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Modular Network Function Virtualization
Dennis Volpano

Naval Postgraduate School
Monterey, CA 93943

Abstract—Network functions like load balancers and stateful
firewalls which traditionally have been packaged in a single
proprietary device are now being virtualized in software across
multiple physical devices networked together to achieve greater
flexibility and scale. A virtualization can become very complex.
Separating its definition from the software that implements it
allows this complexity to be managed more easily. This paper
describes some elementary behaviors that can be rigorously
combined to produce modular definitions of new virtualizations.
Behaviors are expressed using a new type of symbolic finite
automaton called a λ-SFA. These automata can be formally
analyzed and serve as a guide for synthesizing efficient code.
As behaviors are combined, proofs of invariants for the result
can leverage proofs of invariants for the elementary behaviors.

I. INTRODUCTION

Network functions like switching, routing, load balancing
and so on traditionally have been implemented in a single
proprietary device with a fixed number of physical ports.
Today there’s interest in implementing such functions in
software across commodity platforms networked together to
scale a function to any number of physical ports. This task
is called network function virtualization (NFV). We seek a
methodology for this task that makes use of reusable compo-
nents and facilitates verifying virtualizations are correct.

Industry efforts supporting NFV focus primarily on building
scalable virtual machine (VM) architectures and interfaces to
configure them [10], [15]. The software components compris-
ing a virtualization each map to a VM image. As executables,
VM images cannot be usefully combined beyond composing
them. This is true of software components in general. Many
network functions though are not compositions of behaviors
but rather intersections of them. Further, with VM images
there’s no hope of formally verifying in any practical way
that a function is correctly virtualized. Thus VM images and
software components in general are unsuitable as reusable
components in a virtualization methodology.

This paper proposes a methodology whereby a virtualiza-
tion is formally defined through intersecting and composing
reusable elementary behaviors. A formal definition can be
more easily reasoned about than low-level code. Executable
code is then synthesized from the formal definition. A set of
elementary behaviors is given in the next section. It is shown
how they can be reused to formally define virtualizations of
three different network functions: a switch, a stateful firewall
and a direct-return server load balancer. The goal in each case
is to implement the function as a network of devices that scales
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up the number of physical ports the function can support.
This is followed by an example of intersecting behaviors in
Sec. IV. Proofs of invariants for complex behaviors leverage
proofs of invariants for elementary ones. An example is given
in Sec. IV-A. Code synthesis is an area of future work and is
briefly discussed in Sec. V.

II. ELEMENTARY BEHAVIORS FOR NFV

Among the most fundamental behaviors is forwarding be-
tween ports. Consider 3 ports, namely 2, 4 and 6, and the
behavior of forwarding every frame arriving at port 2 to
either port 4 or 6. Suppose each port is divided into ingress
and egress interfaces (e.g. 2i and 2e for port 2). Then the
forwarding behavior is described in Fig. 1 by a new type of
symbolic finite automaton called a λ-SFA. Its input is a finite
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Fig. 1. λ-SFA for forwarding one frame from port 2 to port 4 or 6

sequence of triples (g, l, t) where g is an Ethernet frame and
l its location at time t. These elements are referenced by cf
(current frame), loc (location) and ct (current time). In this
example, egress is shorthand for loc = 2e∨loc = 4e∨loc = 6e.
In general, a transition is labeled with a proposition that can
be any Boolean combination of linear arithmetic constraints
on integers. It may also include a λ binding. For instance, any
frame that causes transition from A to B can be referenced
in the future since it’s bound to λ variable f . The sequences
this λ-SFA accepts are those in which every frame arriving at
port 2i is eventually forwarded to port 4e or 6e. No sequence
in which the frame is forwarded to the originating port 2e is
ever accepted. Which port the frame exits depends on other
behaviors which are beyond the scope of forwarding. The port
may be determined by learning as in a switch or a route table.
Neither should be part of forwarding though as this would
over constrain it. Forwarding specifies the most basic behavior
which can then be constrained in different ways by intersecting
it with other behaviors such as learning to get a switch or
routing to get a router.

