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Generalized Optimal Control for Autonomous Mine Countermeasures Missions
Sean Kragelund , Claire Walton, Isaac Kaminer, and Vladimir Dobrokhodov

Abstract—This article presents a computational framework for planning
mine countermeasures (MCM) search missions by autonomous vehicles. It
employs generalized optimal control (GenOC), a model-based trajectory
optimization approach, to maximize the expected search performance of
vehicle–sensor pairs in different minehunting scenarios. We describe each
element of the proposed framework and adapt it to solve real-world MCM
motion planning problems. A key contribution of this article develops sensor
models that are more tunable than conventional ones based on lateral
range curves. The proposed models incorporate engineering parameters
and 3-D geometry to compute mine detection probability as a function of
sonar design and search vehicle trajectories. Specific examples for various
forward-looking and sidescan sonar systems deployed by unmanned ve-
hicles are included. Objective computations utilize these sonar detection
models during optimization to minimize the risk that candidate search
trajectories fail to detect mines in an area of interest. Simulation results
highlight the flexibility of our proposed GenOC framework and confirm
that optimal trajectories outperform conventional search patterns under
time or resource constraints. We conclude by identifying some of the
practical considerations of this approach, and suggest ways that numerical
analysis of GenOC solutions can be used for MCM mission planning and
decision aid development.

Index Terms—Autonomous underwater vehicle (AUV), autonomous
vehicles, mine countermeasures (MCM), motion planning, optimal control,
unmanned surface vessel (USV), unmanned vehicles.

I. INTRODUCTION

O VER the last two decades, unmanned vehicle systems have
grown steadily more capable, reliable, and ubiquitous. As system

designers increasingly turn to commercial technologies and open archi-
tectures, it is easier than ever for robotic systems to interoperate. As a
result, multiple dissimilar vehicles can be combined into a collaborative
team to overcome individual vehicle limitations and deliver advanced
capabilities—even across operating domains. Autonomous vehicle
teams have great potential in a wide range of scientific, commercial,
and defense applications, and they are especially well suited for remote
sensing in maritime domains.

To maximize the utility of a heterogeneous vehicle team for a
given sensing mission, motion planning algorithms must consider the
capabilities and limitations of each team member. At a minimum,
they should incorporate dynamic and operational constraints to pro-
duce feasible trajectories. Optimization techniques can be used to
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allocate effort according to individual vehicles’ sensor performance.
Such techniques can produce motion plans that are superior to con-
ventional “lawnmower” survey patterns, which may be suboptimal
for certain sensors and infeasible for underactuated vehicles to follow
precisely.

Autonomous systems must also operate with imperfect information
about their environment. This is particularly true in the maritime do-
main, where sensor accuracy usually depends on acoustical conditions
and vehicle motion may be subject to unknown disturbances at the
water surface. In underwater search applications, the ability to detect
and localize a target with sonar is impacted by several factors including
acoustical noise, ambiguous geometry, and aspect dependence. Conse-
quently, the performance of an autonomous system may depend greatly
on its ability to cope with uncertainty. Motion planning algorithms
that consider uncertainty, therefore, can increase a system’s overall
robustness. Generalized optimal control (GenOC) is a model-based
computational framework for optimizing vehicle trajectories in the face
of uncertainty. This article describes the GenOC approach to motion
planning in detail, greatly elaborating on initial results first reported in
[1], using a practical example: planning optimal minehunting missions
for autonomous vehicle teams.

A. Mine Countermeasures (MCM)

There are a number of complex sensing missions that could utilize
autonomous vehicle teams to deliver a mix of different capabilities,
particularly in environments that pose a risk to humans. The U.S. Navy
has embraced this vision, and invested heavily in vehicle and sensor
technologies for MCM. These operations traditionally comprise both
minesweeping and minehunting tasks. The goal of minesweeping is “to
cause the mine’s sensors to detonate the mine in circumstances where
the detonation is harmless” [2, p. 169]. Minehunting, however, attempts
to locate, then avoid or destroy the mine through other means. Never-
theless, “sweeping and hunting are both essentially search problems”
[2, p. 169].

Minehunting operations are conducted in a sequence of phases [3],
each performed by various types of vehicles and sensors [4]. Presently,
these assets require dedicated support from manned platforms, but
a current thrust of naval research is aimed at enabling autonomous
systems to support other unmanned vehicles during MCM operations
[5], [6]. Fig. 1 shows a SeaFox unmanned surface vessel (USV) and
a remote environmental monitoring units (REMUS) 100 autonomous
underwater vehicle (AUV), two of the fleet-representative vehicles
used at the Naval Postgraduate School (NPS) Center for Autonomous
Vehicle Research (CAVR), Monterey, CA, USA. In this article, we
consider sensor-based motion planning strategies for a heterogeneous
team comprised of these types of vehicles conducting autonomous
minehunting missions.

Minehunting missions are often conducted in the following three
distinct phases:
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Fig. 1. NPS SeaFox USV and REMUS 100 AUV.

1) wide area detection, classification, and localization (DCL)
of minelike objects (MLOs) with long-range low-resolution
sensors;

2) reacquisition and identification (RID) with short-range high-
resolution sensors;

3) neutralization of identified mines [7].
Phases one and two increasingly utilize autonomous vehicles, whereas
phase three typically requires EOD divers and/or remotely operated
vehicles. Therefore, this article will focus on the first two phases.
Furthermore, the literature describes several different approaches for
planning MCM missions with autonomous vehicles, including auto-
mated scheduling methods that optimize over vehicle resources to
complete a sequence of MCM tasks (e.g., [6]). In this article, however,
we concentrate on sensor-based motion planning algorithms, which
compute trajectories for individual vehicles to follow.

B. Motion Planning for Autonomous Minehunting Missions

Phase one is typically treated as a coverage problem [7]–[9], espe-
cially when there is no prior information about mine locations. Large
search areas are usually subdivided into smaller regions, which can
be covered by a typical AUV mission duration [8], or subdivided by
bottom type [10], so that different sensors, track spacing, etc., can
be tailored to the local environment. Several coverage path planning
methods may be used, but vehicle plans for this phase are usually based
on deterministic and exhaustive coverage exemplified by the popular
lawnmower pattern.

Phase two can be thought of as a targeted coverage problem, guided
by prior information about the expected target locations. When a vehicle
must visit multiple MLOs during an RID mission, this is akin to solving
a traveling salesman problem [9] to visit each target location. Typically,
a “standard” multiple aspect coverage pattern comprising parallel tracks
at different headings is then executed above each target. This method
ensures that high-resolution imagery is collected from several different
aspect angles to aid the identification effort. Often, the choice of sensor
dictates the type of vehicle paths considered for RID missions. Sidescan
sonar (SSS), for example, does not produce good imagery when the
search platform does not follow level, straight line paths. Therefore,
these planning methods do not consider vehicle dynamics beyond
speed, minimum turning radius, and/or the time required to make a
turn. Some methods account for the distance required to stabilize on the
next track line after making a U-turn [11]. When planning lawnmower
coverage patterns for SSS, still other algorithms optimize over the space
of track line headings [12], [13].

Optimal control is an alternative motion planning technique, which
provides a mathematical framework for solving problems with dynamic

constraints and different performance criteria. Recent developments
in numerical methods have made it possible to explicitly incorporate
parameter uncertainty into the objective function of an optimal control
problem [14]–[17]. This situation arises when conducting an optimal
search for stationary targets at unknown locations, or when searching
for mobile targets whose motion can be conditionally determined by an
uncertain parameter. These so-called GenOC problems can incorporate
sensor performance models to produce optimal vehicle trajectories for a
given sensor configuration. Researchers have successfully applied these
methods to solve motion planning problems in continuous time and
space with complex and multiagent interactions in a variety of scenarios
including optimal search, path coverage, and force protection [18]. This
motion planning method will be employed for the rest of this article.

C. Sensor Performance

To address vehicle- and sensor-specific motion planning problems
considered in this article, we must first develop probabilistic models
for two classes of sensors routinely deployed during MCM operations:
forward-looking sonar (FLS) and SSS. While these sonar systems can
differ widely according to their intended application, they share several
common characteristics. First, both forward-looking sonar (FLS) and
SSS are examples of active sonar. That is, they transmit acoustical
signals into the water and process the echoes reflected from objects
in the environment to detect their presence. For a given sonar, this
process occurs at an average rate, so detection performance depends on
time. Second, active sonar systems employ transmit/receive arrays of
transducers to improve detection performance in a desired direction and
often add acoustical baffling to reject echoes from unwanted directions.
A sonar design’s array geometry therefore produces an effective field of
view (FOV) within which targets can be reliably detected, so detection
performance also depends on a sonar’s orientation relative to targets in
the environment. Last, since these sonar systems are rigidly mounted
onto a vehicle platform, the sonar’s orientation ultimately depends on
that vehicle’s trajectory through the search area. This trajectory defines
the position, orientation, and velocity of the vehicle as a function of
time. Since these quantities are constrained by the vehicle’s equations of
motion (EOM), we note that a sonar’s overall detection performance is
a function not only of its design parameters but also its vehicle platform
dynamics.

Assuming that detection performance defines sonar’s effectiveness
for a given mission, this metric can be generalized to any sonar. That is,
a mission to detect and localize mines with a long-range low-resolution
sonar has the same objective as a mission to reacquire and identify
these mines with a high-resolution sonar. We assume that detection
with such a sonar is sufficient for successful identification to occur.
Under these assumptions, sensor-based motion planning algorithms
for MCM should employ sonar detection models with the following
characteristics.

1) Detection probability reflects an actual sonar’s dependence on
array design, vehicle dynamics, and 3-D search geometry. In
this way, simulation can serve as a powerful tool to evaluate the
effectiveness of different sonar designs deployed from various
vehicle platforms.

2) Simulated detection performance agrees with the ex-
pected/observed performance of actual sonar. This can be
assessed by model verification and validation.

3) Detection functions permit rapid calculations within numeric
optimization routines. This requires tradeoffs between accuracy
and execution speed. Smooth and differentiable functions with
analytic gradients, for example, significantly reduce solution
times when using gradient-based optimization.
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Fig. 2. FOVs for a USV bow-mounted FLS.

Fig. 3. FOVs and near-nadir region for an AUV SSS.

Many sensor models commonly used in search theory are chosen for
their computational simplicity and do not satisfy all of these desired
characteristics. Most ignore 3-D geometry, for example, but this can
greatly impact detection performance when searching for mines on the
seafloor with a surface craft’s FLS (see Fig. 2) or an underwater vehicle’s
SSS. It is also well known that SSS cannot detect targets located directly
beneath a vehicle’s path of travel, in the so-called near-nadir region (see
Fig. 3). For this reason, overlapping sensor swaths is required to obtain
complete coverage with this sensor [19].

Definite range models, or “cookie cutter” sensors, simply assume that
detection is certain within a fixed range of the sensor and impossible
outside it. Washburn and Kress note the appeal of such a model for

Fig. 4. Lateral range curves and sweep widths for a typical sensor (black) and
a definite range sensor (green). Adapted from [2].

analysis, but acknowledge that “attempts to forecast fixed ranges in the
real world are often disappointing,” remarking that “forecast detection
ranges for sonars are notoriously subject to error—it is not uncommon
to be off by a factor of two or more” [2, p. 135].

