept that each node represents a branch or decision

point in the program, the most simple structure that can be defined,

IV-21

FORTRAN Program

30 noAes, 43 arcs, 9 loops
16 original errors, 14 added errors

100

90

80
Cl)
J..I
0 '70
M
r-1 60
~

50 ~
C7J
Cl)

40 c:i:::

+> s::
QI 30
~
II)

•

Poi 20

.10

,. - - _ FORTRAN
45 a.res-: o loops· .

44 arcs - 10 loops

Number of Inputs

Figure IV-6. Residual Error Pattern

IV-22

FORTRAN Program

30 nodes, 43 arcs, 9 loops

16 original errors, 14 added errors

100 FORTRAN - - - .. - - -
90 ~

... .,.

~ ,,.
80 • 00~ ,,,.

b'\: , ,

'i 70 .. ,,,, .,
~ .,.
1/J 60 G) ,,.

E-•
ro .50
~
~

40
CIJ
()

t1 p..
30

20

10

20 -30 40 50
Number of Inputs

Figure IV-7. Arcs Tested Pattern

using thirty nodes, must have a minimum of forty arcs. By definition,

to establish a node there must be at least three arcs, in any combina­

tion, either terminating or emanating from the node; thus, the minimum

number of arcs in a structure is: (3/2) (the total number of nodes)

minus the number of entry and terminal nodes. Recall that an arc was

defined as either a forward or backward pointing arc, called a loop.

Starting with forty arcs and adding five more to each structure, five

structures were simulated with 40, 45, 50, 55 and 60 arcs. After

fifty inputs the percent residual errors increased as the number of

arcs increased, as Figure IV-8 illustrates. The percent residual

IV-22 CL

30 nodes, 40 - 60 arcs, 6 loops

100 .

90

80

n 70
~

60
~

!
~ so
It.I

i · 40
~ 60 arcs
CD 30
~ 55 arcs
G)

lli 20 0 arcs

10 45 &res

40 arcs

number of Inputs

Figure IV-8. Relation Between Complexity and Residual Errors.

errors was chosen as the vertical axis in Figure IV-8 rather than

residual errors since the number of errors, original errors plus

added errors, varied in each of the five structures. The reason

for the variable number of errors was that each time a new structure

was defined, the error simulation program would randomly seed all

the original errors again, thus errors could have been inserted into

the added arcs.

Similarly, Figure IV-9 illustrates the effect of increased

complexity on the percentage of the arcs tested . As the number of

arcs increased, the percent of the arcs tested decreased.

IV-23

30 nodes, 40 - 60 arcs, 6 loops

40 arcs

'C
G>
~
In
G)

f-i
Ill

~
< 40
~
s::
Q) 30 e
II)

p.

10

Number of Inputs

'
Figure IV-9. Relationship Between Complexity and Percent

Arcs Tested.

Examining the paths traversed by each input gave some insight

as to why an increased number of arcs caused higher residual error

and lower arcs tested percentages. When an arc was added, the number

of arcs emanating from a node increased . There was a probability

that the added arc could contain an error as the entire structure was

seeded with errors anew. As the number of arcs increased, there were

also more arcs which provided shorter paths to an exit node by

connecting a node closer to the input with a node closer to one of the

outputs, thus leaving some intermediate arcs untested.

IV-24

Repair time turned out to be unrelated to complexity. The

number of errors initially seeded controlled the repair time. These

results can be seen in Figure IV-10. Several structures are shown

in the plot of repair time versus percent residual errors. The amount

of time required to repair errors, for a given percentage of residual

errors, increased as the number of errors initially seeded increased.

~
~
~

I m
~
~

~ m e
~
~

30 nodes, 40 - 60 arcs, 6 loops

10

90

BO

?O

60

50

~

30

20

10

Figure IV-10. The Effect of Arcs on Repair Time

0
(Hrs)

Generally the relationship between the percent arcs tested

and the percent residual errors can be described as approximately

linear. As the percentage of the arcs tested increased , the percentage

of the residual errors remaining decreased. In Figure IV-11 the

IV-25

30 nodes, 40 - 60 arcs, 6 loops

100

90

80

~ 70

~ 60
~

j 50
0
~ ~ ~

t
~

~
30

e 20 ~

10

Percent Arcs Tested

Figure IV-11. The Effect of Complexity on the Relationship
Between the Residual Errors and Arcs Tested.

shaded area represents the band of values, corresponding to various

structures, for a given percentage of arcs tested, with the mean

shown as the middle curve.

C. THE EFFECT OF INCREASING THE NUMBER OF LOOPS

Improper loop indexing is usually near the top of a list

of most frequently occurring errors, [19]. Many people think that

loops should be eliminated as a program structure. Note that the

only influence of loops in this model is with respect to coverage.

The model does not account for errors in the loop counter or failure

to get out of a loop. One of the results of the analysis was that

an increase in the number of loops had no significant effect on the

IV-26

percentage of residual errors, as shown in Figure IV-12. Starting

with a structure with no loops, and then structures with 5, 6, 10,

14 and 20 loops were analyzed using the error simulation program.

The percent residual errors was chosen as t~e vertical axis rather

than residual errors since the number of errors, original errors

plus added errors, varied in each of the six structures. The

reason for the variable number of errors was that each time a new

structure was defined the error simulation program would randomly

seed all the original errors again, thus errors could have been

inserted into the added loops.

100

70

60

50

~

30

20

10

30 nodes, 34 - 54 arcs, O - 20 loops

20 loops

Number or Inputs

Figure IV-12. The Effect of Loops on Residual Errors,

IV-27

The reason for the independence of the percent residual

errors from loops can be explained by examining Figure IV-13 .

There was no distinguishable difference between the percent arcs

tested in the six cases with 0, 5, 6, 10, 14 and 20 loops.

30 nodes, 34 - 54 arcs, 0 - 20 loops

100

90

80

~
?O

~ m 60 m
~

~ 50
~
<

~ ~ = ~

t
~

20

10

0 ~ 50
Number of Inputs

Figure IV-13 . The Effect of Loops on Percent of Arcs Tested.