The forwarding λ-SFA buffers only one frame as there’s
only one λ variable. It is possible to queue up to k frames
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using only 2k + 2 states, k variables and O(k2) transitions.
These symbolic automata are exponentially more succinct than
classical deterministic finite automata by virtue of λ variables.

A. MAC Address Learning

Consider learning MAC addresses behind port 4 of ports
2, 4 and 6. We wish to learn the source MAC address of a
frame at ingress interface 4i and then for 15 seconds thereafter
ensure all frames destined for that address are forwarded to
egress interface 4e. The timeout is soft in that a 15 second
timer is reset if another frame with the same source address is
received at 4i before the timeout occurs. A λ-SFA specifying
this behavior is shown in Fig. 2. Here g.ts is a time stamp
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Learning at port 4 
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λg.	loc	=	4i	�	(cf.sa	=	g.sa	�	ct	−	g.ts	>	15sec)	

Fig. 2. Learning MAC addresses at port 4 of ports 2, 4 and 6

referring to the time g arrived at 4i while g.sa refers to g’s
source address. The transition labeled

λg. loc = 4i ∧ (cf.sa = g.sa ∨ ct − g.ts > 15sec)

effectively resets the timer if another frame having source
address g.sa arrives at 4i before the timer expires. After the
transition from state 1 to 2 is made, no frame destined for
the source address of g is allowed at any egress port other
than 4e for up to 15 seconds thereafter. After that, forwarding
to any port is allowed. Note the machine does not constrain
forwarding of broadcasts or multicast frames assuming that
no frame is ever sent with such an address as its source
hardware address. Multiple MAC addresses can be learned
but not more than one simultaneously as there’s only one λ
variable. Learning up to k addresses can be done with k + 2
states, k variables and O(k2) transitions.

A λ variable’s time stamp attribute provides a form of freeze
quantifier like that of TPTL [2]. This makes a λ-SFA a type of
timed automaton [1]. The difference is that a timed automaton
is an ω-automaton with clock variables that can be reset. A
clock variable is a way to store elapsed time between events
for future reference. A λ-SFA is not an ω-automaton and has
no clock variables. Computing elapsed time between events
is done by storing the events in two different λ variables and
computing the difference in their time stamps.

B. Source Socket Learning

Like switches, stateful firewalls also learn but they learn
source sockets. A λ-SFA for learning source sockets at port
4 is identical to MAC address learning at port 4 except that
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Round robin load balancing of SYN requests from 2i to 
ports 4e and 6e 
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SYN	�	loc	=	4e	

~egress	�	~SYN	

SYN	�	loc	=	6e	

Fig. 3. Round-robin load balancing from port 2 to ports 4 and 6

it learns the port of a TCP source socket rather than a source
hardware address. Specifically, cf.da = g.sa is replaced in
MAC learning by

cf.ethertype = IPv4 ∧ cf.ipproto = TCP ∧
cf.destip = g.srcip ∧ cf.destport = g.srcport

and cf.sa = g.sa is replaced by

cf.ethertype = IPv4 ∧ cf.ipproto = TCP ∧
cf.srcip = g.srcip ∧ cf.srcport = g.srcport

C. Stateful Firewalling

A stateful firewall blocks packets destined for a socket
behind a port unless traffic from that socket has been seen
at the port in the recent past. Suppose external traffic arrives
at port 2 and internal traffic at ports 4 and 6. A λ-SFA for
stateful firewalling of ports 4 and 6 is obtained with only minor
changes to the λ-SFA for source-socket learning. First, learn
source sockets of packets arriving at ports 4 and 6. Next, add a
transition from state 1 to 3 labeled loc = 4e∨ loc = 6e so that
no packet arriving at port 2 and destined for a socket behind
ports 4 or 6 will be forwarded unless the socket has been
learned at 4 or 6 in the last 15 seconds. Finally replace the tran-
sition from state 1 to itself with loc 6= 4i∧loc 6= 4e∧loc 6= 6e.

