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INTRODUCTION

The Naval Postgraduate School has conducted a research project
during the period 30 June 1974 to 30 June 1975, entitled System
Test Methodology under the sponsorship of the Naval Air Development
Center. This is the final report of the project. A progress report
was submitted on 15 January 1975.

The purpose of this project was to develop a methodology
and tools for conducting system tests of avionics or other complex
hardware/software systems.

Two areas which received major emphasis were prototype testing
and maintenance testing. These topics are covered in Section I
and Section II, respectively. A methodology for conducting proto-
type tests is described in Section I. In addition, a simulation
model is presented for aiding the designer and tester in identifying
and diagnosing faults which may occur during prototype testing.

A description of this model is contained in Appendix A.

The maintenance testing methodology presented in Section III
involves the use of tests to partition faults into subsets, so that
the actual fault can be identified. In addition to the above areas,
research was undertaken to develop models for investigating the
relationship between error detection capability and program structure
in computer software. A simulation approach and an analytic approach
are described in Section IV and Section V, respectively. The models
would be employed during software design for identifying program

structures with poor error characteristics and during test planning
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for the purpose of allocating test resources in accordance with
error characteristics. An example of applying the error simula-
tion model to an actual FORTRAN program appears in Appendix B;
directions for use of the model will be found in Appendix C; and
a listing of the simulation program is contained in Appendix D.
A description of the analytic model computer program appears in

Appendix E.

Various issues in testing which are germane to maintenance
testing and recovery from errors are described in Section VI,

The major conclusions which resulted from each research
effort and recommendations for possible applications and future
work will be found in Section VII.

In addition to the progress and final reports, computer
program source decks for the system (prototype) test simulation,
the error simulation model, and the analytic error detection model
have been provided to NADC.

Lastly, three national conference proceedings publications
(References 9, 12, and 17) and presentations and two Master of

Science in Computer Science theses have resulted from this research

project.



ITI. PROTOTYPE TESTING

A. MOTIVATION FOR SYSTEM TEST METHODOLOGY

Software is the major expense in computer systems today. As
an example, the Air Force allocated between one billion dollars and
one and a half billion dollars in 1972 for software development. This
was about three times the annual expenditure on computer hardware and
accounted for four to five percent of the Air Force budget for the
year. Boehm [10, 11] indicates that these high figures are representa-
tive of the industry as a whole. He predicts that by 1985 software
expenditures in the Air Force will account for ninety percent of the
total ADP system costs. Of this enormous amount of money spent on
software, a disproportionately large share was spent on testing and
the trend is not one of improvement. Boehm states that "during the
1970s the Air Force can expect to spend almost half of its software
budget for military space operations on the checkout and test phases
of computer program implementation: two to three times as much as
it will pay for having the program coded." With such an effort in-
vested in testing software, it should be relatively error free but
this has not been the case historically. The Apollo Manned Spaceflight
Program had one of the most tested systems in the world, yet major
software failures occurred in Apollos 8, 11, and 14. The failure on
Apollo 11 occurred in the extremely critical phase of lunar landing.
The situation is no better in other areas; each new release of 05/360
has approximately 1000 new software errors. It is not necessary to look
at such large complicated systems to discover that present testing is
inadequate. The person who has not had an encounter with a computer

program error such as an incorrect billing is an unusual person in
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today's society. Since testing consumes such a large proportion of
the resources allocated to system development and has produced such

poor results, it is time to develop a new approach to system testing.

B. TESTING PROBLEMS

1. Multiplicity of Testing Activities

Many of the terms used in the area of testing are subject to
a wide variety of interpretations. The word "testing" has been mis-
used and many non-testing activities have been associated with the
word. Testing may be defined to be the process of determining if a
system meets the stated functional specifications. Quite often de-
bugging is thought of as a testing activity. This is incorrect.
Debugging starts with a known error and works towards a correction
[13]. Recently, a significant body of literature and activity have
been addressed to designing computer programs in a structured fashion
in order to eliminate or minimize the occurrence of software errors
[14, 15]. The theme of some of these efforts is that if we design
programs correctly through structured programming, there will be very
little need for testing. Although these efforts do a lot to reduce
the potential for errors, they do not act as a substitute for testing.

Other testing activities include verification, validation,
certification, proof of correctness, and performance testing. Hetzel
{13] discusses these activities in relation to program testing. Veri-
fication is concerned with the program's logical correctness based on
execution of the program in a test environment. Validation is concerned
with the logical correctness of a program in a given external environ-

ment. Certification implies an authoritative endorsement that a
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program is of a certain quality. A proof of correctness deals with

the logical correctness without regard to the environment. Performance
testing involves an evaluation of the performance properties of a com-
puter program or system, such as resource utilization. Each of these
activities has much to offer. The problem arises when one of the
approaches is assumed to equate to complete testing. It is clear that
improved software quality must be approached from several fronts:
improved design techniques, improved programming management and improved
methodology.

2. Test Design

There are many fundamental gquestions that must be answered in
designing a test of an information processing system. One such ques-
tion is what should be tested? Too often a tester ends up testing
an incomplete or modified version of the system that is easier to
test than the real system. Often the tester is faced with a large
set of input combinations to be tested. 1In this case, the question
becomes: How can a subset of the test inputs best be selected to
thoroughly test the system? Another important issue is how should
the test efforts be organized? It is important to obtain the most
information about the system from every test run. It is important to
establish test data recording procedures at this time in order to
insure that all error information will be recorded. This can be accom-
plished by properly organizing the tests in a logical sequence. Tests
should be related to types and sources of errors. Gruenberger [16]
states that "part of the art of testing is knowing when to stop

testing." This exposes a two sided question the test designer must
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face: When is the test finished and what can be said about the
system when testing is stopped?

All these questions are further compounded by the fact that
there can be no set rule. Every system requires an original test
procedure designed to fit its special requirements. Gruenberger
suggests "that the intellectual effort to test a program is of the
same order as that which created it."

This section presents a test methodology that will help
answer these questions. A model is presented that will serve as a

framework for the construction of a logical approach to system testing.

C. A MODULAR APPROACH TO PROTOTYPE TESTING

A modular approach to prototype testing offers many advantages
for the design of the test and the development of the system. The
modular design involves breaking a large system into many small parts
called modules. The intra-module functions are independent; however,
modules interact by means of standard interfaces. Each module performs
a major function of the system.

Modularity improves system design and software portability.
To an extent, modules may be transferred among machines
and operating systems. With standardization of modules, they may be
shared among many applications. With modules being shared in this
manner, the programming effort is reduced and the reliability of mo-
dules is increased since the modules will be tested with each appli-
cation. The modules may be expanded more easily and changes are easier
to incorporate since the effect of a change is localized.

Testability is significantly improved when a modular approach

is used. Testing of different modules may be carried out in parallel.
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Standardization of modules yields a set of assertations that may
be used as test criteria for the modules. Modules may be compiled
separately and can be stored in a program library and accessed inde-
pendently. Modularity allows testing early in the construction of a
system. Each module may be tested as soon as it has been constructed
instead of waiting for the whole system to be completed before
starting to test. Since modules may be reused in future systems,
future programming and testing efforts are reduced.

A modular system was chosen for the prototype test model
in order to take advantage of the above desirable properties of

modularity.

MODEL DESCRIPTION

A. THE FUNCTIONAL MODULE CONCEPT

1. Module Definition

When representing a system with the functional model, the
lowest element of the system is the module. Since the word module has
had wide use throughout the computer industry, it is necessary to
completely define the application of the word as used in the model.

A module is an entity that performs a function within the system. A
function is an activity performed by the system such as a fast Fourier
transform. The physical embodiment of a module is the wiring and
circuit boards of hardware, or the source or object programs recorded
on punched cards or magnetic tape or programs resident in memory, for
computer software. By defining a module in terms of functions, a

module is freed from the distinction of being only hardware or software.



A module receives inputs and transmits outputs across a boun-
dary. A boundary consists of a location within the system at which
the inputs to a module or the outputs from a module may be measured.
In order for the tester to assess these inputs or outputs the boundary
must be identifiable. In order to accommodate this requirement for
an identifiable boundary, it is necessary to consider the composition
of modules. The composition of two modules would be a module per-
forming the same functions as the original two modules. For example,
one module might be a fast Fourier transform and the other a digital
filter module. If it is impossible to identify a point to measure the
output from the filter module to the Fourier transform module, the
two could be considered as one module that performs the functions of
filter and transform. Thus, the entire system could be viewed as a
module or a module could be considered to be a small unit of program
code. The proper level for identifying modules will be indicated by
the functions performed by the system.

A module will be assumed to be free of internal errors for
system test purposes. This assumption is predicated on the fact that
all modules will receive extensive individual unit testing before the
system is assembled. If an error still exists within a module, the
test system will detect it only as the error affects intermodule
communication. Assuming that the test plan is sufficient to detect
all errors external to a module, the only way an error could go un-
detected would be if its actions were confined to the module itself.

The system may now be described as a collection of modules
which has external inputs and external outputs. The selection of

modules must be such that every portion of the entire system is

I1-6



represented by a module and no portion is represented by more than
one module.

In performing its function, the module utilizes system re-
sources. These resources may be in the form of data, control signals,
or physical resources including both hardware and software units.
Thus a resource is an element of the system that is used by modules
in performing a function of the system. Resources have two types of
attributes. One type deals with the usage of the resource, which is
the amount or size of the resource that is assigned or available
to be assigned. The other type deals with resource contents, such
as the contents of a memory location or the value of a particular
control signal. Resources have states. These states indicate the
status of the resource. Some examples of the state of a resource
are: reading, writing, idle, file empty, file half full, or memory
region assigned.

2. Task Definition

The work to be performed by a module may be represented as an
ordered or random series of tasks. Tasks are the sub-functions per-
formed by a module. A sub-function consists of a step in the algorithm
which the module must execute in order to carry out its function.
Examples of tasks are the computation of a simple function, storing
the result in memory and outputting the result to the printer. This
usage of the word task is synonymous with the use of the word "process"
as it is used in the operating system literature. The precedence of
tasks is determined by the algorithm the module must execute. These
precedence constraints may be linear or they could include branching

with or without cycles. It is also possible to have no precedence

I1-7



constraints. In this case any task could be executed whenever the
resources were available.

In order to execute a task, the module goes through a series
of states. The state of a module is the status of the module at a
given time. A partial list of states that a module can enter includes:
compute, wait for memory, wait for input/output, wait for CPU, idle,
input processing, wait for another module to complete a task, wait
for a resource, and interrupted state. The particular state of a
module is a function of the set of inputs to the module, resource
states, and its previous state. The outputs of a module are a func-
tion only of the state of the module. A primary state is a state
that a module is required to enter in order to perform a task. Primary
states include compute, input processing and output processing. A
secondary state is a state in which the module accomplishes no work.
Examples of secondary states would be blocked state, wait for input
or wait for CPU. The system state is the set of module states. The
system state changes when one or more modules changes state.

3. Model Notation

The following is a list of symbols used to describe the model.
Each symbol is followed by the definition of that symbol as it is

used in this system of notation.

* ] —eme—— Module designation,

* ji -—-~--~ Current state of module i,

. ki ---- Next state of module i,

* Iijt -= Vector gf inpu?s at module 1 Vhen module is in
state Jj and input starts at time ¢,

* oikt' - Vector of outputs from module i after the module

has transitioned to state k and output starts
at time t',
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* T, -- Time at which transition of module i from state

13k j to state k occurs,
% ATij -- Bmount of time which module i spends in state j.
* Rij -—- Set of resources used by module i when in state

J .
* (21'22""'2n)ij —— State of n resocurces when module 1
is in state 3j,

2,...,tn)ij —— Time which module i uses n resources

when in state j .

* (tyet

4. Model as a Directed Graph

It is possible to represent a system as a series of directed
graphs. One graph would be required for each module. The nodes of the
graph would represent module states and the arcs would represent state
transitions. Other information could be portrayed on the graph. The
state dependent information could be associated with the node. This
would include the current state of the module, the set of resources used
by the module in that state, the state vector for the resources used
by the module, the vector of inputs to the module, the vector of out-
puts from the module and the amount of time the module spends in the
state. The arcs could be labelled with the time that the module requires
to transition from the source state to the destination state as is
shown in Figure II-1. 1In this figure, the module i transitions from

state j to state k at time T

ijk *

These directed graphs would give the tester a convenient means
of visually representing the activity of the module. The tester might
prefer to show only the primary states of the module and the idle state

instead of showing all possible states of the module.



ool by

ikt'

Figure II.1. Directed Graph of Module States
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5. Time Domain of a Module

A property of a module is that it uses the resources of the
system only at certain times. One of the major problems of testing
computer systems is to identify when two or more modules will be com-
peting for the same resources. The problem is further compounded if
the system possesses multiple CPU's which are running asynchronously.
The concept of time domain will be useful to address this problem area.
A time domain of a module consists of the times that resources are in
use. A graph of the time domains of the modules of the system would
be a useful abstraction of the system for the analysis of the timing
problem. The resources of the system could be represented on the
vertical axis with time expanding along the horizontal axis from the
origin. Each area so represented should be labelled with the module
and the amount of the resource required. The time domain of a module
would be represented by the summation of the areas formed by the pro-
duct of resources used by the time duration of use. Any intersection
of time domains would represent a potential error only if the total
demands of the modules exceed the maximum resources available.