By examining the paths the inputs trace, the explanation of

the above becomes obvious. After an input completes a loop, it once

again has an opportunity of branching out of the loop, thus testing

more arcs than a structure with no loops. Each time another loop

was added, the probability of branching out of all the loops

increased at approximately the same rate as the increased number of

loops. This concept was reinforced by the data shown in Figure IV-14.

IV-28

After the structure was expanded to nine loops, any additional

loops had no effect on error detection. The percent of the total

residual errors in the structure that resided in the loops was a

constant 59 percent and the percent in the arcs was a constant 41

percent for structures with nine to twenty loops. This data was

derived by starting with a structure containing 20 loops, seeding

errors, and then analyzing the structure. The error simulation

program would then delete a loop and its associated error, if one

had been seeded, and then analyze the new structure.

j

Error locations constant

Variable number of errors

Percent residual errors in loops

Percent residual errors in arcs

Number of Loops

Figure IV-14. Residual Errors in Loops and in Arcs.

IV-29

It required essentially the same amount of repair time

to decrease the percent residual errors to a certain level for all

the structures containing loops, as shown in Figure IV-15.

so
~

30

20

1

30 nodes, 34 - 54 arcs, O - 20 loops

12
Repair Time

Figure IV-15. The Effect of Loops on Repair Time.

Hrs

However, the number of errors initially seeded had no

distinguishable effect on the repair time of the structures with

loops.

It was not possible to make any judgements concerning the

determinants of execution time. This was due to the fact that all

but one structure tested had loops in it. Loops were executed a

variable number of times as determined by a uniform distribution

which established the number of iterations. The effect of a doubly

IV-30

nested DO loop was captured by allowing an input to have an

equiprobable chance of branching back up to the start of the loop

or of branching farther down the structure. The relationship

between the number of inputs and the cumulative execution time for

a structure with no loops is examined in Figure IV-16. A plot for

any of the structures with loops has points scattered all over due

to the random effect of the loops on execution time.

30 nodes, 34 arcs, no loops

18 original errors, 6 added errors

(sec) 275

250 / I 225·
~

~~ 8 200
a
~ 175 0 / , ,f,1 ~

g
~

~
150

~ 125
~

~ 100

i 75 0

50

~~ z-0-.-----3 0• ~· so·
Number of Inputs

Figure IV-16. Execution Time for a Structure with No Loops.

IV-31

The effect of the percentage arcs tested, with loops present,

on the percent residual errors can loosely be described as a linear

relationship. As long as the structures all had loops, the curves

of the percentage of arcs tested versus the percent residual errors

all fall within a narrow band of values as shown by the shaded area

of Figure IV-17. The curve for a structure with no loops is also

plotted.

30 nodes, 34 - 54 arcs, O - 20 loops

100

90

80

J 70

i
60

50
0
~ = ~
~
~ JO
~
~
~ 20

10

20 00

Percent Arcs Tested

Figure IV-17. The Effect of Loops on the Relationship
Between Residual Errors and Arcs Tested~

The mean of structures with a variable number of arcs and

a constant number of loops and the mean of structures with a variable

IV-32

number of loops are plotted in Figure IV-18 illustrates, the structure

with no loops required significantly fewer arcs to be tested to

achieve the same level of residual error percentage as compared to

the structures with loops.

100

90

80

j 70

60 M

j 50
~
~

~ ~

~
30 ~

! 20

10

Mean of all structures
with a variable number
of arcs and a constant
number of loops,