D. Load Balancing

Suppose we wish to distribute TCP connection requests
from one ingress port to other ports in a round-robin fashion.
The λ-SFA in Fig. 3 gives this semantics among 3 ports where
requests arriving at port 2 are balanced across ports 4 and 6.
Here SYN stands for cf.ethertype = IPv4∧cf.ipproto = TCP∧
cf.SYN = 1 ∧ cf.ACK = 0. Notice that round-robin balancing
is not concerned with making sure all packets belonging to
a TCP handshake are steered to the same server. Steering is
beyond its scope and is introduced in a virtualization of load
balancing using source-socket learning.

A slight modification of the λ-SFA for load balancing
produces a λ-SFA for server load balancing. Suppose there
are two servers, one behind port 4 with MAC address M1
and another behind port 6 with MAC address M2. Then a
λ-SFA for server load balancing is shown in Fig. 4.

III. MODULAR DEFINITIONS OF VIRTUALIZED FUNCTIONS

A virtualized network function is defined using a repository
of reusable λ-SFA. Ordinarily one of these functions would
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Round robin server load balancing from 2 to ports 4e 
and 6e (server behind 4 has MAC M1 and server behind 

6 has MAC M2) 
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~egress	�	~SYN	
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SYN	�	(loc	=	2e	�	loc	=	4e	�		
(loc	=	6e	�	cf.da	≠	M2))	

Fig. 4. Round-robin balancing of TCP connection requests arriving at port 2
to servers behind ports 4 and 6 with MAC addresses M1 and M2 respectively

be implemented by a single physical device having a fixed
number of access ports. Virtualizing it means implementing it
across many devices networked together to provide a much
larger number of access ports. Three examples are given:
a complete modular definition of a virtual switch, a virtual
stateful firewall and a virtual direct-return server load bal-
ancer. Each is defined using the elementary behaviors of the
preceding section. The general forms of these behaviors are
summarized in Table I.

TABLE I
λ-SFA REPOSITORY FOR NFV

MLQ(S, t) learn MAC addresses at all ports in S where t is a
soft timeout on how long a source address is
remembered at a port and S ⊆ Q

SLQ(S, t) learn source sockets at all ports in S where t is a soft
timeout on how long a source socket is remembered
at a port and S ⊆ Q

FWDQ(R,S) forward from all ports in R to those in S where
R,S ⊆ Q

SFWQ(S, t) stateful firewall where ports in S are internal, t is a
soft timeout on how long traffic to a source socket is
allowed absent traffic from the socket and S ⊆ Q

LBQ(R,S) round-robin load balance TCP connection requests
arriving at a port in R to ports in S where R,S ⊆ Q

SLBQ(R,S) round-robin server load balancing of TCP connection
requests arriving at a port in R to ports in S where
R ⊆ Q and S ⊆ Q× HWaddr

Suppose we want a virtual switch capable of supporting
more ports than any one physical switch can support. The
switches are arranged in a stack and connected by a trunk link.
Switches at the top and bottom of the stack have one trunk
port apiece while each interior switch has two. The virtual
switch architecture is shown in Fig. 5. Each switch performs

Switch stack 
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Fig. 5. Virtual switch

MAC address learning at its non-trunk ports only. That way
the number of MAC addresses learned at any physical switch
is independent of stack size. A unicast frame received at a non-
trunk port like 2i should be forwarded to both trunk ports (4e
and 6e) unless it’s destined for a host behind another one of its

non-trunk ports (here just 8e). In general, each device forwards
to its trunk ports unless the frame is destined for a host behind
one of its non-trunk ports. Broadcasts are forwarded out all
ports except the originating port.

To give the architecture this desired semantics, a tensor
product of λ-SFA is computed for each of the devices. The
product computed for the FWD-B device is shown in Table II
(FWD-A and FWD-C are similar). MAC address learning

TABLE II
THE λ-SFA FOR VIRTUAL SWITCH DEVICE FWD-B

Device Q Tensor Product
FWD-B {2, 4, 6, 8} FWDQ({2i}, {4e, 6e, 8e})×

FWDQ({4i}, {2e, 6e, 8e})×
FWDQ({8i}, {2e, 4e, 6e})×
FWDQ({6i}, {2e, 4e, 8e})×
MLQ({2i, 8i}, 120sec)

occurs at ports 2i and 8i only. Each ingress port can forward
any frame to every other port. So how is a unicast frame
arriving at say 8i prevented from being forwarded to trunk
ports 4e and 6e if the frame is destined for a host that was
learned at 2i? If the host’s MAC address was learned within
the last 120 seconds, MLQ({2i, 8i}, 120sec) will prevent it.