One problem with this representation is to find a timing
system that applies to all modules when modules are operating asyn-
chronously. 1In this case the time axis would be the elapsed time from
some critical event in the system. The changes in system state would
be referenced to this event.

If we define a change in system state as any change in module
state, it is possible to consolidate the module state representation
into a system state representation and show resource usage conflicts

in terms of system states as indicated in Figure II-2. 1In this figure
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Figure II.2. Resource Conflicts vs. System State
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there are five types of resources available to the system. They

are labelled R1 through R5. The amount of each resource is indicated
on the vertical axis. For example, there are six units of R2 available.
There are two resource conflicts portrayed in this system. One occurs
in system state 52' Here one module requires four units of resource
R4 and another module requires two units of R4. The conflict occurs
because there are only four units of R4 available. The conflict is
denoted by a cross-hatched area. The other conflict is in system

state S A module has requested six units of resource R3 when only

4 L]
two units are available to the system.

The construction of such a graph would be infeasible to do by
hand for a real system. A program could be written to produce this

type of graph from the time domains of the modules. On this graph

the computer could identify resource usage conflicts.

B. APPLICATION OF MODEL TO TESTING

1. PFunctional Specifications

One of the more difficult processes in producing reliable
software is translating user requirements into meaningful design
specifications. Boehm, McClean, aﬁd Urfrig [4] vividly demonstrate
the magnitude of the problem in their study of a large software project.
The authors divided errors into two classes. These were design errors
and coding errors. An error was considered a design error only if its
correction caused a corresponding change to the design specifications.
Of the total errors, 64 percent were design errors. This alone is
enough to illustrate the need for a valid method of design specifica-

tion. Even more disturbing was the time frame within the testing in which
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the errors were discovered. Of the 54 percent that were not discovered
until the acceptance, integration or delivery phases of testing, 45
percent were design errors. The remaining nine percent were coding
errors. Errors discovered in these latter stages are more difficult

to correct than those discovered during the coding stage. Thus, it

is necessary to have a good system of describing design specifications.
The functional model provides such a system.

When the functional model is used, the user should be required
to define all functions of the system. The functional specifications
would consist of a statement of the activities of the system and the
associated inputs and outputs., By requiring functional specifications,
designers are assured of having a complete detailed description of the
system at the beginning of the project. This should reduce the number
of design errors.

It is possible to over specify the design of a system. This
could prevent the designer from choosing the most efficient method
of designing the project. It could also introduce errors into the
system design, if the user does not have a thorough knowledge of
computers. This problem is avoided by using functional specifications.
Details are presented as functions of the system, which is the area
in which the user is most knowledgeable. The implementation of the
functions is left to the designer, who is in a better position to
determine the proper method.

Another pitfall of system design may be avoided by using func-
tional specifications. Frequently, test specifications are not avail-
able early in a project because testability is not considered to be a

design parameter. Instead, test requirements are formulated as an
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afterthought when it is too late to influence the design [5]. Func-
tional test specifications are defined as test specifications which

are based on testing the stated functions and observing the corres-

ponding outputs of the system. Functional specifications should be

incorporated in the test specifications. Detailed design should not
commence until this information is available.

2. Documentation

The need for complete and usable documentation should be a
primary concern of anyone involved with system design, programming
and testing. Poole [6] states "that the lack of good documentation
usually means that testing is not performed as thoroughly as it
should be and debugging is that much more complicated." Another use
of documentation is for the maintenance of the system. Since the
life of a system is much longer than the development phase, the designers
will probably not be available to help maintain the system. In addi-
tion, many people may have access to the software. All changes which
result must be documented.

The use of the functional model helps to provide adequate
documentation throughout the life of the system. The concept is to
force documentation to be an integral part of system development. Two
documents have already been discussed. These are the functional speci-
fications and the functional test specifications. These documents
should form a segment of the documentation. These should be system-
atically updated as changes are made to the system.

The documentation should include other information as well.

This could include a data base containing information about all errors
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that were found in the system to date. Unfortunately, there is a
tendency to ignore this aspect and to think of this type of informa-
tion as something to discard once the error has been corrected [6].
Every incident must be recorded because an outage that may
appear insignificant to the user could be an important indicator
once it is properly analyzed. The data base could be used to identify
modules that are the source of the majority of errors. This class-
ification could be used to direct future testing and debugging. It
could also be used to determine which modules are the most unreliable.
This would provide a starting point for improving the reliability of
the system. This would be particularly applicable if the module that
is most critical to the system's operation is also the most unreliable.
The data base could also be classified as to type of errors. This
would be valuable information when designing a similar system.

Another form of documentation that should be incorporated into
the plan for system testing is assertions. These are statements that
are introduced into the code by the programmer. These state a fact
about the design of the program. These statements may be treated as a
comment card or used to produce code to check for the validity of the
assertions. The appropriate action would be determined by a parameter
passed to the complier. Two types of assertions could be employved
within the model. The first would be global assertions. These would
be in the form of specifications for intermodular actions of the
system. An example of such an assertion would be:

ASSERT RANGE OF ALL ARRAY INDICES IS 0 TO 100.
The other level of assertions would be local. The local assertions

would be defined by the programmer but within the design specifications.
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An example of a local assertion would be:
ASSERT RANGE OF I IS 10 TO 20.
These assertions could be a permanent feature in the program.
They could be activated on the local level to help test a module or
on the global level to aid in introducing a change to the system. As
such, these assertions would form an important part of the system
documentation.

3. Test Inputs

Ideally, it would be proper to exhaustively test a system.
This implies that every path in the logic of the program be executed
and tested. Shooman [8] demonstrates that this will normally be im-
possible due to the large number of inputs required. The problem
presented involved exhaustively testing an assembly language program
which solved for the roots of a quadratic eqguation sz + Bx + C = 0.
The computer was assumed to have a 12 bit word length and integer
arithmetic was used. All syntactical errors had been eliminated and
all known special cases such as A = 0 and imaginary roots had been
accounted for. The input space to exhaustively execute this program
involved 64 x 109 combinations of A, B, and C. The program had a run
time of 240 microseconds per execution. The time to complete the
entire execution of the program over the input space would have been
approximately 5,000 hours. To test a program, solutions must be
verified by some independent means such as a desk calculator or a
different algorithm. This should be done in as many different ways
as possible, since there is some probability that two independent
approaches will result in the same wrong solution. Obviously,

exhaustive testing is infeasible for even a small program.
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The problem the tester must solve is how to best select
the subset of test inputs from the universe of possible inputs.
A method for selecting the inputs for a test is to first identify
and rank the modules in a system by the criticality of the modules
to the mission success. It is seldom the case that all modules are
equally valuable. A technique for determining criticality is to
ascertain the consequences to the mission of a module malfunction.
A malfunction in some modules would cause a mission abort, while
others would result in a degraded mode of operation. The modules
are ranked according to criticality. This is based on the criticality
of module outputs. The time spent in testing each module can then
be allocated using this ranking. The time allocation can be further
refined by ranking the criticality of each sub-function of the module.
This would be based on the criticality of the sub-function to the
performance of the function by the module.

There are other factors that can be used to rank modules
for testing purposes. One such crtieria would be forcasted errors.
Schneidewind [9] has developed a model of the occurrence of errors
detected during functional testing of command and control software.
It would be possible to rank modules in order of forecasted errors.
Work is progressing in the area of developing relationships between
program structure, program complexity and the ability to detect
errors in a program [12]. Another method of obtaining such a ranking
would be through the use of simulation. Critical modules could be
identified by their high rate of failure in the simulation.

Once the amount of testing resources allocated to each module

has been determined, the proper number of inputs for testing each
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module can be estimated. The problem then becomes one of selecting
the inputs to thoroughly test each module. The module represents

a function which maps the set of inputs into the set of outputs.

The inverse mapping could be used to obtain the set of inputs. Given
this set of inputs, test cases are selected in order to cover the
input set and the program as thoroughly as possible. Particular
attention must be given to inputs that are involved in the control
flow of the program. Once this has been done, unusual cases are
investigated. A possible source of unusual cases would be indicated
by the set of inputs. Values are picked that are combinations of the
extremes of the range of inputs.

4. System Representation

Having developed the notion of a module, it is necessary to
investigate the method that will be used to represent a system as
a collection of modules. A system is comprised of asynchronously
operating application software modules, hardware modules and
executives. Figure II-3 gives a generalized representation of a
processing system. The system represented in this figure is com-
prised of two asynchronously operating executives, A and B. These
are connected to two separate control buses noted by Control Traffic
Bus A and Contrcl Traffic Bus B. Each bus connects the application
software modules and hardware modules that are controlled by the
executive on the bus. An example of the traffic on this bus is a
hardware generated interrupt occurring at the conclusion of an
input/output operation. A subsystem is comprised of one exec-

utive, the modules that it controls, and the control bus
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connecting the modules to the executive. There is a message traffic
bus connecting all modules. BAn example of the traffic on this bus
is a module passing a computed value to another application module.
External inputs and outputs are identified.

This representation of a system has many useful applications
to testing. The model may be used to verify the correct functioning
of two types of intermodule communication. The first is message
traffic. The traffic on the message bus could be checked against the
functional test specifications for correctness. The second concerns
control traffic. The traffic on the control buses could be checked
in a similar manner. Other problem areas that could be investigated
using the model include:

* Are the various state transitions possible, based on
the values of the resource states?

* Are there any blocked or deadlocked states?
* Are the amounts of time in each state excessive?

* When a module state transition occurs, are the resource
state vectors correct?

* Are there times that a module holds resources excessively?
SIMULATION

A. A SIMULATION OF THE MODEL

A simulation of the model was constructed. The simulation was an
event store type of simulation. It was written in FORTRAN IV to run
on the Naval Postgraduate School's IBM 360/67. The simulation used
the model representation with the user providing a description of the

system to be simulated. This description required the number of

II-21



modules, the number of tasks, the precedence among tasks, number of
resources and resource usage. A complete description of the simulation
appears in Appendix A.

The simulation showed that the model could represent a system,

A simulation of this nature could be useful in testing.

B. USE OF SIMULATION IN TESTING

1. Investigation of Timing Problems

Timing problems are extremely difficult to investigate in a
real system due to the fact that any test equipment installed internal
to the system disturbs the timing of the system. Equipment installed
external to the system may not be able to gain the required information
either because of synchronization or access problems. By using a
simulation of the system, the tester may observe various timing para-
meters. The tester is able to observe timing problems that could not
be observed on the real system. This is accomplished without dis-
turbing the timing of the real system.

Another problem area that could be investigated through the
use of simulation is the reaction of the system to various rates
of input. In the simulation it is possible to vary the mean time
between arrival of inputs. This parameter could be decreased on
each run to determine the maximum input rate that the system could
receive and still process an acceptable number of inputs. Another
method would be to plot average time to process a complete input
versus input rate. This graph could be used to determine an acceptable
range of input rate. This method of analysis could be used when testing

a system that has to produce periodic outputs, such as a system with
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a graphic display that has to be refreshed at a specified rate.

If the time that a module spends in a particular state is
expressed as a variable instead of a constant, a simulation would
be an invaluable aid to the tester in investigating the operation
of the system. One approach would be to observe the operation of
the simulated system with all modules functioning at the maximum time
duration. Another method would be to use various combinations of
module operating times to determine under what circumstances the
system would fail or performance would be degraded. This can easily
be done on a simulated system but would be impossible to do on a real
system because the tester would be unable to control the time a module
spends in a state.

Another timing problem facing the tester is the system clock
rate. Often the tester would like to slow the system down or perhaps
speed it up in order to observe some particular action of the system.
This would be important if the tester was unable to measure the output
of a real module because another output arrived before the first out-
put could be measured. In a real system, it may be impossible to
change the timing of each component of the system by the same amount.
This would be particularly difficult in a multi-executive system.

With simulation, the tester is able to adjust the timing of the system.

Some problems do not occur until the system has processed a
large number of inputs. The tester may not be able to cycle the
real system through a large number of inputs due to lack of time or
equipment availability. However, in a simulation, the time scale may

be greatly compressed, allowing the tester to cycle the system many
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times. This would greatly increase the probability of discovering
latent bugs. Similarly, in a simulation the user's ability to specify
the initial state of the system allows starting tests under some
artibrary condition that might only be achieved in an actual system

by running for a long period.