One alternative to definite range models are so-called lateral range
curves. This approach graphs a sensor’s detection probability as a
function of lateral range, defined as the distance from a searcher’s
straight line track at its point of closest approach to a target. The area
under a sensor’s lateral range curve defines its sweep width, a measure
of sensor effectiveness used when planning to search an area with evenly
spaced track lines, e.g., with a lawnmower coverage pattern [20]. Lateral
range curves can be derived analytically, assuming detection rate is
proportional to range via an inverse cube law, or derived empirically
via repeated experiments [21], [22].

Fig. 4 depicts the lateral range curve and corresponding sweep width
for a typical sensor and for the special case of a definite range sensor
with radius R overlaid in green. We note that, in general, both sen-
sor models produce maximum detection probabilities at target ranges
approaching zero. While appropriate for optical sensors (one of the
original motivations for deriving the inverse cube law in World War
II), these models usually require modifications to accurately simulate
sensors such as SSS.

One example of a sensor profile used to approximate the expected gap
in SSS coverage (see Fig. 5) is presented in [11]. This model modifies
a “cookie cutter” sensor by adding a “blind zone” of zero detection
probability in the near-nadir region below the vehicle. The resulting
sensor profile is shown in Fig. 6. This model is well suited for this
specific application, namely finding an optimal track line location that
maximizes the probability of detecting targets for a given heading, but it
does not generalize well to other applications. Furthermore, this sensor
model does not depend explicitly on vehicle dynamics; the knowledge
that SSS performs better when its vehicle platform follows straight line
tracks is implicit in the problem formulation, which considers only
straight path segments.

An engineering-based approach to modeling sensors, such as radar
and sonar, calculates “signal excess” (SE) from physical models of the
sensor and its operating environment to determine when detection is
possible [21], [22]. Moreover, the Poisson Scan model described in [21]
and [24] can be used to derive a sensor’s detection rate. Sensor models
of this form are used to solve optimal search problems in [16], [18], and
[25], although these models implement a much simpler approximation
of an actual SE equation. Nevertheless, Walton et al. [26] described
how models based on rate functions can be calibrated to “shape” their
performance and solve a wide variety of problems, highlighting the
flexibility of this modeling approach.
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Fig. 5. SSS image showing near-nadir coverage gap. Source: [23].

Fig. 6. Definite range sensor profile with near-nadir gap. Adapted from [11].

This article describes how to utilize a novel GenOC technique as
a mission planning tool for a team of dissimilar vehicles conducting
DCL and RID missions for MCM. Section II introduces the main
components of this model-based computational framework. Section III
presents a detailed derivation of the sonar models used to simulate the
detection performance of various minehunting sonars deployed from
USVs and AUVs. The main technical contribution is an SE model that
incorporates sonar design parameters and 3-D geometery to compute
detection probability as a function of a vehicle’s trajectory. Results from
computer simulations, which highlight the flexibility and utility of this
solution framework for different minehunting missions under resource
constraints, are presented in Section IV, with additional numerical
analysis provided in Section V.

II. GENOC PROBLEM FORMULATION

In this article, we cast different MCM operations as optimal search
problems whose solutions yield motion plans for a team of autonomous

vehicles. We specifically consider two MCM missions: first, an initial
wide area survey with long-range low-resolution sonar to detect and
locate MLOs; and second, a subsequent mission to revisit these loca-
tions with high-resolution sonar for positive target identification. An
objective function is defined, which can incorporate different searcher,
sensor, and target distribution models to solve different MCM search
problems, demonstrating the flexibility of the GenOC framework.

A number of vehicles and sensors are capable of performing the
search tasks described earlier, but mission planners must consider which
combinations are most effective for a given MCM operation. Often,
the available vehicle platform dictates which sensors can be utilized,
whereas a sensor may dictate the type of trajectory a vehicle must follow.
We assume in this work that each vehicle deploys only one type of sonar,
but acknowledge that some developmental systems can carry multiple
sophisticated sonars at once [4], [27]. Another characteristic of search
operations is that prior information (or the lack thereof) about potential
target locations influences how the search is planned and executed.

The GenOC framework includes all of these characteristics: multive-
hicle operations, sensor-based motion planning, and prior information.
It can be customized to explore a wide variety of MCM scenarios
simply by swapping different models of vehicle/sensor performance
and initial target distribution. The benefits of this approach are twofold:
solutions not only specify trajectories that each vehicle can execute
to optimize performance of a given sensor payload, but they also
establish performance benchmarks for a given problem, as discussed
in Sections IV and V.

The remainder of this section describes the mathematical models
and the objective function used to solve MCM search scenarios within
the GenOC framework.

A. Searcher Models

The search vehicles selected for a given mission constrain the
admissible solutions to an optimal control problem. Specifically, we
define a mathematical model for a vehicle’s dynamic EOM. This
model relates a vector of nx state variables �x(t) ∈ Rnx and a vector
of nu control inputs �u(t) ∈ Rnu through a set of ordinary differen-
tial equations (ODEs) in state-space form: �̇x(t) = �f(�x(t), �u(t)). This
model places dynamic constraints on how the states may evolve with
time. Similarly, physical actuator limitations place algebraic constraints
on the control inputs: �umin ≤ �u(t) ≤ �umax, ∀t ∈ [0, Tf ]. Operational
constraints may further bound the region of state space explored
during optimization: �xmin ≤ �x(t) ≤ �xmax, ∀t ∈ [0, Tf ]. We note that
for multivehicle problems with nv searchers, the state and control
vectors are augmented to include the states and controls of all vehicles,
�x(t) ∈ Rnv×nx and �u(t) ∈ Rnv×nu , respectively. Sections II-A1 and
II-A2 describe two vehicle models that are representative of au-
tonomous platforms being used for MCM.

1) SeaFox USV: The Naval Postgraduate School (NPS) SeaFox
USVs are small 5-m rigid hull inflatable boats originally designed
for remote-controlled intelligence, surveillance, reconnaissance, force
protection, and maritime interdiction operations (MIOs) conducted by
the U.S. Navy and the U.S. Coast Guard [28], [29]. CAVR has converted
these vessels into fully autonomous surface craft in support of various
research programs, including sonar-based path planning for riverine
navigation [30], [31] and precise speed control [32]. More recently,
CAVR modified its SeaFox Mk II USV to deploy the autonomous
topographic large area sonar (ATLAS) minehunting FLS for MCM
research [33].

To develop a model for these vehicles, we assume that USVs conduct
MCM search missions at constant velocity, without aggressive maneu-
vers, and therefore exhibit simple planar motion at the sea surface (i.e.,
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TABLE I
DESIGN PARAMETERS FOR A USV MODEL

pitch, roll, and heave motions are zero). If we further assume that sway
motions are negligible (i.e., sideslip is zero), the EOM can be adequately
modeled by kinematics. Let the state variable pair [x(t), y(t)] be the
vehicle’s position in meters north and east from an inertial reference
frame, ψ(t) be its heading angle in radians measured clockwise from
north, and r(t) be its turn rate in radians per second. If the vehicle travels
at constant forward velocityV meters per second, the state–space EOM
for the state vector �x(t) ≡ [x(t), y(t), ψ(t), r(t)]� and control input
u(t) are

ẋ(t) = V cosψ(t)

ẏ(t) = V sinψ(t)

ψ̇(t) = r(t)

ṙ(t) =
1

T
(Ku(t)− r(t)) . (1)

Equation (1) implements a first-order approximation to the well-known
Nomoto model for ship-steering equations, a simple transfer function
between rudder deflection angle u(t) = δr(t) and turn rate r(t) that
“is the most popular model used for ship autopilot design due to its
simplicity and accuracy” [34, p. 309]. The Nomoto gain constant K (in
s−1) and time constant T (in s) can be identified from sea trial maneuvers
as described in [35]–[38]. Table I lists the values of V, K, and T used in
our SeaFox USV model.

2) REMUS 100 AUV: The REMUS 100 AUV is a small and
rapidly deployable unmanned underwater vehicle for collecting envi-
ronmental data in the ocean [39]. Its modular design accommodates a
number of different sensors for hydrographic survey missions, and its
SSS system can make detailed maps of the ocean floor. Being one of
the first AUVs adopted for naval MCM operations [19], [40], REMUS
vehicles were used during Operation Iraqi Freedom in 2003 [41]. The
REMUS family of vehicles includes two MCM variants in use by
the Navy today: the MK 18 Mod 1 Swordfish, based on the 7.5-in
diameter REMUS 100, and the MK 18 Mod 2 Kingfish, based on the
12.75-in diameter REMUS 600 [42]. CAVR operates three REMUS
100 AUVs in support of its research programs, and has been developing
sensor-based navigation algorithms that utilize blazed array FLS since
2004 [43]–[45].

AUVs can move in all three dimensions, and six degrees of freedom
(DOF) are required to describe this motion completely. An example of a
full six-DOF model for simulating the nonlinear dynamics of a REMUS
100 is presented in [46]. In practice, however, these EOM are usually
decoupled into separate and linearized equations in the horizontal and
vertical planes so that designers can develop controllers for steering
and diving, respectively. For our search problem, since AUVs typically
conduct constant-velocity SSS surveys at a fixed altitude above the
bottom, we consider only 2-D planar motion. Finally, as a matter of
convenience when implementing multivehicle problems in software,
we prefer a motion model with the same form as the SeaFox USV model

TABLE II
DESIGN PARAMETERS FOR AN AUV MODEL

in Section II-A1. This provides easier state vector indexing when AUVs
and USVs operate together in a heterogeneous vehicle team.

Under the same assumptions of zero pitch, roll, and heave motion,
we derive a Nomoto steering model for the REMUS 100 AUV from
the linearized, decoupled, and lateral steering equations in [46, eq.
(118)], as shown in Appendix A. Using the SeaFox sign convention, we
calculate the parameters for our REMUS 100 model listed in Table II.

Since our MCM scenario concerns the search for bottom mines, a
vehicle’s altitude h above the seafloor must also be specified for a given
mission. For surface craft, altitude h equals the water depth itself, due
to our flat bottom constant depth assumptions.

B. Sensor Models

Engineering-based sensor models for different types of active sonar
used in MCM are developed in Section III. These models calculate the
instantaneous probability p that a given sonar can detect an echo from
a specific target against the expected ambient noise level. This quantity
is a function of the sonar design, parameterized by its figure of merit
(FOM), and the two-way propagation losses (PLs) between the sonar
and target when a scan occurs. For a given sonar, this process occurs at
an average rate λ, producing the instantaneous detection rate γ. At these
scan times, instantaneous detection probability also depends on whether
the target lies within the sonar’s FOV, which depends on 3-D geometry
relative to the search vehicle trajectory �x(t). Scalar shaping functions
Fα and Fε are designed to characterize geometric relationships based
on azimuth and elevation angle, respectively, to a target location �ω.
Likewise, shaping function Fr is designed to reflect the influence of
vehicle turn rate. Table III lists all the expressions used to compute
these terms and yield the instantaneous detection rate

γ(�x(t), �ω) = λ p(�x(t), �ω)Fα(�x(t), �ω)Fε(�x(t), �ω)Fr(�x(t)). (2)

C. Target Models

The GenOC framework was developed to address optimal control
problems with parameter uncertainty [14], [17], [18]. For the MCM
search problems considered in this article, the uncertain parameter is
the location of a mine target on the seafloor. We assume, therefore, that
target location is a stochastic parameter �ω distributed over a search
area Ω according to a known continuous probability density function
(pdf): φ(�ω) : Ω �→ R. That is, �ω ∈ Ω ⊂ Rnω [14], and nω = 2. Dif-
ferent pdfs allow a number of possible target distributions that produce
different solutions to the optimal search problem.