A. Virtual Stateful Firewall

Consider a virtual stateful firewall comprised of two physi-
cal stateful firewalls. Together they appear as just one firewall
to any client on an internal network. The virtual firewall
must ensure that no packets sent to a client in response to
a TCP connection the client opened are dropped by either
firewall as a result of being unaware of the connection. The
desired behavior can be specified using our repository of
λ-SFA. The idea is to steer all traffic in a single connection
through one of the two physical firewalls for the lifetime of
the connection. Thus there is no need for the firewalls to
communicate connection state so the virtualization scales out.

A virtual stateful firewall architecture is shown in Fig. 6.
The internal network connects to the virtual firewall via

Virtualized stateful firewall 
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Fig. 6. Virtual stateful firewall

two devices LB-A and LB-B. They balance TCP connection
requests from the internal network to the external network
through two physical stateful firewalls SFW-A and SFW-B.
Requests are forwarded on the other side of the firewalls. The
semantics of the A devices are given by the products shown in
Table III (B devices are similar). Each device is a switch even
though the firewalls learn ports for TCP/IP source sockets.
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How does the virtual firewall work? Suppose egress inter-
faces 4e, 7e, 19e and 20e are each connected to a different
gateway router and that the internal gateways behind 19e and
20e have been statically configured to know the hardware
addresses of the external gateways. Suppose a TCP SYN
packet arrives at say 20e framed with a destination hardware
address matching one of the external gateway routers. For-
warding at LB-A allows the frame to be forwarded out 16e
or 18e. Which one is determined by load balancing, specifi-
cally LB{16,18,20}({20i}, {16e, 18e}). Suppose it’s forwarded
to SFW-A. By learning MAC addresses at ports 8i and 10i,
SFW-A will have learned the port (8e or 10e) to which the
frame should be forwarded. Suppose it is 8e. Then FWD-A
receives the frame at 6i and learns the source socket of the
packet at port 6 as guaranteed by SL. It then forwards the
frame out 4e to the gateway.

Now suppose a SYN-ACK packet arrives in response at
4i framed with the hardware address of an internal gateway.
FWD-A will forward it out 6e assuming the packet’s destina-
tion socket matches the source socket learned there from the
SYN packet (enforced by SL{2,4,6}({2i, 6i}, 120sec)). Since
SFW-A processed the original SYN, it will permit the SYN-
ACK to be forwarded but only to port 14e as guaranteed by
SFW. LB-A then forwards it out 20e. Thereafter connection
traffic is forwarded to the right physical firewall by socket
learning at the LB and FWD devices.

If FWD-A has not learned the destination socket of a packet
it receives at 4e then its forwarding behavior as prescribed by
its definition in Table III allows it to forward the packet to
SFW-A or SFW-B. But since it hasn’t learned the socket,
neither of these devices will have seen a packet with a
matching source socket so SFW will prevent them from
forwarding the packet to the internal side.

B. Virtual Direct-return Server Load Balancer

One type of commercial load balancer is a physical device
that distributes traffic arriving at an ingress interface to mul-
tiple egress interfaces based on some distribution algorithm
like round-robin scheduling. A direct-return balancer gives
the ingress interface a public IP address called the virtual IP
address or VIP. Each server connected to an egress interface
of the device has an interface also with the virtual IP address.
The balancer rewrites the destination hardware address of an

TABLE III
λ-SFA FOR A DEVICES OF VIRTUAL STATEFUL FIREWALL

Device Q Tensor Product
LB-A {16, 18, 20} LBQ({20i}, {16e, 18e})×

FWDQ({16i, 18i}, {20e})×
FWDQ({20i}, {16e, 18e})×
SLQ({16i, 18i}, 120sec)×

SFW-A {8, 10, 12, 14} FWDQ({12i, 14i}, {8e, 10e})×
FWDQ({8i, 10i}, {12e, 14e})×
SFWQ({12i, 14i}, 120sec)×
MLQ({8i, 10i}, 120sec)