Mean of all structures
with a variable number

- ~~~-

Percent Arcs Tested

Figure IV-18. The Advantage of No Loops

D. REPLICATING A SINGLE INPUT

1. Model Testing

The usefulness of the model is now examined for predicting

the ability of detecting errors in an actual program. Four pieces

of information are of importance for a manager conducting module

development testing of computer programs. These are: the percent

of number of residual errors, the percent or number of arcs tested,

the amount of repair time, and the amount of execution time~

IV-33

The simulation model was used on ten different test structures

to see if this information could be predicted. For each structure

a single randomly selected input was run and the above data were

collected. This process was replicated 100 times, or in other words,

100 randomly selected inputs were used with each input using the

same structure and the same number of errors seeded in the same places.

Statistics such as mean, median, variance, standard deviation, etc.,

were calculated.

As an example, the basic 30 node, 40 arc, 6 loop structure

had 24 errors initially seeded. The simulation model produced a mean

of 78.79 percent residual errors with a standard deviation of 9.10 for

one input. Thus, one could estimate that based on 24 original errors,

after one input, 78.79 percent of the errors will remain. Similar

statistics were determined for percentage of arcs tested and repair

time. Execution time was found to have a high variance. For instance,

the mean execution time for one input for the above structure was 32.50

seconds with a standard deviation of 50.15. Thus, estimates of execu­

tion time based on the mean would be subject to high error.

2. Simulation Example on a Real Program.

The simulation model was used on the FORTRAN Bessel Function

program described earlier. It was found that, based on 16 original

errors, the expected percent residual errors was 84.26 percent with

a standard deviation of 9.09, or 15.74 percent of the original errors

could be expected to be found and corrected with one input. Similarly,

17.70 percent, with a standard deviation of 8.65, of the arcs could

be expected to be tested by one input. Of prime importance to the

project manager, 1.41 hours of repair time, with a standard deviation

IV-34

of 1.18, a relative measure for the manager to use when comparing

alternative structures, could be expected to be devoted to detecting

and repairing 15.74 percent of the errors.

E. THE EFFECT OF COMPLEXITY

The following complexity measures will be used:

*AMA is the ratio of the number of arcs in the structure to

the maximum number of arcs possible for the given number of nodes,

*NA is the ratio of the number of nodes to the number of

arcs in the structure,

*LA is the ratio of the nwnber of loops to the number of

arcs in the structure.

Using these relative complexity measures, it was of interest

to see how each of the measures affected the percent residual errors

and the percentage of arcs tested. Five different structures with a

constant number of loops and a varying number of arcs and six different

structures with a varying number of loops were examined. For each

structure, 100 replications of a single input were simulated using

the error simulation program, and statistics were gathered about the

percent residual errors and the percentage of arcs tested.

In Figure IV-19, the percent residual errors after one input

increased as the complexity increased . In this case the complexity

measure was the ratio of the actual number of arcs to the maximum

number of arcs possible with a given number of nodes . Similarly,

using the same complexity measure the percent arcs tested after one

input decreased as the complexity increased, as shown in Figure IV-20.

In both Figures IV-19 and IV-20, the standard deviation from the mean,

represented by the dashed lines, decreased as complexity increased,

IV-35

90

80

70 '

.....

... -

----- , -

--

.052

, -- -

., -

-

--

.OS/

-

.,.

--

--

... ,

-- -

-

--

... .,..

+0: --

-
- <r,.

.o J .068
increasing complexity -+

Ratio of Actual No. Arcs to ff.ax No. Arcs

Figure IV-19. The Effect of AMA on Residual Errors.

40

'.30

20

10

Copstant number of nodes

Variable number of arcs

...... ._,
.......... _-. ... _ -- - ---- __

~ - - -- ,.. ___ ,;----
.052. .057 .o 3 •

increasing complexity ~

Ratio o:r Actual ?Jo. Arcs to Max No. Arcs

Figure IV-20. The Effect of AMA on Arcs Tested.

IV-36

Using the ratio of nodes to arcs as a complexity measure

similar results were obtained. The percent residual errors increased

and the percentage of the arcs tested decreased as the complexity

increased. These results can be seen in Figure IV-21 and IV-22

where increasing complexity is from right to left. Note that there

was an even sharper decrease in the standard deviation as complexity

increased in both Figures IV-21 and IV-22.

A third complexity measure used was the ratio of loops to

arcs. In Figure IV-23, the percent residual errors remained constant

for one input as the complexity increased. Once again this reinforced

~
~ 100 H - - -- ---..t

t - -- .. --- - ... -
~ --- - - - - - +r 90 - .. - ...
~

i -... --
ri

...
! 80

... -...
~ Ill t> ...
ii:.

' - f"
~ 70

... -..
C>

G
Pc

.55 • 0 • 5 .'70 .75
~ increasing complexity

Ra. tio of ?lodes to Arcs

Figure IV-21. The Effect of NA on Residual Errors

IV-37

+6'",,

- - ---- . ---

- - - -,_.. -- ,_. ..

----- -- -- - -

--

---- - --

- -

• 5 • o' .65' ,70'
< increasing complexity

-er---- - -

,?5 I

Ratio of Nodes to Arcs

~igure IV-22. The Effect on NA on Arcs Tested.

constant number of nodes
Variable number of arcs

! · 100 ... -------.---....
~
~ 90

--- - ... - - - ~ ... - .. -· - +() ---

80

70 ~- -- - -------- - .. - - -----. =er-
~ - - -- - ..

• • • • •
increasing complexity__..

Ratio of Loops to Arcs

Figure IV-23. The Effect of LA on Residual Errors.

IV-38

the idea that loops expose more arcs to testing at the same rate as

the additional arcs increase the complexity. In Figure IV-24 it can

be seen that the added complexity had no effect on the percentage of the

arcs tested after one input, with the mean after 100 replications being

a constant 22 percent. Since loops were also defined as arcs, the

ratio of loops to arcs did not increase linearly as the number of loops

increased.

+' . 40
s.
s:::

H

~

ti JO
t
al

,g
+'
: 20
~

m
2
<
1: 10
Cl)

!

-u
.. - - - - - - - - - - - - - . - -- - - - - - - - - - - -

• 0 .20 •
increasing complexity

Ratio or Loops to Arcs

Figure IV-24. The Effect of LA on the Arcs Tested.

IV-39

V. ANALYTICAL RESULTS FOR THE ERROR DETECTION MODEL

A. INTRODUCTION

In the previous section an error detection model was introduced

and analyzed by simulation. It is possible to obtain analytical results

for the expected number of errors detected by testing. Although the

results are more limited than those from the simulation, the analytical

results are a relatively inexpensive means to analyze the relationship