Two specific target distribution models are used to simulate two
MCM missions. During the initial phase of an MCM operation, for
example, wide area surveys are conducted to detect and localize MLOs
in a given search area. We formulate this task as an optimal search
problem where no prior target data are available. We therefore model
this target distribution with a joint uniform pdf, bounded by the search
area coordinates. This pdf contains no exploitable information, i.e.,
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TABLE III
TERMS USED TO COMPUTE INSTANTANEOUS DETECTION RATE

there is an equal probability of finding a target anywhere within the
search area. This noninformative target model, representing only a
single mine which must be located, nevertheless combines with the
objective function defined in Section II-D to generate trajectories that
maximize sensor coverage in the time available, effectively solving
a coverage problem. A search vehicle that follows these trajecto-
ries would be expected to detect all MLOs present in the covered
area, and their locations would be used to plan contact investigation
missions.

In subsequent phases of an MCM operation, follow-on sorties are
conducted to reacquire previously detected MLOs and identify mines
from nonmine/mine-like bottom objects using high-resolution sonar.
We therefore formulate each RID task as another single-target optimal
search problem, each with potentially different vehicle and sensor
models. These missions utilize MLO location data gathered during a
previous survey, but the accuracy of prior information is commensurate
with the survey vehicle’s navigation performance. This variation can be
modeled with any continuous pdf. Walton, however, suggested the use
of joint normalized beta distributions for this task. These distributions
allow simple manipulation and customization via their α, β shape
parameters, and benefit from a finite radius of effectiveness [26]. The
pdf for the beta distribution, defined for x ∈ [0, 1], α > 0, and β > 0
[47], is

φ(x;α, β) =
1

B(α, β)
xα−1 (1− x)β − 1 (3)

where

B(α, β) =
(α− 1)! (β − 1)!

(α+ β − 1)!
.

Section IV illustrates how the probabilistic target models described
earlier produce search vehicle trajectories for both wide area DCL
surveys (see Section IV-A) and RID missions (see Section IV-B). Our
approach, however, does not currently address one classical objective
of MCM: estimating the number of mines remaining in an area after
clearance operations. A number of methods for quantifying this risk

are described in the literature, e.g., [48]–[50]. These methods com-
bine probabilistic assumptions about the number of mines initially
present, their distribution within the search area, and how to update
these quantities based on search results. Our future work will address
ways to incorporate probabilistic updates into the GenOC framework
for continuous replanning based on target detection and identification
events.

D. Objective Function

In this section, we present the exponential detection model, first
described in [51], which is commonly used to quantify search perfor-
mance in continuous time. Based on a sensor’s instantaneous detection
rate (see Section III-C), this model provides a convenient objective
function for optimal search problems, with recent examples provided
in [14], [15], and [18]. For our problem, we define residual MCM risk
as the probability that a team of autonomous vehicles fails to detect
the mines in a search area by the end of an MCM operation. This
scalar quantity can be readily calculated for a given set of vehicle
and sonar capabilities, and also reflects the time available for search.
Therefore, we utilize MCM risk as the objective function for our optimal
search problems; minimizing this quantity maximizes the mission’s
probability of success.

Given an instantaneous detection rate γ(t), derivation of the expo-
nential detection model proceeds from the following two assumptions
[51]:

1) the probability of detection in the short time interval [t, t+Δt]
is γ(t)Δt;

2) detection events in all such nonoverlapping time intervals are
independent.

Washburn cautions that the independence assumption may not hold
in all situations. For example, consecutive detection failures due to low
SE could be caused by low target strength (TS) or poor acoustical
conditions. Empirically, however, these assumptions “provide good
approximations in a wide variety of circumstances” [21, Ch. 2, p.
3]. Koopman acknowledges the importance of recognizing when this
assumption is legitimate, and justifies its use beyond cases of random
search.

The assumption is in fact legitimate—and important—when applied
to conditional probabilities of detection: probabilities calculated on
the basis of postulated positions and motions of the target. [52]

This is precisely the case described by our objective function for MCM
risk in (8), which we now derive using Koopman’s “assumption of
independence.”

Let p(t) be the probability of detection at time t. Then, by the
complement, the probability of a detection failure is q(t) = 1− p(t).
Under our stated assumptions, this probability becomes q(t+Δt) =
q(t) (1− γ(t)Δt) at the end of the next scan interval, which can be
rearranged as the difference equation

q(t+Δt)− q(t)

Δt
= −q(t) γ(t). (4)

In the limit as Δt→ 0, we obtain the differential equation

q̇(t) = −q(t) γ(t) (5)

which has the closed-form solution

q(t) = e
−
∫ t

0
γ(τ)dτ

(6)
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and leads to the exponential detection model

p(t) = 1− q(t) = 1− e
−
∫ t

0
γ(τ)dτ

.

Equation (6) represents the probability that a target was not detected
by time t, so the residual MCM risk after completing an operation of
mission duration TF is

q(TF ) = e
−
∫ TF

0
γ(τ)dτ

= e
−
∫ TF

0
γ(�x(τ), �ω)dτ

. (7)

The objective of our optimal search problem is to minimize this risk.
However, the instantaneous detection rate in (2) depends on the vehicle
trajectory �x(t) and the uncertain target location �ω, a random variable
defined in Section II-C. Consequently, (7) is itself a random variable,
which cannot be explicitly minimized. Instead, we must minimize its
expected value, conditioned on the pdf of the target distribution. Hence,
the objective function for a single vehicle becomes

J = E {q(TF )} =

∫
Ω

e
−
∫ TF

0
γ(�x(τ),�ω)dτ

φ(�ω) d�ω. (8)

For missions with multiple search vehicles, we assume that the
searchers make independent detection attempts as described in [53],
each with an instantaneous detection rate that is vehicle and sensor
specific. Using (7) and our independence assumption, the probability
that all nv searchers fail to detect a target during a multivehicle mission
is

qnv (TF ) =

nv∏
k=1

e
−
∫ TF

0
γk(�xk(τ), �ω)dτ

= e
−
∫ TF

0

∑nv

k=1
γk(�xk(τ), �ω)dτ

= e
−
∫ TF

0
Γ(τ,�ω)dτ

(9)

where we have

Γ(t, �ω) =

nv∑
k=1

γk(�xk(t), �ω) =

nv∑
k=1

{
λk pk(�xk(t), �ω)

× F k
α(�x

k(t), �ω)F k
ε (�x

k(t), �ω)F k
r (�x

k(t))
}
. (10)

Under our stated assumptions, the residual MCM risk after a multive-
hicle operation is

Jnv = E {qnv (TF )} =

∫
Ω

e
−
∫ TF

0
Γ(τ, �ω)dτ

φ(�ω) d�ω. (11)

The independence assumption used to derive (9) also requires the
implicit assumption that multiple sonars will not acoustically interfere
with one another. The latter is usually only valid when individual
sonar systems have widely separated design frequencies, or they have
been assigned to different regions of the search area. As noted in
Section I-A, it is common practice to divide larger search areas into
smaller subregions that can be searched by a set of single-vehicle plans.
By design, GenOC does not decompose multivehicle search problems
into separate single-vehicle trajectories. Rather, its centralized planning
approach can incorporate a variety of interaction models to facilitate
collaboration or separation among vehicles [26]. On the other hand,
GenOC users can simply impose constraints on minimum separation
distance to generate plans that reduce potential for mutual acoustical
interference. In any case, the exponential detection model used in
our objective function often produces multivehicle search plans that
resemble separate single-vehicle trajectories. Since it yields diminish-
ing returns when multiple vehicles search the same location [21], it
encourages multivehicle solutions that direct individual vehicles toward
new regions of the search space.

Equations (8) and (11) comprise differentiable analytic expressions.
Although somewhat tedious, it is possible to derive formulas for their
gradients with respect to the state and control variables. This has
benefits when using gradient-based numerical optimization algorithms.
Encoding these formulas as user-defined functions supplied to the
SNOPT optimization package, for example, significantly reduces the
run time required to compute an optimal solution [54]. The objective
function gradients for a single vehicle are derived in [55].

The objective functionals in (8) and (11) represent the expected resid-
ual MCM risk after a single- or multivehicle operation, respectively.
They take the same form as the running cost in the Bolza-type cost
functional for the GenOC problem described in [14]

J =

∫
Ω

E (�x(Tf ), �ω)

+G

(∫ Tf

0

R(�x(τ), �u(τ), τ, �ω)dτ

)
φ(�ω) d�ω. (12)

For our problems, the endpoint cost E(�x(Tf ), �ω) has been omitted
from the objective function in (12). Meanwhile, the functionG(·) of the
running cost derives from the exponential detection model, i.e.,G(·) =
e−(·), and R(·) = γ(·). The objective functional in (12) has been used
to solve optimal search problems with multiple searchers and moving
targets in cases where target motion can be conditionally determined
by uncertain initial conditions [14], [16], [56]. Using similar objective
functions in (8) and (11) allows us to leverage the mathematical and
computational framework previously developed to handle this class of
parameter-distributed nonlinear optimal control problems.

E. Problem Scaling

We need to solve these optimal search problems numerically, but
the domains of our state variables �x(t), control inputs �u(t), uncertain
parameters �ω, and objective function J all have different orders of
magnitude. The search area, for example, may cover several square
kilometers, whereas the objective function evaluates to a probability in
the range [0, 1]. It is important, therefore, to properly scale the problem
before unleashing a numeric solver. This can be achieved by defining
canonical units for distance, time, etc., and transforming the original
problem’s variables into nondimensional versions with similar domains
[57]. Several examples that use variable scaling to numerically balance
the equations of an optimal control problem are provided in [58]. For
our search problems, the vehicle models from Section II-A can be scaled
by canonical units of distance (DU), time (TU), and velocity (VU =
DU/TU) to produce dimensionless variables as shown in Appendix B.
As an example, suppose we want to solve an MCM search problem
for the SeaFox USV (see Section II-A1) conducting a mine detection
survey with the 200-kHz FLS derived in Section III-E1. Typical bounds
on the states, controls, search area, and constant parameters are defined
in Table IV. This table includes their physical values (before scaling),
and their nondimensional values after scaling by the canonical units
DU = 100 m, TU = 100 s, and VU = DU/TU = 1 m/s.

