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INTRODUCTION 

The Naval Postgraduate School has conducted a research project 

during the period 30 June 1974 to 30 June 1975, entitled System 

Test Methodology under the sponsorship of the Naval Air Development 

Center. This is the final report of the project. A progress report 

was submitted on 15 January 1975. 

The purpose of this project was to develop a methodology 

and tools for conducting system tests of avionics or other complex 

hardware/software systems. 

Two areas which received major emphasis were prototype testing 

and maintenance testing. _ These topics are covered in Section I 

and Section II, respectively. A methodology for conducting proto­

type tests is described in Section I. In addition, a simulation 

model is presented for aiding the designer and tester in identifying 

and diagnosing faults which may occur during prototype testing. 

A description of this model is contained in Appendix A. 

The maintenance testing methodology presented in Section III 

involves the use of tests to partition faults into subsets, so that 

the actual fault can be identified . In addition to the above areas, 

research was undertaken to develop models for investigating the 

relationship between error detection capability and program structure 

in computer software. A simulation approach and an analytic approach 

are described in Section IV and Section V, respectively. The models 

would be employed during software design for identifying program 

structures with poor error characteristics and during test planning 
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for the purpose of allocating test resources in accordance with 

error characteristics. An example of applying the error simula­

tion model to an actual FORTRAN program appears in Appendix B; 

directions for use of the model will be found in Appendix C; and 

a listing of the simulation program is contained in Appendix D. 

A description of the analytic model computer program appears in 

Appendix E. 

Various issues in testing which are germane to maintenance 

testing and recovery from errors are described in Section VI. 

The major conclusions which resulted from each research 

effort and recommendations for possible applications and future 

work will be found in Section VII. 

In addition to the progress and final reports, computer 

program source decks for the system (prototype) test simulation, 

the error simulation model, and the analytic error detection model 

have been provided to NADC. 

Lastly, three national conference proceedings publications 

(References 9, 12, and 17) and presentations and two Master of 

Science in Computer Science theses have resulted from this research 

project. 
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II. PROTOTYPE TESTING 

A. MOTIVATION FOR SYSTEM TEST METHODOLOGY 

Software is the major expense in computer systems today. As 

an example, the Air Force allocated between one billion dollars and 

one and a half billion dollars in 1972 for software development. This 

was about three times the annual expenditure on computer hardware and 

accounted for four to five percent of the Air Force budget for the 

year. Boehm [10, 11] indicates that these high figures are representa­

tive of the industry as a whole. He predicts that by 1985 software 

expenditures in the Air Force will account for ninety percent of the 

total ADP system costs. Of this enormous amount of money spent on 

software, a disproportionately large share was spent on testing and 

the trend is not one of improvement. Boehm states that "during the 

1970s the Air Force can expect to spend almost half of its software 

budget for military space operations on the checkout and test phases 

of computer program implementation: two to three times as much as 

it will pay for having the program coded." With such an effort in­

vested in testing software, it should be relatively error free but 

this has not been the case historically. The Apollo Manned Spaceflight 

Program had one of the most tested systems in the world, yet major 

software failures occurred in Apollos 8, 11, and 14. The failure on 

Apollo 11 occurred in the extremely critical phase of lunar landing. 

The situation is no better in other areas; each new release of OS/360 

has approximately 1000 new software errors. It is not necessary to look 

at such large complicated systems to discover that present testing is 

inadequate. The person who has not had an encounter with a computer 

program error such as an incorrect billing is an unusual person in 
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today's society. Since testing consumes such a large proportion of 

the resources allocated to system development and has produced such 

poor results, it is time to develop a new approach to system testing. 

B. TESTING PROBLEMS 

1. Multiplicity of Testing Activities 

Many of the terms used in the area of testing are subject to 

a wide variety of interpretations. The word "testing" has been mis­

used and many non-testing activities have been associated with the 

word. T~sting may be defined to be the process of determining if a 

system meets the stated functional specifications. Quite often de­

bugging is thought of as a testing activity. This is incorrect. 

Debugging starts with a known error and works towards a correction 

[131. Recently, a significant body of literature and activity have 

been addressed to designing computer programs in a structured fashion 

in order to eliminate or minimize the occurrence of software errors 

[14, 15]. The theme of some of these efforts is that if we design 

programs correctly through structured programming, there will be very 

little need for testing. Although these efforts do a lot to reduce 

the potential for errors, they do not act as a substitute for testing. 

Other testing activities include verification, validation, 

certification, proof of correctness, and performance testing. Hetzel 

[13] discusses these activities in relation to program testing. Veri­

fication is concerned with the program's logical correctness based on 

execution of the program in a test environment. Validation is concerned 

with the logical correctness of a program in a given external environ­

ment. Certification implies an authoritative endorsement that a 
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program is of a certain quality. A proof of correctness deals with 

the logical correctness without regard to the environment. Performance 

testing involves an evaluation of the performance properties of a com­

puter program or system, such as resource utilization. Each of these 

activities has much to offer. The problem arises when one of the 

approaches is assumed to equate to complete testing. It is clear that 

improved software quality must be approached from several fronts: 

improved design techniques, improved programming management and improved 

methodology. 

2 •. Test Design 

There are many fundamental questions that must be answered in 

designing a test of an information processing system. One such ques­

tion is what should be tested? Too often a tester ends up testing 

an incomplete or modified version of the system that is easier to 

test than the real system. Often the tester is faced with a large 

set of input combinations to be tested. In this case, the question 

becomes: How can a subset of the test i nputs best be selected to 

thoroughly test the system? Another important issue is how should 

the test efforts be organized? It is important to obtain the most 

information about the system from every test run. It is important to 

establish test data recording procedures at this time in order to 

insure that all error information will be recorded. This can be accom­

plished by properly organizing the tests in a logical sequence. Tests 

should be related to types and sources of errors. Gruenberger [161 

states that 11part of the art of testing is knowing when to stop 

testing." This exposes a two sided question the test designer must 
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face: When is the test finished and what can be said about the 

system when testing is stopped? 

All these questions are further compounded by the fact that 

there can be no set rule. Every system requires an original test 

procedure designed to fit its special requirements. Gruenberger 

suggests "that the intellectual effort to test a program is of the 

same order as that which created it." 

This section presents a test methodology that will help 

answer these questions. A model is presented that will serve as a 

framework for the construction of a logical approach to system testing. 

C. A MODULAR APPROACH TO PROTOTYPE TESTING 

A modular approach to prototype testing offers many advantages 

for the design of the test and the development of the system. The 

modular design involves breaking a large system into many small part~ 

called modules. The intra-module functions are independent; however, 

modules interact by means of standard interfaces. Each module performs 

a major function of the system. 

Modularity improves system design and software portability. 

To an extent, modules may be transferred among machines 

and operating systems. With standardization of modules, they may be 

shared among many applications. With modules being shared in this 

manner, the programming effort is reduced and the reliability of mo­

dules is increased since the modules will be tested with each appli­

cation. The modules may be expanded more easily and changes are easier 

to incorporate since the effect of a change is localized. 

Testability is significantly improved when a modular approach 

is used. Testing of different modules may be carried out in parallel. 
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Standardization of modules yields a set of assertations that may 

be used as test criteria for the modules. Modules may be compiled 

separately and can be stored in a program library and accessed inde­

pendently. Modularity allows testing early in the construction of a 

system. Each module may be tested as soon as it has been constructed 

instead of waiting for the whole system to be completed before 

starting to test. Since modules may be reused in future systems, 

future programming and testing efforts are reduced. 

A modular system was chosen for the prototype test model 

in order to take advantage of the above desirable properties of 

modularity. 

MODEL DESCRIPTION 

A. THE FUNCTIONAL MODULE CONCEPT 

1. Module Definition 

When representing a system with the functional model, the 

lowest element of the system is the module. Since the word module has 

had wide use throughout the computer industry, it is necessary to 

completely define the application of the word as used in the model. 

A module is an entity that performs a function within the system. A 

function is an activity performed by the system such as a fast Fourier 

transform. The physical embodiment of a module is the wiring and 

circuit boards of hardware, or the source or object programs recorded 

on punched cards or magnetic tape or programs resident in memory, for 

computer software. By defining a module in terms of functions, a 

module is freed from the distinction of being only hardware or software. 
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A module receives inputs and transmits outputs across a boun­

dary. A boundary consists of a location within the system at which 

the inputs to a module or the outputs from a module may be measured. 

In order for the tester to assess these inputs or outputs the boundary 

must be identifiable. In order to accommodate this requirement for 

an identifiable boundary, it is necessary to consider the composition 

of modules. The composition of two modules would be a module per­

forming the same functions as the original two modules. For example, 

one module might be a fast Fourier transform and the other a digital 

filter module. If it is impossible to identify a point to measure the 

output from the filter module to the Fourier transform module, the 

two could be considered as one module that performs the functions of 

filter and transform. Thus, the entire system could be viewed as a 

module or a module could be considered to be a small unit of program 

code. The proper level for identifying modules will be indicated by 

the functions performed by the system. 

A module will be assumed to be free of internal errors for 

system test purposes . This assumption is predicated on the fact that 

all modules will receive extensive individual unit testing before the 

system is assembled. If an error still exists within a module, the 

test system will detect it only as the error affects intermodule 

communication. Assuming that the test plan is sufficient to detect 

all errors external to a module, the only way an error could go un­

detected would be if its actions were confined to the module itself. 

The system may now be described as a collection of modules 

which has external inputs and external outputs. The selection of 

modules must be such that every portion of the entire system is 

II-6 



represented by a module and no portion is represented by more than 

one module. 

In performing its function, the module utilizes system re­

sources. These resources may be in the form of data, control signals, 

or physical resources including both hardware .and software units. 

Thus a resource is an element of the system that is used by modules 

in performing a function of the system. Resources have two types of 

attributes. One type deals with the usage of the resource, which is 

the amount or size of the resource that is assigned or available 

to be assigned. The other type deals with resource contents, such 

as the contents of a memory location or the value of a particular 

control signal. Resources have states. These states indicate the 

status of the resource. Some examples of the state of a resource 

are: reading, writing, idle, file empty, file half full, or memory 

region assigned. 

2. Task Definition 

The work to be performed by a module may be represented as an 

ordered or random series of tasks. Tasks are the sub-functions per­

formed by a module. A sub-function consists of a step in the algorithm 

which the module must execute in order to carry out its function. 

Examples of tasks are the computation of a simple function, storing 

the result in memory and outputting the result to the printer. This 

usage of the word task is synonymous with the use of the word "process" 

as it is used in the operating system literature. The precedence of 

tasks is determined by the algorithm the module must execute. These 

precedence constraints may be linear or they could include branching 

with or without cycles. It is also possible to have no precedence 
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constraints. In this case any task could be executed whenever the 

resources were available. 

In order to execute a task, the module goes through a series 

of states. The state of a module is the status of the module at a 

given time. A partial list of states that a module can enter includes: 

compute, wait for memory, wait for input/output, wait for CPU, idle, 

input processing, wait for another module to complete a task, wait 

for a resource, and interrupted state. The particular state of a 

module is a function of the set of inputs to the module, resource 

states,· and its previous state. The outputs of a module are a func­

tion only of the state of the module. A primary state is a state 

that a module is required tQ enter in order to perform a task. Primary · 

states include compute, input processing and output processing. A 

secondary state is a state in which the module accomplishes no wprk. 

Examples of secondary states would be blocked state, wait for input 

or wait for CPU. The system state is the set of module states. The 

system state changes when one or more modules changes state. 

3. Model Notation 

The following is a list of symbols used to describe the model. 

Each symbol is followed by the definition of that symbol as it is 

used in this system of notation. 

* i ----- Module designation, 

* . J . 
]. 

* k. 
]. 

Current state of module i, 

Next state of module i, 

* Iijt -- Vector of inputs at module i when module is in 
state j and input starts at time t, 

* Oikt' - Vector of outputs from module i after the module 
has transitioned to state k and output starts 
at time t' , 
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* T. 'k l.J 
Time at which transition of module i from state 
j to state k occurs, 

* ~T .. -- Amount of time which module i spends in state j, 
l.J 

* R.. Set of resources used by module 1 when in state 
J.J 

j , 

* (11,12,·••11) .. n J.J 
State of n resources when module i 

is in state j , 

* (t
1
,t

2
, .•• ,t) .. -- Time which module i uses n resources 

n J.J 
when in state j . 

4. Model as a Directed Graph 

It is possible to represent a system as a series of directed 

graphs. One graph would be required for each module. The nodes of the 

graph would represent module · states and the arcs would represent state 

transitions. Other information could be portrayed on the graph. The 

state dependent information could be associated with the node. This 

would include the current state of the module, the set of resources used 

by the module in that state, the state vector for the resources used 

by the module, the vector of inputs to the module, the vector of out­

puts from the module and the amount of time the module spends in the 

state. The arcs could be labelled with the time that the module requires 

to transition from the source state to the destination state as is 

shown in Figure II-1. In this figure, the module i transitions from 

state j to state k at time T ijk • 

These directed graphs would give the tester a convenient means 

of visually representing the activity of the module. The tester might 

prefer to show only the primary states of the module and the idle state 

instead of showing all possible states of the module. 
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Rij 

( 11 • 12 • · · · ' 1n ) i j 

1i jt 

Figure II.l. Directed Graph of Module States 
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5. Time Domain of a Module 

A property of a module is that it uses the resources of the 

system only at certain times. One of the major problems of testing 

computer systems is to identify when two or more modules will be com­

peting for the same resources. The problem is further compounded if 

the system possesses multiple CPU's which are running asynchronously. 