between structure and the error detection process. The analytical

results can also help in the statistical analysis of the simulation

and can reduce the number of simulation runs needed.

The error detection model is reviewed. Then the analytical

results are developed and the output of computer programs to do the

calculation is discussed.

B. ERROR DETECTION MODEL

Here we investigate how error detection during testing is

affected by the structure of a computer program. By structure we

mean how the parts of the program are related. It is very difficult

to do experimentation with program structure in actual software pro­

jects because the cost of duplicate implementations of the same appli­

cation is very high for all but small projects. For this reason

analysis is performed on a model. Structure may be modeled as a set

of nodes and arcs as was described in Section IV. An example is

shown in Figure V-1.

Program structure affects the error detection process; to

study this relationship it is helpful to have measures of each.

For the error detection process some measures are: number of errors

detected in a fixed time, number of errors detected with a fixed

number of inputs, mean time between errors, percent arcs traversed

V-1

Start
• M ... ,

....

Exit
.. ' . ;

Figure V-1.

V-2

by one or more inputs and percent errors remaining. More sophisticated

measures involving the shape of the graph of errors detected vs. time

are also possible. These measures will be called "error detection

characteristics." Good measures of program structure are harder to

define. The most simple measure is size as measured by the number of

nodes. A measure that expresses the degree of completeness of the

graph is the ratio of the actual number of arcs in the graph to the

maximum possible number with only one arc between pair of nodes. Since

the model allows parallel arcs this number can be greater than one.

These measures will be called "complexity measures."

Since measures of complexity are to be used to estimate error

detection characteristics, it is important to define measures that

adequately express the differences between structures with good and

poor error detection characteristics. Since inputs are associated

with paths, a measure of complexity is the number of paths. The

average number of arcs per path also is a measure that is related to

the number of errors detected per input. For moderate size graphs

with no directed cycles, it is easy to enumerate all the paths and

the number of arcs on each. If there are directed cycles, it is

necessary to put an upper limit on the number of arcs in the paths

.considered in order to eliminate paths with an uncountable number of

arcs. The number of ways that an arc can be reached indicates how

accessible it is to testing. Measures based on this are the mean

and standard deviation of the number of paths that traverse each arc

or the number of arcs that are traversed by less than a fixed number

of paths.

V-3

The complexity measures defined thus far depend only on the

topology of the directed graph; it is also possible to use the branch

probabilities. Since the paths are not equally likely, the measures

involving paths can be weighted by the path probabilities. Given

the probability that an arc will be traversed by a single inpu~, a

complexity measure of the accessibility of the arcs for testing is the

sum of these probabilities for all arcs.

C. ANALYTICAL RESULTS

Here we describe how to analytically calculate the expected

number of errors detected by each of a sequence of inputs. For the

purpose of simplifying the analysis, it is assumed that new errors

are not created by the correction of errors. Given a computer program

represented as a directed graph with branch probabilities, and given

the expected number of errors on each arc, the output of the analysis

is the expected number of errors detected. For example, Figure V-2

shows the results of the analysis for the graph of Figure V-1 where

the expected number of errors in each arc is 0.6 and for each branch

node the probability of taking each arc is equal.

The analysis is in two parts. First, it is necessary to c~l­

culate for each arc the probability that the arc will be traversed

by an input. If there are no loops in the program, the calculation

is easy: The probability of visiting the start node is 1, if there

are k branching arcs the probability of traversing each arc is 1/k.

The probability of reaching any node is the sum of the probabilities

on the arcs coming into that node. For example, for Figure V-1,

the probability of reaching node 1 is 1, the probability of traversing

V- 4

EXPECTED NUMBER OF cRRO~S DETECTED VERSIGN l.O

PROGRAM TITLE: ERROR DcTECTICN MODEL

INPUTS = 20

f\UMBER GF ARCS = 22

ARC fRANCH TRAVERSAL EXPECTED NUMBER.
TAIL l"'EAD PROB.

l 2 1.0000
2 3 C. 5000 .
2 4 C.5COO
4 1 o. 3333
4 8 C.3333
4 9 0.3333
1 10 c. 5000
1 11 o.sooo
8 14 1 .0000
9 14 C.5000
9 15 0.5000

10 13 1.0000
11 13 1.0000
13 16 l. 0000
14 16 1.0000
15 16 1.0000

3 5 c.sooo
3 6 C. 5000
5 12 C. 5000
b 12 C.5000

12 3 C. 5000
12 16 C.5000

INITIAL EXPECTED ~UMBER OF ERRORS=

INPUT
l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

EXPECTED NUMBER
OF EPRORS DETECTED

3.45
1.95
1.39
1.03 c.ao
c.63
0.51
0.42
0.36
0.30
C.26
c.22
0.20
0.11
0.15 o. 13
0.12
c.11
0.09 o.oa

F i gure V-2

v-s

PROB. OF ERR.ORS
1.0000 0.60
0.5000 0.60
0.5000 0.60
0.1667 0.60
O.l6b7 0.60
0.1&67 0.60
0.0833 0.60
0.0833 0.60
0.1667 0.60
0.0833 0.60
0.0033 o. 60
0.0833 0.60
0.0833 0.60
0.1667 0.60
0.2500 0.60
0.0833 0.60
0.3333 0.60
0.3333 0.60
0.3333 0.60
0.3333 0.60
0.2500 0.60 o.sooo 0.60

13 .20

CUMMULATIVE
cXPECTEO NUMBER

uF ERRORS DETECTED
3.45
5.40
6.79 1.az
8.62
9.25
9.76

10.19
10. 54
10 .84
11.10
11.33
U.52
11.69
11.84 -- -
11.98
12.10
12.20
12.30
12.38

arc 1-2 isl and the probability of reaching node 2 is 1. There are

2 branches from node 2 so arc 2-3 and 2-4 each have probability 1/2.

In this way the probability of reaching nodes 4,7,8,9,10,11,14 and 15

and the probability of traversing the arcs out of these nodes can be

calculated; see column 5 of Figure V-3. The loop from node 12 to node

3 makes the analysis for arcs 3-5, 3-6, 5-12, 6-12, and 12-3 complicated

because it is possible to return to node 3 more than once. The pro­

bability of reaching node 3 directly from node 2 is 1/2 and thus,

there is a probability of 1/4 of immediately traversing arc 3-5.

However, even if arc 3-6 is traversed there is some probability that

after arc 6-12 is traversed arc 12-3 will be traversed and then arc

3-5 will be traversed. Fortunately, it is not necessary to do this

calculation by hand. It is possible to do a Markov chain analysis

to compute the probabilities and a computer program has been written

to do this calculation. Figure V-3 is the output of that program for

the graph of Figure V-1. The "R" in the column labeled repeat indicates

an arc that may be traversed more than once by a single input. The