FWD-A {2, 4, 6} FWDQ({2i, 61}, {4e})×
FWDQ({4i}, {2e, 6e})×
SLQ({2i, 6i}, 120sec)

TABLE IV
λ-SFA FOR A DEVICES OF VIRTUAL SERVER LOAD BALANCER

Device Q Tensor Product
LB-A {2, 4, 6} LBQ({2i}, {4e, 6e})×

FWDQ({2i}, {4e, 6e})×
FWDQ({4i, 6i}, {2e})×
SLQ({4i, 6i}, 120sec)×
MLQ({2i}, 120sec)

SLB-A {8, 10, 12, 14} FWDQ({12i, 14i}, {8e, 10e})×
FWDQ({8i, 10i}, {12e, 14e})×
SLBQ({8i, 10i}, {(12e,M1),

(14e,M2)})×
SLQ({12i, 14i}, 120sec)×
MLQ({8i, 10i}, 120sec)

incoming frame to that of one of the server interfaces depend-
ing on the distribution algorithm. Therefore the balancer is
transparent to the server which can reply with a frame destined
for a router as opposed to the balancer. The balancer merely
has to bridge such frames, hence direct return.

A virtual direct-return server load balancer architecture is
given in Fig. 7. TCP connection requests to VIP arrive at
interfaces 2i and 7i. Suppose each of these interfaces is
connected to a gateway to a different subnet. Because each is
connected to its own gateway, replies are not bottlenecked by a
single device so the architecture can scale out. The architecture
also has the property that the load distribution to the servers
remains invariant under changes to the load distribution at
2i and 7i. TCP requests are bridged via two tiers of load
balancing to one of four servers. The LB tier balances TCP
connection requests between the SLB devices, each of which
balances them between two servers. Unlike the LB devices,
the SLB devices also rewrite destination hardware addresses
to match those of the servers. We can give the architecture
this desired behavior by the products for A devices shown in
Table IV (B devices are similar).

IV. TENSOR PRODUCTS

The tensor product of two λ-SFA is another λ-SFA that
describes their intersection. It is how elementary behaviors
are refined to produce more detailed and complex behaviors.
For example, consider the product of the forwarding and

Virtualized direct-return server load balancer; uniform load 
dist when input is non-uniform 
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Fig. 7. Virtual direct-return server load balancer

4

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): SWFAN 17: International Workshop on Software-Driven Flexible
and Agile Networking

925



TABLE V
FWD{2,4,6}({2i}, {4e, 6e})×ML{2,4,6}({4i}, 15sec)

State Transition
A1 A1: loc 6= 2i ∧ loc 6= 4i

A2: λg. loc = 4i
B1: λf. loc = 2i

A2 A1: loc 6= 2i ∧ loc 6= 4i ∧ (ct − g.ts > 15sec)
A2: loc 6= 2i ∧ (loc 6= 4i ∨ cf .sa 6= g.sa) ∧ (¬egress ∨ cf .da 6= g.sa ∨ loc = 4e) ∧ (ct − g.ts < 16sec)
A2: λg. loc = 4i ∧ (cf .sa = g.sa ∨ (ct − g.ts > 15sec))
B2: λf. loc = 2i ∧ (ct − g.ts < 16sec)
B1: λf. loc = 2i ∧ (ct − g.ts > 15sec)

B1 A1: cf = f ∧ (loc = 4e ∨ loc = 6e)
B1: (cf 6= f ∨ ¬egress) ∧ loc 6= 4i
B2: λg. loc = 4i