The concept of time domain will be useful to address this problem area. 

A time domain of a module consists of the times that resources are in 

use. A graph of the time domains of the modules of the system would 

be a useful abstraction of the system for the analysis of the timing 

problem. The resources of the system could be represented on the 

vertical axis with time expanding along the horizontal axis from the 

origin. Each area so represented should be labelled with the module 

and the amount of the resource required. The time domain of a module 

would be represented by the summation of the areas formed by the pro­

duct of resources used by the time duration of use. Any intersection 

of time domains would represent a potential error only if the total 

demands of the modules exceed the maximum resources available. 

One problem with this representation is to find a timing 

system that applies to all modules when modules are operating asyn­

chronously. In this case the time axis would be the elapsed time from 

some critical event in the system. The changes in system state would 

be referenced to this event. 

If we define a change in system state as any change in module 

state, it is possible to consolidate the module state representation 

into a system state representation and show resource usage conflicts 

in terms of system states as indicated in Figure II-2. In this figure 
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SYSTEM STATES 
SYSTEMS 

RESOURCES 

s, s~ s~ ' S4 S5 
I 

one unit Rl 
I I 

I 

six units R2 

two units R3 

four uni ts R4 

three units RS 

Time 

Figure II.2. Resource Conflicts vs. System State 
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there are five types of resources available to the system. They 

are labelled Rl through RS. The amount of each resource is indicated 

on the vertical axis. For example, there are six units of R2 available. 

There are two resource conflicts portrayed in this system. One occurs 

in system state s2 . Here one module requires four units of resource 

R4 and another module requires two units of R4. The conflict occurs 

because there are only four units of R4 available. The conflict is 

denoted by a cross-hatched area. The other conflict is in system 

state s4 • A module has requested six units of resource R3 when only 

two units are available to the system. 

The construction of such a graph would be infeasible to do by 

hand for a real system. A program could be written to produce this 

type of graph from the time domains of the modules. On this graph 

the computer could identify resource usage conflicts. 

B. APPLICATION OF MODEL TO TESTING 

1. Functional Specifications 

One of the more difficult processes in producing reliable 

software is translating user requirements into meaningful design 

specifications. Boehm, Mcclean, and Urfrig [4] vividly demonstrate 

the magnitude of the problem in their study of a large software project. 

The authors divided errors into two classes. These were design errors 

and coding errors. An error was considered a design error only if its 

correction caused a corresponding change to the design specifications. 

Of the total errors, 64 percent were design errors. This alone is 

enough to illustrate the need for a valid method of design specifica­

tion. Even more disturbing was the time frame within the testing in which 
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the errors were discovered. Of the 54 percent that were not discovered 

until the acceptance, integration or delivery phases of testing, 45 

percent were design errors. The remaining nine percent were coding 

errors. Errors discovered in these latter stages are more difficult 

to correct than those discovered during the coding stage. Thus, it 

is necessary to have a good system of describing design specifications. 

The functional model provides such a system. 

When the functional model is used, the user should be requi~ed 

to define all functions of the system. The functional specifications 

would consist of a statement of the activities of the system and the 

associated inputs and outputs. By requiring functional specifications, 

designers are assured of having a complete detailed description of the 

system at _the beginning of the project. This should reduce the number 

of design errors. 

It is possible to over specify the design of a system. This 

could prevent the designer from choosing the most efficient method 

of designing the project. It could also introduce errors into the 

system design, if the user does not have a thorough knowledge of 

computers. This problem is avoided. by using functional specifications. 

Details are presented as functions of the system, which is the area 

in which the user is most knowledgeable. The implementation of the 

functions is left to the designer, who is in a better position to 

determine the proper method. 

Another pitfall of system design may be avoided by using func­

tional specifications. Frequently, test specifications are not avail~ 

able early in a project because testability is not considered to be a 

design parameter. Instead, test requirements are formulated as an 
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afterthought when it is too late to influence the design (SJ. Func­

tional test specifications are defined as test specifications which 

are based on testing the stated functions and observing the corres­

ponding outputs of the system. Functional specifications should be 

incorporated in the test specifications. Detailed design should not 

commence until this information is available. 

2. Documentation 

The need for complete and usable documentation should be a 

primary concern of anyone involved with system design, programming 

and testing. Poole [6J states "that the lack of good documentation 

usually means that testing is not performed as thoroughly as it 

should be and debugging is that much more complicated." Another use 

of documentation is for the maintenance of the system. Since the 

life of a system is much longer than the development phase, the designers 

will probably not be available to help maintain the system. In addi­

tion, many people may have access to the software. All changes which 

result must be documented. 

The use of the functional model helps to provide adequate 

documentation throughout the life of the system. The concept is to 

force documentation to be an integral part of system development. Two 

documents have already been discussed. These are the functional speci­

fications and the functional test specifications. These documents 

should form a segment of the documentation. These should be system­

atically updated as changes are made to the system. 

The documentation should include other information as well. 

This could include a data base containing information about all errors 
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that were found in the system to da~e. Unfortunately, there is a 

tendency to ignore this aspect and to think of this type of informa­

tion as something to discard once the error has been corrected [6]. 

Every incident must be recorded because an outage that may 

appear insignificant to the user could be an important indicator 

once it is properly analyzed. The data base could be used to identify 

modules that are the source of the majority of errors. This class­

ification could be used to direct future testing and debugging. It 

could also be used to determine which modules are the most unreliable. 

This woulq provide a starting point for improving the reliability of 

the system. This would be particularly applicable if the module that 

is most critical to the system's operation is also the most unreliable. 

The data base could also be classified as to type of errors. This 

would be valuable information when designing a similar system. 

Another form of documentation that should be incorporated into 

the plan for system testing is assertions. These are statements that 

are introduced into the code by the programmer. These state a fact 

about the design of the program. These statements may be treated as a 

comment card or used to produce code to check for the validity of the 

assertions. The appropriate action would be determined by a parameter 

passed to the complier. Two types of assertions could be employed 

within the model. The first would be global assertions. These would 

be in the form of specifications for intermodular actions of the 

system. An example of such an assertion would be: 

ASSERT RANGE OF ALL ARRAY INDICES ISO TO 100. 

The other level of assertions would be local. The local assertions 

would be defined by the programmer but within the design specifications. 
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An example of a local assertion would be: 

ASSERT RANGE OF I IS 10 TO 20. 

These assertions could be a permanent feature in the program. 

They could be activated on the local level to help test a module or 

on the global level to aid in introducing a change to the system. As 

such, these assertions would form an important part of the system 

documentation. 

3. Test Inputs 

Ideally, it would be proper to exhaustively test a system. 

This implies that every path in the logic of the program be executed 

and tested. Shoeman [8] demonstrates that this will normally be im­

possible due to the large number of inputs required. The problem 

presented involved exhaustively testing an assembly language program 

which solved for the roots of a quadratic equation Ax
2 +Bx+ C = O. 

The computer was assumed to have a 12 bit word ·length and integer 

arithmetic was used. All syntactical errors had been eliminated and 

all known special cases such as A= 0 and imaginary roots had been 

accounted for. The input space to exhaustively execute this program 

involved 64 x 109 combinations of A, B, and c. The program had a run 

time of 240 microseconds per execution. The time to complete the 

entire execution of the program over the input space would have been 

approximately 5,000 hours. To test a program, solutions must be 

verified by some independent means such as a desk calculator or a 

different algorithm. This should be done in as many different ways 

as possible, since there is some probability that two independent 

approaches will result in the same wrong solution. Obviously, 

exhaustive testing is infeasible for even a small program. 
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The problem the tester must solve is how to best select 

the subset of test inputs from the universe of possible inputs. 

A method for selecting the inputs for a test is to first identify 

and rank the modules in a system by the criticality of the modules 

to the mission success. It is seldom the case that all modules are 

equally valuable. A technique for determining criticality is to 

ascertain the consequences to the mission of a module malfunction. 

A malfunction in some modules would cause a mission abort, while 

others would result in a degraded mode of operation. The modules 

are ranke~ according to criticality. This is based on the criticality 

of module outputs. The time spent in testing each module can then 

be allocated using this ranking. The time allocation can be further 

refined by ranking the criticality of each sub-function of the module . 

This would be based on the criticality of the sub-function to the 

performance of the function by the module . 

There are other factors that can be used to rank modules 

for testing purposes. One such crtieria would be forcasted errors. 

Schneidewind [9] has developed a model of the occurrence of errors 

detected during functional testing of command and control software. 

It would be possible to rank modules in order of forecasted errors. 

Work is progressing in the area of developing relationships between 

program structure , program complexity and the ability to detect 

errors in a program [12]. Another method of obtaining such a ranking 

would be through the use of simulation. Critical modules could be 

identified by their high rate of failure in the simulation. 

Once the amount of testing resources allocated to each module 

has been determined, the proper number of inputs for testing each 
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module can be estimated. The problem then becomes one of selecting 

the inputs to thoroughly test each module. The module represents 

a function which maps the set of inputs into the set of outputs. 

The inverse mapping could be used to obtain the set of inputs. Given 

this set of inputs, test cases are selected in order to cover the 

input set and the program as thoroughly as possible. Particular 

attention must be given to inputs that are involved in the control 

flow of the program. Once this has been done, unusual cases are 

investigated. A possible source of unusual cases would be indicated 

by the set of inputs. Values are picked that are combinations of the 

extremes of the range of inputs. 

4. System Representation 

Having developed the notion of a module, it is necessary to 

investigate the method that will be used to represent a system as 

a collection of modules. A system is comprised of asynchronously 

operating application software modules, hardware modules and 

executives. Figure II-3 gives a generalized representation of a 

processing system. The system represented in this figure is com­

prised of two asynchronously operating executives, A and B. These 

are connected to two separate control buses noted by Control Traffic 

Bus A and Control Traffic Bus B. Each bus connects the application 

software modules and hardware modules that are controlled by the 

executive on the bus. An example of the traffic on this bus is a 

hardware generated interrupt occurring at the conclusion of an 

input/output operation. A subsystem is comprised of one exec­

utive, the modules that it controls, and the control bus 
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connecting the modules to the executive. There is a message traffic 

bus connecting all modules. An example of the traffic on this bus 

is a module passing a computed value to another application module. 

External inputs and outputs are identified . 

This representation of a system has many useful applications 

to testing. The model may be used to verify the correct functioning 

of two types of intermodule communication. The first is message 

traffic. The traffic on the message bus could be checked against the 

functional test specifications for correctness. The second concerns 

control traffic. The traffic on the control buses could be checked 

in a similar manner. Other problem areas that could be investigated 

using the model include: 

* Are the various state transitions possible, based on 
the values of the resource states? 

* Are there any blocked or deadlocked states? 

* Are the amounts of time in each state excessive? 

* When a module state transition occurs, are the resource 
state vectors correct? 

* Are there times that a module holds resources excessively? 

SIMULATION 

A. A SIMULATION OF THE MODEL 

A simulation of the model was constructed. The simulation was an 

event store type of simulation. It was written in FORTRAN IV to run 

on the Naval Postgraduate School's IBM 360/67. The simulation used 

the model representation with the user providing a description of the 

system to be simulated . This description required the number of 
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modules, the number of tasks, the precedence among tasks, number of 

resources and resource usage. A complete description of the simulation 

appears in Appendix A. 

The simulation showed that the model could represent a system. 

A simulation of this nature could be useful in testing. 

B. USE OF SIMULATION IN TESTING 

1. Investigation of Timing Problems 

Timing problems are extremely difficult to investigate in a 

real system due to the fact that any test equipment installed internal 

to the system disturbs the timing of the system. Equipment installed 

external to the system may not be able to gain the required information 

either because of synchronization or access problems. By using a 

simulation of the system, the tester may observe various timing para­

meters. The tester is able to observe timing problems that could not 

be observed on the real system. This is accomplished without dis­

turbing the timing of the real system. 

Another problem area that could be investigated through the 

use of simulation is the reaction of the system to various rates 

of input. In the simulation it is possible to vary the mean time 

between arrival of inputs. This parameter could be decreased on 

each run to determine the maximum input rate that the system could 

receive and still process an acceptable number of inputs. Another 

method would be to plot average time to process a complete input 

versus input rate. This graph could be used to determine an acceptable 

range of input rate. This method of analysis could be used when testing 

a system that has to produce periodic outputs, such as a system with 
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a graphic display that has to be refreshed at a specified rate. 

If the time that a module spends in a particular state is 

expressed as a variable instead of a constant, a simulation would 

be an invaluable aid to the tester in investigating the operation 

of the system. One approach would be to observe the operation of 

the simulated system with all modules functioning at the maximum time 

duration. Another method would be to use various combinations of 

module operating times to determine under what circumstances the 

system would fail or performance would be degraded. This can easily 

be done on a simulated system but would be impossible to do on a real 

system because the tester would be unable to control the time a module 

spends in a state. 

Another timing problem facing the tester is the system clock 

rate. Often the tester would like to slow the system down or perhaps 

speed it up in order to observe some particular action of the system. 

This would be important if the tester was unable to measure the output 

of a real module because another output arrived before the first out­

put could be measured. In a real system, it may be impossible to 

change the timing of each component of the system by the same amount. 

This would be particularly difficult in a multi-executive system. 

With simulation, the tester is able to adjust the timing of the system. 