branch probability column gives the probability of traversing the arc,

having reached the tail node.

The second part of the analysis is to compute the expected

number of errors detected. For notational convenience, the arcs

are numbered j=l, ... ,n. Let p.
J

be the probability of traversing

arc j. Let µ •
J

be the expected number of errors in arc

expected number of errors detected by the first input is

j . The

~ n µ p After the first input, the expected number of errors in lj=l j j.

each arc is reduced to µ. 2 = µ. (1-p.) (where the 2 indicates this
J J J

V-6

ARC TRAVERSAL PH8~iUILITIES FCR ERRCR DETtCTICN

-- -PROGRAM TITLE-:-- E-RROR- DETECTIGl\ ,'10uEL

5T ART ~lOOE = l EXIT MCOE = 16

NUMBER CF APCS ~ 22

TA IL
6

12
11
13
14

7
---8

l
2

12
2
4
4

AflG
1-EAD

t2
3

13
lb
16
11

-- - 14•---
2.
)

16
4 .,
a
9

l{EPEAT
R
k

4
1
q
--1-- -----

9
10 -
15

.3
3 ,

14
15
13
l(,

5
6

12

R
R
R

IJ l:! t\NC H
PROB.

1 .cooc
C.!:>OOU
1.cn,rn
1.< n,Jo
1.(0•)0
C.5000
l.GOJO
1.0000
().5000
C. 50,JO
C.50Ll0
0 .333J
0.2J33
o. 3333
C.500 0
C.50')0
c.sooo
1.0000
l. C' O'JO
G.501>0
C. 50')0
l.CC)O

VE RS I '1~; 1. 0

T~AVE~SAL
PR CJ~.

().3333
D.25CO
0.0833
.J.lb67
,') .2 500
o .oeJ J
0 .166 7
l .0000 o.scno
o.5000
0.50 00
0.1667
O.lb67
0.1667
0.0833
0.0833
n.oa33
0.0833
l').0933
o. 3333
0.3333
0.3333

-· -----. -

--- - _,,.,_ ---
FIGURE V-3 .

--------------·---·- --- ---- - -- ---·-------···-----··

- - - --- -- ----

is the expected number of errors in arc j before the second input).

The expected number of errors detected by the second input is

lj~l µ ·2P .•
J J

In general, for the kth input the expected number

of errors is lj~l µjkpj where µjk =
k-1

µj (1-pj) . A computer

program has been written to do the calculation and to draw the graph;

Figures V-2 and V-4 are the outputs of that program.

D. LIMITATION OF THE ANALYSIS

The output of the model is an average; there is no information

on what the distribution of the number of errors detected might be.

It is possible to compute the standard deviation of the number of

errors detected by the first input if the number of errors on each.

arc is independent of the number of errors on every other arc. How­

ever, this calculation is impractical for the second and subsequent

inputs. The simulation may be used to estimate the distribution of

errors detected.

E. COMPUTER PROGRAM

Two computer programs have been written to do the analysis.

They are written in FORTRAN. The programs and directions for use

are included in Appendix E.

V-8

l'lj
'° C
11

<: (D
I

\C <:
I
~

4.00

•
3. 00

2.00
t •

•
1.00 I 0

" (jt •

EXPECTED NUMBER

OF ERRORS DETECTED

:; tJ· ~
(I)

<!' ~ ~
-~ fjl

15 10

v ev "', ,

5 0
tr 111 1 rt t i • • I '· • et&ttttft +11 · ++it _. ,... * I n t t ro·· r > 1 • • I" . . ** I 0.,-, #ll!:-tr: ~· at 1 11n•• v :;; • 20 .. ~ I • ttt#d • 1 tiC I 0:111' C1: rt ii 5 «> •

INPUT NUMBER

• ' loo t ••

VI. ISSUES IN SYSTEM TESTING

There are a number of issues that arise in the development

of system tests for avionics. Some of these issues are common to

many projects and it is possible to develop guidelines for action

without considering the details of the particular avionics system.

Here we discuss a number of issues that have been important considera­

tions in the development of system tests; the resolution of these

issues has often been critical to the success of the system test effort ,

It is helpful to have a scenario to relate the issues. Here

we consider a piece of avionics equipment. It is like a computer--it

has memory, it inputs and outputs data and it runs programs. It has

a test procedure; that is the complete test plan including a computer

program and operator manual. The test procedure consists of individual

tests. The equipment is given a preflight test to determine if i t is

in the "go11 or"no-go" condition. It has inflight tests to be used

routinely and tests to restart in case of failure. It is installed

on several platforms, some with repair capability, some with none .

A. - STRESS IN TESTING

Testing as well as operational use weakens components and pro­

duces failures. The time for testing can be a significant part of

the 110n time" for avionics equipment. Testing can involve high s tress

on the system--often testing purposely ~ubjects the system to higher

stress than during operation in order to (1) precipitate failures in

weak components so they can be replaced before the mission begins ,

(2) reduce test time by testing items simultaneously and moving

VI-1

quickly from one test to another and (3) detect malfunctions that mi~ht

occur when the system is heavily load~d. One example of the use of

high stress testing is the diagnostic tests run by maintenance engineers

on general purpose computer systems. Another example is applying low

voltages to equipment; this can precipitate failures (this is being

used less frequently now since low voltage is particularly detrimental

to solid state devices). There is, however, definitely a place for

very low stress testing. The deep space missions employ very low

stress testing in order to avoid failures due to testing.

For avionics, preflight testing is always higher stress testing

than testing during a mission. Platforms with repair capability c~n

use higher stress testing during a mission. During a mission, _the

decision to use high or low stress testing after a failure or after

a power down depends on whether it is more important to have a precise

indication of the capability of the equipment (use high stre~s) or it

is more important to complete the mission with the equipment as is

(use low stress). The use of the same tests during a mission as were

used in preflight is not the best procedure in some situations; for

some platforms it will be necessary to design tests with different level s

of stress.

It is critical that the design specifications for the preflight

and inflight tests indicate clearly whether high stress or low stress

is to be used . A critical design variable is the time allowed for

testing; a long detailed test plan together with a short test time

will result in a high stress design. Avionic systems for different

platforms ~ay require a different level of stress for each platf9rm.

VI-2

B. MICRODIAGNOSTICS

In avionics systems that have microprogramming, it is possible

to implement test programs in software and/or microprograms. There are

several reasons why microprograms are an attractive alternative to

software: (1) Microprograms require much less hardcore than software.

Software may require input devices, data channels, main memory, etc.,

while microprograms only require a data path to a data register. (2)

Microinstructions are much closer to actual hardware, so it is possible

to ~et finer resolution in detecting and isolating errors. For example,

it is possible to trap a machine language instruction before it is

completed. (3) Microprograms are faster and require less storage

than software because microinstructions can access basic hardware

elements directly.