B2 A1: cf = f ∧ (loc = 4e ∨ loc = 6e) ∧ (ct − g.ts > 15sec)
B2: λg. loc = 4i ∧ (cf .sa = g.sa ∨ (ct − g.ts > 15sec))
A2: cf = f ∧ (loc = 4e ∨ loc = 6e) ∧ (cf .da 6= g.sa ∨ loc = 4e) ∧ (ct − g.ts < 16sec)
B1: (cf 6= f ∨ ¬egress) ∧ loc 6= 4i ∧ (ct − g.ts > 15sec)
B2: (cf 6= f ∨ ¬egress) ∧ (loc 6= 4i ∨ cf .sa 6= g.sa) ∧ (¬egress ∨ cf .da 6= g.sa ∨ loc = 4e) ∧ (ct − g.ts < 16sec)

learning machines FWD{2,4,6}({2i}, {4e, 6e}) in Fig. 1 and
ML{2,4,6}({4i}, 15sec) in Fig. 2. We would expect it to be a
smarter forwarding machine since it is mixed with learning.
Indeed we see this in their product given in Table V (states C
and 3 are ignored in the product since these are states from
which no final state can be reached). Notice start state A1
doesn’t transition to B2. That’s because loc = 2i∧ loc = 4i is
unsatisfiable. It does transition however to A2 when a frame
arrives at 4i. The frame is then bound to g. In state A2, if a
frame arrives at 2i then it will be bound to f and a transition
is made to B2 or B1 depending on whether knowledge of g’s
location has expired. Suppose it hasn’t and we proceed to B2.
From there a transition will be made to A2 if the current frame
is f , it’s located at egress port 4e or 6e, and knowledge of g’s
location, namely port 4, has not expired. In this case, notice the
remaining condition on the transition requires that the egress
port be 4e if the current frame’s destination hardware address
cf .da matches the learned MAC address g.sa. This illustrates
the refinement of forwarding in light of learning.

A. Verification

Proofs about elementary behaviors can be leveraged in
proofs about their products. To illustrate, we formulate in-
variants for the forwarding and learning machines of Figs. 1
and 2. They are then used directly to get invariants for states
of the product shown in Table V, the proofs of which follow
from those for the individual forwarding and learning machine
invariants. We begin with some definitions that help to express
the invariants.

A frame received in an input sequence w at a port in set R
can be buffered in a buffer of size m for R if at most m− 1
frames were received at R and not forwarded before the frame
was received. We say a frame received in w at a port in R is
pending in w in a buffer of size m for R if it can be buffered
in a buffer of size m for R and is not forwarded in w. Let
FwdQ(R,m) be true for sequence w if every frame received
in w at a port in R that can be buffered in a buffer of size m
for R is forwarded in w to a port in Q−R.

For a λ-SFA with transition function δ, we define a multi-
step transition function called δ̂ in the standard way. If s is
a state and σ maps λ variables to frames then δ̂(s, w, σ) is a
pair consisting of the state reached from s on input w using
one or more transitions of δ and the mapping σ updated with
bindings for λ variables according to these transitions. Then
the state invariants for FWD{2,4,6}({2i}, {4e, 6e}) become
SA(w): ∃σ, σ′. δ̂(A,w, σ) = (A, σ′) iff Fwd{2,4,6}({2}, 1)

is true for w.
SB(w): ∃σ, σ′. δ̂(A,w, σ) = (B, σ′) iff w has exactly one

frame σ′(f) pending in w in a buffer of size 1 for port 2 and
Fwd{2,4,6}({2}, 1) holds for w without σ′(f).
SC(w): ∃σ, σ′. δ̂(A,w, σ) = (C, σ′) iff Fwd{2,4,6}({2}, 1)

is false for w.
Proof proceeds by mutual induction on the length of w.
We now formulate invariants for ML{2,4,6}({4i}, 15sec).

Arriving at provable invariants for it is more challenging. The
most recent source MAC address seen at port 4 may not be
learned if another source MAC is currently learned there. So
the current MAC address learned there if any is the one ending
the longest unexpired path for port 4.