Some problems do not occur until the system has processed a 

large number of inputs. The tester may not be able to cycle the 

real system through a large number of inputs due to lack of time or 

equipment availability. However, in a simulation, the time scale may 

be greatly compressed, allowing the tester to cycle the system many 
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times. This would greatly increase the probability of discovering 

latent bugs. Similarly, in a simulation the user's ability to specify 

the initial state of the system allows starting tests under some 

artibrary condition that might only be achieved in an actual system 

by running for a long period. 

2. Fault Insertion 

Dijkstra [11 contends that "testing can only determine the 

presence of errors, not their absence." One approach would be to 

know the reaction of the system to every possible error and combination 

of errors. Using this knowledge, one could simply observe the reaction 

of the system and state what errors were or were not present. Unfor­

tunately, the set of every possible error, combination of errors and 

system reaction is an immense set. Therefore, it is impracticable to 

prove the absence of faults by using the above approach. However, 

this approach using simulation, could be used to greatly expand the 

subset of errors that the tester could detect. 

The tester may purposely introduce a fault into the simulated 

system. The reaction of the system to this fault could be catalogued 

for later reference. This information could be used to identify 

modules that are affected the most by a class of errors. This set 

of modules would be noted for special testing. This information could 

also be used to ensure the validity of the test plan. If the group 

of tests included in the test plan did not encompass the reactions 

observed in the simulation, then the tests would not be able to detect 

particular faults. 

3. Partial System Simulation 

Frequently the tester will not have the time, assets, or moti­

vation to perform a simulation of the entire system to be tested. In 

this situation, simulation of certain parts of the system may be 
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desirable or the tester could choose to simulate the entire system 

in less detail. Campbell and Heffner [2] relate a case history 

illustrating this point. A simulation model was constructed of a 

system being developed. The skeleton system was working before the 

model was debugged. When the model was finally working, no one 

was certain which version of the real system the simulation results 

were meant to represent. However, some of the designers used simple 

simulations that they developed to study certain aspects of the system. 

The authors concluded that "ambitious large-scale models generated 

by professional model makers are less helpful than simpler work done 

by the system developers themselves." A simulation with less detail 

was more useful in this case than a complete simulation. 

Quite often in prototype testing, a module or modules will 

not be present when the tests are scheduled to commence. This could 

be due to late delivery or to a module being modified after prelimi­

nary testing proved the module needed modification. This could also 

be caused by a planned action such as phased delivery. A simulation 

of this module would allow the tests for the rest of the system to 

continue. Simulating the missing module would be particularly easy 

if the system had been described in the form of a functional model. 

If all the information required to functionally represent the model 

is present, then a simulation can be constructed from this information. 

Another use of simulation involving less than the whole system 

is the use of a test data generator. When a system is tested in the 

laboratory, it may be necessary to simulate the inputs to a system. 

Since there is no reason to believe that all modules will be present 

during the entire test phase, the tester may desire to have the test 
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data generator simulate the output from any module. Thus, 

the test data generator could also substitute for any missing module 

as the system was being tested. Not only would the generator act as 

an output generator, but it would also act as the termination for 

module outputs which are intended for missing modules. If these out­

puts must be accounted for, because the operation of the partial 

system would not be entirely representative of the operation of the 

complete system. Notice that this procedure is applicable to a top 

down testing approach because the test data generator could simulate 

inputs from dummy modules. 

4. Pitfalls of Simulation 

After having spent much time and effort to develop a simulation, 

the tester may find that the simulation addressed the wrong problem or 

solved no problem at all. The validity of a simulation is the con­

sistency between the simulation and the real system it represents. 

Proof of the validity of a simulation is almost impossible, especially 

if the real system has not been constructed. By the time the real 

system has been constructed and the validity of the simulation has been 

disproved, irrevocable decisions may have been made based on test data 

from the simulation. 

Although validity is a major problem in simulation, it is by 

no means the only problem. A list of problem areas that may cause a 

misunderstanding of the system being simulated is presented in Fishman 

[3]. These include incorrect input parameter specification, influence 

of initial conditions on data and misuse of estimates. The author 

provides suggestions on ways to control these problems. 
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Prototype testing may result in design changes. Each change 

requires a change in the simulation model. If the tester has not 

allowed for such an occurence in budgeting simulation resources, 

the model would not represent the real system. Also, 

there would be a time lag in modifying the model. This could have 

a serious effect on the test schedule if this contingency is not 

included in the test plan. 

APPLICATION OF MODEL TO PROTOTYPE TESTS 

A. APPRO~CH 

1. Test Plan 

In order to apply the functional model to the problem of 

prototype test it is necessary to develop a test plan. A test plan 

should be created as part of the design plan. As a minimum the test 

plan should discuss the following major elements: 

* define modules, 

* define module states, 

* identify inputs and outputs for each module state, 

* identify module interfaces, 

* identify tasks, 

* define resources and resource states, and 

* identify resource usage for each module state. 

The test plan must also include the system functional specifications 

and functional test specifications. In addition, it should include 

the test procedures. This would identify acceptance criteria, such 

as the allowable divergence between desired and actual output values, 

time duration of tests, allowable number and types of malfunctions, 
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number and distribution of test replications, and methods for checking 

test results. The test plan should identify major testing milestones. 

These would identify major sections of testing that must be completed 

before system development can continue. 

The test plan should document the subsystems that will be 

tested. This will require the development of a method of isolating 

a subset of the system to test it without the effects of the remaining 

system being introduced. These identified subsets of modules are 

called subsystems and will be used to test the system in stages. 

Besides the modules in a subsystem, the test plan must also 

define a set of measurements which will indicate whether correct 

outputs are being produced for given inputs and define the hardware 

and software locations of the measurements. The plan must describe 

how to instrument the system in order to obtain these measurements. 

The test plan should develop some organizational structure. 

This would include who is to do the testing and the resources to be 

used in testing. The plan should include who is responsible for main­

taining the documentation. This would include test data, error 

information, design changes and test modifications. 

2. Subsystem Testing 

The modularity of the model allows the user to commence 

testing at an early date. This will require the testing of a subsystem. 

The subsystem is defined in the test plan and testing will commence as 

soon as all the modules of the subsystem are available. This is 

illustrated in Figure II-4. In this figure there are two application 

modules in the subsystem that are ready to be tested. The only hardware 
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that is required for the functioning of the modules is Hardware 

Module One and Hardware Module Two. These are connected to the applica­

tion software modules by a test data generator. This is a program that 

will simulate external inputs and message inputs from missing modules. 

The set of external inputs and input sequence is based on typical opera­

tional scenarios and the criticality of the various modules to mission 

success. Another required program is the control input signal genera­

tor. This works in conjunction with the executive and generates simu­

lated control inputs for the missing modules. In some cases this pro­

gram could be developed to replace the executive itself during early 

testing, when the executive may not be available. The locations where 

input/output measurements are made are identified. 

The system under test will be expanded as testing proceeds. 

When the next application subsystem becomes available, it and the 

hardware it uses would be added to the system. The subsystem could 

consist of a single module or a group of modules. The intent is to 

test the system in stages, starting with the minimum number of modules, 

and increasing the number of modules as testing progresses, until the 

entire system is available. 
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III. MAINTENANCE TESTING 

A.. INTRODUCTION 

In this section we focus exclusively on the problem of 

maintenance testing. By maintenance testing we mean the testing 

which is done after a system has been released and placed into 

operational use. This is distinguished from prototype testing which 

is done on the original or prototype system for the purpose of deter­

mining whether the system actually constructed meets the design 

specifications and performance requirements established in the earlier 

stages of the development process. Prototype testing is essentially 

a certification process. Maintenance testing, on the other hand, is 

directed toward the question of whether a particular copy of a system 

remains in the same condition as it was when first placed in service. 

Our goal is to present a method which might be used as the 

basis of maintenance testing. The idea of partitioning which we con­

sider here is not a new idea. It has been explored and developed 

extensively in the context of testing digital circuitry [18], but 

it has apparently not been examined in the context of systems testing 

or software testing. After the idea is presented, a discussion of 

some of the problems in applying the method in a real testing situation 

is included. 

B. DISCUSSION OF SYSTEM FAULTS 

We define a system fault as any hardware or software condition 

which causes the system to deviate from its design specification in an 

observable manner. Observations can be made at several levels from 
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the component level to the functional level. In this section we are 

not concerned about the level at which observations are made, but we 

do make some additional assumptions about the nature of system faults 

and it is important that these be clearly understood. 

We assume that the faults under consideration are non transient 

in the sense that, whatever condition or fault occurs, it remains 

until corrected. Thus spurious results are not observed in the testing 

procedure. This means that when given the same initial state of the 

system the same input test conditions always produce the same test out­

put. Thus the tests are repeatable in the sense that the system being 

tested is not changing during the test period. In a real testing 

situation it is often the case that apparently spurious results are 

obtained. The practical difficulty in reproducing them generally lies 

in the inability to reproduce the test conditions exactly. This often 

occurs because a sequence of tests interact. Earlier tests may change 

memory or write over critical values or otherwise change the state 

of the system. Thus for purposes of our discussion we will assume 

that the system under test has a reset capability so that the state 

of the system is the same before each test. The system may contain 

a fault, but it contains the same fault until fixed. The effect of 

this reset assumption is to make each test in a series of tests act 

independently so that exactly the same information is obtained by 

applying test 1 and then test 2 as is obtained by applying first 

2 then 1. 

In our discussion of partitioning we assume: 

a) the set of all faults under consideration can be 

enumerated. We denote the faults by f 1 , • • • ,fn and 

we let f 0 denote the condition of no fault, 
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b} any fault in the system remains in effect until it is 

corrected {so that test results are repeatable as dis­

cussed above}, 

c) the system being tested contains at most one fault, 

d) the system being tested is reset to some initial state 

before the application of each test. 

The most restrictive of these assumptions is probably the 

first. In a complex system the number of things which can go wrong 

is immense and, to be able to detect and isolate individual faults, 

considerable precision is required to distinguish among the many 

similar faults. 

The assumption that the system contains only a single fault 

when tested can perhaps be justified by assuming that the test procedure 

is repeated frequently, so that each fault is detected before others 

occur. This is obviously invalid for massive failures in which a 

number of faults arise simultaneously from the same cause. On the 

other hand, if certain combinations of faults are thought to be likely, 

they can be handled by defining them at the outset as a single fault. 

C. DISCUSSION OF PARTITIONING 

We denote by T., 
l. 

i = l, .•• ,m the tests which can be applied 

to the system. It is convenient to think of the maintenance test 

procedure as being applied to a system containing an unknown one of 

the faults f., j = O, .•• ,n. 
J 

The purpose of the tests is to determine 

which of the conditions f
0

, ••• ,f
0 

exists in the particular system 

under test. 

The testing procedure consists of applying a sequence of 

tests to the system. Each test results in some observable outcome. 
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We assume that there is a finite set of possible outcomes which we 

designated Ok k = l, ••• ,p. 

If we had a single test which was powerful enough, there would 

be a distinct outcome associated with each fault. Such a test would 

be comprehensive in the sense that no other tests would be required 

to isolate the fault. Such a test is said to have full resolution. 

A test of this type would be very extensive and complicated and, 

although it fits within our discussion here, our thinking is oriented 

toward less comprehensive tests. Thus we will suppose that the tndi­

vidual tests under consideration do not provide full resolution, but 

to be useful they must provide some resolution among the faults. 

Figure III-1 illustrates the process of applying test 

a system containing fault fj with the result that outcome Ok is 

System 
with fj • outcome Ok 

Figure III-1. A Typical Test. 

observed. It is necessary to fully characterize the performance of 

each test Ti in the presence of the faults f., 
J 

and we imagine 

to 

that for each test the resulting outcome is known in the presence of 

each fault. This is illustrated in Figure III.2. 

fo fl f2 f3 f n 

T. 
l. 03 01 02 01 03 

Figure III-2. Typical Test Results for Test T .• 
l. 
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The data of the type shown in Figure III-2 can be obtained 

in several ways. These include: 

a) analysis of the system design, 

b) experimentation with a real system, 

c) simulation of the system behavior. 

The first method relies on the system designers, engineers, and pro­

grammers to determine from their knowledge of the system how it will 

behave in the presence of each fault under consideration, The experi­

mental method involves obtaining a fault-free copy of the system, 

inducing the desired faults, applying the tests and recording the 

results. The simulation method is nearly the same as the experimental 

method except that the observations are taken not from the real system 

but from a model of it, probably a computer simulation. 

It is not intended that the tests, when applied to a system 

containing an unknown fault, result in a pass or fail. Some faults 

produce the same outcome under test T. 
1 

as the fault-free system. 

For example, the results in Figure III-2 indicate that £0 and 

fn both produce outcome o3 , but it would be misleading to apply 

Ti to a system, obtain o3 , and claim that the system passed that 

test. Actually, the test T. 
1 

is unable to discriminate between 

The application of a single test serves to partition the set 

of all possible faults into p mutually exclusive and collectively 

exhaustive subsets corresponding to the p possible outcomes. 

For notational purposes we denote the set of all faults which 

produce outcome k when subjected to test i by Sik. Thus when 
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test i is applied with the result Ok we can conclude that the 

fault actually present is one of those in set Sik" This is illustrated 

in Figure III-3. 

All 
Faults 

Figure III-3. 

1-::-7 
~ 

Partitioning the Faults with Test T .. 
l. 