There are drawbacks to microprograms: (1) They are expensive

and difficult to modify. (2) They are less visible to the user than

software.

The use of microdiagnostics should be considered in any new

system. It is good practice to write specifications that detail how

the vendor will demonstrate that the microprograms are correct.

C. HARDCORE

"Hardcore" is defined to be that part of the system that must

be fault-free for the test program to run and to output some test

result. With a failure in hardcore, the operator has no guidance on

what is wrong except that it is in hardcore. For most avionics systems,

power supplies, sane net0ry and arithrretic capability are part of hardcore.

The equipment designer's decisions determine the hardcore; if the

VI-3

designer optimizes the operation of the equipment with only secondary

consideration for testing, the result can be a large hardcore that

greatly hinders testing. One of the worst situations is when there

is only one way to start the testing; if there is a failure in the

hardcore, the operator has no alternate means to begin the test and

he must begin a trial and error testing of the complete hardcore.

Hardcore can be classified into three categories. (1) Centra­

lized--all the hardcore components are in the equipment being tested.

(2) External--the tests are driven from outside the equipment being

tested; it is possible to go through a series of tests even if part

of the equipment has failed. (3) Distributed--several hardcores so

that the tests can be initialized from any of them. External and

distributed are clearly superior to centralized for testing purposes,

since there is less chance the operator will be faced with a failure

and have no guidance on what caused the failure.

A manufacturer•s procedures for testing often make it appear

that there is only one way to start the testing even when there may

be several. The equipment documentation and test procedures should

clearly document any alternate starting procedures in case of hardcore

failure. ·

Microprogramming has allowed hardcore to be reduced; it is

possible to initiate microprograms for testing and, thus, external

storage is not required to store test routines. Also, input channels

are not needed to bring in the test routines.

The decisions that determine hardcore{s) are usually made early

in the design. Since hardcore design decisions are hard to change, it is

critical that systems test personnel have input to the initial design

deciaions .

VI-4

D. THE OPERATOR IN TESTING

Testing is a man-machine process where the man and the machine

interact. The trend has been to give the machine more of the work

because: (1) the machine is faster, (2) the machine is not bored by

tedious tasks and (3) the machine can handle l arge amounts of detailed

information. Also, the education and training of the operator has not

kept pace with the greatly increased sophistication of the equipment.

Humans have some unique capabilities t hat machines have not

been able to duplicate. Humans have amazing capabilities for "pattern

recognition" and they learn from experience much more successfully

than any machine built thus far. The ability of operators to detect

errors, anticipate breakdowns, and to correct for drift in settings

is well known. A talented operator is clearly very valuable in the

man-machine system. In order for the man to contribute, the tests

must produce information for him to use. Tests that give only go/no-go

lights do not best use the unique capabilities of the operator. While

still assuming that some operators will be inexperienced and untalented,

the designer should have the machine produce information that will

allow the motivated operator to fully participate in the test. Research

in human factors gives guidelines for how to best use the man; for

example, it is possible to provide so much information that the operat or

is overwhelmed. Also, the information provided must have some meaning,

since humans tend to read meaning even into nonsense information .

The personnel responsible for systems testing should consider

testing as a man-machine process and should bring human factors con­

siderations into the design. In addition to the usual physical design

VI-5

decisions, careful consideration should be given to the choice of

information to be supplied to the operator during testing.

E. REDUNDANCY AND RESTART

The ability to operate after a failure has occurred is important

for any avionics system. The object of redundancy is to have the per­

formance of the equipment unaffected by certain failures in the equip­

ment. The object of restart (or rollback) is to minimize the time

and information loss after a failure.

In hardware, redundancy is accomplished by having two or more

pieces of hardware that perform the same job: the output is a majority

vote of the hardware pieces. The effect is to delay the repair of a

failed piece of hardware until a more convenient time (e.g., until

the aircraft lands). Another hardware approach is to check the output

of a part of the equipment for errors and repeat the operation if there

is an error or indication of an error. Error detecting and error

correcting data channels are examples. Typically, this type of testing

takes extra time. The use of standby units is also considered a form

of hardware redundancy.

Software redundancy is sometimes implemented by doing a short

approximate calculation to test the reasonableness of a long calculation;

if there is a significant difference the calculations are done again.

Restart or rollback is accomplished by periodically (or upon

signal) outputting critical information to a storage device. If a

failure occurs that requires restarting, it is possible to rollback to

the restart point or it is possible to restart the operation more

quickly than would be possible without the saved information.

VI-6

F. DEGRADED MODE

Prototype testing establishes a definition of how the equipment

should operate. Maintenance testing determines if the system still

meets that definition. If the equipment is not functioning or if it

is not functioning as i t should, the operator sometimes must determine

what part of the mission can be performed with the available equipment.

Although it is widely recognized that equipment must sometimes

be operated in a degraded mode and it is widely accepted that the

operator, not the test procedure, determines if the equipment is in

a go or no-go condition , many test procedures stop if a "severe" error

is detected (the test procedure determines what is "severe"). Test

procedures should be written so that the operator can, with little

effort, override any stop in the test sequence. He should be able

to force the testing of any part of the system.

Design decisions affect the degraded mode operation. For

example, if the equipment has two arithmetic units, is it possible

to operate with just one? Is it possible to bypass or wire out a

defective component? I s it possible to drive parts of the equipment