Let a path for MAC address b in w be a subsequence of
ingress frames whose source addresses are b and for no two
consecutive frames in the subsequence with arrival times t and
t′ is t′− t > 15sec. A path for address b in w is unexpired for
port k if it ends with an ingress frame at k at time t′ and t−t′ <
16sec if w ends with a frame at time t. Address b is learned at
port k in w, denoted L(b, w, k), if there’s a path for b in w that
is unexpired for k. Finally, we say there’s proper forwarding in
w with respect to learning at port k, denoted PF(k,w), if for
all prefixes u.(h, je, t) of w, L(h.da, u.(h, je, t), k) implies
j = k. The state invariants become
S1(w): ∃σ, σ′. δ̂(1, w, σ) = (1, σ′) iff PF(4, w) and for no

address is there an unexpired path in w for port 4.
S2(w): ∃σ, σ′. δ̂(1, w, σ) = (2, σ′) iff PF(4, w) and σ′(g)

ends the longest unexpired path for σ′(g.sa) in w for port 4
from the end of the last expired path in w for port 4.
S3(w)]: ∃σ, σ′.δ̂(1, w, σ) = (3, σ′) iff ¬PF(4, w).
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Now we can construct invariants for the states of the tensor
product in Table V. For instance, the invariant for state B2 is
the conjunction of SB and S2:
SB2(w) : ∃σ, σ′. δ̂(A1, w, σ) = (B2, σ′) iff w has exactly

one frame σ′(f) pending in w in a buffer of size 1 for port 2,
Fwd{2,4,6}({2}, 1) holds for w without σ′(f), PF(4, w) and
σ′(g) ends the longest unexpired path for σ′(g.sa) in w for
port 4 from the end of the last expired path in w for port 4.

V. CODE SYNTHESIS

A λ-SFA expects an input sequence and accepts or rejects
it. The sequence might be produced by a switch or middlebox
and the λ-SFA could serve to check either offline or online
whether the device behaves according to the λ-SFA. While
this is useful, the long-term goal is to synthesize code from the
λ-SFA that is guaranteed to produce only acceptable behaviors.
A λ-SFA can make transitions on either ingress or egress
activity. A received frame might cause a transition to a new
state but its transmission to a particular egress port can also
cause a transition. Thus generated code cannot merely “run” a
λ-SFA on a stream of received frames. Some of its transitions
occur when frames are transmitted from egress ports but no
such transmissions are part of the input stream. It’s up to the
code to produce them in response to ingress activity. Further,
while propositions like cf = f suggest when to output a
frame, there may be a choice of transitions within a state
such as reading or writing a frame. So while every λ-SFA
is deterministic, choices arise in the steps the code can take,
making code generation a code synthesis problem. In some
cases, a heuristic may guide us, say for example, forwarding
before buffering more input. But this would reduce latency at
the expense of throughput so there are tradeoffs to consider.

VI. RELATED WORK

There has been extensive work done in programming net-
works through higher-level languages [6], [9], [11], [12],
[14] however the focus has not been on identifying reusable
primitives. Such focus can be seen more in the early work
around kernel network stack development and later in exten-
sible routers [5], [7]. Among the more influential efforts in
this area is Click [8], a Linux-based platform for building a
router from reusable modules that are linked together to form
a packet-processing chain. Click modules are C++ classes that
can reflect arbitrary computation. Thus they are limited to
chaining and not amenable to verification.

NetKat [3] is a language for formally describing packet
paths through a network. Extensions have been developed to
handle paths determined by more than just forwarding tables
in the network. Temporal NetKat [4] can describe paths that
depend on a packet’s history in the network while WNetKat
[13] can handle paths that depend on link latency, bandwidth
and device state. The focus here is on describing paths in order
to answer queries about the network or configure it. The work
though is unsuitable for specifying the semantics of devices
in the network since real-time constraints are not considered.

VII. CONCLUSIONS

NFV gives network operators the ability to rapidly provision
a network function normally found in a proprietary middlebox
on a much larger scale using commodity hardware. Efforts
to support NFV have focused primarily on implementation,
specifically, building scalable VM architectures and interfaces
to configure them in order to virtualize some network func-
tion. This paper takes a different approach. The emphasis
is on building verifiably-correct virtualizations starting with
automata for elementary component behaviors and combining
them to get the desired behavior. Reasoning is done incre-
mentally and the resulting proofs can be leveraged when these
automata are combined. Executable code whose performance
rivals that of custom-built software has yet to be synthesized
for λ-SFA. But we believe synthesizing efficient code from
a provably-correct λ-SFA will be easier than proving non-
synthesized code correct.
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