F. Feasibility

Most optimal control problems cannot be solved analytically. Often,
numerical methods are required to generate “optimal” trajectories of
the state variables and control inputs that minimize a desired objective
function, subject to constraints defined by the user. We must remember,
however, that numeric solutions are calculated for a discretized version
of the original problem. They meet the mathematical definition of
feasibility as long as all of the problem constraints are satisfied at a
finite number of nodes comprising the discrete problem [59]–[61]. It
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TABLE IV
EXAMPLE OF PHYSICAL AND NONDIMENSIONAL PARAMETER DOMAINS

is important to verify that these constraints are, in fact, satisfied in the
continuous domain as well. Moreover, we require optimal trajectories
that can be implemented on autonomous vehicles. Therefore, as a
practical consideration, we adopt the definition of feasibility used by
Hurni:

Showing the feasibility of the generated solution can be done by
control trajectory interpolation and state propagation using a Runge–
Kutta algorithm. If the initial conditions and system dynamics can
be propagated using the optimal control solution and it matches the
[solver’s] generated trajectories, then the control solution is deemed
feasible [58, p. 54].

In other words, solutions with discrete trajectories {�x(k), �u(k)} are
feasible if a vehicle can execute a smooth control trajectory �u(t),
interpolated through the solution’s �u(k) nodes, and produce a state
trajectory �x(t) sufficiently close to the solution’s �x(k) nodes. Planning
algorithms can verify feasibility automatically, but the word “close”
must be quantified first. Possible metrics for the similarity between two
curves include the Frechet [62] or Hausdorff [63] distance measures.
The trajectory planning algorithm proposed in [58], for example, per-
forms automatic feasibility checks using a norm based on summing
the Euclidean distances between the solution nodes and points along
the propagated trajectory, evaluated at the solution nodes. In the fol-
lowing chapters, we will consider a solution to be feasible when its
state-propagated trajectory does not violate problem constraints and
matches the solution trajectory when overlaid on a graphical plot. These
criteria will verify that solutions obtained from a numeric solver are
feasible, and also ensure that only feasible guesses are used to initialize
the optimization. When necessary, e.g., for the automated analysis of
inverse problems conducted in [55], we employ a numeric feasibility
criteria similar to [58].

G. Initial Guess

Most numeric optimization routines are initialized with an initial
guess. For an optimal control problem, the guess is a candidate so-
lution, complete with state and control trajectories {�x(k), �u(k)} at
discrete time nodes. The solver evaluates the objective function using
these trajectories. From there, it iteratively generates new candidate
solutions that decrease the objective value, finally stopping its search
when it reaches a local minimum. A good initial guess can influence
the optimization by focusing the solver’s effort in smaller regions of
the search space. As a result, initial guesses can dramatically reduce
solution times [58]. In some cases, e.g., when a problem has several
local minima, the initial guess can determine whether a solver succeeds
or fails at finding the correct solution. Various methods used to generate
initial guess trajectories for this article are described in Appendix C.

III. SONAR DETECTION MODELS

The SE model of sonar detection simulates the conditions under
which an active or passive sonar system can detect an underwater object,
based on well-known sonar equations. First proposed in [51], SE is
still widely used in many sonar performance models today, including
the U.S. Navy’s Comprehensive Acoustic System Simulation (CASS),
described in [64]–[66]. Due to complexity and computational runtime
requirements, however, many performance models are unsuitable for
sensor-based motion planning algorithms. Anecdotally, when CASS “is
used as the acoustic calculation engine …computation of SE in support
of a complex multistatic active sonar analysis task can take days”
[67]. Our implementation, therefore, makes simplifying assumptions
to rapidly compute SE for an active sonar attached to a moving vehicle
platform as follows.

1) We assume that detection performance is limited only by acous-
tical background noise and neglect reverberation from backscat-
tered acoustical energy, a complex function of time, range, and
the environment (e.g., seabed roughness) [68]. The noise-limited
form of the active sonar equation allows a constant FOM to
be computed for each sonar design, enabling qualitative perfor-
mance comparisons in a given environment.

2) We assume that the environment is homogeneous, with a flat
bottom and constant water depth. We further assume a constant
sound-speed profile, although sound speed varies as a function
of temperature, salinity, and depth. These assumptions allow us
to forgo computationally expensive ray tracing calculations.

3) We ignore multipath propagation effects, as MCM sonars typi-
cally operate at higher frequencies and relatively short ranges,
e.g., hundreds of meters as opposed to tens of kilometers for a
submarine sonar system.

The SE model assumes that detections can only occur when the acousti-
cal energy transmitted by a sonar is sufficient to overcome the two-way
PL in the environment, and the received signal reflected by a target
exceeds a detection threshold (DT) relative to the prevailing background
noise. This SE can be computed using well-known sonar equations,
“simple algebraic expressions used to quantify various aspects of sonar
performance” [22], with terms expressed in units of decibels (dB)
relative to corresponding reference values [66]. For an active sonar
operating against a noise background, and a DT expressed as a function
of frequency modulated (FM) or continuous wave (CW) active pulse
types, a typical SE equation from [68, p. 165] is

SE = SL − 2PL + TS − (N − DI + 10 log10B)− DT (13)

Authorized licensed use limited to: NPS Dudley Knox Library. Downloaded on August 14,2020 at 17:45:39 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KRAGELUND et al.: GENERALIZED OPTIMAL CONTROL FOR AUTONOMOUS MINE COUNTERMEASURES MISSIONS 9

where SE is the signal excess, SL is the source level, PL is the one-way
PL, TS is target strength, N is omnidirectional sonar self-noise, DI is the
directivity index, B is the pulse bandwidth in hertz, and DT is detection
threshold.

DT can be computed as DT = 5 log10 d− 10 log10(B T )−
5 log10 n for a detection index d, a pulse duration of T seconds, and n
pings used to make detection decisions [68, p. 165]. The units for each
term in (13) are dB unless otherwise specified. Section III-A uses this
form of the sonar equation to derive the probabilistic sensor models at
the heart of our motion planning algorithm.

The proposed sonar detection model introduces a number of addi-
tional parameters, which can be tuned to represent a particular sonar
sensor. The task of precisely identifying parameter values, however,
is outside the scope of this article for two primary reasons. On the
one hand, we provide example models of prototype and commercial
sonar systems (e.g., [69]–[71]) and include explicit relevant parameters
used in the text. On the other hand, choosing an optimal value for a
specific parameter is a problem that can be addressed by formulating
an inverse problem as described in [55]. Namely, what are the optimal
sonar parameters within the scope of an MCM mission, given the current
limitations of a specific platform (vehicle type, sensor mount, etc.) that
produce an optimal detection rate along a search trajectory? In other
words, if a prototype sonar is provided as an initial guess, can we
improve this sensor by optimally shaping its settings for improved mis-
sion performance? As such, Sections III-E and III-F provide parameter
values that we have derived from comparable prototypes, obtained from
manufacturer specifications, or discovered during our search for their
optimal settings. The main objective is to present a tunable engineering
model of sonar detection performance that balances sensitivity to ve-
hicle motion, sensor configuration, etc. and computational simplicity
needed for numeric optimization of MCM search trajectories.

A. Figure of Merit

For a sonar performance analysis, individual terms related to a spe-
cific sonar design are often combined into a FOM. For passive or noise-
limited active sonars in a given scenario, this metric is constant and
independent of range and environmental propagation characteristics.
As a result, FOM permits direct comparison of different sonar models
and greatly simplifies sonar performance calculations during trajectory
optimization. We therefore restrict our analysis to the noise-limited
case, since reverberation-limited performance prediction requires more
sophisticated analysis tools [22]. Using FOM, the SE equation becomes

SE(t) = FOM − PL (D(t)) (14)

where D(t) is the distance to the target in meters.
In this form, the one-way PL is a function of the distance between a

stationary target and a search vehicle’s location at time t, i.e., D(t) =
‖�ω − �x(t)‖. Recall that target location �ω is uncertain but characterized
by the pdf φ(�ω) : Ω �→ R. Physically, FOM represents the maximum
allowable one-way PL resulting in zero SE. Assuming target detection
is possible when SE ≥ 0, we compute FOM by substituting (13) into
(14) when SE = 0. Combining terms yields an expression for FOM as
a function of the relevant design parameters [68, p. 165]

0 = SL − 2 FOM + TS − (N − DI + 10 log10B)

− (5 log10 d− 10 log10 (B T )− 5 log10 n)

FOM = (SL + TS −N + DI + 10 log10 T − 5 log10 d

+ 5 log10 n)/2. (15)

We briefly describe each of these parameters, and provide sample
calculations for the values used in our simulations. Specific parameter
values corresponding to models of individual sonar designs are derived
in Sections III-E and III-F.

1) Source level (SL) of a projector array is a function of its acoustical
power P . If the array is directional, SL also depends upon DIt.

2) TS quantifies the intensity of a sound wave reflected by an
underwater target relative to an incident sound wave from an
active sonar pulse. This quantity is a function of sonar frequency,
target size, geometry, and the angle of incidence between the
sonar pulse and target. The goal of our MCM search problem
is to detect small mines on the seafloor approximated by finite
cylinders of radius 0.1 m and length 1.0 m, with hemispherical
ends. For these targets, the worst case target strength (TS) occurs
for sonar incident angles arriving parallel rather than normal to
the cylinder axis. In this case, TS is computed for a sphere with
radius a using the formula TS = 10 log10(a

2/4) = −26 dB [68,
Table 4.1]. Therefore, our analysis uses the conservative value of
TS = −30 dB. We note, however, that augmenting the uncertain
parameter space Ω with target orientation θω would allow opti-
mal search plans to explicitly consider the aspect dependence of
TS on searcher location and orientation. This remains an area of
future investigation.

3) Noise (N) refers to the intensity level of the background noise
that a desired signal must overcome to be detectable at the sonar
receiver. The average spectral level for thermal noise usually
dominates other noise sources at the high frequencies used for
minehunting sonar, i.e., above 100 kHz, and can be computed
for a given sonar frequency f in kilohertz using the expression in
[72, p. 208]

Ntherm = −15 + 20 log10 f dB. (16)

4) DI of a transducer array describes its ability to “concentrate
transmitted sound in a given direction” (DIt), and improve the
signal-to-noise ratio (SNR) received from a given direction (DIr)
[68, p. 13]. This parameter is a function of the sonar’s design
frequency and array geometry.

5) Pulse duration (T) determines a sonar’s range resolution, with
shorter pulses providing better resolution due to smaller echo
separation. A CW “pulse of constant frequency and duration T
seconds” will have a bandwidth, B = 1/T Hz. For FM pulses,
“the frequency of the pulse changes during the T seconds duration
of the pulse [and] the bandwidth B is not now the inverse of the
pulse length” [68, p. 163].

6) Detection index (d) is used to determine a sonar receiving
system’s DT, expressed as the SNR corresponding to preset
values for probability of detection (PD) and probability of false
alarm (PFA). This relationship is typically plotted as a function
of 5 log10 d on a curve of receiver operating characteristics.
The sonar models derived below assume 5 log10 d = 10 dB,
corresponding to PD = 0.5 and PFA = 10−5 as given in [68,
Table 7.8].

7) The number of pings (n) contributing to a detection decision ef-
fectively reduces a sonar’s DT as more information is considered.
The models derived below assume 5 log10 n = 3 dB, equivalent
to processing four pings per decision [68].