Further testing can be applied to the sets Sik" Suppose Tj is 

applied. This will result in one of the test outcomes say Or with 

the conclusion that the system under test contains one of the faults 

which is in both the sets sik and s. . 
Jr 

The maintenance test problem is to select an efficient set of 

tests which can successively partition the set of possible faults in 

smaller and smaller sets so that ultimately the actual fault can be 

isolated. Possible criteria for test selection will be discussed after 

the examples. 

D. SEQUENTIAL AND COMBINATIONAL TESTING 

In any testing situation where a sequence of testsis to be 

applied to a system the question will arise whether later tests in 

III-6 



the sequence are to be selected on the basis of the results from 

earlier tests or not. The case where earlier test results do influence 

the selection of later tests is called a sequential testing procedure, 

otherwise combinational. 

Sequential testing is a more powerful method in that fewer tests 

will generally be required to isolate a fault since the sequential nature 

of the procedure allows the selection of later tests which are more 

capable of discriminating among the remaining possible faults. Combi­

national procedure~ although independent of observed test results, may 

be easier to implement in checking out a software system since less 

storage space is required to store the tests and less logic required 

to implement them. 

Examples 

To illustrate the ideas of partitioning consider the following 

data used in examples 1 and 2. The table entries 1, 2, and 3 refer 

to outcomes o1 , o2 , and o3 • 

fo fl f2 f3 f4 fs f6 f7 £8 

Tl 1 2 2 1 3 2 1 1 3 

T2 2 2 2 2 3 2 1 1 2 

T3 2 l 3 1 2 2 3 2 3 

T4 1 3 3 2 2 2 3 3 3 

TS 2 3 l 3 3 l 3 2 2 

T6 3 2 3 2 2 1 1 2 1 

Table III-1. Data for Examples land 2. 
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Example 1: A Combinational Test Procedure 

In this example we illustrate the result of applying tests 

T1 , T2 , T3 in that order to a system containing one of the faults 

£0 , ••• ,£8 • The results are portrayed as a test tree. See Figure III-4. 

Notice that the application of T1 partitioned the faults 

into three sets: The first, associated with outcome o1 , containing 

faults f
0

, f 3 , f 6 and f 7 • Subsequent application of T
2 

further 

partitioned this set into two sets containing faults f
6 

and f
7 

associated with outcome o1 and faults £0 and £3 associated with 

o2 • Notice that o3 is not possible since the actual fault in this 

case is known (after applying T1 ) not to be f 4 • The test T
2 

is ineffective in the event that T1 yields outcome o2 • 

All T 
Faults 1 

Figure III-4. Test Tree for Example 1. 
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Example 2: A Sequential Test Procedure 

In this example different tests are applied depending on the 

outcome of previous tests. The test tree is shown in Figure III-5. 

Notice that in this case, particularly when T1 yielded o2 , the 

later tests could be selected to make best use of the information 

already available. 

All 
: Faults 

Figure III-5. Test Tree for Example 2. 

Reflecting on these possible test trees raises several ques­

tions: Should the test procedure be sequential or combinational, how 

shall possible test sequences be compared and what is the 11best 11 
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procedure? For example, if the system is very likely to be fault-

free, then a test sequence which begins with T4 is attractive 

unless T4 is very expensive or time consuming. On the other 

hand T4 is nearly worthless if the probability of having a condition 

other than fo is large. After considering one more example, we will 

address these questions of test selection by considering several 

possible test objectives. 

Example 3: 

This example illustrates the application of the methodology 

described to a small program. The program is an interactive game 

which is played on a programmable pocket computer, in which the 

computer selects a four digit random number which is concealed from 

the user. The user makes a guess and the program returns a code 

number which provides information regarding the accuracy of the guess. 

The code contains information on the number of digits in the guess 
' 

which are correct and correctly placed as well as on the number of 

digits which are numerically the same as some digit in the number 

selected by the computer. 

For the purpose of this example the portion of the program 

which produces the random number is not used. The example deals 

only with that part of the program which produces the coded output 

number. A functional flow chart of the program is given in Figure 

III-6. The actual machine implementation will not be discussed here. 

All the subscripts on N should be interpreted mod (4). 

The program assumes the four digits of the actual number 

selected by the computer are N1 , N2 , N3 , N4 in that order. The 

four digits of the guess are w1 , w2, w3 , w4 , respectively. 
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2 no 

es Test 3 
> no 

W ""N 

yes 

<'.: -- - ---'---------·-___ _J 
Figure III-6. Functional Flow Chart for Example 3 . 
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The following faults were defined: 

fo = no fault 
* f = 

1 
test 1 always yields 0 yes. 11 

f2 = test 1 always yields "no. " 

f3 = test 2 always yields II yes." 

f4 = test 2 always yields II no. n 

fs = test 3 always yields .. yes. " 

f6 = test 3 always yields "no. It 

f7 = test 4 always yields "yes." 

fa = test 4 always yields "no. II 

fg = program fails to check 4
th digit in guess (change 5 to 

4 in test 0) 

flO = 

fll = 

£12 = 

The last three faults were machine dependent. Two 
had to do with memory locations which always returned 
a zero. The other fault was the disablement of one 
of the machine functions. Each was induced by a 
software change. 

Ten tests were defined and run with each of the above faults. 

Each test involved entering a number into the machine location where 

the random number is stored and then entering a "guess." The value 

of the coded output was the outcome of the test. 

The ten tests defined by the nwnber entered and the number 

guessed were: 

*The use of the word "test" in this context refers to the tests in 
the flow chart, not the maintenance tests. 
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Tl T2 T3 T4 TS 

enter 1111 1111 1111 0123 0123 

guess 1111 1234 0011 0000 0123 

T6 T7 TB Tg TlO 

enter 0123 0123 0011 0011 0011 

guess 3012 0011 1111 1234 0011 

The experimental test results are shown in Figure III-7. 

fo fl £2 £3 f4 fs £6 £7 fa f9 flO fll £12 

Tl 20 20 4 20 20 20 20 20 20 15 5 2 20 

T2 5 20 1 8 8 8 5 8 5 5 0 0 8 

. T3 10 20 2 12 12 12 10 12 10 5 5 10 12 

T4 8 20 3 8 5 8 7 8 7 7 l 20 4 

TS 20 20 0 20 20 20 20 20 20 15 5 5 8 

T6 4 20 4 4 0 4 4 4 4 3 1 5 8 

T7 8 20 3 8 5 8 7 8 8 11 l 10 4 

TS 12 20 4 12 11 12 12 12 12 7 5 2 4 

T9 1 20 1 4 2 4 1 4 1 5 0 0 4 

TlO 20 20 4 20 20 20 20 20 20 3 5 10 12 

Figure III-7 . Test Results for Example 3. 

. 
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The test results given in Figure III-7 reveal that no two of 

the tests produce the same output for every fault. However, three 

of the faults (£3 , f 5 , f 7 ) produce the same output for every test. 

Thus no test plan using these ten tests will be able to distinguish 

among these faults. 

Just to illustrate the method, an unknown one of the thirteen 

programs, each of which contained one of the faults £0 , ••• ,£12 , 

was loaded and testing was undertaken to determine which program it 

was. The test tree used is shown in Figure III-8. 

Since the number of possible outcomes is fairly large (12), 

relatively few tests are required for fault isolation. In this 

example only two were required to determine that fault 10 was present. 

E. TEST OBJECTIVES 

It is generally true that the testing procedure is limited 

by time available, computer storage, and other considerations . We 

will present several criteria by which test sequences can be evaluated. 

We assume that each test has an associated cost, perhaps the time 

required to implement the test. 

If we can assume that we have a probability distribution over 

the set of possible faults so that we know the probability that each 

fault is present, we can select the test sequence to minimize the 

expected cost of testing. In this case the test sequence could be 

arranged to seek the most likely faults first, since testing will 

terminate upon the discovery of a fault. Alternatively, the objective 

might be to select the smallest set of tests (or minimum cost set) 

such that the probability of identifying any fault is at least a, 

where a is some preset parameter. 
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Figure III-8. Test Tree for Example 3. 
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If no prior knowledge is available about the probability of 

the various faults, we might want to select the sequential or com­

binational test sequence with full resolution and minimum cost. 

Another point of view might be to imagine that a budget (perhaps 

time) is available for testing and the objective is to select the 

test procedure which is capable of identifying the largest number 

of faults. 

Many other variations of these ideas are possible, and thorough 

consideration must be given to the test objectives before appropriate 

test sequences can be selected. 

F. DISCUSSION 

The partitioning method just described is a general approach 

to systems maintenance testing. The practicality of the method 

depends on the extent to which the fault assumptions hold and the 

extent to which tests can be devised to discriminate among the faults. 

The issue of resetting the system to an initial state before the 

application of each test is also crucial. If it is impractical to 

reset the system after each individual test in a series of tests, then 

it is possible to redefine the entire series of tests as a single 

test. If this is done, the reset assumption is met. Of course, the 

new test which is in reality a series of tests, is much more compre­

hensive than any of the original tests alone. The data in Figure 

III-2 must, of course, be constructed for the new single test, not 

the individual tests. 

The applicability of the method obviously depends on the 

ability to collect the data shown in Figure III-2 and this in turn 
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requires either a thorough analysis of the system by its designers 

and builders or experimentation with a fault-free system (or a 

model of it). The prototype system during its testing should be 

carefully checked out and thoroughly instrumented, and may approach 

a fault-free system. Practical considerations however imply that 

the fault-free system might never be obtained; nevertheless, the 

partitioning method can proceed with the understanding that the 

system defined by f 0 is the standard whether it is fault-free or 

pot. 

The definitions of the faults to be considered must be 

unambiguous and, if the data in Figure III-2 is to be gathered by 

the experimental method in which faults are induced into an otherwise 

fault-free system, the faults must have some physical realization in 

the hardware or software. It is not sufficient to define a fault as 

"something is wrong with the memory unit" or "the data bus is not 

working properly." Fault definitions must be much more precise than 

this. The level of detail at which a fault must be defined probably 

leads to an enormous number of faults in any practical application 

and it is in this area that sound judgment must be exercised to 

prevent the approach from becoming unmanageable. 

A first attempt at applying this method to a complex system 

might concentrate on only one class of faults, for example control 

faults or branching faults. If a flow chart were available, each 

decision point could be identified and the possible branches from 

that point listed. A fault would correspond to always selecting one 

of the branches or never selecting one of the branches. With con­

sideration limited to this class of faults the number of faults would 
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remain manageable. However an item to keep in mind is that while our 

discussion assumes that the only faults which can occur are those pre­

cataloged faults, it may be that some other fault has actually occurred. 

The behavior of the system is not known for such an occurrence and 

unless it produces some outcome other than 01 , ••• op, we will 

erroneously identify the fault as being in our catalog. 
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IV. SOFTWARE ERROR SIMULATION 

Much of the software development costs,which were mentioned 

in Section II, are for testing, debugging and intggration; a significant 

part of the costs after releasing the software are for correcting 

errors. Thus there is current interest in the error characterist~cs; 

number, type (overflow, sequence control) and location of ooftware 

errors in a program. It is generally accepted that computer programs 

with a complex structure, that is one with a high incidence of branch 

instructions and loops, are harder to debug and test and more errors 

persist after release than for programs with a more simple structure. 

An error simulation model1 is presented here which investigates the 

relationship of program structure to error detection and test eff0rt. 

_Since structure can be controlled during the design phase 

and measured through all phases of a computer project, the study 

of the relationship between structure and error characteristics is 

valuable to the manager of a software project. Complex program 

structures with poor error characteristics should be avoided. Poor 

error characteristics result when many errors are located in conplex 

structures in such a way that error detection would prove difficult 

during testing. In cases where complex program structures may be 

necessary to help meet program size or speed limitations, it is 

useful to have an indication of the additional testing which may be 

caused by complex structures. It is also useful to be able to compare 

the error characteristics of design alternatives that have different 

program structures. 

1The suggestion to use a simulation model to study software error 
detection was given by Dr. Samuel Litwin, a consultant to the Naval 
Air Development Center. 
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NEED FOR RELIABLE SOFTWARE 

A. SOFTWARE COSTS 

The production of software can be divided into three phases: 

* 
* 

* 

analysis and design, 

writing programs and 

test and integration. 

Data on how time, effort and money are divided among these three 

phases gives some indication of why software production is so costly. 

The fraction of time, effort and money for each phase differs from 

application to application; however, data from some large projects 

show similar experience. Estimates are given in [19] and [20] for 

some military command and control systems: Analysis and design is 

about 35 percent, writing programs 15 percent and test and integration 

50 percent. For space projects the estimates are 35, 20, 45 percent. 

For the IBM 360 operating system the estimates are 35, 15, 50 percent. 

Data for business application indicates less for testing and integra­

tion and more for analysis and design than the above data. The sur­

prising amount of time, effort and money for test and integration is 

often the item most underestimated in planning computer projects, as 

described in [12]. • 

B. DEFINITIONS 

In the field of software engineering there is little agreement 

on the definition of terms, such as the definition of software 

reliability. In order to make the understanding of this paper easier, 

the following definitions will be adhered to in as much as possible. 
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1. Terms 

Software reliability is the probability that a computer pro­

gram will perform its intended function for a specified time interval 

under stated operating conditions, [21]. 

Reliability prediction is intended to provide an estimate of 

future probability of successful operation. 

Testing is an effort to determine the presence of software 

errors, not their absence. 

Software error is a mistake in program design or implementation 

which leads to undesirable results during program execution. 