externally?

An effective way to make sure that degraded mode issues are

properly addressed is t o put specific conditions into equipment spe­

cifications and acceptance tests. For example, in the acceptance test,

faults could be placed in the equipment to observe the test procedure

and degraded mode operation.

G. INDEPENDENCE IN THE TEST PROCEDURE

Since time is s o critical in the testing of avionics, the

test procedures should be designed so that it is possible to run

VI-7

some tests independent of the availability of some parts of the equipment

and independent of the results of previous tests. The goal of complete

independence is not attainable. It is necessary to have some tests

that can be run only if certain parts of the equipment are operational.

Also, some tests can be interpreted correctly only if several previous

tests were successful. Nevertheless, it is very desirable that after

a failure has been identified, the testing of other parts of the equip­

ment can continue until the part has been repaired.

A test plan is called combinational if the sequence of tests

is fixed. A test plan is called sequential if the sequence of tests

depends on the outcome of previous tests. That is, after performing

several tests, the next test to be performed is chosen by considering

the outcome of some or all of the previous tests. Experience has shown

that completely sequential testing is not practical for nore than a few tests,

because the test program becomes too large, too complex and too slow to

justify the benefits of sequential testing . However, it is possible

to do some very modest sequential testing by identifying a small number

of tests (say 3-5) and then make the test sequence depend on the outcome

of these tests. For example, if the test of the arithmetic unit failed,

after reporting the failure to the operator, the test sequence could

be modified to exclude all tests that needed the arithmetic unit. This

would allow the testing to continue while the arithmetic unit was being

repaired or replaced. This modest sequential testing offers advantages

over the usual testing which is combinational or completely sequential.

H. AUTOMATIC ABORT

One reason that hardware failures and software errors are hard

to locate is that considerable time may elapse until the failure or

VI-8

error is detected. Until the error is detected, the contents of

memory may be greatly modified by executing data, using incorrect

data, etc. It is often very difficult to determine exactly when the

error occurred or which instruction was being executed. Therefore, it

is useful to be able to stop the equipment immediately after an error

has occurred. Some equipment has included a special counter that

must be reset periodically (e.g., 1 second real time) or the equipment

stops (or turns on a light, or causes a dump of information to a backup

storage). On some equipment a memory location is monitored~ if it is

not changed in a prescribed time, the equipment is known not to be

performing correctly. This feature can be helpful in prototype testing

when loss of control is frequent and difficult to diagnose.

The action taken when the counter stops the equipment should

be nondestructive, since the reason for the stop may be that the equip­

ment is severely overloaded. The operator should always be able to

override the effect of the counter.

VI-9

VII. CONCLUSIONS AND RECOMMENDATIONS

This project has addressed the areas of prototype testing,

maintenance testing, software error detection analysis (simulation

and analytic models) and issues in systems testing. The purpose

of each research effort has been to provide concepts or tools for

improving the testing function. Collectively, these concepts and

tools, when augmented by existing techniques, such as structured

programming, provide test management with a systems test methodology.

The important conclusions and recommendations pertaining to each

research area will now be discussed.

A. PROTOTYPE TESTING

This effort was concerned with the development of procedures

and a simulation model to be applied in the planning of prototype

testing. The procedural aspects involved the establishment of a

terminology, symbology and directed graph representation for describing

the module relationships which exist during prototype testing. The

simulation model is designed to aid the designer and tester in identi­

fying potential resource usage conflicts which would result in unde­

sirable performance . This model has been successfully used for simu­

lating the execution of a series of tasks, invoked by specified modules,

which require the use of designated resources. We recommend that the

next step in the model development be an investigation of the ability

of the model to detect and diagnose faults which have been purpose­

fully introduced. This would be followed by the application of the

model to NADC prototype test planning.

VII-1

B. MAINTENANCE TESTING

The maintenance testing methodology which we have described

is applicable primarily to those tests which are employed after a

system has been delivered to the customer. The tests are invoked

prior to or during a mission in order to ascertain the ability of the

system to successfully complete the mission. The central idea of

the methodology is to use the tests to successively partition the

possible faults into subsets, so that the actual fault can be ~dentified.

We conclude that this methodology has potential for isolating both

hardware and software faults. It appears that this technique could

be used to develop test plans for module testing in addition to the

maintenance testing application. It is recommend that the next step

be the determination of the feasibility of the methodology as applied

to the development of maintenance tests for a designated NADC system.

This could involve the identification of a set of faults and possible

tests such that the number of tests required for fault isolation is

minimized.

C . ERROR SIMULATION MODEL

We conclude from having exercised the error simulation model

extensively that certain complex structures do have an adverse effect

on the ability to detect errors and to provide adequate test coverage

of a program. A next step would be the application of the model to

software test planning at NADC. Actual programs which are to be tested

would be put into the directed graph format, perhaps by an automated

translation process as suggested by NADC, for input to the simulation

program. The error detection characteristics of each program would

VII-2

be simulated. The results would be related to measures of program

complexity. The relationship between error detection and complexity

would be used to allocate test resources to the programs. In addition,

by using the model as described above, the model could be employed at

NADC during the software design phase for the purpose of identifying

the error detection characteristics of proposed program structures.