Even though exact design parameters for Navy sonars are difficult
to obtain (and potentially classified) [22], a FOM suitable for relative
performance analysis can still be estimated from sonar design reference
manuals [68] or commercial sonar specifications [69], [70], [73], [74].
Furthermore, once the FOM for a given sonar problem is known, it is
easy to compute the SE along a moving vehicle’s trajectory �x(t), since
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it depends only on the PL due to distance between vehicle and target.
Consequently, calculating detection probability based on signal excess
is especially attractive for sensor-based motion planning algorithms.

B. Propagation Loss

An acoustical pulse loses intensity as it propagates through the water,
as the radiated power spreads throughout a larger and larger volume. The
pulse is also attenuated by absorption losses due to fluid viscosity and
molecular relaxation of dissolved salts in seawater. Both spreading and
absorption are functions of distance. For our signal excess calculations,
we assume that PL are only due to spherical spreading and absorption,
“a useful working rule for initial design and performance comparisons”
[68, p. 48]. Neglecting other loss sources (e.g., scattering and refraction)
via the simplifying assumptions listed in Section III, PL is

PL(�x(t), �ω) = 20 log10 (‖�ω − �x(t)‖) + a ‖�ω − �x(t)‖ (17)

where a is the frequency-dependent attenuation coefficient of seawater.
Tabulated values of a can be found in sonar design references, such
as [68, Table 3.1] and [75]. While a varies with depth, salinity, and
temperature, it depends most strongly on the sound frequency. We
therefore compute this parameter as described in [72, p. 108], which
estimates a as a function of frequency f in kilohertz

a =
0.11 f2

1 + f2
+

44 f2

4100 + f2
+ 0.0003 f2 + 0.003 dB/km. (18)

C. Instantaneous Detection Rate

In search theory, “the detection rate approach to computation of
detection probabilities has proved to be more robust than the geometric
models” used by “cookie cutter” sensor models [21]. Originally devel-
oped in [51], this method assumes that a sensor has a detection rate γ(t)
called the “instantaneous probability density (of detection).” This rate
may vary with time due to the motion of searchers and targets, or to
reflect changing environmental conditions, for example. Continuously
searching over a small time interval Δt constitutes a single glimpse
or scan with the sensor. Each glimpse provides a detection opportu-
nity with the instantaneous probability of detecting a target given by
γ(t)Δt. This leads to the well-known exponential detection model
described in Section II-D, which quantifies detection probability as a
function of time.

Before we use this detection model, we must first compute detection
rates for our sonar models. Detection rates based on our noise-limited
SE model vary with distance between a target location �ω and a search
vehicle following the trajectory �x(t). If we also assume that the SE
in (14) is a normally distributed random variable with mean SE and
variance σ2, the instantaneous probability of detection for a single
glimpse with a sonar can be written using its cumulative normal
distribution Φ in [21, eq. (3.2-1)]

p(�x(t), �ω) = Φ (SE (�x(t), �ω)/σ) . (19)

Based on our selection of the detection index d in Section III-A,
the instantaneous detection probability is p(t) = 0.5 when SE(t) = 0,
meaning the sonar has an equal probability of detecting or missing
a mine. Regarding the selection of σ, Washburn notes that “most
practitioners use a value of σ somewhere between 3 and 9 dB for
sonar detection in the ocean” [21, Ch. 3, p. 2]. A value of σ = 5.6,
computed by adding typical variance values for each term in the sonar
equation, is provided in [22]. Moreover, a study which used the Navy’s
CASS/Gaussian Ray Bundle software to simulate mine detections under
varying environmental conditions observed SE variations of 3, 6, or 9 dB
in most cases [76], [77]. Fig. 7 plots probability of detection PD versus

Fig. 7. Detection probability PD versus SE for different values of σ.

SE for these three values of σ. To compute a sonar’s detection rate γ(t)
from its instantaneous detection probability p(t), we further assume
that detection opportunities (glimpses) can be modeled as a Poisson
process and occur with mean rate λ. The so-called Poisson scan model
produces the detection rate γ(�x(t), �ω) = λ p(�x(t), �ω) [21, Ch. 3,
p. 2].

D. Detection Performance Modifiers

The sonar detection model developed thus far, based on SE remaining
after subtracting PL from a given sonar’s figure of merit, is omnidi-
rectional. It depends only on the distance between the sonar and a
MLO. This function could be used to construct a lateral range curve
and corresponding sweep width for use in standard coverage planning
algorithms [2]. Most actual sonar systems, however, are designed to
transmit and receive with a specific beam pattern (see, e.g., Figs. 2 and
3) and do not perform equally well in all directions. Actual detection
performance depends not only on a sonar’s distance from a target, but
also whether (and how long) it is pointed in the proper direction, at
the proper time and place, to ensonify the target. The vehicle platform
must maneuver to accomplish this. Conversely, high-resolution imaging
sonars, which rely on platform motion to methodically scan the seafloor
(e.g., SSS) or construct long virtual hydrophone arrays [e.g., synthetic
aperture sonar (SAS)], require precise navigation along straight line
trajectories to generate accurate imagery [4], [78]. Excessive platform
motion can often yield poor performance for these systems. It is clear
that sonar performance is tightly coupled to a vehicle’s motion. Section
III-D-1 derives tunable shaping functions to model a sonar’s 3-D beam
geometry, while Section III-D-2 derives a shaping function to model
its dependence on platform motion.

It should be noted that mission-level search performance also de-
pends upon the navigation accuracy of the search vehicle, i.e., the
ability of the searcher to follow prescribed trajectories generated by
its motion planner. Pollitt’s review of tactical decision aids (TDAs)
developed for MCM since the Vietnam War remarks how “MCM
operations require close adherence to sweep or hunt tracks, as percent
clearance is degraded when the navigation error increases” [79]. The
author also refers to a tactical memorandum released in 1991 by
Commander, Mine Warfare Command that described “the relationship
between navigational error and MCM effectiveness” [79]. Current mine
warfare doctrine still states that “critical to the success of route survey
operations is the availability of a precise navigation system of a common
type for all MCM assets,” but “the consistency of the GPS and the
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Fig. 8. Horizontal plane geometry for a USV with FLS.

precise navigation and plotting systems now available” allow MCM
units to “hunt or sweep a track” and relocate contacts with confidence
[80]. For this reason, and because our GenOC formulation generates
feasible search trajectories that a vehicle’s autopilot can follow, we
exclude the vehicle’s positioning system in the following models of
detection performance.

1) FOV Considerations: To more accurately estimate a sonar’s
true detection performance when mounted on a vehicle, we must en-
force its actual beam geometry in 3-D. First, we define angular limits for
the sonar’s horizontal and vertical FOV. These FOV boundaries exist in
the sonar reference frame, but we will assume without loss of generality
that this frame is identical to the vehicle’s body-fixed reference frame.
Next, we calculate the vectors between the sonar and each potential
target, and resolve them in the body-fixed reference frame to compute
the angle to each target relative to the sonar’s field of view (FOV).
Finally, we apply a shaping function to degrade detection performance
for targets that fall outside of the angular FOV limits.

Fig. 8 depicts the instantaneous horizontal plane geometry for a
SeaFox USV and FLS with horizontal FOV, αFOV, of 200◦. Parameters
defined or resolved in the body-fixed frame {b} are denoted with a
superscript b. The positions of the USV [x, y]� and potential mine
target locations [ωx, ωy]

�are defined in the inertial reference frame
{n}. We compute the lower and upper limits on azimuth angle for
a sonar’s horizontal FOV by the expressions bαL = −αFOV/2 and
bαU = +αFOV/2, respectively.

The vector between the sonar and a target of interest in the inertial
frame is then defined as Δ�x = [ωx − x, ωy − y]� = [dx, dy]�. To
determine the azimuth angle to this target in the sonar’s FOV, the
vector Δ�x must be resolved in the body-fixed reference frame using
the vehicle’s heading angle ψ, producing the body-fixed components
as

bdx = ndx cosψ + ndy sinψ (20)

bdy = −ndx sinψ + ndy cosψ. (21)

Then, using the four-quadrant inverse tangent, we compute bα =
atan2(bdy, bdx). In the same manner, we compute the lower and
upper limits on elevation angle for the sonar’s vertical FOV as bεL =
εDE − εFOV/2 and bεU = εDE + εFOV/2, respectively. Here, εDE is a
fixed downward elevation angle selected to ensure that the sonar can
ensonify the seafloor. Some sonar systems are capable of electronically
steering their beams to a specified εDE, but this angle is frequently

Fig. 9. Fα versus azimuth angle and pα for a nominal FLS with 120◦
horizontal FOV.

determined by a fixed mechanical mounting angle. For a vehicle travel-
ing in the horizontal plane at constant altitude h above the bottom, the
elevation angle between the sonar and a mine on the seafloor is identical
in both reference frames

ε = bε = nε = arctan

(
−h√

(ωx − x)2 + (ωy − y)2

)

= arctan

(
−h√

dx2 + dy2

)
. (22)

We now define scalar shaping functions, which degrade sonar detection
performance for mines outside the sonar’s horizontal (or vertical) FOV.
Each shaping function is constructed from two logistic functions [81].
These S-shaped sigmoidal curves [82] smoothly transition a scalar value
from 0 to 1 at the angular limits of the sonar’s FOV. This value modifies
the probability of detecting mines based on SE alone, thereby preventing
detection of mines located outside these angular limits. As discussed
in Section III-D3, parameters pα and pε are used to adjust the slope of
the sigmoidal curves in the azimuth and elevation shaping functions,
respectively, as follows:

Fα(�x(t), �ω) =
1

1 + epα(
bαL − bα(�x(t),�ω))

+
1

1 + epα(
bα(�x(t),�ω)− bαU)

− 1 (23)

Fε(�x(t), �ω) =
1

1 + epε(
bεL − bε(�x(t),�ω))

+
1

1 + epε(
bε(�x(t),�ω)− bεU)

− 1. (24)

Fig. 9 plots the azimuth scale factor versus target azimuth angle and
several values of pα for a nominal FLS with a 120◦ horizontal FOV.
Similarly, Fig. 10 plots the elevation scale factor versus target elevation
angle and several values ofpε for a nominal FLS with a 30◦ vertical FOV
mounted at εDE = −15◦. Although the x-axes of Figs. 9 and 10 show
azimuth (or elevation) angles in degrees, both functions are actually
computed for angles in radians.

The plots in Figs. 11 and 12 illustrate how detection probability based
on SE can be shaped using a sonar’s FOV. The color map indicates
the probability of detecting a mine relative to the sonar’s reference
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Fig. 10. Fε versus elevation angle and pε for a nominal FLS with 30◦ vertical
FOV mounted at −15◦.

frame. Fig. 11(a) shows the omnidirectional detection probability in
the horizontal plane, based on SE, for a FLS with FOM = 72 dB and
σ = 9 dB. Fig. 11(b) shows the modified detection probability after
applying an azimuth scale factorFα corresponding to a horizontal FOV
of 120◦ withpα =10. Similarly, Fig. 12(a) shows the modified detection
probability in the vertical plane after applying an elevation scale factor
Fε for a vertical FOV of 30◦ with pε = 40. The sonar head is mounted
on a surface craft with εDE = −15◦. Note that the different scales used
for distance (x-axis) and depth (z-axis) distort the apparent beam angle
in this plot, but the closeup view in Fig. 12(b), plotted with equal axis
scaling, reflects the expected vertical FOV.