2. Fault Insertion

Dijkstra [1] contends that "testing can only determine the
presence of errors, not their absence." One approach would be to
know the reaction of the system to every possible error and combination
of errors. Using this knowledge, one could simply observe the reaction
of the system and state what errors were or were not present. Unfor-
tunately, the set of every possible error, combination of errors and
system reaction is an immense set. Therefore, it is impracticable to
prove the absence of faults by using the above approach. However,
this approach using simulation, could be used to greatly expand the

subset of errors that the tester could detect.
The tester may purposely introduce a fault into the simulated

system. The reaction of the system to this fault could be catalogued
for later reference. This information could be used to identify
mocdules that are affected the most by a class of errors. This set

of modules would be noted for special testing. This information could
also be used to ensure the validity of the test plan. If the group

of tests included in the test plan did not encompass the reactions
observed in the simulation, then the tests would not be able to detect
particular faults.

3. Partial System Simulation

Fregquently the tester will not have the time, assets, or moti-
vation to perform a simulation of the entire system to be tested. 1In

this situation, simulation of certain parts of the system may be
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desirable or the tester could choose to simulate the entire system
in less detail. Campbell and Heffner [2] relate a case history
illustrating this point. A simulation model was constructed of a
system being developed. The skeleton system was working before the
model was debugged. When the model was finally working, no one
was certain which version of the real system the simulation results
were meant to represent. However, some of the designers used simple
simulations that they developed to study certain aspects of the system.
The authors concluded that "ambitious large-scale models generated
by professional model makers are less helpful than simpler work done
by the system developers themselves." A simulation with less detail
was more useful in this case than a complete simulation.
Quite often in prototype testing, a module or modules will
not be present when the tests are scheduled to commence. This could
be due to late delivery or to a module being modified after prelimi-
nary testing proved the module needed modification. This could also
be caused by a planned action such as phased delivery. A simulation
of this module would allow the tests for the rest of the system to
continue. Simulating the missing module would be particularly easy
if the system had been described in the form of a functional model.
If all the information required to functionally represent the model
is present, then a simulation can be constructed from this information.
Another use of simulation involving less than the whole system
is the use of a test data generator. When a system is tested in the
laboratory, it may be necessary to simulate the inputs to a system.
Since there is no reason to believe that all modules will be present

during the entire test phase, the tester may desire to have the test
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data generator simulate the output from any module. Thus,

the test data generator could also substitute for any missing module
as the system was being tested. Not only would the generator act as
an output generator, but it would also act as the termination for
module outputs which are intended for missing modules. If these out-
puts must be accounted for, because the operation of the partial
system would not be entirely representative of the operation of the
complete system. Notice that this procedure is applicable to a top
down testing approach because the test data generator could simulate
inputs from dummy modules.

4. Pitfalls of Simulation

After having spent much time and effort to develop a simulation,
the tester may find that the simulation addressed the wrong problem or
solved no problem at all. The validity of a simulation is the con-
sistency between the simulation and the real system it represents.
Proof of the validity of a simulation is almost impossible, especially
if the real system has not been constructed. By the time the real
system has been constructed and the validity of the simulation has been
disproved, irrevocable decisions may have been made based on test data
from the simulation.

Although validity is a major problem in simulation, it is by
no means the only problem. A list of problem areas that may cause a
misunderstanding of the system being simulated is presented in Fishman
[31. These include incorrect input parameter specification, influence
of initial conditions on data and misuse of estimates. The author

provides suggestions on ways to control these problems.
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Prototype testing may result in design changes. Each change
requires a change in the simulation model. If the tester has not
allowed for such an occurence in budgeting simulation resources,
the model would not represent the real system. Also,
there would be a time lag in modifying the model. This could have
a serious effect on the test schedule if this contingency is not

included in the test plan.
APPLICATION OF MODEL TO PROTOTYPE TESTS

A. APPRCACH
1. Test Plan

In order to apply the functional model to the problem of
prototype test it is necessary to develop a test plan. A test plan
should be created as part of the design plan. As a minimum the test
plan should discuss the following major elements:

* define modules,

* define module states,

* jdentify inputs and outputs for each module state,

* jidentify module interfaces,

* identify tasks,

* define resources and resource states, and

* jdentify resource usage for each module state.
The test plan must also include the system functional specifications
and functional test specifications. In addition, it should include
the test procedures. This would identify acceptance criteria, such
as the allowable divergence between desired and actual output values,

time duration of tests, allowable number and types of malfunctions,
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number and distribution of test replications, and methods for checking
test results. The test plan should identify major testing milestones.
These would identify major sections of testing that must be completed
before system development can continue.

The test plan should document the subsystems that will be
tested. This will require the development of a method of isolating
a subset of the system to test it without the effects of the remaining
system being introduced. These identified subsets of modules are
called subsystems and will be used to test the system in stages.

Besides the modules in a subsystem, the test plan must also
define a set of measurements which will indicate whether correct
outputs are being produced for given inputs and define the hardware
and software locations of the measurements. The plan must describe
how to instrument the system in order to obtain these measurements.

The test plan should develop some organizational structure.
This would include who is to do the testing and the resources to be
used in testing. The plan should include who is responsible for main-
taining the documentation. This would include test data, error
information, design changes and test modifications.

2. Subsystem Testing

The modularity of the model allows the user to commence
testing at an early date. This will require the testing of a subsystem.
The subsystem is defined in the test plan and testing will commence as
soon as all the modules of the subsystem are available. This is
illustrated in Figure II-4. In this figure there are two application

modules in the subsystem that are ready to be tested. The only hardware
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that is required for the functioning of the modules is Hardware
Module One and Hardware Module Two. These are connected to the applica-
tion software modules by a test data generator. This is a program that
will simulate external inputs and message inputs from missing modules.
The set of external inputs and input sequence is based on typical opera-
tional scenarios and the criticality of the various modules to mission
success. Another required program is the control input signal genera-
tor. This works in conjunction with the executive and generates simu-
lated control inputs for the missing modules. In some cases this pro-
gram could be developed to replace the executive itself during early
testing, when the executive may not be available. The locations where
input/output measurements are made are identified.

The system under test will be expanded as testing proceeds.
When the next application subsystem becomes available, it and the
hardware it uses would be added to the system. The subsystem could
consist of a single module or a group of modules. The intent is to
test the system in stages, starting with the minimum number of modules,
and increasing the number of modules as testing progresses, until the

entire system is available.
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IIT. MAINTENANCE TESTING

A. INTRODUCTION
In this section we focus exclusively on the problem of
maintenance testing. By maintenance testing we mean the testing
which is done after a system has been released and placed into
operational use. This is distinguished from prototype testing which
is done on the original or prototype system for the purpose of deter-
mining whether the system actually constructed meets the design
specifications and performance requirements established in the earlier
stages of the development process. Prototype testing is essentially
a certification process. Maintenance testing, on the other hand, is
directed toward the question of whether a particular copy of a system
remains in the same condition as it was when first placed in service.
Our goal is to present a method which might be used as the
basis of maintenance testing. The idea of partitioning which we con-
sider here is not a new idea. It has been explored and developed
extensively in the context of testing digital circuitry [18], but
it has apparently not been examined in the context of systems testing
or software testing. After the idea is presented, a discussion of
some of the problems in applying the method in a real testing situation

is included.

B. DISCUSSION OF SYSTEM FAULTS
We define a system fault as any hardware or software condition
which causes the system to deviate from its design specification in an

observable manner. Observations can be made at several levels from
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the component level to the functional level. In this section we are
not concerned about the level at which observations are made, but we
do make some additional assumptions about the nature of system faults
and it is important that these be clearly understood.

We assume that the faults under consideration are non transient
in the sense that, whatever condition or fault occurs, it remains
until corrected. Thus spurious results are not observed in the testing
procedure. This means that when given the same initial state of the
system the same input test conditions always produce the same test out-
put. Thus the tests are repeatable in the sense that the system being
tested is not changing during the test period. 1In a real testing
situation it is often the case that apparently spurious results are
obtained. The practical difficulty in reproducing them generally lies
in the inability to reproduce the test conditions exactly. This often
occurs because a sequence of tests interact. Earlier tests may change
memory or write over critical values or otherwise change the state
of the system. Thus for purposes of our discussion we will assume
that the system under test has a reset capability so that the state
of the system is the same before each test. The system may contain
a fault, but it contains the same fault until fixed. The effect of
this reset assumption is to make each test in a series of tests act
independently so that exactly the same information is obtained by
applying test 1 and then test 2 as is obtained by applying first
2 then 1.

In our discussion of partitioning we assume:

a) the set of all faults under consideration can be

enumerated. We denote the faults by fl,...,fn and
we let fo denote the condition of no fault,
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b) any fault in the system remains in effect until it is
corrected (so that test results are repeatable as dis-
cussed above),

c) the system being tested contains at most one fault,

d) the system being tested is reset to some initial state
before the application of each test.

The most restrictive of these assumptions is probably the

first. In a complex system the number of things which can go wrong
is immense and, to be able to detect and isolate individual faults,
considerable precision is required to distinguish among the many
similar faults.

The assumption that the system contains only a single fault
when tested can perhaps be justified by assuming that the test procedure
is repeated frequently, so that each fault is detected before others
occur. This is obviously invalid for massive failures in which a
number of faults arise simultaneously from the same cause. On the
other hand, if certain combinations of faults are thought to be likely,

they can be handled by defining them at the outset as a single fault.

C. DISCUSSION OF PARTITIONING

We denote by T i=1,...,m the tests which can be applied
to the system. It is convenient to think of the maintenance test
procedure as being applied to a system containing an unknown one of
the faults fj’ j =0,...,n. The purpose of the tests is to determine
which of the conditions fO""'fn exists in the particular system
under test.

The testing procedure consists of applying a sequence of

tests to the system. Each test results in some observable outcome.
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We assume that there is a finite set of possible outcomes which we
designated 0k k=1,...,p.

If we had a single test which was powerful enough, there would
be a distinct outcome associated with each fault. Such a test would
be comprehensive in the sense that no other tests would be required
to isolate the fault. Such a test is said to have full resolution.

A test of this type would be very extensive and complicated and,
although it fits within our discussion here, our thinking is oriented
toward less comprehensive tests. Thus we will suppose that the indi-
vidual tests under consideration do not provide full resolution, but
to be useful they must provide some resolution among the faults.

Figure III-1 illustrates the process of applying test Ti to

a system containing fault fj with the result that outcome O is

System

with £.

—» oputcome Ok
J

Figure III-1. A Typical Test.

observed. It is necessary to fully characterize the performance of
each test Ti in the presence of the faults fj’ and we imagine
that for each test the resulting outcome is known in the presence of

each fault. This is illustrated in Figure III.2.

Figure III-2. Typical Test Results for Test T..
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The data of the type shown in Figure III-2 can be obtained
in several ways. These include:

a) analysis of the system design,

b) experimentation with a real system,

c) simulation of the system behavior.
The first method relies on the system designers, engineers, and pro-
grammers to determine from their knowledge of the system how it will
behave in the presence of each fault under consideration. The experi-
mental method inveolves obtaining a fault-free copy of the system,
inducing the desired faults, applying the tests and recording the
results. The simulation method is nearly the same as the experimental
method except that the observations are taken not from the real system
but from a model of it, probably a computer simulation.

It is not intended that the tests, when applied to a system
containing an unknown fault, result in a pass or fail. Some faults
produce the same cutcome under test T, as the fault-free system.

For example, the results in Figure III-2 indicate that fo and

fn both produce outcome 03, but it would be misleading to apply

T, to a system, obtain O

i and claim that the system passed that

3'
test. Actually, the test Ti is unable to discriminate between f0
and f£_.
n
The application of a single test serves to partition the set
of all possible faults into p mutually exclusive and collectively
exhaustive subsets corresponding to the p possible outcomes.

For notational purposes we denote the set of all faults which

produce outcome k when subjected to test i by Sik' Thus when
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test i is applied with the result 0k we can conclude that the

fault actually present is one of those in set 84 This is illustrated

k*
in Figure III-3.

0 e Sil
/
o
Faults | % S50
0
n
5.
in

Figure ITI-3. Partitioning the Faults with Test T, -

Further testing can be applied to the sets S Suppose T. is

ik~ i
applied. This will result in one of the test ocutcomes say 0r with
the conclusion that the system under test contains one of the faults
which is in both the sets 8. and S._.
ik Jr

The maintenance test problem is to select an efficient set of
tests which can successively partition the set of possible faults in
smaller and smaller sets so that ultimately the actual fault can be
isolated. Possible criteria for test selection will be discussed after

the examples.

D. SEQUENTIAL AND COMBINATIONAL TESTING
In any testing situation where a sequence of testsis to be

applied to a system the question will arise whether later tests in
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the segquence are to be selected on the basis of the results from
earlier tests or not. The case where earlier test results do influence

the selection of later tests is called a sequential testing procedure,

otherwise combinational.