D. ANALYTIC ERROR DETECTION MODEL

The analytic model has the advantage of providing the expected

number of detected errors, as a function of number of inputs, less

expensively (CPU time and core) than with simulation. It can also

provide a check on the validity of the simulation model. The dis­

advantage of the model is that it provides limited information concerning

the variability of detected number of errors. We recommend that this

model be applied in the same manner as the simulation model just dis­

cussed. The utility of each approach could be determined in an actual

test environment. It is recommended that, initially, the analytic model

be used in those situations where it is desired to rapidly obtain a

ranking of the error detection characteristics of various programs. The

error simulation model could be employed in those instances where

greater detail in terms of path traversals, test coverage and error de­

tection variability is desired.

E. ISSUES IN TESTING

This section presented a summary of certain key issues in

systems testing, primarily those associated with maintenance testing

and error recovery capability. Many of these issues are major concerns

VII-3

of NADC in current test operations. For example, the use of micro­

programming for error diagnosis has the obvious advantages of com­

pactness of memory and speed of execution. However, the lack of visi­

bility of diagnostics makes it difficult for NADC to validate vendor

supplied products. We reconunend that the issues which have been

discussed be included as design and test factors during the design

phase of future systems. This procedure would ensure the consideration

of major test issues sufficiently early in the development cycle to

have a beneficial effect on the testability of the delivered system.

VII-4

...

•

LIST OF REFERENCES

l . Dijkstra, E. W. , "Structured ProgralTllli ng, 11 Report of NATO Conference
on Software Engineering Techniques, p. 84-87, 1970.

2. Campbell, D. J . and Heffner, W. J., "Measurement and Analysis of
Large Operating Systems During System Developments, 11 Fall Joint
Computer Conference, p. 903-914, vol. 33 part l, 1968.

3. Fishman, G. S. , Concepts and Methods in Digital Simulation, p. 262-310,
John Wiley & Sons, 1973.

4. Boehm, B. W., Mcclean, R. K., and Urfrig, D. B., "Some Experience with
Automated Aids to the Design of Large-Scale Reliable Software,"
Proceeding International Conference on Reliable Software, p. 105-113,
1975.

5. Vyssotsky, V. A., 11 Common Sense in Designing Testable Software, 11

Program Test Methods, p. 41-48, Prentice-Hall, 1973.

6. Poole, P. C., 11Debugging and Testing, 11 Advanced Course on Software
Engineering, p. 278-318, 1972.

7. Seizer, B., The Architecture and Engineering of Digital Computer
Complexes, p. 641-665, Plenum Press, 1971.

8. The Polytechnic Institute of New York, Meaning of Exhaustive Software
Testing, by Shoeman, M. L., p. 10, January 2, 1974.

9. Schneidewind, N. F., 11Analysis of Error Processes in Computer Software,"
Proceedings International Conference on Reliable Software, p. 337-346,
1975.

10. The Rand Corporation, Software and Its Impact: A Quantitative Assessment,
by Boehm, B. W. , p. 51, December 1972.

11. The Rand Corporation, Some Information Processing Implications of
Air Force Space Missions: 1970-1980, by Boehm, B. W., p. 45,
January 1970.

12. Bradley, G. H., Green, T., Howard, G. T. and Schneidewind, N. F. ,"
Structure and Error Detection in Computer Software," Proceedings
AIIE National Conference, p. 54-59, 1975.

13. Hetzel, W., "A Definitional Framework, 11 Program Test Methods, p. 7-10
Prentice-Hall, 1973.

14. Dijkstra, E.W. , "Notes on Structured Programming,11 Structured Prograllllling,
p. 1-82, Academic Press, 1972.

R-1

15. Mills, H., 11Top Down Programming in Large Systems," Debugging Techniques
in Large Scale Systems, p. 41-53, Prentice-Hall, 1971.

16. Gruenberger, F., "Program Testing: The Historical Perspective," Program
Test Methods, Prentice-Hall, p. 11-15.

17. Schneidewind, N.F. and Green, T.F., "Simulation of Error Detection in
Computer Programs," Proceedings of the Symposium on the Simulation of
Computer Systems, National Bureau of Standards, 1975, six pages.

18. Herbert Y. Chang, et al., Fault Diagnosis of Digital Systems , John Wiley
and Sons, 1970.

19. Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, v. , p. 48-59, May 1973.

20. Boehm, B. W., "The High Cost of Software," Proceedings of a Symposium
on the High Cost of Software, Jack Goldberg {ed), Stanford Research
Institute, p. 27-40, 1973.

21. Schneidewind, N.F., 11An Approach to Software Reliability Prediction and
Quality Control," AFIPS Conference Proceedings, v. 41, Part II, Fall
Joint Computer Conference, p. 837-838, 1972.

22. Baker, F. T., "Chief Programmer Team Management of Production Programming, 11

IBM Systems Journal, v. 11, No. 1, p. 65-66, 1972.

23. Rizza, J.B., and Hacker, D., "Quality Assurance Inspection and Test Tools -
An Application," Proceedings of a Workshop on Currently Available Program
Testing Tools, v. 1, p. 9-10, April 1975.

24. Howden, W. E., "Systems for Automating the Generation of Program Test
Oata, 11 Proceedings of a Workshop on Currently Available Program Testing
Tools, v. 1, p. 37-39, April 1975.

25. Stucki, L.G., 11 Automatic Generation of Self-Metric Software," Record
of 1973 IEEE Symposium on Computer Software Reliability, New York City,
p. 94-100, April 30 - May 2, 1973.

26. Von Alven, W. H., (ed), Reliability Engineering, p. 155-156, ARINC
Research Corporation, Prentice-Hall, 1964.

27. McCormick, J.M. and Salvadori, M.G., Numerical Methods in FORTRAN,
p. 290-295, Prentice-Hall, 1964.

R-2

•

..,

•

INITIAL DISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Dean of Research
Naval Postgraduate School
Monterey, California 93940

w. R. Church Library
Code 0211
Naval Postgraduate School
Monterey, California 93940

Philip J. Kiviat
Technical Director
Department of the Air Force
AFDAA Center
Washington, D. c. 20330

Professors G. Howard
G. Bradley
N. Schneidewind

Code 55
Naval Postgraduate School
Monterey, California 93940

Professors J. Esary
D. Gaver
R. Richards

Code 55
Naval Postgraduate School
Monterey, California 93940

Professor U. Kodres
Code 72
Naval Postgraduate School
Monterey, California 93940

Professor M. Powers
Code 52
Naval Postgraduate School
Monterey, California 93940

Professor G. Barksdale
Code 72
Naval Postgraduate School
Monterey, California 93940

Copies

2

4

2

l

2 each

1 each

1

l

1

Library Code 55
Naval Postgraduate School
Monterey, California 93940

. Knox Library
Naval Postgraduate School
Mon~erey, California 93940

Prof. o. Williams Code 0211
Naval Postgraduate School
Monterey, California 93940

T. Green
3246 Fenelson Street
San Diego, Cali~ornia 92105

G. Montgomery
510 Forest Heights Drive
Knoxville, Tenness~e 37919

Naval Air Development Center
Warminster Pennsylvania 18974
Attn: Mr. H. Steubing

Naval Air Development Center
Warminster, Pennsylvania 18974
Attn: Mr. R. Pariseau

1

2

1

1

1

1

3

r

'

'