For an SSS comprised of dedicated port and starboard arrays, it is still
possible to construct a continuous shaping function that describes both
fields of view over the entire range of azimuth angles bα ∈ [−π, π].
In this case, we define the lower and upper azimuth limits as bαL =
αmid − αFOV/2 and bαU = αmid + αFOV/2, respectively, relative to
the center of the starboard array’s FOV (i.e.,αmid = π/2). The shaping
function for the starboard array is calculated as before, i.e.,

stbdFα(�x(t), �ω) = FLSFα(�x(t), �ω)

using (23) and these new angular limits. Next, the shaping function for
the port side array is calculated as

portFα(�x(t), �ω) =
1

1 + e−pα(bαL + bα(�x(t),�ω))

+
1

1 + epα(
bα(�x(t),�ω)+ bαU)

− 1. (25)

Combining these shaping functions yields

SSSFα(�x(t), �ω) = stbdFα(�x(t), �ω)− portFα(�x(t), �ω). (26)

Fig. 13 plots the azimuth scale factor versus target azimuth angle and
several values of pα for a nominal SSS with a 10◦ horizontal FOV. We
now combine the effects of SE, three-dimensional FOV geometry, and
average Poisson Scan rate of a given sonar to compute the modified
instantaneous detection rate

γ(�x(t), �ω) = λ p(�x(t), �ω)Fα(�x(t), �ω)Fε(�x(t), �ω).

2) Turn Rate Considerations: Recall that some types of sonar
require stable straight line motion by its vehicle platform to produce
high-resolution imagery. SSS, for example, stacks the backscattered
signals received from successive pings to produce an image of the

Fig. 11. Horizontal plane detection probability versus relative target location.
(a) Omnidirectional. (b) Modified by Fα for 120◦ horizontal FOV.

seafloor. The across-track dimension of the resulting image corresponds
to the two-way travel time of each ping, while the along-track dimension
is formed by the vehicle’s forward motion. Turning maneuvers, there-
fore, have a direct impact on SSS performance [83]. In fact, “yawing
motions …are considered to have potentially the most serious degrading
effects on sidescan images, because yaw causes the beam footprint to
move along-track a distance proportional to the distance across-track”
[84]. We model this behavior by applying another scale factor to degrade
detection probability as a function of the vehicle turn rate r(t). We select
the Gaussian-like expression

Fr(�x(t)) = e−[r(t)/σr ]
2/2. (27)

This function reaches a maximum value of one for straight line motion,
e.g., when r(t) = 0, but falls off smoothly for nonzero turn rates. The
slope of this curve can be adjusted via the tuning parameterσr , as shown
in Fig. 14. Applying this scale factor, we obtain (2) for the instantaneous
detection rate

γ(�x(t), �ω) = λ p(�x(t), �ω)Fα(�x(t), �ω)Fε(�x(t), �ω)Fr(�x(t)).

3) Numeric Considerations: A primary consideration when se-
lecting the shaping functions described in Sections III-D1 and III-D2 is
their numerical smoothness. We shall see how instantaneous detection
rate can be used to create an objective function for our optimal search
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Fig. 12. Vertical plane detection probability versus relative target location,
modified by Fε for 30◦ vertical FOV mounted at εDE = −15◦. (a) Full range
view. (b) Closeup view.

problem. Having a smooth (i.e., differentiable) objective function is
extremely helpful when performing numeric optimization. Another
consideration is the ability to derive and encode analytic expressions for
the objective function gradients. The SNOPT software package used
to solve our optimal search problem, for example, “is able to estimate
gradients by finite differences …for each variable whose partial deriva-
tives need to be estimated. However, this reduces the reliability of the
optimization algorithms, and it can be very [computationally] expensive
if there are many such variables” [54].

These shaping functions were also designed to be flexible, as the lo-
gistic functions can be calibrated to reflect most sonar FOV geometries
by setting the azimuth/elevation angular limits and growth parameters.
Tuning the growth parameter pα for azimuth angle in (23), or tuning pε
for elevation angle in (24) will control the slope of a sonar’s respective
FOV boundary between regions of high and low detection probability.
Low parameter values result in a gradual transition. As values increase,
however, this transition tends toward a discontinuous step function,
which presents numerical difficulties. Therefore, we have derived a
heuristic for selecting appropriate growth parameter values based on
the following two qualitative metrics:

TABLE V
DETECTION PERFORMANCE MODIFIERS USED IN NUMERICAL SIMULATIONS

1) scale factor threshold (SFT), the value the scale factor should
attain within the sonar’s FOV;

2) fraction below threshold (FBT), the portion of the nominal FOV
below the desired SFT.

The logistic function, evaluated at the boundary of a sonar’s hori-
zontal or vertical FOV, can be rearranged to calculate growth parameter
values that satisfy these metrics. These expressions become

pα = −2 ln(1− SFT)/[(FBT)(FOVhor)]

and

pε = −2 ln(1− SFT)/[(FBT)(FOVver)]

for use in the azimuth and elevation shaping functions, respectively.
One can experiment with these metrics to arrive at growth rate values
that strike a balance between realistic FOV boundaries and objective
function smoothness during numeric optimization. The values of pα
and pε used for the numerical studies of Sections IV and V are listed
in Table V. These values were selected from a range of values for
which simulated model performance agreed with nominal sonar speci-
fications. Finally, we acknowledge that for distances less than 1 m, the
spherical spreading term 20 log10(‖�ω − �x(t)‖) in (17) will contribute
a negative PL, since spreading losses are defined relative to an intensity
measured 1 m from the source. Even more concerning is the fact that
this term is undefined when the distance equals zero. Since our MCM
problem is searching for bottom mines, however, the distance to any
mine target is guaranteed to exceed 1 m as long as the search vehicle
altitude exceeds 1 m above the seafloor.

E. FLS Models

This section derives FOM values for the FLS models used in this
article. We consider the following two different designs.

1) A long-range low-resolution sonar designed with a cylindrical
transducer array to provide a wide horizontal FOV. This type of
sonar is typically used for wide area surveys to detect MLOs
during the first phase of an MCM operation.

2) High-resolution blazed array imaging sonar suitable for RID of
previously detected targets during follow-on MCM missions.

Both FLS designs are examples of “sectorscan sonar,” which generate
2-D images from each pulse [78]. Examples of this imagery are shown
in Figs. 15 and 16.
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Fig. 13. Fα versus azimuth angle and pα for a nominal SSS with 10◦ horizontal FOV.

Fig. 14. Fr versus turn rate r(t) and σr for a nominal SSS.

Fig. 15. Sample image from an ATLAS cylindrical array FLS. Image courtesy
of Thunder Bay 2010 Expedition, NOAA-OER. Source: [85].

1) Cylindrical Array Model: A cylindrical array of transducer
elements is a common and practical sonar design. Individual elements
are grouped into vertical lines, or staves, to obtain a desired vertical
beamwidth, and multiple staves are arranged into a ring to provide the

Fig. 16. Sample image from a BlueView P450 blazed array FLS.

Fig. 17. ATLAS FLS mounted on the NPS SeaFox USV.

required azimuth coverage [68, p. 34]. Arrays of this type can be found
on submarines (e.g., in [77] and [86]), and in systems, such as the
ATLAS, shown mounted on the NPS SeaFox USV in Fig. 17. A FOM
for a long-range detection sonar similar to ATLAS can be computed
using the design example for a minehunting sonar described in [68, Ch.
11].
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Fig. 18. Ping-to-ping overlap for a wide sector FLS. Image courtesy of
Thunder Bay 2010 Expedition, NOAA-OER. Source: [85].

We specify a 200-kHz sonar with 120◦ horizontal FOV, 5◦ vertical
FOV, and a nominal operating range of 400 m. We assume that this
sonar transmits an FM pulse with bandwidthB = 80 kHz and duration
T = 10 ms, which yields better noise-limited performance than a CW
pulse for the values used in [68, p. 239]. We further assume that the
sonar’s projector array comprises multiple transducer elements so it can
steer its beam in the vertical plane. From [68, Table 2.3] the number of
elements required for a sonar stave to achieve a beamwidth BW of 5◦ is
n = 100/BW = 100/5 = 20. Assuming that the horizontal transmit
beamwidth is 120°, the projector array requires only m = 1 vertical
stave, and the transmit directivity index (DI) for this baffled cylindrical
array can be calculated from [68, Table 2.5] by the expression DIt =
3 + 10 log10(mn) = 3 + 10 log10(20) = 16 dB. If we assume that
the total acoustical power radiated by this projector is P = 10 W, we
compute the SL for the sonar as described in [68, p. 4]

SL = 10 log10 P + 170.8 + DIt = 197 dB. (28)

Turning attention to the sonar’s receive array, we specify narrow 2°
horizontal and vertical beamwidths so the sonar can resolve small
MLOs in its FOV. Waite provided a formula for calculating the receive
DI of a baffled cylindrical array based on its heighth in meters, diameter
d in meters, and design frequency f in kHz [68, Table 2.5]. For this
sonar, the receive DI is

DIr = 10 log10(5hd f
2). (29)

Assuming half-wavelength spacing of its transducer elements (a func-
tion of the design frequency), the array’s height h = 76/(BWver ×
f) = 76/(2× 200) = 0.19 m, whereas its diameter d = 88/(BWhor ×
f) = 88/(2× 200) = 0.22 m [68, p. 35]. Substituting these values into
(29), we compute DIr = 39 dB for this receive array.

Next, we compute the attenuation coefficient using (18), and the
noise background due to thermal agitation using (16), both functions
of the sonar’s 200-kHz design frequency. The attenuation coefficient is
a =52 dB/km and the noise due to thermal agitation isNtherm =31 dB.
However, we use a more conservative value of N = 34 dB to compute
FOM in (15). This 3-dB increase can accommodate additional self-
noise from the vehicle platform at levels comparable to the calculated
Ntherm value, e.g., for loud vehicles, such as the NPS SeaFox USV.

Finally, we estimate the Poisson Scan rate for this sonar model using
the concept of “ping-to-ping overlap” illustrated in Fig. 18. This capa-
bility generates multiple looks, from different viewpoints, at MLOs on
the seafloor, providing better detection and mapping performance [85].
It also makes sector scan sonar more robust to turning maneuvers than
SSS, provided the vehicle platform has sufficiently accurate navigation.
To ensure 95% ping-to-ping overlap from a sonar with 400-m swath
width, mounted on an AUV traveling 1.5 m/s, the sonar must ping
about every 10 s. Therefore, To accommodate faster USV platforms,

we assume that our sonar model pings every 5 s, which corresponds to
a Poisson Scan rate λ = 0.2 scans per second.