Sequential testing is a more powerful method in that fewer tests
will generally be required to isolate a fault since the sequential nature
of the procedure allows the selection of later tests which are more
capable of discriminating among the remaining possible faults. Combi-
national procedures, although independent of observed test results, may
be easier to implement in checking out a software system since less
storage space is required to store the tests and less logic required
to implement them.

Examples

To illustrate the ideas of partitioning consider the following

data used in examples 1 and 2. The table entries 1, 2, and 3 refer

to outcomes 01, 02, and 03.

f0 fl f2 f3 f4 f5 f6 f7 £
Ty 1 2 2 1 3 2 1 1
T, 2 2 2 2 3 2 1 1 2
T3 2 1 a 1 2 2 3 2 3
T, 1 3 3 2 2 2 3 3 3
Tg 2 3 1 3 3 1 3 2 2
Te 2 2 3 2 2 1 1 2 1

Table III-1. Data for Examples 1 and 2.
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Example 1l: A Combinational Test Procedure
In this example we illustrate the result of applying tests
Ty T2' T, in that order to a system containing one of the faults

fO""’f The results are portrayed as a test tree. See Figure III-4.

8-
Notice that the application of Ty partitioned the faults

into three sets: The first, associated with outcome 01, containing

faults fo' f3, f6 and f7. Subsequent application of T further

2
partitioned this set into two sets containing faults f6 and f7

associated with outcome 01 and faults fo and f3 associated with

Oy Notice that 03 is not possible since the actual fault in this

case is known (after applying Tl) not to be f4. The test T2

is ineffective in the event that Ty yields outcome 02.

£t E T
0737672  ~—~—_ | £ ¢

0
7
All e £_E_|T
Faults| 1 Bitste | %2 172783
O3
£48g | Ty “h“hﬁ“-~
£
03 4

Figure III-4. Test Tree for Example 1.

ITI-8



Example 2: A Sequential Test Procedure

In this example different tests are applied depending on the
outcome of previous tests. The test tree is shown in Figure III-5.
Notice that in this case, particularly when T, yielded O,, the
later tests could be selected to make best use of the information

already available.

AEof3%eh| T

All £ £ £ £ '
_Faults | die2d®ije"s 5
£,
oo £
3 ]

Figure III-5. Test Tree for Example 2.

Reflecting on these possible test trees raises several ques-
tions: Should the test procedure be sequential or combinational, how

shall possible test sequences be compared and what is the "best"
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procedure? For example, if the system is very likely to be fault-
free, then a test sequence which begins with T4 is attractive

unless T4 is very expensive or time consuming. On the other

hand Ty is nearly worthless if the probability of having a condition
other than f0 is large. After considering one more example, we will
address these questions of test selection by considering several
possible test objectives.

Example 3:

This example illustrates the application of the methodology
described to a small program. The program is an interactive game
which is played on a programmable pocket computer, in which the
computer selects a four digit random number which is concealed from
the user. The user makes a guess and the program returns a code
number which provides information regarding the accuracy of the guess.
The code contains information on the number of digits in the guess
which are correct and correctly placed as well as on the number of
digits which are numerically the same as some digit in the number
selected by the computer.

For the purpose of this example the portion of the program
which produces the random number is not used. The example deals
only with that part of the program which produces the coded output
number. A functional flow chart of the program is given in Figure
III-6. The actual machine implementation will not be discussed here.
All the subscripts on N should be interpreted mod (4).

The program assumes the four digits of the actual number
selected by the computer are N,;., N,, Ny, Ny in that order. The

four digits of the guess are Wl, WZ' Was W4, respectively.
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Figure III-6. Functional Flow Chart for Example 3.
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The following faults were defined:

*
test 1 always yields "yes."

vields "no."
yields "yes."
yields "no."
yields "yes."
yields "no."
yields "yes."
yields "no."
to check 451

f0 = no fault
fl =
f2 = test 1 always
f3 = test 2 always
f4 = test 2 always
f5 = test 3 always
f6 = test 3 always
f7 = test 4 always
f8 = test 4 always
f9 = program fails
4 in test 0)
f10 ©
fll = a zero.
f12 = software change.
Ten

The last three faults were machine dependent.
had to do with memory locations which always returned
The other fault was the disablement of one

of the machine functions.

digit in guess (change 5 to

Two

Each was induced by a

tests were defined and run with each of the above faults.

Each test involved eritering a number into the machine location where

the random number is stored and then entering a "guess."

The value

of the coded output was the outcome of the test.

The ten tests defined by the number entered and the number

guessed were:

*The use of the word "test"
not the maintenance tests.

the flow chart,

in this context refers to the tests in
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The experimental test

o
T, 20
T, 5
T, 10
T, 8
T, 20
T, 4
T, 8
T, 12
T, 1
T, 20

enter

guess

enter

guess

20
20
20
20
20
20
20
20
20
20

[ (=) L N = N

- Y |

=

1111

1111

T

0123

3012

1111
1234

Ty

0123

0011

results are

20

12

20

12

20

Figure III-7.

20

12

20

11

20

Test Results for Example 3.

20

12

20

12

20

1111
0011

Tg

0011
% 0 B |

0123

0000

9

0011

1234

0123
0123

Tio

0011

0011

shown in Figqure III-7.

20

10

20

12

20

20

12

20

12

20

IIT=13

20

10

20

12

20

15

11

o

o= BN ¥ R N SR 2 FR Rl & o

S
2 20
0 8

10 12

20 4
5 8
5 8

10 4
2 4
0 4

10 12



The test results given in Figure IIiI-7 reveal that no two of
the tests produce the same output for every fault. However, three

of the faults (f3, £ produce the same output for every test.

5 £q)
Thus no test plan using these ten tests will be able to distinguish
among these faults.

Just to illustrate the method, an unknown one of the thirteen
programs, each of which contained one of the faults fO""'flz’
was loaded and testing was undertaken to determine which program it
was. The test tree used is shown in Figure III-8.

Since the number of possible outcomes is fairly large (12),

relatively few tests are required for fault isolation. In this

example only two were required to determine that fault 10 was present.

E. TEST OBJECTIVES

It is generally true that the testing procedure is limited
by time available, computer storage, and other considerations. We
will present several criteria by which test sequences can be evaluated.
We assume that each test has an associated cost, perhaps the time
required to implement the test.

If we can assume that we have a probability distribution over
the set of possible faults so that we know the probability that each
fault is present, we can select the test sequence to minimize the
expected cost of testing. In this case the test sequence could be
arranged to seek the most likely faults first, since testing will
terminate upon the discovery of a fault. Alternatively, the objective
might be to select the smallest set of tests (or minimum cost set)
such that the probability of identifying any fault is at least a,

where o 1is some preset parameter.
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Figure III-8. Test Tree for Example 3.
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If no prior knowledge is available about the probability of
the various faults, we might want to select the sequential or com-
binational test sequence with full resolution and minimum cost.
Another point of view might be to imagine that a budget (perhaps
time) is available for testing and the objective is to select the
test procedure which is capable of identifying the largest number
of faults.
Many other variations of these ideas are possible, and thorough
consideration must be given to the test objectives before appropriate

test sequences can be selected.

F. DISCUSSION

The partitioning method just described is a general approach
to systems maintenance testing. The practicality of the method
depends on the extent to which the fault assumptions hold and the
extent to which tests can be devised to discriminate among the faults.
The issue of resetting the system to an initial state before the
application of each test is also crucial. If it is impractical to
reset the system after each individual test in a series of tests, then
it is possible to redefine the entire series of tests as a single
test. If this is done, the reset assumption is met. Of course, the
new test which is in reality a series of tests, is much more compre-
hensive than any of the original tests alone. The data in Figure
TITI-2 must, of course, be constructed for the new single test, not
the individual tests.

The applicability of the method obviously depends on the

ability to collect the data shown in Figure III-2 and this in turn
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requires either a thorough analysis of the system by its designers
and builders or experimentation with a fault-free system (or a
model of it). The prototype system during its testing should be
carefully checked out and thoroughly instrumented, and may approach
a fault-free system. Practical considerations however imply that
the fault-free system might never be obtained; nevertheless, the
partitioning method can proceed with the understanding that the
system defined by f0 is the standard whether it is fault-free or
not.

The definitions of the faults to be considered must be
unambiguous and, if the data in Figure III-2 is to be gathered by
the experimental method in which faults are induced into an otherwise
fault-free system, the faults must have some physical realization in
the hardware or software. It is not sufficient to define a fault as
"something is wrong with the memory unit" or "the data bus is not
working properly."” Fault definitions must be much more precise than
this. The level of detail at which a fault must be defined probably
leads to an enormous number of faults in any practical application
and it is in this area that sound judgment must be exercised to
prevent the approach from becoming unmanageable.

A first attempt at applying this method to a complex system
might concentrate on only one class of faults, for example control
faults or branching faults. If a flow chart were available, each
decision point could be identified and the possible branches from
that point listed. A fault would correspond to always selecting one
of the branches or never selecting one of the branches. With con-

sideration limited to this class of faults the number of faults would
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remain manageable. However an item to keep in mind is that while our
discussion assumes that the only faults which can occur are those pre-
cataloged faults, it may be that some other fault has actually occurred.
The behavior of the system is not known for such an occurrence and
unless it produces some outcome other than ol,...op, we will

erroneously identify the fault as being in our catalog.
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IVv. SOFTWARE ERROR SIMULATION

Much of the software development costs, which were mentioned
in Section II, are for testing, debugging and integration; a significant
part of the costs after releasing the software are for correcting
errors. Thus there is current interest in the error characteristics:
number, type (overflow, sequence control) and location of software
errors in a program. It is generally accepted that computer programs
with a complex structure, that is one with a high incidence of branch
instructions and loops, are harder to debug and test and more errors
persist after release than for programs with a more simple structure.
An error simulation modell is presented here which investigates the
relationship of program structure to error detection and test effort.

Since structure can be controlled during the design phase
and measured through all phases of a computer project, the study
of the relationship between structure and error characteristics is
valuable to the manager of a software project. Complex program
structures with poor error characteristics should be avoided. Poor
error characteristics result when many errors are located in complex
structures in such a way that error detection would prove difficult
during tésting. In cases where complex program structures may be
necessary to help meet program size or speed limitations, it is
useful to have an indication of the additional testing which may be
caused by complex structures. It is also useful to be able toc compare
the error characteristics of design alternatives that have different

program structures.

1The suggestion to use a simulation model to study software exror
detection was given by Dr. Samuel Litwin, a consultant to the Haval
Air Development Center.
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NEED FOR RELIABLE SOFTWARE

A. SOFTWARE COSTS

The production of software can be divided into three phases:

* analysis and design,

* writing programs and

* test and integration.
Data on how time, effort and money are divided among these three
phases gives some indication of why software production is so costly.
The fraction of time, effort and money for each phase differs from
application to application; however, data from some large projects
show similar experience. Estimates are given in [19] and [20] for
some military command and control systems: Analysis and design is
about 35 percent, writing programs 15 percent and test and integration
50 percent. For space projects the estimates are 35, 20, 45 percent.
For the IBM 360 operating system the estimates are 35, 15, 50 percent.
Data for business application indicates less for testing and integra-
tion and more for analysis and design than the above data. The sur-
prising amount of time, effort and money for test and integration is
often the item most underestimated in planning computer projects, as

described in [12].

B. DEFINITIONS

In the field of software engineering there is little agreement
on the definition of terms, such as the definition of software
reliability. 1In order to make the understanding of this paper easier,

the following definitions will be adhered to in as much as possible.
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l. Terms

Software reliability is the probability that a computer pro-

gram will perform its intended function for a specified time interval
under stated operating conditions, [21].

Reliability prediction is intended to provide an estimate of

future probability of successful operation.
Testing is an effort to determine the presence of software
errors, not their absence.

Software error is a mistake in program design or implementation

which leads to undesirable results during program execution.

Module is a particular physical combination of program instruc-
tions that is independent of others with respect to compiling, assembling
and loading and which performs a specific function.

Program is a set of modules.

Program complexity may be described by characteristics such

as program size, incidence of branch instrwtions, incidence of loops,
incidence of subroutine calls and variety of instructions.

Non-branch instructions may be either computational or input/

output instructions.

Structured programming is a programming technique, [22] in

which a program with one entry and one exit can be written using only
the following programming progﬁessions:

* Sequence

* TIF THEN ELSE

* DO WHILE

Directed graph is a geometric graph, consisting of nodes and

arcs, with a direction of traversal associated with each arc.
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C. CLASSIFICATION OF ERRORS

Software errors are classified as follows:

* Mistakes in logic at the flow chart level,

* Computation and assignment,

* Sequencing and control,

* Input/output,

* Declarations,

* Keypunching/clerical errors committed in writing
instructions on coding sheets,

* New errors introducted as a result of design changes:
- unexpected side effects caused by changes,
- logical flaws in change to design,
- inconsistencies between changed design and implementation,

- inconsistencies in original and changed hardware

D. TESTING AND ERROR DETECTION

The life cycle of a program is composed of the following
phases:

* Design and analysis,

* Module development and testing,

* System integration testing,

* Punctional testing,

* Maintenance.