Module is a particular physical combination of program instruc­

tions that is independent of others with respect to compiling, assembling 

and loading and which performs a specific function. 

Program is a set of modules. 

Program complexity may be described by characteristics such 

as program size, incidence of branch instru::tions, incidence of loops, 

incidence of subroutine calls and variety of instructions. 

Non-branch instructions may be either computational or input/ 

output instructions. 

Structured programming is a programming technique, [22] in 

which a program with one entry and one exit can be written using only 

the following programming progressions: 

* 
* 
* 

Sequence 

IF THEN ELSE 

DO WHILE 

Directed graph is a geometric graph, consisting of nodes and 

arcs, with a direction of traversal associated with each arc. 
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C. CLASSIFICATION OF ERRORS 

Software errors are classified as follows: 

* M~stakes in logic at the flow chart level, 

* 

* 

* 

* 

* 

* 

Computation and assignment, 

Sequencing and control, 

Input/output, 

Declarations, 

Keypunching/clerical errors committed in writing 

instructions on coding sheets, 

New errors introducted as a result of design changes: 

unexpected side effects caused by changes, 

logical flaws in change to design, 

inconsistencies between changed design and implementation, 

inconsistencies in original and changed hardware 

D. TESTING AND ERROR DETECTION 

The life cycle of a program is composed of the following 

phases: 

* Design and analysis, 

* Module development and testing, 

* System integration testing, 

* Functional testing, 

* Maintenance. 

The cost of error detection and repair during system integration 

testing is three times that of testing an individual module during 

module development testing, [23]. Therefore, the objective should be 

to reduce the number of errors detected during system integration test­

ing and increase the number (proportion) discovered during module 

development testing. 
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In many moderate and large computer projects, a programmer 

writes and debugs a module and then gives it to a test group. The 

test group tests the module, integrates it with other modules and 

then continues testing. The module is tested by supplying an input 

to the module and then comparing the outcome to the known correct 

outcome. If there is a mismatch between observed and correct output, 

an error has been detected. When an error is detected the module 

is given to a programmer who locates and corrects the error and then 

returns the module to the test group. Notice the distinction between 

testing, which is supplying inputs and observing outputs, and debug­

ging, which is the highly individualized detective work needed to 

locate and correct errors. In debugging, the programmer needs a 

detailed knowledge of the structure and operation of the module. The 

tester is frequently unaware of module structure and operation; he 

needs only to understand the function of the module. 

Most computer programs have a large number of potential inputs; 

each may exercise a program in a different way. The sequence of in­

structions of the program that results from a particular input is 

called the "path'" or "thread" associated with that input. Testing by 

submitting inputs to the program checks only the paths associated with 

those inputs. For programs with a very large number of inputs, testing 

can be only a relatively small sampling of all possible inputs, as 

described in [12). 

ERROR DETECTION MODEL 

A. NEED FOR A MODEL 

Testing is a critical part of software projects because it 

measures and affects the final quality of the software and it consumes 
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a large part of project time and resources. Testing also reveals 

the strengths and weaknesses of the analysis, design and coding of 

the software and gives an estimate of the success or failure of the 

software after release. Thus, it is important to understand the 

testing process and to understand the relationships between testing 

and the various decision variables that may be controlled during 

analysis, design and coding. 

A difficult facet of program testing involves the selection 

of inputs. The tester, who generally is not the person who wrote 

the code, does not know the specific path that an input will execute. 

Presently there is no software tool that would automatically allow 

the tester to force an input to follow a certain path. Some test 

systems allow the tester to select whichever instruction is to follow 

the previous one. In this way a particular path is followed, (24). 

This is obviously a slow and cumbersome way to check out all, or many, 

of the possible paths in a program. 

Obviously, inputs should be chosen so that a high percentage 

of the critical paths of the program will be exposed to testing. 

However, this objective must be weighed against the cost of machine 

time for debugging and the cost of programming personnel for error 

correction. A related matter is the determination of when to stop 

testing. It is usually infeasible to subject a program to all possible 

input combinations because of resource constraints. Various software 

packages are available for recording and analyzing the following 

types of data: count and frequency distribution of types of instructions 

executed; indication of code which is not executed; and indication of 

code which is impossible to reach, [25}. Although this type of 
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instrumentation is helpful for tracing program behavior, once a set 

of inputs is selected, it does not solve the problem of selecting 

the number and type of inputs in the first place, [17]. 

Thus, there is a need for a model to examine the relationships 

between the number of inputs and paths traversed, for a given program 

structure, and the number of remaining errors, fraction of the program 

exposed to testing, execution time and repair time. It is of interest 

to determine the number of inputs required to achieve a specified 

number of remaining errors for various structures, when the same 

number of original errors is used with each structure. In addition 

it is desirable to identify programming structures which have complex­

ities that make it difficult to detect errors. 

B. BASIC MODEL DESCRIPTION 

1. Model Characterist•ics 

Program complexity may be described by characteristics such 

as program size, incidence of branch instructions, incidence of loops, 

incidence of subroutine calls and variety of instructions. Another 

view of program complexity can be obtained by considering the structure 

of the program to be a series of nodes, arcs and loops in the form 

of a directed graph as shown in Figure IV-1. 

In the directed graph used in the simulation model, nodes 

represent connection points where parts of the program may merge 

and/or branch and arcs represent a sequence of nonbranching instruc­

tions such as computation and input/output. Instructions are located 

in arcs and errors are located in some of the instructions. An input 

defines a path from the start node to an exit node. Beginning at the 
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Figure IV-1. Directed Graph Representation of a Program. 
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start node an input causes execution of the instructions on its path, 

consuming test time, until an error is encountered. After the error 

is thus detected, it is repaired, consuming repair time. There is, 

however, some risk that the repair will introduce a new error in some 

instruction. Restarting at the initial node execution is begun again 

with the same input. This process is repeated until there are no 

errors on the path. 

Some relative measures of program complexity which are appli­

cable to a directed graph representation of program structure are: 

• ratio of actual number of arcs to the maximum possible 

number of arcs, 

• ratio of nodes to arcs, 

• ratio of loop arcs to total arcs. 

The size of a program is a measure of complexity in an absolute sense. 

In terms of a directed graph structure, size is determined by the 

number of nodes, which establishes the number of branch points in a 

program, and by the number of arcs, which establishes the degree of 

straightline coding between branch points. Increasing values of the 

above relative and absolute measures represent increasing program 

complexity. 

2. Model Simulation 

The error detection model was written in FORTRAN IV and has 

been developed and used on the Naval Postgraduate School's IBM 360/67 

computer. The program has been executed 40 times in the production 

mode. The simulation program consists of 639 FORTRAN statements, 

requiring 194,000 bytes of main memory and executes in 40 to 55 seconds, 

depending on the type of simulation involved. The directions for use 
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of the error simulation program are listed in Appendix C and the 

FORTRAN listing for the simulation model is in Appendix D. The 

directed graph was input to the simulation as a node-arc incidence 

matrix. Lacking detailed information about the distributions of the 

pertinent variables in actual systems, there were no statistical 

dependencies among the variables established. Thus, the random varia­

bles were chosen to be independent and to possess the Markov property~ 

This also makes the model more tractable for obtaining an analytical 

solution. 

The number of instructions per arc is an independent exponen­

tial random variable truncated to an integer. Errors are inserted by 

making the number of instructions between errors an independent expo­

nential random variable, which results in a Poisson distribution of 

errors per interval of instructions. Errors are inserted by scanning 

the arcs of the node-arc incidence matrix by columns until the count 

of instructions from the last error equals the random number . 

An input is a sequence of random numbers that determines which 

arc to traverse at each branch node. For each branch node the proba­

bility of taking each arc is equal . This could be changed to test 

the sensitivity of error detection to different branch probabilities . 

The repair times for errors are exponentially distributed. 

If many programmers work on error repair with each repairing only a 

small number of errors, the effect of experience on error repair may 

be small so that a constant repair rate corresponding to the exponen­

tial distribution would be appropriate. If few programmers work on 

repairs, experience would be a factor and an increasing repair rate 

distribution would be appropriate. For example, the log-normal is 
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sometimes used to represent the distribution of hardware repair time, 

[261 • 

The execution times of instructions are exponentially distrib­

uted. It was assumed that the execution time of an instruction does 

not depend on past instruction times. This assumption may not hold 

if the programmer tends to sequence his instructions in certain patterns. 

When errors are repaired, the potential introduction of new 

errors is simulated. New error insertion is based on the ratio of the 

number of instructions changed by error repair to the total number of 

instructions in the arc. The arc where the new error is to be inserted 

is determined on an equal probability basis. 

The simulation is written so that any distribution or parameter 

can be changed for the purpose of sensitivity analysis. The choice of 

distributions may have a significant effect on the simulation results 

for a given structure; however, since the objective is to evaluate 

results on a relative basis across various structures, the choice of 

distributions does not seem to be critical. 

For each input, data are collected on the number and location 

of errors detected, number and location of new errors, number and 

location of remaining errors, number of arcs traversed, time to execute 

instructions and time to repair errors. 

The simulation model was written so that it would be possible 

to generate random times for each instruction executed and for each 

error repaired as the simulation proceeds. However, if the instruc­

tion times and repair times are independent and identically distributed 

as described above, then it is possible and computationally desirable 

to count the number of instructions executed and the number of errors 
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repaired and multiply these by the average instruction executing time 

and the average error repair time, respectively, in order to obtain 

a very good estimate of each total time. 

C. MODEL ASSUMPTIONS 

A basic assumption of the model is that the tester has some 

knowledge of the program structure, but that for a given input he does 

not know the specific path that it will execute. In actual software 

projects the test group has flow charts and program listings: however, 

it is infeasible to analyze this information because it may contain 

thousands of lines of coding. Because of the size of the program, the 

complicated internal logic and the large number of paths, the relation­

ship between inputs and outcomes is rarely understood. One example is 

in the testing and maintenance of large operating systems. The rela­

tionship of inputs to outcomes is so poorly understood that even after 

an error has been detected it is often difficult to determine an input 

that will reproduce the error. 

A further assumption of the model is that the tester gains no 

information as the testing proceeds that will influence his choice of 

subsequent inputs. In actual software projects the tester should try 

to make best use of any information gained during testing. Various 

software packages are available for recording the following types of 

data: count and frequency distributions of instructions executed, indi­

cation of code that is not executed and indication of code that is 

impossible to reach [25]. However, there are other factors that may 

make it difficult to effectively use the information gained during 

testing. For example, the test plan may be specified in advance with 
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no modifications allowed or inputs may be restricted to those that 

will be typical for the program in actual operation. For these 

reasons the model assumptions seem reasonable as applied to functional 

testing. 

The probability distributions which were used are listed 

below. 

Property or Event 

Instructions per arc 

Instruction execution time 

Original error occurrence 

Time to repair an error 

Iterations per loop 

Number of instructions affected 

by repair 

New error occurrence 

Arc selected for new error 

insertion 

Arc selected at branch point for 

traversal 

Probability Distribution 

Exponential 

Exponential 

Exponential 

Exponential 

Uniform 

Uniform 

Uniform 

(based on ratio 
of instructions 
changed/instruc­
tions in arc) 

Uniform 

Uniform 

Since little is known about the type of probability distribu­

tion which is associated with the above program properties and execu­

tion events, the selection of distributions was, of necessity, based 

on assumptions. However, it was felt that the assumptions were 

reasonable. For example, the seeding of original errors was based on 
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the number of instructions between errors being exponentially 

distributed, or equivalently, the presence of an error was independent 

of the presence of other errors. A second example was that instruc­

tions were placed in arcs according to an exponential distribution, 

or equivalently, the number of instructions between branch points was 

exponentially distributed. This implies that the number of instruc­

tions between two branch points was independent of the number of 

instructions between other branch points. Although the choice of 

distribution may have a significant effect on the simulation results 

for a given structure, the objective was to evaluate results on a 

relative basis across the various structures so that choice of distri­

bution was not critical. Although it was possible to vary both the 

type of distribution and its parameters, the usual procedure was to 

keep these factors constant and vary program structure, number of 

inputs and input traversals. 

D. MODEL USES 

The model can be used to influence software design decisions 

by making it possible to compare the error detection characteristics 

of alternative program structures. This is valuable, since error 

detection characteristics are good indicators of the time and resources 

consumed by testing. The design flow charts and estimates of branch 

probabilities and number of instructions can be used to specify progams 

in the form of a directed graph. The program is then seeded with 

errors and subjected to random inputs. 

The model can also be used to identify the measure or measures 

of complexity that best predict the ability to detect errors. To do 
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this it is necessary to gather data from the model on the error 

detection characteristics of a variety of different structures and 

then do a statistical analysis. This would make it possible to 

measure the complexity of different programs and then compare the 

estimates of error detection characteristics. Although some data 

has been generated, further work is necessary to identify good measures 

of complexity. 

There are other situations where it is useful to be able to 

compare structures. A frequent problem is to evaluate the cost of 

adding some additional feature to the program. The results of the 

model can be used to compare error detection cnaracteristics of the 

original and modified structure. The problem of how to allocate test 

effort among structures of different size and complexity can also be 

addressed. 