The parameters used to model this sonar are listed in Table VI.
All specified (or assumed) values are italicicized, whereas calculated
values are listed in plain text. The operating frequency, projector SL,
cylindrical array geometry, and pulse characteristics chosen for this
design yield a FOM of 72 dB.

2) Blazed Array Models: A relatively recent sonar design tech-
nique, based on “blazed” arrays, has led to a class of smaller, lighter,
and lower power imaging sonars, which are well suited for deployment
from small AUVs. Leveraging techniques from the fields of radar
and optics, a blazed array can “map angular image information into
the frequency domain” [87]. In principle, these acoustical arrays are
analogous to optical diffraction gratings, which can separate a broad
spectrum signal (white light) into individual and angularly separated
frequencies (colors) [88]. Blazed sonar arrays separate a broadband
acoustical pulse into a “frequency-dispersed sound field” in which each
frequency corresponds to a separate sonar beam. Unlike traditional
sonar designs that use dedicated electronics to form and steer the beams
generated by each stave in the array, e.g., [89], “this approach allows
multiple independent beams to be simultaneously formed from a single
hardware channel” [87].

In this section, we apply the procedure described in Section III-
E1 to compute FOM values for two blazed array multibeam imaging
sonars. Teledyne BlueView’s P450 Series and P900 Series systems are
modular designs comprised of multiple blazed arrays that operate at
450 and 900 kHz center frequencies, respectively. Fig. 19 illustrates
how individual staves can be combined to form a larger FOV. We will
model the P450-90 and P900-90 sonars, which utilize four staves to
produce a 90° horizontal FOV.

An individual stave produces a 25° fan of beams in the image plane,
each with a distinct frequency and angle relative to the face of the stave.
The lowest frequency beam angle is 45°, and the highest frequency
beam angle is 70°, as shown in Fig. 19(a). The combined 3-D FOV
for a two-stave system is depicted in Fig. 19(b), illustrating how the
beamwidths vary with frequency in both the image- and cross-image
planes. Although beam pattern geometries for multiple stave systems,
such as those depicted in [90], are complex, we assume that image
processing algorithms allow us to model these sonars as conventional
line arrays operating at the center frequency of their broadband pulse.
Under this assumption, manufacturer specifications can be used for
operating frequency, FOV, beamwidth (in the image- and cross-image
planes), number of beams, and update rate to calculate a FOM for the
P450-90 [69] and P900-90 sonars [70]. We further assume that these
sonars use an FM pulse duration T = 10 ms.

Note that the manufacturer’s specifications list the total number
of beams in a given sonar. Since these sonars are constructed using
modular staves, each with 128 individual beams, we compute the DI
for a single stave using the expression from [68, Table 2.5] for a baffled
line array with n = 128 elements. For this sonar, the DI is

DIt = DIr = 3 + 10 log10 n = 3 + 10 log10(128) = 24 dB. (30)

The transmit SLs for the P450-130 and P900-45 sonars are given
in [91] as 207 and 206 dB, respectively. Using (28) and the calculated
value for DIt = 24 dB, the total acoustical power level P is between
13 and 17 W, a reasonable result given that the stated electrical power
consumption for these models is between 15 and 30 W.

Next, we use (18) to compute attenuation coefficients for the 450 and
900 kHz operating frequencies of a = 104 dB/km and a = 287 dB/km,
respectively. From (16), we estimate that the noise due to thermal
agitation areNtherm = 38 dB andNtherm = 44 dB, respectively. After
accommodating additional self noise from the vehicle platform (which
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TABLE VI
SONAR DESIGN PARAMETERS USED TO CALCULATE NOISE-LIMITED FOM

has lesser impact at higher frequencies), we use conservative values of
N = 41 dB and N = 45 dB, respectively.

Finally, we estimate the Poisson Scan rate for both sonar models
by scaling the maximum update rate specified by the manufacturer.
Assuming that these listed values apply to a sonar operating at its
minimum optimal range, we scale the listed values by the nominal
operating ranges used in our problem. For the P450-90 and P900-90
sonars, we estimate scan rates of λ = 0.5 and λ = 1.0 scans per second,
respectively, based on nominal operating ranges of 200 and 100 m.
These values agree with practical update rates observed when deploying
these sensors on a REMUS AUV. The parameters used to model
the P450-90 and P900-90 blazed array sonars are listed in Table VI

alongside the parameters for the cylindrical FLS. The resulting FOM
values calculated for these models are 66 and 64 dB, respectively.

F. SSS Model

Next, we estimate a FOM for a short-range side-looking sonar similar
to the SSS used on the NPS REMUS 100 AUV. This type of sensor is
representative of high-resolution sonars used to reacquire previously
detected MLOs and identify them for subsequent neutralization [4].
Following the design example for a SSS in [68, Ch. 10], we use man-
ufacturer specifications to derive a model for a 900-kHz SSS [71]. In
contrast with the FLSs considered in Section III-E, this sonar transmits
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Fig. 19. Blazed array FLS with 50° horizontal FOV constructed from two staves. (a) Top view. (b) 3-D beam pattern. Adapted from [90].

a CW pulse with duration T = 6.67μs and bandwidth B = 1/T =
150 kHz. It also has a very narrow horizontal FOV and a wide vertical
FOV. As before, the expression in [68, Table 2.3] is used to compute the
number of elements in a line array from its beamwidthn = 100/BW =
100/0.4 = 250. Substituting n into (30), we calculate the directivity
indices for the SSS’s transmit/receive arrays: DIt = DIr = 27 dB.

Assuming that the sonar radiates 4 W of acoustical power, the SL
for this sonar is SL = 204 dB, using (28). The attenuation coefficient
and thermal agitation noise are computed from the 900 kHz operating
frequency as a = 287 dB/km and Ntherm = N = 44 dB, respectively,
since underwater platforms have much lower self-noise than surface
craft. Because the ping rate of SSS is usually determined by the vehicle
platform’s speed and the sonar’s range setting [92], we estimate a
Poisson Scan rate for this sonar based a sound speed of 1500 m/s and the
two-way time required to travel the nominal operating range of 30 m:
λ = (1500 m/s)/(2 × 30 m) = 25 scans per second. The parameters
used to model this 900-kHz SSS are listed in Table VI and yield a FOM
of 49 dB.

G. Model Verification and Validation

The sonar models developed in Sections III-E and III-F are simulated
to verify that detection performance matches their SE, FOV geometry,
and Poisson Scan rate characteristics. We assume no prior information,
hence a mine might be found uniformly anywhere within the 2000 m
× 2000 m search area shown in Fig. 20. The color map represents the
probability of nondetection at each location, where the maximum PND

value (dark red) is a function of search area size. Search effort reduces
PND. For example, Fig. 21 illustrates the portion of the search area
covered by a USV with nominal 200-kHz FLS following the trajectory
shown. PND approaches zero (blue) in areas covered by the sonar,
indicating a high probability of detecting mines in those areas. Note
that the swath width produced by this sensor model is approximately
equal to twice the nominal range, as expected. At the end of the mission
(Tf = 1000 s), the probability of nondetection PND(Tf ), conditioned
over the entire search area, measures the residual MCM risk.

Similarly, Fig. 22 depicts an example trajectory for an AUV with
SSS. To accommodate the AUV’s slower speed and shorter sonar range,
this simulation utilized a much smaller 400 m× 400 m search area. As a
result, maximumPND values are higher because the uniform probability
is distributed over a smaller area. Nevertheless, the relative color scale

Fig. 20. Search area with uniform probability distribution, representing no
prior target location data.

Fig. 21. Simulated search trajectory by a USV with 200-kHz FLS.
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Fig. 22. Simulated search trajectory by an AUV with SSS.

indicates that our sidescan detection model is consistent with observed
sidescan performance. Namely, the model provides little to no sonar
coverage in the AUV’s near-nadir region and detection performance is
severely degraded during turns.

IV. APPLICATION: TIME-LIMITED OPTIMAL SEARCH

Computational optimal search can be tailored to model and solve
many different MCM problems of interest. Optimal solutions, ob-
tained through simulation, provide performance benchmarks that can
inform mission planning under real-world resource limitations. These
resources include the number and type of autonomous vehicles at the
MCM commander’s disposal, as well as the sensors these platforms
can carry. Typically, however, the most important resource is time. As
Washburn and Kress note

The great questions in search all involve time. We ask, “How long
will detection take?” Or “What is the probability of detection in a
fixed time?” Detection is inevitable, given sufficient time. The object
of search planning is to speed things up [2, p. 134].

Indeed, while a number of planning algorithms have been developed to
achieve complete coverage of a search area (see, e.g., [93] and [94]),
most do not explicitly consider the ramifications of time. Instead, time
is a byproduct of the search vehicle’s velocity and spatial trajectory.
A common metric is the area coverage rate, computed by multiplying
a sensor’s nominal sweep width by platform velocity. One example
described in [95] derives a lower bound for the time required by an aerial
vehicle to follow a flight plan that achieves complete sensor coverage.
This type of bound can be informative when there is sufficient time to
execute a given motion plan, but provides no guidance for adjusting the
plan if the bound exceeds the allowable mission duration.

When time is limited and complete coverage is impossible, deter-
ministic search patterns (e.g., lawnmower or box-spiral trajectories)
are faced with two choices: execute the original motion plan as long as
possible to achieve 100% sensor coverage in a subset of the entire
search area; or adjust the track spacing to survey the entire search
area, but with incomplete coverage. For a perfect “cookie cutter” sensor
and uniform target pdf, both choices are equivalent and the probability
of nondetection equals the fraction of unexplored area. Time-limited
MCM operations can only reduce this risk by leveraging prior infor-
mation about the target distribution. If it is known, for example, that

mines have been deployed in an “evenly spaced mine line,” Stack and
Smith [96] proposed a track-spacing method that yields a probability
of missed mines below the unexplored area ratio.

Mission time is a hard constraint in most MCM operations, moti-
vating the fixed-time problem formulation described in Section II. We
seek time-limited optimal search trajectories that minimize MCM risk
for a given vehicle, sensor, and mission duration—whether or not prior
information is available. In this section, we demonstrate the flexibility
of the GenOC framework by solving MCM search problems for both
cases. The optimal search problems explored in this article assume the
following:

1) targets are bottom mines with known TS;
2) seafloor is flat;
3) water depth is constant;
4) search effort is confined to a rectangular area;
5) available mission time is fixed.
Sections IV-A and IV-B provide two examples of time-limited op-

timal search. First, we implement a wide area survey to detect and
localize MLOs. Such missions are typically conducted during the initial
phase of an MCM operation. Lacking prior information, we make the
conservative assumption that targets have a uniform pdf and solve
an optimal search problem. We then compare the time-limited search
performance, i.e., MCM risk versus allotted mission time, for optimal
trajectories against well-known deterministic search patterns. Second,
we implement an RID mission and solve an optimal search problem
for a vehicle to revisit a previously detected target location described
by a joint normalized beta distribution. Finally, we compare optimal
trajectories computed for different time and/or spatial discretizations.
To make these comparisons, however, we recompute their objective
values using a common baseline of 500 time nodes and a grid with
25× 25 spatial nodes. We accomplish this by the following:

1) interpolating the solver’s control input trajectory onto a fine grid
of 500 time nodes;

2) propagating this finely gridded control input through the vehicle’s
EOM, using MATLAB’s ode45 solver to generate finely gridded
state trajectories;

3) recalculating the objective function for the dynamically feasible
fine-grid state trajectories.