The cost of error detection and repair during system integration
testing is three times that of testing an individual module during
module development testing, [23]. Therefore, the objective should be
to reduce the number of errors detected during system integration test-

ing and increase the number (proportion) discovered during module

development testing.
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In many moderate and large computer projects, a programmer
writes and debugs a module and then gives it to a test group. The
test group tests the module, integrates it with other modules and
then continues testing. The module is tested by supplying an input
to the module and then comparing the outcome to the known correct
cutcome. If there is a mismatch between cobserved and correct output,
an error has been detected. When an error is detected the module
is given to a programmer who locates and corrects the error and then
returns the module to the test group. Notice the distinction between
testing, which is supplying inputs and observing outputs, and debug-
ging, which is the highly individualized detective work needed to
locate and correct errors. In debugging, the programmer needs a
detailed knowledge of the structure and operation of the module. The
tester is frequently unaware of module structure and operation; he
needs only to understand the function of the module.

Most computer programs have a large number of potential inputs;
each may exercise a program in a different way. The sequence of in-
structions of the program that results from a particular input is
called the "path" or "thread" associated with that input. Testing by
submitting inputs to the program checks only the paths associated with
those inputs. For programs with a very large number of inputs, testing
can be only a relatively small sampling of all possible inputs, as

described in [12].
ERROR DETECTION MODEL

A. NEED FOR A MODEL
Testing is a critical part of software projects because it

measures and affects the final quality of the software and it consumes
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a large part of project time and resources. Testing also reveals
the strengths and weaknesses of the analysis, design and coding of
the software and gives an estimate of the success or failure of the
software after release. Thus, it is important to understand the
testing process and to understand the relationships between testing
and the various decision variables that may be controlled during
analysis, design and coding.

A difficult facet of program testing involves the selection
of inputs. The tester, who generally is not the person who wrote
the code, does not know the specific path that an input will execute.
Presently there is no software tool that would automatically allow
the tester to force an input to follow a certain path. Some test
systems allow the tester to select whichever instruction is to follow
the previous one. 1In this way a particular path is followed, [24].
This is obviously a slow and cumbersome way to check out all, or many,
of the possible paths in a program.

Obviously, inputs should be chosen so that a high percentage
of the critical paths of the program will be exposed to testing.
However, this objective must be weighed against the cost of machine
time for debugging and the cost of programming personnel for error
correction. A related matter is the determination of when to stop
testing. It is usually infeasible to subject a program to all possible
input combinations because of resource constraints. Various software
packages are available for recording and analyzing the following
types of data: count and frequency distribution of types of instructions
executed; indication of code which is not executed; and indication of

code which is impossible to reach, [25]. Although this type of
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instrumentation is helpful for tracing program behavior, once a set
of inputs is selected, it does not solve the problem of selecting
the number and type of inputs in the first place, [17].

Thus, there is a need for a model to examine the relationships
between the number of inputs and paths traversed, for a given program
structure, and the number of remaining errors, fraction of the program
exposed to testing, execution time and repair time. It is of interest
to determine the number of inputs required to achieve a specified
number of remaining errors for various structures, when the same
number of original errors is used with each structure. In addition
it is desirable to identify programming structures which have complex-

ities that make it difficult to detect errors.

B. BASIC MODEL DESCRIPTION

1. Model Characteristics

Program complexity may be described by characteristics such
as program size, incidence of branch instructions, incidence of loops,
incidence of subroutine calls and variety of instructions. Another
view of program complexity can be obtained by considering the structure
of the program to be a series of nodes, arcs and loops in the form
of a directed graph as shown in Figure IV-1l.

In the directed graph used in the simulation model, nodes
represent connection points where parts of the program may merge
and/or branch and arcs represent a sequence of nonbranching instruc-
tions such as computation and input/output. Instructions are located
in arcs and errors are located in some of the instructions. An input

defines a path from the start node to an exit node. Beginning at the
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Figure IV-l. Directed Graph Representation of a Program.
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start node an input causes execution of the instructions on its path,
consuming test time, until an error is encountered. After the error
is thus detected, it is repaired, consuming repair time. There is,
however, some risk that the repair will introduce a new error in some
instruction. Restarting at the initial node execution is begun again
with the same input. This process is repeated until there are no
errors on the path.
Some relative measures of program complexity which are appli-

cable to a directed graph representation of program structure are:

» ratio of actual number of arcs to the maximum possible

number of arcs,

« ratio of nodes to arcs,

« ratio of loop arcs to total arcs.
The size of a program is a measure of complexity in an absoclute sense.
In terms of a directed graph structure, size is determined by the
number of nodes, which establishes the number of branch points in a
program, and by the number of arcs, which establishes the degree of
straightline coding between branch points. Increasing values of the
above relative and absolute measures represent increasing program
complexity.

2. Model Simulation

The error detection model was written in FORTRAN IV and has
been developed and used on the Naval Postgraduate School's IBM 360/67
computer. The program has been executed 40 times in the production
mode. The simulation program consists of 639 FORTRAN statements,
requiring 194,000 bytes of main memory and executes in 40 to 55 seconds,

depending on the type of simulation involved. The directions for use
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of the error simulation program are listed in Appendix C and the
FORTRAN listing for the simulation model is in Appendix D. The
directed graph was input toc the simulation as a node-arc incidence
matrix. Lacking detailed information about the distributions of the
pertinent variables in actual systems, there were no statistical
dependencies among the variables established. Thus, the random varia-
bles were chosen to be independent and to possess the Markov property.
This also makes the model more tractable for obtaining an analytical
solution.

The number of instructions per arc is an independent exponen-
tial random variable truncated to an integer. Errors are inserted by
making the number of instructions between errors an independent expo-
nential random variable, which results in a Poisson distribution of
errors per interval of instructions. Errors are inserted by scanning
the arcs of the node-arc incidence matrix by columns until the count
of instructions from the last error equals the random number.

An input is a sequence of random numbers that determines which
arc to traverse at each branch node. For each branch node the proba-
bility of taking each arc is egual. This could be changed to test
the sensitivity of error detection to different branch probabilities.

The repair times for errors are exponentially distributed.

If many programmers work on error repair with each repairing only a
small number of errors, the effect of experience on error repair may
be small so that a constant repair rate corresponding to the exponen-
tial distribution would be appropriate. If few programmers work on
repairs, experience would be a factor and an increasing repair rate

distribution would be appropriate. For example, the log-normal is
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sometimes used to represent the distribution of hardware repair time,
[26].

The execution times of instructions are exponentially distrib-
uted. It was assumed that the execution time of an instruction does
not depend on past instruction times. This assumption may not hold
if the programmer tends to sequence his instructions in certain patterns.

When errors are repaired, the potential introduction of new
errors is simulated. New error insertion is based on the ratio of the
number of instructions changed by error repair to the total number of
instructions in the arc. The arc where the new error is to be inserted
is determined on an egqual probability basis.

The simulation is written so that any distribution or parameter
can be changed for the purpose of sensitivity analysis. The choice of
distributions may have a significant effect on the simulation results
for a given structure; however, since the objective is to evaluate
results on a relative basis across various structures, the choice of
distributions does not seem to be critical.

For each input, data are collected on the number and location
of errors detected, number and location of new errors, number and
location of remaining errors, number of arcs traversed, time to execute
instructions and time to repair errors.

The simulation model was written so that it would be possible
to generate random times for each instruction executed and for each
error repaired as the simulation proceeds. However, if the instruc-
tion times and repair times are independent and identically distributed
as described above, then it is possible and computationally desirable

to count the number of instructions executed and the number of errors
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repaired and multiply these by the average instruction executing time
and the average error repair time, respectively, in order to obtain

a very good estimate of each total time.

C. MODEL ASSUMPTIONS

A basic assumption of the model is that the tester has some
knowledge of the program structure, but that for a given input he does
not know the specific path that it will execute. In actual software
projects the test group has flow charts and program listings; however,
it is infeasible to analyze this information because it may contain
thousands of lines of coding. Because of the size of the program, the
complicated internal logic and the large number of paths, the relation-
ship between inputs and outcomes is rarely understood. One example is
in the testing and maintenance of large operating systems. The rela-
tionship of inputs to outcomes is so poorly understood that even after
an error has been detected it is often difficult to determine an input
that will reproduce the error.

A further assumption of the model is that the tester gains no
information as the testing proceeds that will influence his choice of
subsequent inputs. In actual software projects the tester should try
to make best use of any information gained during testing. Various
software packages are available for recording the following types of
data:; count and frequency distributions of instructions executed, indi-
cation of code that is not executed and indication of code that is
impossible to reach [25]. However, there are other factors that may
make it difficult to effectively use the information gained during

testing. For example, the test plan may be specified in advance with
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no modifications allowed or inputs may be restricted to those that
will be typical for the program in actual operation. For these
reasons the model assumptions seem reasonable as applied to functional
testing.

The probability distributions which were used are listed

below.

Property or Event Probability Distribution
Instructions per arc Exponential
Instruction execution time Expcnential
Original exrror occurrence Exponential
Time to repair an error Exponential
Iterations per loop Uniform

Number of instructions affected
by repair Uniform
New error occurrence Uniferm
{based on ratio
of instructions
changed/instruc-
tions in arc)
Arc selected for new error
insertion Uniform

Arc selected at branch point for

traversal Uniform

Since little is known about the type of probability distribu-
tion which is associated with the above program properties and execu-
tion events, the selection of distributions was, of necessity, based
on assumptions. However, it was felt that the assumptions were

reasonable. For example, the seeding of original errors was based on
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the number of instructions between errors being exponentially
distributed, or equivalently, the presence of an error was independent
of the presence of other errors. A second example was that instruc-
tions were placed in arcs according to an exponential distribution,

or equivalently, the number of instructions between branch points was
exponentially distributed. This implies that the number of instruc-
tions between two branch points was independent of the number of
instructions between other branch points. Although the choice of
distribution may have a significant effect on the simulation results
for a given structure, the objective was to evaluate results on a
relative basis across the various structures so that choice of distri-
bution was not critical. Although it was possible to vary both the
type of distribution and its parameters, the usual procedure was to
keep these factors constant and vary program structure, number of

inputs and input traversals.

D. MODEL USES

The model can be used to influence software design decisions
by making it possible to compare the error detection characteristics
of alternative program structures. This is valuable, since error
detection characteristics are good indicators of the time and resources
consumed by testing. The design flow charts and estimates of branch
probabilities and number of instructions can be used to specify progams
in the form of a directed graph. The program is then seeded with
errors and subjected to random inputs.

The model can also be used to identify the measure or measures

of complexity that best predict the ability to detect errors. To do
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this it is necessary to gather data from the model on the error
detection characteristics of a variety of different structures and

then do a statistical analysis. This would make it possible to
measure the complexity of different programs and then compare the
estimates of error detection characteristics. Although some data

has been generated, further work is necessary to identify good measures
of complexity.

There are other situations where it is useful to be able to
compare structures. A frequent problem is to evaluate the cost of
adding some additional feature to the program. The results of the
model can be used to compare error detection characteristics of the
original and modified structure. The problem of how tc allocate test
effort among structures of different size and complexity can also be

addressed.
ANALYSIS OF SIMULATION RESULTS

A. THE EFFECT OF INCREASING THE NUMBER OF INPUTS

1. Model Testing

One would expect that initially there are many errors detected
in a program with each input and then the number of errors detected
decreases as additional test inputs are used, because much of the pro-
gram is exposed to testing initially. This is illustrated in Figure
IV-2. The percent residual errors decreased stepwise as the number of
inputs increased. In the testing of actual software, after finding
many errors, there may be long periods of time with no error detection

followed by a new group of detected errors.
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30 nodes, 50 arcs, 6 loops
18 original errors, 11 added errors
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Figure IV~2. The Effect of Increasing Inputs on Residual
Errors.

Recall that each input in the model detected all the errors
in its path, from the input node to one of the output (terminal) nodes.
In order to explain the stepwise action in Figure IV-2 it must be
realized that although the paths through the program were, in general,
different from previous paths, portions of these paths may have in-
volved only arcs that have been previously traversed. The model had
well defined steps where no new arcs were tested for a number of unigque
input paths, as shown in Figure IV-3. Thus it can be seen how a new
group of errors was detected when the model tested previously untested
parts of the program.

However, just because an arc has been previously tested does

not imply that it was error free. As each new detected error was
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Figure IV-3. The Effect of Increasing Inputs on Arcs Tested.

repaired, there was some small probability that a new error was intro-
duced in some other portion of the program. This newly inserted error
may have been inserted in a previously tested arc. A check was made
on the coverage of the arcs by the simulation model. The structure
checked had 30 nodes, 40 arcs and 6 loops as shown in Figure IV-4.