ANALYSIS OF SIMULATION RESULTS 

A. THE EFFECT OF INCREASING THE NUMBER OF INPUTS 

1. Model Testing 

One would expect that initially there are many errors detected 

in a program with each input and then the number of errors detected 

decreases as additional test inputs are used, because much of the pro­

gram is exposed to testing initially. This is illustrated in Figure 

IV-2. The percent residual errors decreased stepwise as the number of 

inputs increased. In the testing of actual software, after finding 

many errors, there may be long periods of time with no error detection 

followed by a new group of detected errors. 
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Figure IV-2. The Effect of Increasing Inputs on Residual 
Errors. 

Recall that each input in the model detected all the errors 

in its path, from the input node to one of the output (terminal) nodes. 

In order to explain the stepwise action in Figure IV-2 it must be 

realized that although the paths through the program were, in genera~, 

different from previous paths, portions of these paths may have in­

volved only arcs that have been previously traversed. The model had 

well defined steps where no new arcs were tested for a number of unique 

input paths, as shown in Figure IV-3. Thus it can be seen how a new 

group of errors was detected when the model tested previously untested 

parts of the program. 

However, just because an arc has been previously tested does 

not imply that it was error free. As each new detected error was 

IV-16 



30 nodes, 45 arcs, 6 loops 

28 original errors, 17 added errors 

................. .... 
. . . . . . . 

. . .. 
• 

• 

• 

10 20 JO 40 50 

Number of Inputs 

Figure IV-3. The Effect of Increasing Inputs on Arcs Tested. 

repaired, there was some small probability that a new error was intro­

duced in some other portion of the program. This newly inserted error 

may have been inserted in a previously tested arc. A check was made 

on the coverage of the arcs by the simulation model. The structure 

checked had 30 nodes, 40 arcs and 6 loops as shown in Figure IV-4. 

The numbers along the arcs indicate the number of times the arc was 

traversed. For example, the source arc at the top was traversed 

50 times, or there were 50 different inputs. Every time an input 

reached a node it had an equally likely opportunity to select any one 

of the arcs emanating from the node. The simulation results bear 
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this out as Figure IV-4 illustrates, where the 50 inputs traversed 

the top arc and split below with 25 going to the left and 25 going 

to the right. The arcs which had a backward pointing arc or loop 

around them were traversed more times as shown by the number alongside 

the arc representing the sum of the number of times the backward 

loop was selected and the number of times the input arc was selected. 

Looking at the far right hand loop, seven inputs came into the node 

from above, twelve inputs came into the node from the loop and 19 of 

the inputs exited the node. The parenthesized numbers indicate the 

number and location of errors. The number of errors includes the 

errors initially seeded and the errors inserted when repairing detected 

errors. 

2. Simulation Example of a Real Program. 

In order for the simulation model to be of any practical 

use, it had to be tested on a real program. Appendix B contains the 

code and structure of a textbook FORTRAN program for computing Bessel 

Functions. The column labeled "node" corresponds to the nodes in the 

directed graph representation of the program in Figure IV-5. This 

particular program was selected as an example of a good computational 

program, since it was presented in a numerical analysis text, [26] 

as an example of a poorly coded program, since a casual reading of 

the code showed a lack of use of structured programming techniques. 

Another reason for the selection was that the program could be broken 

down into 30 nodes, which was the same as the test structures. It 

also fit within the range of str-uctures tested having 43 arcs and 9 

loops. The first number inside of the parenthesis represents the 

number of instructions in the arc and the second number represents 
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Figure IV-4. Arc Traversal and Error Patterns. 
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Figure IV-5. FORTRAN Program Directed Graph. 
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the number of errors, original errors plus added errors, in the 

arc. 

Fifty randomly selected inputs were run through the structure. 

With 16 errors initially seeded, five errors, or 16.7 percent of the 

total errors seeded, still remained after fifty inputs. comparing 

this result with a test structure with 45 arcs and 6 loops and another 

test structure with 44 arcs and 10 loops, the percent residual errors 

in the FORTRAN program was high, illustrated by Figure IV-6. By 

analyzing the paths each input traversed it was noted that six of the 

nine loops in the FORTRAN program, all emanating from the bottom of the 

graph, going to the top of the graph, were very seldom used, thus not 

giving each individual input an opportunity to loop back up to the top 

of the graph, and thus test more branches for a given input. This 

was borne out by the results in Figure IV-7, which showed that the 

percentage of arcs tested was lower for the FORTRAN program. 

B. THE EFFECT OF INCREASING THE NUMBER OF ARCS 

Intuitively, given two programs with the same number of nodes, 

and a different number of arcs eminating from the nodes, one would 

expect that the program with the greater number of arcs, or the more 

complex program, would have the higher percentage of residual errors. 

By the same reasoning one would expect the more complex program to 

have fewer arcs tested with a given number of inputs. 

Fifty random inputs were used on each of the following program 

~ructures. Each structure contained thirty nodes and six loops. 

Retaining the concept that each node represents a branch or decision 

point in the program, the most simple structure that can be defined, 
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Figure IV-6. Residual Error Pattern 
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FORTRAN Program 

30 nodes, 43 arcs, 9 loops 

16 original errors, 14 added errors 

100 FORTRAN - - - .. - - -
90 ~ 

... .,. 

~ ,,. .... 
80 • 00~ ,,,. 

b'\: .. .... , , 

'i 70 .. ,,,, ., 
~ .,. 
1/J 60 G) ,,. 

E-• ... .... 
ro .50 
~ 
~ 

40 
CIJ 
() 

t1 p.. 
30 

20 

10 

20 -30 40 50 
Number of Inputs 

Figure IV-7. Arcs Tested Pattern 

using thirty nodes, must have a minimum of forty arcs. By definition, 

to establish a node there must be at least three arcs, in any combina­

tion, either terminating or emanating from the node; thus, the minimum 

number of arcs in a structure is: (3/2) (the total number of nodes) 

minus the number of entry and terminal nodes. Recall that an arc was 

defined as either a forward or backward pointing arc, called a loop. 

Starting with forty arcs and adding five more to each structure, five 

structures were simulated with 40, 45, 50, 55 and 60 arcs. After 

fifty inputs the percent residual errors increased as the number of 

arcs increased, as Figure IV-8 illustrates. The percent residual 
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Figure IV-8. Relation Between Complexity and Residual Errors. 

errors was chosen as the vertical axis in Figure IV-8 rather than 

residual errors since the number of errors, original errors plus 

added errors, varied in each of the five structures. The reason 

for the variable number of errors was that each time a new structure 

was defined, the error simulation program would randomly seed all 

the original errors again, thus errors could have been inserted into 

the added arcs. 

Similarly, Figure IV-9 illustrates the effect of increased 

complexity on the percentage of the arcs tested . As the number of 

arcs increased, the percent of the arcs tested decreased. 
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30 nodes, 40 - 60 arcs, 6 loops 
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Figure IV-9. Relationship Between Complexity and Percent 

Arcs Tested. 

Examining the paths traversed by each input gave some insight 

as to why an increased number of arcs caused higher residual error 

and lower arcs tested percentages. When an arc was added, the number 

of arcs emanating from a node increased . There was a probability 

that the added arc could contain an error as the entire structure was 

seeded with errors anew. As the number of arcs increased, there were 

also more arcs which provided shorter paths to an exit node by 

connecting a node closer to the input with a node closer to one of the 

outputs, thus leaving some intermediate arcs untested. 
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Repair time turned out to be unrelated to complexity. The 

number of errors initially seeded controlled the repair time. These 

results can be seen in Figure IV-10. Several structures are shown 

in the plot of repair time versus percent residual errors. The amount 

of time required to repair errors, for a given percentage of residual 

errors, increased as the number of errors initially seeded increased. 
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Figure IV-10. The Effect of Arcs on Repair Time 
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Generally the relationship between the percent arcs tested 

and the percent residual errors can be described as approximately 

linear. As the percentage of the arcs tested increased , the percentage 

of the residual errors remaining decreased. In Figure IV-11 the 
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Figure IV-11. The Effect of Complexity on the Relationship 
Between the Residual Errors and Arcs Tested. 

shaded area represents the band of values, corresponding to various 

structures, for a given percentage of arcs tested, with the mean 

shown as the middle curve. 

C. THE EFFECT OF INCREASING THE NUMBER OF LOOPS 

Improper loop indexing is usually near the top of a list 

of most frequently occurring errors, [19]. Many people think that 

loops should be eliminated as a program structure. Note that the 

only influence of loops in this model is with respect to coverage. 

The model does not account for errors in the loop counter or failure 

to get out of a loop. One of the results of the analysis was that 

an increase in the number of loops had no significant effect on the 
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percentage of residual errors, as shown in Figure IV-12. Starting 

with a structure with no loops, and then structures with 5, 6, 10, 

14 and 20 loops were analyzed using the error simulation program. 

The percent residual errors was chosen as t~e vertical axis rather 

than residual errors since the number of errors, original errors 

plus added errors, varied in each of the six structures. The 

reason for the variable number of errors was that each time a new 

structure was defined the error simulation program would randomly 

seed all the original errors again, thus errors could have been 

inserted into the added loops. 
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Figure IV-12. The Effect of Loops on Residual Errors, 
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The reason for the independence of the percent residual 

errors from loops can be explained by examining Figure IV-13 . 

There was no distinguishable difference between the percent arcs 

tested in the six cases with 0, 5, 6, 10, 14 and 20 loops. 

30 nodes, 34 - 54 arcs, 0 - 20 loops 
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Figure IV-13 . The Effect of Loops on Percent of Arcs Tested. 

By examining the paths the inputs trace, the explanation of 

the above becomes obvious. After an input completes a loop, it once 

again has an opportunity of branching out of the loop, thus testing 

more arcs than a structure with no loops. Each time another loop 

was added, the probability of branching out of all the loops 

increased at approximately the same rate as the increased number of 

loops. This concept was reinforced by the data shown in Figure IV-14. 
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After the structure was expanded to nine loops, any additional 

loops had no effect on error detection. The percent of the total 

residual errors in the structure that resided in the loops was a 

constant 59 percent and the percent in the arcs was a constant 41 

percent for structures with nine to twenty loops. This data was 

derived by starting with a structure containing 20 loops, seeding 

errors, and then analyzing the structure. The error simulation 

program would then delete a loop and its associated error, if one 

had been seeded, and then analyze the new structure. 

j 

Error locations constant 

Variable number of errors 

Percent residual errors in loops 

Percent residual errors in arcs 

Number of Loops 

Figure IV-14. Residual Errors in Loops and in Arcs. 
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It required essentially the same amount of repair time 

to decrease the percent residual errors to a certain level for all 

the structures containing loops, as shown in Figure IV-15. 

so 
~ 

30 

20 

1 

30 nodes, 34 - 54 arcs, O - 20 loops 

12 
Repair Time 

Figure IV-15. The Effect of Loops on Repair Time. 

Hrs 

However, the number of errors initially seeded had no 

distinguishable effect on the repair time of the structures with 

loops. 

It was not possible to make any judgements concerning the 

determinants of execution time. This was due to the fact that all 

but one structure tested had loops in it. Loops were executed a 

variable number of times as determined by a uniform distribution 

which established the number of iterations. The effect of a doubly 
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nested DO loop was captured by allowing an input to have an 

equiprobable chance of branching back up to the start of the loop 

or of branching farther down the structure. The relationship 

between the number of inputs and the cumulative execution time for 

a structure with no loops is examined in Figure IV-16. A plot for 

any of the structures with loops has points scattered all over due 

to the random effect of the loops on execution time. 

30 nodes, 34 arcs, no loops 

18 original errors, 6 added errors 
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Figure IV-16. Execution Time for a Structure with No Loops. 
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The effect of the percentage arcs tested, with loops present, 

on the percent residual errors can loosely be described as a linear 

relationship. As long as the structures all had loops, the curves 

of the percentage of arcs tested versus the percent residual errors 

all fall within a narrow band of values as shown by the shaded area 

of Figure IV-17. The curve for a structure with no loops is also 

plotted. 
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Figure IV-17. The Effect of Loops on the Relationship 
Between Residual Errors and Arcs Tested~ 

The mean of structures with a variable number of arcs and 

a constant number of loops and the mean of structures with a variable 
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number of loops are plotted in Figure IV-18 illustrates, the structure 

with no loops required significantly fewer arcs to be tested to 

achieve the same level of residual error percentage as compared to 

the structures with loops. 
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Figure IV-18. The Advantage of No Loops 

D. REPLICATING A SINGLE INPUT 

1. Model Testing 

The usefulness of the model is now examined for predicting 

the ability of detecting errors in an actual program. Four pieces 

of information are of importance for a manager conducting module 

development testing of computer programs. These are: the percent 

of number of residual errors, the percent or number of arcs tested, 

the amount of repair time, and the amount of execution time~ 
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The simulation model was used on ten different test structures 

to see if this information could be predicted. For each structure 

a single randomly selected input was run and the above data were 

collected. This process was replicated 100 times, or in other words, 

100 randomly selected inputs were used with each input using the 

same structure and the same number of errors seeded in the same places. 

Statistics such as mean, median, variance, standard deviation, etc., 

were calculated. 

As an example, the basic 30 node, 40 arc, 6 loop structure 

had 24 errors initially seeded. The simulation model produced a mean 

of 78.79 percent residual errors with a standard deviation of 9.10 for 

one input. Thus, one could estimate that based on 24 original errors, 

after one input, 78.79 percent of the errors will remain. Similar 

statistics were determined for percentage of arcs tested and repair 

time. Execution time was found to have a high variance. For instance, 

the mean execution time for one input for the above structure was 32.50 

seconds with a standard deviation of 50.15. Thus, estimates of execu­

tion time based on the mean would be subject to high error. 