The numbers aleong the arcs indicate the number of times the arc was
traversed. For example, the source arc at the top was traversed

50 times, or there were 50 different inputs. Every time an input
reached a node it had an equally likely opportunity to select any one

of the arcs emanating from the node. The simulation results bear
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this out as Figure IV-4 illustrates, where the 50 inputs traversed

the top arc and split below with 25 going to the left and 25 going

to the right. The arcs which had a backward pointing arc or loop
around them were traversed more times as shown by the number alongside
the arc representing the sum of the number of times the backward

loop was selected and the number of times the input arc was selected.
Looking at the far right hand loop, seven inputs came into the node
from above, twelve inputs came into the node from the loop and 19 of
the inputs exited the node. The parenthesized numbers indicate the
number and location of errors. The number of errors includes the
errors initially seeded and the errors inserted when repairing detected

errors.

2. Simulation Example of a Real Program.

In order for the simulation model to be of any practical
use, it had to be tested on a real program. Appendix B contains the
code and structure of a textbook FORTRAN program for computing Bessel
Functions. The column labeled "node" corresponds to the nodes in the
directed graph representation of the program in Figure IV-5. This
particular program was selected as an example of a good computational
program, since it was presented in a numerical analysis text, [26]
as an example of a poorly coded program, since a casual reading of
the code showed a lack of use of structured programming techniques.
Another reason for the selection was that the program could be broken
down into 30 nodes, which was the same as the test structures. It
also fit within the range of structures tested having 43 arcs and 9
loops. The first number inside of the parenthesis represents the

number of instructions in the arc and the second number represents
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Figure IV-4. Arc Traversal and Error Patterns.
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Figure IV-5. FORTRAN Program Directed Graph.
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the number of errors, original errors plus added errors, in the
arc.

Fifty randomly selected inputs were run through the structure.
With 16 errors initially seeded, five errors, or 16.7 percent of the
total errors seeded, still remained after fifty inputs. Comparing
this result with a test structure with 45 arcs and 6 loops and another
test structure with 44 arcs and 10 loops, the percent residual errors
in the FORTRAN program was high, illustrated by Figure IV-6. By
analyzing the paths each input traversed it was noted that six of the
nine loops in the FORTRAN program, all emanating from the bottom of the
graph, going to the top of the graph, were very seldom used, thus not
giving each individual input an opportunity to loop back up to the top
of the graph, and thus test more branches for a given input. This
was borne out by the results in Figure IV-7, which showed that the

percentage of arcs tested was lower for the FORTRAN program.

B. THE EFFECT OF INCREASING THE NUMBER OF ARCS

Intuitively, given two programs with the same number of nodes,
and a different number of arcs eminating from the nodes, one would
expect that the program with the greater number of arcs, or the more
complex program, would have the higher percentage of residual errors.
By the same reasoning one would expect the more complex program to
have fewer arcs tested with a given number of inputs.

Fifty random inputs were used on each of the following program
structures. Each structure contained thirty nodes and six loops.
Retaining the concept that each node represents a branch or decision

point in the program, the most simple structure that can be defined,
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Figure IV-7. Arcs Tested Pattern

using thirty nodes, must have a minimum of forty arcs. By definition,
to establish a node there must be at least three arcs, in any combina-
tion, either terminating or emanating from the node; thus, the minimum
number of arcs in a structure is: (3/2) (the total number of nodes)
minus the number of entry and terminal nodes. Recall that an arc was
defined as either a forward or backward pointing arc, called a loop.
Starting with forty arcs and adding five more to each structure, five
structures were simulated with 40, 45, 50, 55 and 60 arcs. After
fifty inputs the percent residual errors increased as the number of

arcs increased, as Figure IV-8 jillustrates. The percent residual
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Figure IV-8. Relation Between Complexity and Residual Errors.

errors was chosen as the vertical axis in Figure IV-8 rather than
residual errors since the number of errors, original errors plus
added errors, varied in each of the five structures. The reason
for the variable number of errors was that each time a new structure
was defined, the error simulation program would randomly seed all
the original errors again, thus errors could have been inserted into
the added arcs.

Similarly, Figure IV-9 illustrates the effect of increased
complexity on the percentage of the arcs tested. As the number of

arcs increased, the percent of the arcs tested decreased.
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Figure IV-9. Relationship Between Complexity and Percent
Arcs Tested.
Examining the paths traversed by each input gave some insight

as to why an increased number of arcs caused higher residual error
and lower arcs tested percentages. When an arc was added, the number
of arcs emanating from a node increased. There was a probability
that the added arc could contain an error as the entire structure was
seeded with errors anew. As the number of arcs increased, there were
also more arcs which provided shorter paths to an exit node by
connecting a node closer to the input with a node closer to one of the

outputs, thus leaving some intermediate arcs untested.
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Repair time turned out to be unrelated to complexity. The
number of errors initially seeded controlled the repair time. These
results can be seen in Figure IV-10. Several structures are shown
in the plot of repair time versus percent residual errors. The amount
of time required to repair errors, for a given percentage of residual

errors, increased as the number of errors initially seeded increased.

30 nodes, 40 - 60 arcs, & loops

100+ .
90+

Percent Resldual Errors

104

FA I 5 BY TI0V 12V 1tV 1V 18T IQ
Repair Time (Hrs)

Figure IV-10. The Effect of Arcs on Repair Time

Generally the relationship between the percent arcs tested
and the percent residual errors can be described as approximately
linear. As the percentage of the arcs tested increased, the percentage

of the residual errors remaining decreased. In Figure IV-11 the
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Figure IV-11. The Effect of Complexity on the Relationship
Between the Residual Errors and Arcs Tested.

shaded area represents the band of values, corresponding to various
structures, for a given percentage of arcs tested, with the mean

shown as the middle curve.

C. THE EFFECT OF INCREASING THE NUMBER OF LOOPS

Improper loop indexing is usually near the top of a list

of most frequently occurring errors, [19]. Many people think that

loops should be eliminated as a program structure. Note that the

only influence of loops in this model is with respect to coverage.

The model does not account for errors in the loop counter or failure

to get out of a loop. One of the results of the analysis was that

an increase in the number of loops had no significant effect on the

IV-26



percentage of residual errors, as shown in Figure IV-12. Starting
with a structure with no loops, and then structures with 5, 6, 10,
14 and 20 loops were analyzed using the error simulation program.
The percent residual errors was chosen as the vertical axis rather
than residwval errors since the number of errors, original errors
plus added errors, varied in each of the six structures. The
reason for the variable number of errors was that each time a new
structure was defined the error simulation program would randomly
seed all the original errors again, thus errors could have been

inserted into the added loops.

30 nodes, 34 - 54 arcs, 0 - 20 loops

Percent Residual Errors

_ 20 loops
10° 20 7 30° 407 = 507
Number of Inputs

Figure IV=-12., The Effect of Loops on Residual Errors,
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The reason for the independence of the percent residual
errors from loops can be explained by examining Figure IV-13.
There was no distinguishable difference between the percent arcs

tested in the six cases with 0, 5, 6, 10, 14 and 20 loops.

30 nodes, 34 - 54 arcs, 0 - 20 loops

Percent Arcs Tested

101 201 "3)1 u_on 50|
Number of Inputs

Figure IV-13. The Effect of Loops on Percent of Arcs Tested.

By examining the paths the inputs trace, the explanation of
the above becomes obvious. After an input completes a lcop, it once
again has an opportunity of branching out of the loop, thus testing
more arcs than a structure with no loops. Each time another loop
was added, the probability of branching out of all the loops
increased at approximately the same rate as the increased number of

loops. This concept was reinforced by the data shown in Figure IV-14.
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After the structure was expanded to nine loops, any additional
loops had no effect on error detection. The percent of the total
residual errors in the structure that resided in the loops was a
constant 59 percent and the percent in the arcs was a constant 41
percent for structures with nine to twenty loops. This data was
derived by starting with a structure containing 20 loops, seeding
errors, and then analyzing the structure. The error simulation
program would then delete a loop and its associated error, if one

had been seeded, and then analyze the new structure.

Error locations constant

Yariable number of errors

Percent residual errors in loops

Percent residual errors in arcs

Percent Residual Errors

1 ) 3 L) 4 5l [ ?l L} 9' | 3 11' L1 13] 1) 15l ] 17‘ 1] 19! L}
. Number of Loops

Initiql

Figure IV-14. Residual Errors in Loops and in Arcs.
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It required essentially the same amount of repair time
to decrease the percent residual errors to a certain level for all

the structures containing loops, as shown in Figure IV-15.

30 nodes, 34 - 54 arcs, 0 - 20 loops

100-

Percent Residual Errors
\n
<

16" 20 24" (Hrs)
Repair Time

Figure IV-15. The Effect of Loops on Repair Time.

However, the number of errors initially seeded had no
distinguishable effect on the repair time of the structures with
loops.

It was not possible to make any judgements concerning the

determinants of execution time. This was due to the fact that all

but one structure tested had loops in it. Loops were executed a
variable number of times as determined by a uniform distribution

which established the number of iterations. The effect of a doubly
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nested DO loop was captured by allowing an input to have an
equiprobable chance of branching back up to the start of the loop

or of branching farther down the structure. The relationship

between the number of inputs and the cumulative execution time for
a structure with no loops is examined in Figure IV-16. A plot for
any of the structures with loops has points scattered all over due

to the random effect of the loops on execution time.

30 nodes, 34 arcs, no loops
18 original errors, 6 added errors

(sec) 275-
2504 ‘
225. .
2004
0?9/
1754 20 Ao
150

1254
1001

Cumulative Execution Time

504

10° 207 30° o 50"
Number of Inputs

Figure IV-16. Execution Time for a Structure with No Loops.
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The effect of the percentage arcs tested, with loops present,
on the percent residual errors can loosely be described as a linear
relationship. As long as the structures all had loops, the curves
of the percentage of arcs tested versus the percent residual errors
all fall within a narrow band of values as shown by the shaded area
of Figure IV-17. The curve for a structure with no loops is also

plotted.

30 nodes, 34 - 54 arcs, 0 - 20 loops
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Figure IV-17. The Effect of Loops on the Relationship
Between Residual Errors and Arcs Tested.

The mean of structures with a variable number of ares and

a constant number of loops and the mean of structures with a variable
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number of loops are plotted in Figure IV-18 illustrates, the structure
with no loops required significantly fewer arcs to be tested to
achieve the same level of residual error percentage as compared to

the structures with loops.

1004
90+
80- Mean of all structures
with 2 variable number
70 of ares and a constant
nunber of loops.
E 60+
g 501
7 Mean of all structures
[ Lo~ with a variable number
£ of loops.
8.2
& 20-
10+

200 i Tiy R T Y T80 “1o0
Percent Arcs Tested

Figure IV-~18. The Advantage of No Loops

D. REPLICATING A SINGLE INPUT

1. Model Testing

The usefulness of the model is now examined for predicting
the ability of detecting errors in an actual program. Four pieces
of information are of importance for a manager conducting module
development testing of computer programs. These are: the percent
of number of residual errors, the percent or number of arcs tested,

the amount of repair time, and the amount of execution time,
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The simulation model was used on ten different test structures
to see if this information could be predicted. For each structure
a single randomly selected input was run and the above data were
collected. This process was replicated 100 times, or in other words,
100 randomly selected inputs were used with each input using the
same structure and the same number of errors seeded in the same places.
Statistics such as mean, median, variance, standard deviation, etc.,
were calculated.

As an example, the basic 30 node, 40 arc, 6 loop structure
had 24 errors initially seeded. The simulation model produced a mean
of 78.79 percent residual errors with a standard deviation of 9.10 for
one input. Thus, one could estimate that based on 24 original errors,
after one input, 78.79 percent of the errors will remain. Similar
statistics were determined for percentage of arcs tested and repair
time. Execution time was found to have a high variance. For instance,
the mean execution time for one input for the above structure was 32.50
seconds with a standard deviation of 50.15. Thus, estimates of execu-

tion time based on the mean would be subject to high error.

2. Simulation Example on a Real Program.

The simulation model was used on the FORTRAN Bessel Function
program described earlier. It was found that, based on 16 original
errors, the expected percent residual errors was 84.26 percent with
a standard deviation of 9.09, or 15.74 percent of the original errors
could be expected to be found and corrected with one input. Similarly,
17.70 percent, with a standard deviation of 8.65, of the arcs could
be expected to be tested by one input. Of prime importance to the

project manager, 1.41 hours of repair time, with a standard deviation
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of 1.18, a relative measure for the manager to use when comparing
alternative structures, could be expected to be devoted to detecting

and repairing 15.74 percent of the errors.

E. THE EFFECT OF COMPLEXITY

The following complexity measures will be used:

*AMA is the ratio of the number of arcs in the structure to
the maximum number of arcs possible for the given number of nodes,

*NA is the ratio of the number of nodes to the number of
arcs in the structure,

*LA is the ratio of the number of loops to the number of
arcs in the structure.

Using these relative complexity measures, it was of interest
to see how each of the measures affected the percent residual errors
and the percentage of arcs tested. Five different structures with a
constant number of loops and a varying number of arcs and six different
structures with a varying number of loops were examined. For each
structure, 100 replications of a single input were simulated using
the error simulation program, and statistics were gathered about the
percent residual errors and the percentage of arcs tested.

In Figure IV-19, the percent residual errors after one input
increased as the complexity increased. In this case the complexity
measure was the ratio of the actual number of arcs to the maximum
number of arcs possible with a given number of nodes. Similarly,
using the same complexity measure the percent arcs tested after one
input decreased as the complexity increased, as shown in Figure IV-20.
In both Figures IV-19 and IV-20, the standard deviation from the mean,

represented by the dashed lines, decreased as complexity increased.
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Percent Residual Errors after 1 Input

Figure IV-19.

Percent Arcs Tested after 1 Input

100 -~

L052"

.057 " 063" 068

1ncreasing'comp1exity

Ratio of Actual No. Arcs to Fax No. Arcs

30-

The Effect of AMA on Residual Errors.

Copstant number of nodes

Variable number of arcs

0527

0577 0637 . 066"
increasing complexity

Ratio of Actual No. Ares to Max No. Arecs

Figure IV-20.

The Effect of AMA on Arcs Tested.
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Using the ratio of nodes to arcs as a complexity measure
similar results were obtained. The percent residual errors increased
and the percentage of the arcs tested decreased as the complexity
increased. These results can be seen in Figure IV-21 and IV-22
where increasing complexity is from right to left. Note that there
was an even sharper decrease in the standard deviation as complexity
increased in both Figures IV-21 and IV-22,

A third complexity measure used was the ratio of loops to
arcs. In Fiqure IV-23, the percent residual errors remained constant

for one input as the complexity increased. Once again this reinforced
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Figure IV-21. The Effect of NA on Residual Errors
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the idea that loops expose more arcs to testing at the same rate as

the additional arcs increase the complexity. In FPigure IV-24 it can

be seen that the added complexity had no effect on the percentage of the
arcs tested after one input, with the mean after 100 replications being
a constant 22 percent. Since loops were also defined as arcs, the

ratio of loops to arcs did not increase linearly as the number of loops

increased.
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V. ANALYTICAL RESULTS FOR THE ERROR DETECTION MODEL

A. INTRODUCTION

In the previous section an error detection model was introduced
and analyzed by simulation. It is possible to obtain analytical results
for the expected number of errors detected by testing. Although the
results are more limited than those from the simulation, the analytical
results are a relatively inexpensive means to analyze the relationship
between structure and the error detection process. The analytical
results can also help in the statistical analysis of the simulation
and can reduce the number of simulation runs needed.

The error detection model is reviewed. Then the analytical
results are developed and the output of computer programs to do the
calculation is discussed.

B. ERROR DETECTION MODEL

Here we investigate how error detection during testing is
affected by the structure of a computer program. By structure we
mean how the parts of the program are related. It is very difficult
to do experimentation with program structure in actual software pro-
jects because the cost of duplicate implementations of the same appli-
cation is very high for all but small projects. For this reason
analysis is performed on a model. Structure may be modeled as a set
of nodes and arcs as was described in Section IV. An example is
shown in Figure V-1.

Program structure affects the error detection process; to
study this relationship it is helpful to have measures of each.

For the error detection process some measures are: number of errors
detected in a fixed time, number of errors detected with a fixed

number of inputs, mean time between errors, percent arcs traversed
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Figure V-1,



by one or more inputs and percent errors remaining. More sophisticated
measures involving the shape of the graph of errors detected vs. time
are also possible. These measures will be called "error detection
characteristics.” Good measures of program structure are harder to
define. The most simple measure is size as measured by the number of
nodes. A measure that expresses the degree of completeness of the
graph is the ratio of the actual number of arcs in the graph to the
maximum possible number with only one arc between pair of nodes. Since
the model allows parallel arcs this number can be greater than one.
These measures will be called "complexity measures."

Since measures of complexity are to be used to estimate error
detection characteristics, it is important to define measures that
adequately express the differences between structures with good and
poor error detection characteristics. Since inputs are associated
with paths, a measure of complexity is the number of paths. The
average number of arcs per path alsc is a measure that is related to
the number of errors detected per input. For moderate size graphs
with no directed cycles, it is easy to enumerate all the paths and
the number of arcs on each. If there are directed cycles, it is
necessary to put an upper limit on the number of arcs in the paths
considered in order to eliminate paths with an uncountable number of
arcs. The number of ways that an arc can be reached indicates how
accessible it is to testing. Measures based on this are the mean
and standard deviation of the number of paths that traverse each arc
or the number of arcs that are traversed by less than a fixed number

of paths.



The complexity measures defined thus far depend only on the
topology of the directed graph; it is also possible to use the branch
probabilities. Since the paths are not equally likely, the measures
involving paths can be weighted by the path probabilities. Given
the probability that an arc will be traversed by a single input, a
complexity measure of the accessibility of the arcs for testing is the

sum of these probabilities for all arcs.

C. ANALYTICAL RESULTS

Here we describe how to analytically calculate the expected
number of errors detected by each of a sequence of inputs. For the
purpose of simplifying the analysis, it is assumed that new errors
are not created by the correction of errors. Given a computer program
represented as a directed graph with branch probabilities, and given
the expected number of errors on each arc, the output of the analysis
is the expected number of errors detected. For example, Figure V-2
shows the results of the analysis for the graph of Figure V-1 where
the expected number of errors in each arc is 0.6 and for each branch
node the probability of taking each arc is equal,

The analysis is in two parts. First, it is necessary to cal-
culate for each arc the probability that the arc will be traversed
by an input. If there are no loops in the program, the calculation
is easy: The probability of visiting the start node is 1, if there
are k branching arcs the probability of traversing each arc is 1/k.
The probability of reaching any node is the sum of the probabilities
on the arcs coming into that node. For example, for Figure V-1,

the probability of reaching node 1 is 1, the probability of traversing

V-4



VERSICN 1.0

EXPECTED NUMBER OF ERRORS DETECTED

ERROR DETECTICN MODEL

PROGRAM TITLE

INPUTS = 20

Z2

NUMBER GF ARCS

(¥4}

[2 4
Z0

i dmlololelolelslealelslololelalelelolelalele]
DR6666666666666666666666
[TERE R | (O A B Y
UFOOOOOOOOODOOOOOOOOOOOD
wo
a
>
Lk
-l
<

W *OOO MM MMM EO~-OmMmnnmoO o
OO0 VL ONMAMMMMIOMMMNEMOO
WoOO 00 OO0t 00 D ONOMMEOMnG
2 ONNAE OO =0 OO~ 0N O MMM MU
APo...l...l.l.ﬁ.l...t-o-
m wirl=lslelelelolalslalelelelaloleleloelalolsl

I s00oMMMNOOOOOQ0OO000RO0000
LODOO0MMMOD00000000000M000
ZD00ooMMMOD00000O00CQ0000
<% . QNN M MMM BN O INWY QO O O O NN
Ol » 8 » 9 ¢ 2 g 8 0 & % ¢ 0 0 g 0 8 ¢ 0o ean
I S s]delSle NS le PR PR EEEE [& 16 IWTWIE LW

(=]
A2347890144533666562236

el g e =) e ol el e e el =ty
.uu

ARC

-
11224447789901345335622
< s PP

T

13.20

INITIAL EXPECTED NUMBER QF ERRORS=

s |
w
[+ d 3
wo
W
>¥Xr
=t L
—ZONOMNNNOITOMNPFDOOOm
< 3 P D O = N = UL O O A
DI 2 5 ¢ 8 8 2 0 2 e 0O e e 0 e 0 @
I AHUNO PO NP O OO i rdrmd e s d md N N Y )
=0 L L Lot L Lo Lo L Lo P B P PN
0o
o 1V E /4
Lo w
>
WL
)

Z OO M~AND D O NOP M ~ OV D

OO 0L P TN N O b e b= 1 D 0D
QY = s ¢ 8 9 ¢ @ ¢ # 8 ¢ 8 0 & 8 ¢ 9 & & @
W el el QO OO O00DOLO0OD0C000O00

-0
(%] 4
(1812 &
G w
>
[FO]T

Q

5

Q.ANMF DO~ OO~ NN OO0
= ] e peed o o o g oo el 4 PN

L]

Figure V-2



arc 1-2 is 1 and the probability of reaching node 2 is 1. There are
2 branches from node 2 so arc 2-3 and 2-4 each have probability 1/2.
In this way the probability of reaching nodes 4,7,8,9,10,11,14 and 15
and the probability of traversing the arcs out of these nodes can be
calculated; see column 5 of Figure V-3, The loop from node 12 to node
3 makes the analysis for arcs 3-5, 3-6, 5-12, 6-12, and 12-3 complicated
because it is possible to return to node 3 more than once. The pro~-
bability of reaching node 3 directly from node 2 is 1/2 and thus,
there is a probability of 1/4 of immediately traversing arc 3-5.
However, even if arc 3-6 is traversed there is some probability that
after arc 6-12 is traversed arc 12-3 will be traversed and then arc
3-5 will be traversed. Fortunately, it is not necessary to do this
calculation by hand., It is possible to do a Markov chain analysis
to compute the probabilities and a computer program has been written
to do this calculation. Figure V-3 is the output of that program for
the graph of Figure V-1. The "R" in the column labeled repeat indicates
an arc that may be traversed more than once by a single input. The
branch probability column gives the probability of traversing the arc,
having reached the tail node.

The second part of the analysis is to compute the expected
number of errors detected. For notational convenience, the arcs
are numbered j=1,...,n. Let pj be the probability of traversing
arc j. Let "j be the expected number of errors in arc 3j. The
expected number of errors detected by the first input is
Z A u.p.. After the first input, the expected number of errors in

j=1 7373
each arc is reduced to uj2==uj(1—pj) (where the 2 indicates this
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is the expected number of errors in arc j before the second input).

The expected number of errors detected by the second input is

n th

j=1 “jzpj' In general, for the k input the expected number
. n k-1
£ 3 ok = 28 h . = Ui (1-p. .
of errors is Ej=l HyPy Wwhere Wik uJ(l pJ) A computer
program has been written to do the calculation and to draw the graph;

Figures V-2 and V-4 are the outputs of that program.

D. LIMITATION OF THE ANALYSIS

The output of the model is an average; there is no information
on what the distribution of the number of errors detected might be.
It is possible to compute the standard deviation of the number of
errors detected by the first input if the number of errors on each
arc is independent of the number of errors on every other arc. How-
ever, this calculation is impractical for the second and subseguent
inputs. The simulation may be used to estimate the distribution of

errors detected.

E. COMPUTER PROGRAM
Two computer programs have been written to do the analysis.
They are written in FORTRAN. The programs and directions for use

are included in Appendix E.
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VI. ISSUES IN SYSTEM TESTING

There are a number of issues that arise in the development
of system tests for avionics. Some of these issues are common to
many projects and it is possible to develop guidelines for action
without considering the details of the particular avionics system.
" Here we discuss a number of issues that have been important considera-
tions in the development of system tests; the resolution of these
issues has often been critical to the success of the system test effort.
It is helpful to have a scenario to relate the issues. Here
we consider a piece of avionics equipment. It is like a computer--it
has memory, it inputs and outputs data and it runs programs. It has
a test procedure; that is the complete test plan including a computer
program and operator manual. The test procedure consists of individual
tests. The equipment is given a preflight test to determine if it is
in the "go" or"no-go" condition. It has inflight tests to be used
routinely and tests to restart in case of failure. It is installed

on several platforms, some with repair capability, some with none.

A. STRESS IN TESTING

Testing as well as operational use weakens components and pro-
duces failures. The time for testing can be a significant part of
the "on time" for avionics equipment. Testing can involve high stress
on the system--often testing purposely subjects the system to higher
stress than during operation in order to (1) precipitate failures in
weak components so they can be replaced before the mission begins,

(2) reduce test time by testing items simultaneously and moving
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quickly from one test to another and (3) detect malfunctions that might
occur when the system is heavily loaded. One example of the use of

high stress testing is the diagnostic tests run by maintenance engineers
on general purpose computer systems. Another example is applying low
voltages to equipment; this can precipitate failures (this is being

used less frequently now since low voltage is particularly detrimental
to solid state devices). There is, however, definitely a place for

very low stress testing. The deep space missions employ very low

stress testing in order to avoid failures due to testing.