2. Simulation Example on a Real Program. 

The simulation model was used on the FORTRAN Bessel Function 

program described earlier. It was found that, based on 16 original 

errors, the expected percent residual errors was 84.26 percent with 

a standard deviation of 9.09, or 15.74 percent of the original errors 

could be expected to be found and corrected with one input. Similarly, 

17.70 percent, with a standard deviation of 8.65, of the arcs could 

be expected to be tested by one input. Of prime importance to the 

project manager, 1.41 hours of repair time, with a standard deviation 
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of 1.18, a relative measure for the manager to use when comparing 

alternative structures, could be expected to be devoted to detecting 

and repairing 15.74 percent of the errors. 

E. THE EFFECT OF COMPLEXITY 

The following complexity measures will be used: 

*AMA is the ratio of the number of arcs in the structure to 

the maximum number of arcs possible for the given number of nodes, 

*NA is the ratio of the number of nodes to the number of 

arcs in the structure, 

*LA is the ratio of the nwnber of loops to the number of 

arcs in the structure. 

Using these relative complexity measures, it was of interest 

to see how each of the measures affected the percent residual errors 

and the percentage of arcs tested. Five different structures with a 

constant number of loops and a varying number of arcs and six different 

structures with a varying number of loops were examined. For each 

structure, 100 replications of a single input were simulated using 

the error simulation program, and statistics were gathered about the 

percent residual errors and the percentage of arcs tested. 

In Figure IV-19, the percent residual errors after one input 

increased as the complexity increased . In this case the complexity 

measure was the ratio of the actual number of arcs to the maximum 

number of arcs possible with a given number of nodes . Similarly, 

using the same complexity measure the percent arcs tested after one 

input decreased as the complexity increased, as shown in Figure IV-20. 

In both Figures IV-19 and IV-20, the standard deviation from the mean, 

represented by the dashed lines, decreased as complexity increased, 
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Using the ratio of nodes to arcs as a complexity measure 

similar results were obtained. The percent residual errors increased 

and the percentage of the arcs tested decreased as the complexity 

increased. These results can be seen in Figure IV-21 and IV-22 

where increasing complexity is from right to left. Note that there 

was an even sharper decrease in the standard deviation as complexity 

increased in both Figures IV-21 and IV-22. 

A third complexity measure used was the ratio of loops to 

arcs. In Figure IV-23, the percent residual errors remained constant 

for one input as the complexity increased. Once again this reinforced 
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the idea that loops expose more arcs to testing at the same rate as 

the additional arcs increase the complexity. In Figure IV-24 it can 

be seen that the added complexity had no effect on the percentage of the 

arcs tested after one input, with the mean after 100 replications being 

a constant 22 percent. Since loops were also defined as arcs, the 

ratio of loops to arcs did not increase linearly as the number of loops 

increased. 
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Figure IV-24. The Effect of LA on the Arcs Tested. 
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V. ANALYTICAL RESULTS FOR THE ERROR DETECTION MODEL 

A. INTRODUCTION 

In the previous section an error detection model was introduced 

and analyzed by simulation. It is possible to obtain analytical results 

for the expected number of errors detected by testing. Although the 

results are more limited than those from the simulation, the analytical 

results are a relatively inexpensive means to analyze the relationship 

between structure and the error detection process. The analytical 

results can also help in the statistical analysis of the simulation 

and can reduce the number of simulation runs needed. 

The error detection model is reviewed. Then the analytical 

results are developed and the output of computer programs to do the 

calculation is discussed. 

B. ERROR DETECTION MODEL 

Here we investigate how error detection during testing is 

affected by the structure of a computer program. By structure we 

mean how the parts of the program are related. It is very difficult 

to do experimentation with program structure in actual software pro­

jects because the cost of duplicate implementations of the same appli­

cation is very high for all but small projects. For this reason 

analysis is performed on a model. Structure may be modeled as a set 

of nodes and arcs as was described in Section IV. An example is 

shown in Figure V-1. 

Program structure affects the error detection process; to 

study this relationship it is helpful to have measures of each. 

For the error detection process some measures are: number of errors 

detected in a fixed time, number of errors detected with a fixed 

number of inputs, mean time between errors, percent arcs traversed 
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by one or more inputs and percent errors remaining. More sophisticated 

measures involving the shape of the graph of errors detected vs. time 

are also possible. These measures will be called "error detection 

characteristics." Good measures of program structure are harder to 

define. The most simple measure is size as measured by the number of 

nodes. A measure that expresses the degree of completeness of the 

graph is the ratio of the actual number of arcs in the graph to the 

maximum possible number with only one arc between pair of nodes. Since 

the model allows parallel arcs this number can be greater than one. 

These measures will be called "complexity measures." 

Since measures of complexity are to be used to estimate error 

detection characteristics, it is important to define measures that 

adequately express the differences between structures with good and 

poor error detection characteristics. Since inputs are associated 

with paths, a measure of complexity is the number of paths. The 

average number of arcs per path also is a measure that is related to 

the number of errors detected per input. For moderate size graphs 

with no directed cycles, it is easy to enumerate all the paths and 

the number of arcs on each. If there are directed cycles, it is 

necessary to put an upper limit on the number of arcs in the paths 

.considered in order to eliminate paths with an uncountable number of 

arcs. The number of ways that an arc can be reached indicates how 

accessible it is to testing. Measures based on this are the mean 

and standard deviation of the number of paths that traverse each arc 

or the number of arcs that are traversed by less than a fixed number 

of paths. 
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The complexity measures defined thus far depend only on the 

topology of the directed graph; it is also possible to use the branch 

probabilities. Since the paths are not equally likely, the measures 

involving paths can be weighted by the path probabilities. Given 

the probability that an arc will be traversed by a single inpu~, a 

complexity measure of the accessibility of the arcs for testing is the 

sum of these probabilities for all arcs. 

C. ANALYTICAL RESULTS 

Here we describe how to analytically calculate the expected 

number of errors detected by each of a sequence of inputs. For the 

purpose of simplifying the analysis, it is assumed that new errors 

are not created by the correction of errors. Given a computer program 

represented as a directed graph with branch probabilities, and given 

the expected number of errors on each arc, the output of the analysis 

is the expected number of errors detected. For example, Figure V-2 

shows the results of the analysis for the graph of Figure V-1 where 

the expected number of errors in each arc is 0.6 and for each branch 

node the probability of taking each arc is equal. 

The analysis is in two parts. First, it is necessary to c~l­

culate for each arc the probability that the arc will be traversed 

by an input. If there are no loops in the program, the calculation 

is easy: The probability of visiting the start node is 1, if there 

are k branching arcs the probability of traversing each arc is 1/k. 

The probability of reaching any node is the sum of the probabilities 

on the arcs coming into that node. For example, for Figure V-1, 

the probability of reaching node 1 is 1, the probability of traversing 
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EXPECTED NUMBER OF cRRO~S DETECTED VERSIGN l.O 

PROGRAM TITLE: ERROR DcTECTICN MODEL 

INPUTS = 20 

f\UMBER GF ARCS = 22 

ARC fRANCH TRAVERSAL EXPECTED NUMBER. 
TAIL l"'EAD PROB. 

l 2 1.0000 
2 3 C. 5000 . 
2 4 C.5COO 
4 1 o. 3333 
4 8 C.3333 
4 9 0.3333 
1 10 c. 5000 
1 11 o.sooo 
8 14 1 .0000 
9 14 C.5000 
9 15 0.5000 

10 13 1.0000 
11 13 1.0000 
13 16 l. 0000 
14 16 1.0000 
15 16 1.0000 

3 5 c.sooo 
3 6 C. 5000 
5 12 C. 5000 
b 12 C.5000 

12 3 C. 5000 
12 16 C.5000 

INITIAL EXPECTED ~UMBER OF ERRORS= 

INPUT 
l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

EXPECTED NUMBER 
OF EPRORS DETECTED 

3.45 
1.95 
1.39 
1.03 c.ao 
c.63 
0.51 
0.42 
0.36 
0.30 
C.26 
c.22 
0.20 
0.11 
0.15 o. 13 
0.12 
c.11 
0.09 o.oa 

F i gure V-2 

v-s 

PROB. OF ERR.ORS 
1.0000 0.60 
0.5000 0.60 
0.5000 0.60 
0.1667 0.60 
O.l6b7 0.60 
0.1&67 0.60 
0.0833 0.60 
0.0833 0.60 
0.1667 0.60 
0.0833 0.60 
0.0033 o. 60 
0.0833 0.60 
0.0833 0.60 
0.1667 0.60 
0.2500 0.60 
0.0833 0.60 
0.3333 0.60 
0.3333 0.60 
0.3333 0.60 
0.3333 0.60 
0.2500 0.60 o.sooo 0.60 

13 .20 

CUMMULATIVE 
cXPECTEO NUMBER 

uF ERRORS DETECTED 
3.45 
5.40 
6.79 1.az 
8.62 
9.25 
9.76 

10.19 
10. 54 
10 .84 
11.10 
11.33 
U.52 
11.69 
11.84 -- -
11.98 
12.10 
12.20 
12.30 
12.38 



arc 1-2 isl and the probability of reaching node 2 is 1. There are 

2 branches from node 2 so arc 2-3 and 2-4 each have probability 1/2. 

In this way the probability of reaching nodes 4,7,8,9,10,11,14 and 15 

and the probability of traversing the arcs out of these nodes can be 

calculated; see column 5 of Figure V-3. The loop from node 12 to node 

3 makes the analysis for arcs 3-5, 3-6, 5-12, 6-12, and 12-3 complicated 

because it is possible to return to node 3 more than once. The pro­

bability of reaching node 3 directly from node 2 is 1/2 and thus, 

there is a probability of 1/4 of immediately traversing arc 3-5. 

However, even if arc 3-6 is traversed there is some probability that 

after arc 6-12 is traversed arc 12-3 will be traversed and then arc 

3-5 will be traversed. Fortunately, it is not necessary to do this 

calculation by hand. It is possible to do a Markov chain analysis 

to compute the probabilities and a computer program has been written 

to do this calculation. Figure V-3 is the output of that program for 

the graph of Figure V-1. The "R" in the column labeled repeat indicates 

an arc that may be traversed more than once by a single input. The 

branch probability column gives the probability of traversing the arc, 

having reached the tail node. 

The second part of the analysis is to compute the expected 

number of errors detected. For notational convenience, the arcs 

are numbered j=l, ... ,n. Let p. 
J 

be the probability of traversing 

arc j. Let µ • 
J 

be the expected number of errors in arc 

expected number of errors detected by the first input is 

j . The 

~ n µ p After the first input, the expected number of errors in lj=l j j. 

each arc is reduced to µ. 2 = µ. (1-p.) (where the 2 indicates this 
J J J 
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is the expected number of errors in arc j before the second input). 

The expected number of errors detected by the second input is 

lj~l µ ·2P .• 
J J 

In general, for the kth input the expected number 

of errors is lj~l µjkpj where µjk = 
k-1 

µj (1-pj) . A computer 

program has been written to do the calculation and to draw the graph; 

Figures V-2 and V-4 are the outputs of that program. 

D. LIMITATION OF THE ANALYSIS 

The output of the model is an average; there is no information 

on what the distribution of the number of errors detected might be. 

It is possible to compute the standard deviation of the number of 

errors detected by the first input if the number of errors on each. 

arc is independent of the number of errors on every other arc. How­

ever, this calculation is impractical for the second and subsequent 

inputs. The simulation may be used to estimate the distribution of 

errors detected. 

E. COMPUTER PROGRAM 

Two computer programs have been written to do the analysis. 

They are written in FORTRAN. The programs and directions for use 

are included in Appendix E. 
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VI. ISSUES IN SYSTEM TESTING 

There are a number of issues that arise in the development 

of system tests for avionics. Some of these issues are common to 

many projects and it is possible to develop guidelines for action 

without considering the details of the particular avionics system. 

Here we discuss a number of issues that have been important considera­

tions in the development of system tests; the resolution of these 

issues has often been critical to the success of the system test effort , 

It is helpful to have a scenario to relate the issues. Here 

we consider a piece of avionics equipment. It is like a computer--it 

has memory, it inputs and outputs data and it runs programs. It has 

a test procedure; that is the complete test plan including a computer 

program and operator manual. The test procedure consists of individual 

tests. The equipment is given a preflight test to determine if i t is 

in the "go11 or"no-go" condition. It has inflight tests to be used 

routinely and tests to restart in case of failure. It is installed 

on several platforms, some with repair capability, some with none . 

A. - STRESS IN TESTING 

Testing as well as operational use weakens components and pro­

duces failures. The time for testing can be a significant part of 

the 110n time" for avionics equipment. Testing can involve high s tress 

on the system--often testing purposely ~ubjects the system to higher 

stress than during operation in order to (1) precipitate failures in 

weak components so they can be replaced before the mission begins , 

(2) reduce test time by testing items simultaneously and moving 
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quickly from one test to another and (3) detect malfunctions that mi~ht 

occur when the system is heavily load~d. One example of the use of 

high stress testing is the diagnostic tests run by maintenance engineers 

on general purpose computer systems. Another example is applying low 

voltages to equipment; this can precipitate failures (this is being 

used less frequently now since low voltage is particularly detrimental 

to solid state devices). There is, however, definitely a place for 

very low stress testing. The deep space missions employ very low 

stress testing in order to avoid failures due to testing. 