For avionics, preflight testing is always higher stress testing
than testing during a mission. Platforms with repair capability can
use higher stress testing during a mission. During a mission, the
decision to use high or low stress testing after a failure or after
a power down depends on whether it is more important to have a precise
indication of the capability of the equipment (use high stress) or it
is more important to complete the mission with the equipment as is
(use low stress). The use of the same tests during a mission as were
used in preflight is not the best procedure in some situations; for
some platforms it will be necessary to design tests with different levels
of stress.

It is critical that the design specifications for the preflight
and inflight tests indicate clearly whether high stress or low stress
is to be used. A critical design variable is the time allowed for
testing; a long detailed test plan together with a short test time
will result in a high stress design. Avionic systems for different

platforms may require a different level of stress for each platform.
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B. MICRODIAGNOSTICS

In avionics systems that have microprogramming, it is possible
to implement test programs in software and/or microprograms. There are
several reasons why microprograms are an attractive alternative to
software: (1) Microprograms require much less hardcore than software.
Software may require input devices, data channels, main memory, etc.,
while microprograms only require a data path to a data register. (2)
Microinstructions are much closer to actual hardware, so it is possible
to yet finer resolution in detecting and isoclating errors. For example,
it is possible to trap a machine language instruction before it is
completed. (3) Microprograms are faster and require less storage
than software because microinstructions can access basic hardware
elements directly.

There are drawbacks to microprograms: (1) They are expensive
and difficult to modify. (2) They are less visible to the user than
software.

The use of microdiagnostics should be considered in any new
system. It is good practice to write specifications that detail how

the vendor will demonstrate that the microprograms are correct.

C. HARDCORE

"Hardcore" is defined to be that part of the system that must
be fault-free for the test program to run and to output some test
result. With a failure in hardcore, the operator has no guidance on
what is wrong except that it is in hardcore. For most avionics systems,
power supplies, some memory and arithmetic capability are part of hardcore.

The equipment designer's decisions determine the hardcore; if the

VI=3



designer optimizes the operation of the equipment with only secondary
consideration for testing, the result can be a large hardcore that
greatly hinders testing. One of the worst situations is when there
is only one way to start the testing; if there is a failure in the
hardcore, the operator has no alternate means to begin the test and
he must begin a trial and error testing of the complete hardcore.

Hardcore can be classified into three categories. (1) Centra-
lized--all the hardcore components are in the equipment being tested.
(2) External--the tests are driven from outside the equipment being
tested; it is possible to go through a series of tests even if part
of the equipment has failed. (3) Distributed--several hardcores so
that the tests can be initialized from any of them. External and
distributed are clearly superior to centralized for testing purposes,
since there is less chance the operator will be faced with a failure
and have no guidance on what caused the failure.

A manufacturer's procedures for testing often make it appear
that there is only one way to start the testing even when there may
be several. The equipment documentation and test procedures should
clearly document any alternate starting procedures in case of hardcore
failure.

Microprogramming has allowed hardcore to be reduced; it is
possible to initiate microprograms for testing and, thus, external
storage is not required to store test routines. Also, input channels
are not needed to bring in the test routines.

The decisions that determine hardcore({s) are usually made early
in the design. Since hardcore design decisions are hard to change, it is
critical that systems test personnel have input to the initial design
decisions.
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D. THE OPERATOR IN TESTING

Testing is a man-machine process where the man and the machine
interact. The trend has been to give the machine more of the work
because: (1) the machine is faster, (2) the machine is not bored by
tedious tasks and (3) the machine can handle large amounts of detailed
information. Also, the education and training of the operator has not
kept pace with the greatly increased sophistication of the equipment.

Humans have some unique capabilities that machines have not
been able to duplicate. Humans have amazing capabilities for "pattern
recognition” and they learn from experience much more successfully
than any machine built thus far. The ability of operators to detect
errors, anticipate breakdowns, and to correct for drift in settings
is well known. A talented operator is clearly very valuable in the
man-machine system. In order for the man to contribute, the tests
must produce information for him to use. Tests that give only go/no-go
lights do not best use the unique capabilities of the operator. While
still assuming that some operators will be inexperienced and untalented,
the designer should have the machine produce information that will
allow the motivated operator to fully participate in the test. Research
in human factors gives guidelines for how to best use the man; for
example, it is possible to provide so much information that the operator
is overwhelmed. Also, the information provided must have some meaning,
since humans tend to read meaning even into nonsense information.

The personnel responsible for systems testing should consider
testing as a man-machine process and should bring human factors con-

siderations into the design. In addition to the usual physical design
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decisions, careful consideration should be given to the choice of

information to be supplied to the operator during testing.

E. REDUNDANCY AND RESTART

The ability to operate after a failure has occurred is important
for any avionics system. The object of redundancy is to have the per-
formance of the equipment unaffected by certain failures in the equip-
ment. The object of restart (or rollback) is to minimize the time
and information loss after a failure.

In hardware, redundancy is accomplished by having two or more
pieces of hardware that perform the same job; the output is a majority
vote of the hardware pieces. The effect is to delay the repair of a
failed piece of hardware until a more convenient time (e.g., until
the aircraft lands). Another hardware approach is to check the output
of a part of the equipment for errors and repeat the operation if there
is an error or indication of an error. Error detecting and error
correcting data channels are examples. Typically, this type of testing
takes extra time. The use of standby units is also considered a form
of hardware redundancy.

Software redundancy is sometimes implemented by doing a short
approximate calculation to test the reasonableness of a long calculation;
if there is a significant difference the calculations are done again.

Restart or rollback is accomplished by periodically {or upon
signal) outputting critical information to a storage device. If a
failure occurs that requires restarting, it is possible to rollback to
the restart point or it is possible to restart the operation more

guickly than would be possible without the saved information.
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F. DEGRADED MODE

Prototype testing establishes a definition of how the eguipment
should operate. Maintenance testing determines if the system still
meets that definition. If the equipment is not functioning or if it
is not functioning as it should, the operator sometimes must determine
what part of the mission can be performed with the available equipment.

Although it is widely recognized that equipment must sometimes
be operated in a degraded mode and it is widely accepted that the
operator, not the test procedure, determines if the equipment is in
a go or no-go condition, many test procedures stop if a "severe" error
is detected (the test procedure determines what is "severe"). Test
procedures should be written so that the operator can, with little
effort, override any stop in the test sequence. He should be able
to force the testing of any part of the system.

Design decisions affect the degraded mode operation. For
example, if the equipment has two arithmetic units, is it possible
to operate with just one? Is it possible to bypass or wire out a
defective component? Is it possible to drive parts of the equipment
externally?

An effective way to make sure that degraded mode issues are
properly addressed is to put specific conditions into equipment spe-
cifications and acceptance tests. For example, in the acceptance test,
faults could be placed in the equipmeﬁt to observe the test procedure

and degraded mode operation.

G. INDEPENDENCE IN THE TEST PROCEDURE
Since time is so critical in the testing of avionics, the

test procedures should be designed so that it is possible to run
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some tests independent of the availability of some parts of the equipment
and independent of the results of previous tests. The goal of complete
independence is not attainable. It is necessary to have some tests
that can be run only if certain parts of the equipment are operational.
Also, some tests can be interpreted correctly only if several previous
tests were successful. Nevertheless, it is very desirable that after
a failure has been identified, the testing of other parts of the equip-
ment can continue until the part has been repaired.

A test plan is called combinational if the sequence of tests
is fixed. A test plan is called sequential if the sequence of tests
depends on the outcome of previous tests. That is, after performing
several tests, the next test to be performed is chosen by considering
the outcome of some or all of the previous tests. Experience has shown
that completely sequential testing is not practical for more than a few tests,
because the test program becomes too large, too complex and too slow to
justify the benefits of sequential testing. However, it is possible
to do some very modest sequential testing by identifying a small number
of tests (say 3-5) and then make the test sequence depend on the outcome
of these tests. For example, if the test of the arithmetic unit failed,
after reporting the failure to the operator, the test sequence could
be modified to exclude all tests that needed the arithmetic unit. This
would allow the testing to continue while the arithmetic unit was being
repaired or replaced. This modest sequential testing offers advantages

over the usual testing which is combinational or completely sequential.

H. AUTOMATIC ABORT

One reason that hardware failures and software errors are hard

to locate is that considerable time may elapse until the failure or

VIi-8



error is detected. Until the error is detected, the contents of
memory may be greatly modified by executing data, using incorrect
data, etc. It is often very difficult to determine exactly when the
error occurred or which instruction was being executed. Therefore, it
is useful to be able to stop the equipment immediately after an error
has occurred. Some equipment has included a special counter that
must be reset periodically (e.g., 1 second real time) or the equipment
stops (or turns on a light, or causes a dump of information to a backup
storage). On some equipment a memory location is monitored; if it is
not changed in a prescribed time, the equipment is known not to be
performing correctly. This feature can be helpful in prototype testing
when loss of control is frequent and difficult to diagnose.

The action taken when the counter stops the equipment should
be nondestructive, since the reason for the stop may be that the equip-
ment is severely overloaded. The operator should always be able to

override the effect of the counter.
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VII. CONCLUSIONS AND RECOMMENDATIONS

This project has addressed the areas of prototype testing,
maintenance testing, software error detection analysis (simulation
and analytic models) and issues in systems testing. The purpose
of each research effort has been to provide concepts or tools for
improving the testing function. Collectively, these concepts and
tools, when augmented by existing techniques, such as structured
programming, provide test management with a systems test methodology.
The important conclusions and recommendations pertaining to each

research area will now be discussed.

A. PROTOTYPE TESTING

This effort was concerned with the development of procedures
and a simulation model to be applied in the planning of prototype
testing. The procedural aspects involved the establishment of a
terminology, symbology and directed graph representation for describing
the module relationships which exist during prototype testing. The
simulation model is designed to aid the designer and tester in identi-
fying potential resource usage conflicts which would result in unde-
sirable performance. This model has been successfully used for simu-
lating the execution of a series of tasks, invoked by specified modules,
which require the use of designated resources. We recommend that the
next step in the model development be an investigation of the ability
of the model to detect and diagnose faults which have been purpose-
fully introduced. This would be followed by the application of the

model to NADC prototype test planning.
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B. MAINTENANCE TESTING

The maintenance testing methodology which we have described
is applicable primarily to those tests which are employed after a
system has been delivered to the customer. The tests are invoked
prior to or during a mission in order to ascertain the ability of the
system to successfully complete the mission. The central idea of
the methodology is to use the tests to successively partition the
possible faults into subsets, so that the actual fault can be identified.
We conclude that this methodology has potential for isolating both
hardware and software faults. It appears that this technique could
be used to develop test plans for module testing in addition to the
maintenance testing application. It is recommend that the next step
be the determination of the feasibility of the methodology as applied
to the development of maintenance tests for a designated NADC system.
This could involve the identification of a set of faults and possible
tests such that the number of tests required for fault isolation is

minimized.

C. ERROR SIMULATION MODEL

We conclude from having exercised the error simulation model
extensively that certain complex structures do have an adverse effect
on the ability to detect errors and to provide adequate test coverage
of a program. A next step would be the application of the model to
software test planning at NADC. Actual programs which are to be tested
would be put into the directed graph format, perhaps by an automated
translation process as suggested by NADC, for input to the simulation

program. The error detection characteristics of each program would
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be simulated. The results would be related to measures of program
complexity. The relationship between error detection and complexity
would be used to allocate test resources to the programs. In addition,
by using the model as described above, the model could be employed at
NADC during the software design phase for the purpose of identifying

the error detection characteristics of proposed program structures.

D. ANALYTIC ERROR DETECTION MODEL

The analytic model has the advantage of providing the expected
number of detected errors, as a function of number of inputs, less
expensively (CPU time and core) than with simulation. It can also
provide a check on the validity of the simulation model. The dis-
advantage of the model is that it provides limited information concerning
the variability of detected number of errors. We recommend that this
model be applied in the same manner as the simulation model just dis-
cussed. The utility of each approach could be determined in an actual
test environment. It is recommended that, initially, the analytic model
be used in those situations where it is desired to rapidly obtain a
ranking of the error detection characteristics of various programs. The
error simulation model could be employed in those instances where
greater detail in terms of path traversals, test coverage and error de-

tection variability is desired.

E. ISSUES IN TESTING
This section presented a summary of certain key issues in
systems testing, primarily those associated with maintenance testing

and error recovery capability. Many of these issues are major concerns
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of NADC in current test operations. For example, the use of micro-
programming for error diagnosis has the obvious advantages of com-
pactness of memory and speed of execution. However, the lack of visi-
bility of diagnostics makes it difficult for NADC to validate vendor
supplied products. We recommend that the issues which have been
discussed be included as design and test factors during the design
phase of future systems. This procedure would ensure the consideration
of major test issues sufficiently early in the development cycle to

have a beneficial effect on the testability of the delivered system.
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