For avionics, preflight testing is always higher stress testing 

than testing during a mission. Platforms with repair capability c~n 

use higher stress testing during a mission. During a mission, _the 

decision to use high or low stress testing after a failure or after 

a power down depends on whether it is more important to have a precise 

indication of the capability of the equipment (use high stre~s) or it 

is more important to complete the mission with the equipment as is 

(use low stress). The use of the same tests during a mission as were 

used in preflight is not the best procedure in some situations; for 

some platforms it will be necessary to design tests with different level s 

of stress. 

It is critical that the design specifications for the preflight 

and inflight tests indicate clearly whether high stress or low stress 

is to be used . A critical design variable is the time allowed for 

testing; a long detailed test plan together with a short test time 

will result in a high stress design. Avionic systems for different 

platforms ~ay require a different level of stress for each platf9rm. 
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B. MICRODIAGNOSTICS 

In avionics systems that have microprogramming, it is possible 

to implement test programs in software and/or microprograms. There are 

several reasons why microprograms are an attractive alternative to 

software: (1) Microprograms require much less hardcore than software. 

Software may require input devices, data channels, main memory, etc., 

while microprograms only require a data path to a data register. (2) 

Microinstructions are much closer to actual hardware, so it is possible 

to ~et finer resolution in detecting and isolating errors. For example, 

it is possible to trap a machine language instruction before it is 

completed. (3) Microprograms are faster and require less storage 

than software because microinstructions can access basic hardware 

elements directly. 

There are drawbacks to microprograms: (1) They are expensive 

and difficult to modify. (2) They are less visible to the user than 

software. 

The use of microdiagnostics should be considered in any new 

system. It is good practice to write specifications that detail how 

the vendor will demonstrate that the microprograms are correct. 

C. HARDCORE 

"Hardcore" is defined to be that part of the system that must 

be fault-free for the test program to run and to output some test 

result. With a failure in hardcore, the operator has no guidance on 

what is wrong except that it is in hardcore. For most avionics systems, 

power supplies, sane net0ry and arithrretic capability are part of hardcore. 

The equipment designer's decisions determine the hardcore; if the 
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designer optimizes the operation of the equipment with only secondary 

consideration for testing, the result can be a large hardcore that 

greatly hinders testing. One of the worst situations is when there 

is only one way to start the testing; if there is a failure in the 

hardcore, the operator has no alternate means to begin the test and 

he must begin a trial and error testing of the complete hardcore. 

Hardcore can be classified into three categories. (1) Centra­

lized--all the hardcore components are in the equipment being tested. 

(2) External--the tests are driven from outside the equipment being 

tested; it is possible to go through a series of tests even if part 

of the equipment has failed. (3) Distributed--several hardcores so 

that the tests can be initialized from any of them. External and 

distributed are clearly superior to centralized for testing purposes, 

since there is less chance the operator will be faced with a failure 

and have no guidance on what caused the failure. 

A manufacturer•s procedures for testing often make it appear 

that there is only one way to start the testing even when there may 

be several. The equipment documentation and test procedures should 

clearly document any alternate starting procedures in case of hardcore 

failure. · 

Microprogramming has allowed hardcore to be reduced; it is 

possible to initiate microprograms for testing and, thus, external 

storage is not required to store test routines. Also, input channels 

are not needed to bring in the test routines. 

The decisions that determine hardcore{s) are usually made early 

in the design. Since hardcore design decisions are hard to change, it is 

critical that systems test personnel have input to the initial design 

deciaions . 
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D. THE OPERATOR IN TESTING 

Testing is a man-machine process where the man and the machine 

interact. The trend has been to give the machine more of the work 

because: (1) the machine is faster, (2) the machine is not bored by 

tedious tasks and (3) the machine can handle l arge amounts of detailed 

information. Also, the education and training of the operator has not 

kept pace with the greatly increased sophistication of the equipment. 

Humans have some unique capabilities t hat machines have not 

been able to duplicate. Humans have amazing capabilities for "pattern 

recognition" and they learn from experience much more successfully 

than any machine built thus far. The ability of operators to detect 

errors, anticipate breakdowns, and to correct for drift in settings 

is well known. A talented operator is clearly very valuable in the 

man-machine system. In order for the man to contribute, the tests 

must produce information for him to use. Tests that give only go/no-go 

lights do not best use the unique capabilities of the operator. While 

still assuming that some operators will be inexperienced and untalented, 

the designer should have the machine produce information that will 

allow the motivated operator to fully participate in the test. Research 

in human factors gives guidelines for how to best use the man; for 

example, it is possible to provide so much information that the operat or 

is overwhelmed. Also, the information provided must have some meaning, 

since humans tend to read meaning even into nonsense information . 

The personnel responsible for systems testing should consider 

testing as a man-machine process and should bring human factors con­

siderations into the design. In addition to the usual physical design 
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decisions, careful consideration should be given to the choice of 

information to be supplied to the operator during testing. 

E. REDUNDANCY AND RESTART 

The ability to operate after a failure has occurred is important 

for any avionics system. The object of redundancy is to have the per­

formance of the equipment unaffected by certain failures in the equip­

ment. The object of restart (or rollback) is to minimize the time 

and information loss after a failure. 

In hardware, redundancy is accomplished by having two or more 

pieces of hardware that perform the same job: the output is a majority 

vote of the hardware pieces. The effect is to delay the repair of a 

failed piece of hardware until a more convenient time (e.g., until 

the aircraft lands). Another hardware approach is to check the output 

of a part of the equipment for errors and repeat the operation if there 

is an error or indication of an error. Error detecting and error 

correcting data channels are examples. Typically, this type of testing 

takes extra time. The use of standby units is also considered a form 

of hardware redundancy. 

Software redundancy is sometimes implemented by doing a short 

approximate calculation to test the reasonableness of a long calculation; 

if there is a significant difference the calculations are done again. 

Restart or rollback is accomplished by periodically (or upon 

signal) outputting critical information to a storage device. If a 

failure occurs that requires restarting, it is possible to rollback to 

the restart point or it is possible to restart the operation more 

quickly than would be possible without the saved information. 
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F. DEGRADED MODE 

Prototype testing establishes a definition of how the equipment 

should operate. Maintenance testing determines if the system still 

meets that definition. If the equipment is not functioning or if it 

is not functioning as i t should, the operator sometimes must determine 

what part of the mission can be performed with the available equipment. 

Although it is widely recognized that equipment must sometimes 

be operated in a degraded mode and it is widely accepted that the 

operator, not the test procedure, determines if the equipment is in 

a go or no-go condition , many test procedures stop if a "severe" error 

is detected (the test procedure determines what is "severe"). Test 

procedures should be written so that the operator can, with little 

effort, override any stop in the test sequence. He should be able 

to force the testing of any part of the system. 

Design decisions affect the degraded mode operation. For 

example, if the equipment has two arithmetic units, is it possible 

to operate with just one? Is it possible to bypass or wire out a 

defective component? I s it possible to drive parts of the equipment 

externally? 

An effective way to make sure that degraded mode issues are 

properly addressed is t o put specific conditions into equipment spe­

cifications and acceptance tests. For example, in the acceptance test, 

faults could be placed in the equipment to observe the test procedure 

and degraded mode operation. 

G. INDEPENDENCE IN THE TEST PROCEDURE 

Since time is s o critical in the testing of avionics, the 

test procedures should be designed so that it is possible to run 
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some tests independent of the availability of some parts of the equipment 

and independent of the results of previous tests. The goal of complete 

independence is not attainable. It is necessary to have some tests 

that can be run only if certain parts of the equipment are operational. 

Also, some tests can be interpreted correctly only if several previous 

tests were successful. Nevertheless, it is very desirable that after 

a failure has been identified, the testing of other parts of the equip­

ment can continue until the part has been repaired. 

A test plan is called combinational if the sequence of tests 

is fixed. A test plan is called sequential if the sequence of tests 

depends on the outcome of previous tests. That is, after performing 

several tests, the next test to be performed is chosen by considering 

the outcome of some or all of the previous tests. Experience has shown 

that completely sequential testing is not practical for nore than a few tests, 

because the test program becomes too large, too complex and too slow to 

justify the benefits of sequential testing . However, it is possible 

to do some very modest sequential testing by identifying a small number 

of tests (say 3-5) and then make the test sequence depend on the outcome 

of these tests. For example, if the test of the arithmetic unit failed, 

after reporting the failure to the operator, the test sequence could 

be modified to exclude all tests that needed the arithmetic unit. This 

would allow the testing to continue while the arithmetic unit was being 

repaired or replaced. This modest sequential testing offers advantages 

over the usual testing which is combinational or completely sequential. 

H. AUTOMATIC ABORT 

One reason that hardware failures and software errors are hard 

to locate is that considerable time may elapse until the failure or 
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error is detected. Until the error is detected, the contents of 

memory may be greatly modified by executing data, using incorrect 

data, etc. It is often very difficult to determine exactly when the 

error occurred or which instruction was being executed. Therefore, it 

is useful to be able to stop the equipment immediately after an error 

has occurred. Some equipment has included a special counter that 

must be reset periodically (e.g., 1 second real time) or the equipment 

stops (or turns on a light, or causes a dump of information to a backup 

storage). On some equipment a memory location is monitored~ if it is 

not changed in a prescribed time, the equipment is known not to be 

performing correctly. This feature can be helpful in prototype testing 

when loss of control is frequent and difficult to diagnose. 

The action taken when the counter stops the equipment should 

be nondestructive, since the reason for the stop may be that the equip­

ment is severely overloaded. The operator should always be able to 

override the effect of the counter. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

This project has addressed the areas of prototype testing, 

maintenance testing, software error detection analysis (simulation 

and analytic models) and issues in systems testing. The purpose 

of each research effort has been to provide concepts or tools for 

improving the testing function. Collectively, these concepts and 

tools, when augmented by existing techniques, such as structured 

programming, provide test management with a systems test methodology. 

The important conclusions and recommendations pertaining to each 

research area will now be discussed. 

A. PROTOTYPE TESTING 

This effort was concerned with the development of procedures 

and a simulation model to be applied in the planning of prototype 

testing. The procedural aspects involved the establishment of a 

terminology, symbology and directed graph representation for describing 

the module relationships which exist during prototype testing. The 

simulation model is designed to aid the designer and tester in identi­

fying potential resource usage conflicts which would result in unde­

sirable performance . This model has been successfully used for simu­

lating the execution of a series of tasks, invoked by specified modules, 

which require the use of designated resources. We recommend that the 

next step in the model development be an investigation of the ability 

of the model to detect and diagnose faults which have been purpose­

fully introduced. This would be followed by the application of the 

model to NADC prototype test planning. 
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B. MAINTENANCE TESTING 

The maintenance testing methodology which we have described 

is applicable primarily to those tests which are employed after a 

system has been delivered to the customer. The tests are invoked 

prior to or during a mission in order to ascertain the ability of the 

system to successfully complete the mission. The central idea of 

the methodology is to use the tests to successively partition the 

possible faults into subsets, so that the actual fault can be ~dentified. 

We conclude that this methodology has potential for isolating both 

hardware and software faults. It appears that this technique could 

be used to develop test plans for module testing in addition to the 

maintenance testing application. It is recommend that the next step 

be the determination of the feasibility of the methodology as applied 

to the development of maintenance tests for a designated NADC system. 

This could involve the identification of a set of faults and possible 

tests such that the number of tests required for fault isolation is 

minimized. 

C . ERROR SIMULATION MODEL 

We conclude from having exercised the error simulation model 

extensively that certain complex structures do have an adverse effect 

on the ability to detect errors and to provide adequate test coverage 

of a program. A next step would be the application of the model to 

software test planning at NADC. Actual programs which are to be tested 

would be put into the directed graph format, perhaps by an automated 

translation process as suggested by NADC, for input to the simulation 

program. The error detection characteristics of each program would 
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be simulated. The results would be related to measures of program 

complexity. The relationship between error detection and complexity 

would be used to allocate test resources to the programs. In addition, 

by using the model as described above, the model could be employed at 

NADC during the software design phase for the purpose of identifying 

the error detection characteristics of proposed program structures. 

D. ANALYTIC ERROR DETECTION MODEL 

The analytic model has the advantage of providing the expected 

number of detected errors, as a function of number of inputs, less 

expensively (CPU time and core) than with simulation. It can also 

provide a check on the validity of the simulation model. The dis­

advantage of the model is that it provides limited information concerning 

the variability of detected number of errors. We recommend that this 

model be applied in the same manner as the simulation model just dis­

cussed. The utility of each approach could be determined in an actual 

test environment. It is recommended that, initially, the analytic model 

be used in those situations where it is desired to rapidly obtain a 

ranking of the error detection characteristics of various programs. The 

error simulation model could be employed in those instances where 

greater detail in terms of path traversals, test coverage and error de­

tection variability is desired. 

E. ISSUES IN TESTING 

This section presented a summary of certain key issues in 

systems testing, primarily those associated with maintenance testing 

and error recovery capability. Many of these issues are major concerns 

VII-3 



of NADC in current test operations. For example, the use of micro­

programming for error diagnosis has the obvious advantages of com­

pactness of memory and speed of execution. However, the lack of visi­

bility of diagnostics makes it difficult for NADC to validate vendor 

supplied products. We reconunend that the issues which have been 

discussed be included as design and test factors during the design 

phase of future systems. This procedure would ensure the consideration 

of major test issues sufficiently early in the development cycle to 

have a beneficial effect on the testability of the delivered system. 
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