A. Search With No Prior Information—Mine Survey

In this section, we consider the common MCM problem of planning
survey missions to detect MLOs in the absence of prior information
about the target distribution. Typically, this involves a labor-intensive
process to divide the search area into separate homogeneous regions,
and tasking individual MCM assets to cover each region with a deter-
ministic search pattern based on nominal area coverage rates. Various
tactical decision aids (TDAs) have been developed to automate aspects
of this process, and these information products can be “used by the
force commanders to optimize the employment of naval assets in any
particular tactical environment at sea” [66].

Many planning tools, e.g., Planning Aid for Tasking Heterogeneous
Assets, can incorporate sonar performance models and time-based
constraints to help mission planners determine the number of assets
needed for a given mission [97]. However, these systems do not ex-
plicitly consider search vehicle dynamics and their attendant impact on
detection performance. The GenOC framework takes this into account,
providing a unique capability for planning MCM survey operations. The
rest of this section applies the GenOC framework to plan a time-limited
MCM survey for the following benchmark problem.

We wish to plan a 30-min MCM survey that has a 90% probability
of detecting a bottom mine hidden anywhere in the 2000 m × 2000 m
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Fig. 23. Optimal trajectories for SeaFox USV(s) conducting a 30-min mine
detection survey with 200-kHz FLS. (a) Single USV solution yields PND =
0.362 (computed with 30 time nodes). (b) Two USV solution yields PND =
0.022 (computed with 30 time nodes).

search area shown in Fig. 20 with uniform probability distribution. We
assume that the search area has a flat bottom and water depth is 20 m,
and two SeaFox USVs equipped with 200-kHz FLS are available for
this operation. After scaling this problem (see Section II-E) with DU
= 100 m, TU = 100 s, and VU = 1 m/s, this objective corresponds to
the risk threshold PND(Tf = 18 TU) ≤ 0.1. We first consider whether
a single vehicle can meet this risk threshold, and solve an optimal
search problem for a SeaFox USV launched from initial state vector
�x(0) = [1 DU, 7 DU, 0 rad, 0 rad/TU]� and programmed to operate at
constant velocity V = 2.5 m/s = 2.5 VU. A naive, yet feasible initial
guess trajectory is provided to the solver using an open loop rudder step
function to generate a right turn in the center of the search area. The
optimal time-limited search trajectory is shown in Fig. 23(a), which
achieves an objective value of PND(Tf = 18 TU) = 0.362, computed
on our 500 × 25 × 25 discretization baseline. This trajectory resembles
a box-spiral search pattern, although the limited mission duration does
not permit full coverage. Nevertheless, this trajectory represents the best
search performance that can be achieved by a single USV launched from
the given initial condition. As such, it represents a local minimum, since

Fig. 24. Optimal trajectories for two SeaFox USVs conducting a 30-min mine
detection survey with 200-kHz FLS. (a) 20-min mission yields PND = 0.224
(computed with 20 time nodes). (b) 25-min mission yields PND = 0.087 (com-
puted with 30 time nodes).

different initial conditions may yield lower PND results. Monte Carlo
simulation can be employed to determine the most favorable initial
condition(s) for exploring a given search area. Due to the symmetry
of this problem, however, such solutions are not unique. An initial
condition of �x(0) = [23 DU, 1 DU, π/2 rad, 0 rad/TU]� will yield the
same result.

Since the MCM survey failed to meet the desired risk threshold,
the force commander must either increase the mission duration, or
deploy additional search assets. Adding a second identical searcher
launched from initial condition �x(0) = [1 DU, 9 DU, 0 rad, 0 rad/TU]�

produces the optimal trajectories shown in Fig. 23(b), which reduce
risk to PND(Tf = 18 TU) = 0.022 in the same 30-min mission. This
result suggests that two vehicles can meet the desired risk threshold of
PND(Tf = 18 TU) = 0.1 with a shorter mission duration. Additional
simulations were conducted to determine whether two vehicles could
achieve the survey objective in less time. Fig. 24(a) and (b) show the
optimal trajectories computed for a 20-min and 25-min mission, respec-
tively. The 20-min mission fails to meet our objective with time-limited
PND(Tf = 12 TU) = 0.224. The 25-min mission, however, achieves
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TABLE VII
OPTIMAL TIME-LIMITED TRAJECTORIES FOR MINE DETECTION USING SEAFOX

USVS WITH 200-kHz FLS

PND(Tf = 15 TU) = 0.087, greater than 91% detection probability.
Results from these simulations are summarized in Table VII.

B. Search With Prior Information—Mine Reacquisition

During the initial phase of an MCM operation, wide area surveys
are conducted to detect MLOs in the environment that pose a threat
to naval forces. These surveys can produce data sets with dozens of
potential target locations, so it is critical to distinguish actual mines
from harmless clutter before launching time-intensive neutralization
missions. Successful target identification requires high-resolution sen-
sors not typically carried on the initial survey vehicles, and these sensors
are more effective at close range. As a result, follow-on missions are
conducted to revisit the MLOs with AUVs carrying imaging sonars
or video cameras. This type of RID mission incorporates prior infor-
mation about MLO locations provided by the survey, but these data
are uncertain; its accuracy depends upon the sensing and navigational
performance of the survey vehicle itself. The vehicle should expect to
search for the target upon arrival at the surveyed location. We therefore
cast the motion planning problem for an RID mission as an optimal
search for a target whose probability density is more informative than
the uniform density assumed for the initial MCM search.

In this section, we apply the GenOC framework to solve RID
problems. We assume that a prior survey has detected and localized
an MLO with probability density described by a joint normalized beta
distribution in two dimensions (see Section II-C). Using the same prob-
lem scaling and 20 DU× 20 DU search area, we select (α, β) parameter
values of [8 DU, 16 DU] in the north direction and [16 DU, 8 DU] in the
east direction. Substituting these values into (3) produces the 2-D pdf
shown in Fig. 25, pictured before the RID mission begins. Our objective
value, the residual risk of nondetection, is plotted on a color scale in
which high probabilities are shown in dark red, and low probabilities are
shown in blue. This β distribution corresponds to a previously detected
target located at [ωx, ωy] = [12 DU, 19 DU].

We wish to compute the time-limited optimal trajectory for a 40-min
RID mission by a REMUS 100 AUV equipped with high-resolution
imaging sonar. For this problem, we assume that the search area shown
in Fig. 25 has a flat bottom and the AUV operates with constant velocity
V = 1.5 m/s at altitude h = 3 m above the seafloor. The AUV is
programmed to launch from a start location at [x, y] = [1 DU, 7 DU] on
an initial heading of 45°, utilizing prior information about the expected
target location [12 DU, 19 DU]. From the AUV’s initial state vector
�x(0) = [1 DU, 7 DU,π/4 rad, 0 rad/TU]�, we select a naive yet feasible
initial guess trajectory that uses an open-loop rudder step function to
generate a wide right turn.

Fig. 25. Normalized beta distribution for a previously detected target located
at [12 DU, 19 DU].

TABLE VIII
OPTIMAL TIME-LIMITED RID TRAJECTORIES FOR A REMUS 100 AUV WITH

FLS AND Tf = 2400 S

Simulated AUV search performance for the 450 and 900-kHz blazed
array FLS models from Table VI are compared in Figs. 26 and 27,
respectively. To compare solutions generated using a different num-
ber of time nodes, objective values have been recomputed using our
500 × 25 × 25 discretization baseline. Results from these simulations
are summarized in Table VIII.

The 20-time-node trajectory in Fig. 26(a) makes two parallel passes
over the search area and then loiters over the expected target location
for the remainder of the mission. The 35-time-node trajectory shown in
Fig. 26(b) is more dynamic, approaching the search area from several
different headings and almost encircling the expected target location.
The 450-kHz blazed array FLS has a nominal operating range of 200 m,
and an AUV using this sensor for RID missions can reduce the residual
risk of nondetection to roughly 1% or less.

If a given mission requires a higher resolution sonar to achieve pos-
itive target identification, the same AUV can deploy a 900-kHz blazed
array FLS instead. Example trajectories are provided in Fig. 27. The
30-time-node trajectory shown in Fig. 27(a) executes three symmetric
loops over the expected target location, whereas the 40-time-node
trajectory shown in Fig. 27(b) sweeps the target area with parallel tracks
oriented on two distinct headings. Both solutions achieve a probability
of nondetection around 30%, indicating that the 900-kHz sonar is
hampered (in coverage) by its 100-m nominal range. Nevertheless,
the GenOC framework produces trajectories that revisit the target area
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Fig. 26. Optimal RID trajectories for a REMUS AUV with P450 FLS. (a)
PND = 0.012 (20 time nodes). (b) PND = 0.001 (35 time nodes).

repeatedly until the mission time expires. These solutions have simi-
larities with traditional RID search patterns, which implement partial
lawnmower swaths, aligned on different headings, to cover a target from
multiple aspect angles for improved classification performance [11].

V. ANALYSIS: SIMULATED OPTIMAL SEARCH PERFORMANCE

A. Search Performance Versus Mission Duration

There is an inherent time dependence in the exponential detec-
tion model incorporated into the objective functions (8) and (11) in
Section II. This model produces diminishing returns on search effort
applied to previously visited regions of the operating area. Optimal
search can leverage this property to produce motion plans which accom-
plish both exploration, when we wish to acquire information about the
environment (see Section IV-A), and exploitation of all relevant prior
information (see Section IV-B). We have already seen how mission
duration impacts the optimal vehicle trajectories and achievable search
performance for a given mission. While it is intuitively obvious that
searching for longer periods of time can lower MCM risk, the ability
to rapidly solve optimal search problems allows MCM commanders to
quantitatively address questions such as the following.

Fig. 27. Optimal RID trajectories for a REMUS AUV with P900 FLS. (a)
PND = 0.333 (30 time nodes). (b) PND = 0.305 (40 time nodes).

1) What is the residual risk after searching for a fixed duration with
a given vehicle and sensor combination?

2) How long will it take a search vehicle to reach a desired risk
threshold with a given sensor payload?

3) How much time can be saved by employing multiple search
assets?

Using the GenOC framework, we conduct several simulated experi-
ments to solve a given optimal search problem for different values of our
fixed mission duration. Subsequent Monte Carlo analysis can identify
trends in the results to help characterize the optimal performance of a
given system configuration as a function of time. Note that our current
computational framework was written to solve GenOC problems with
fixed final time; at present, we rely on Monte Carlo simulations to
answer questions regarding the minimum time to reach a given risk
threshold, for example. Future work will investigate the use of optimal
control software packages, such as DIDO [98], which can address
minimum-time problems directly, for solving this class of GenOC
problems.
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Fig. 28. Partially completed lawnmower survey pattern for Tf = 2000 s.

Two minor complications arising from this approach must be ad-
dressed. First, the numeric solution to any given optimal control prob-
lem is repeatable over multiple runs. To facilitate a meaningful statis-
tical analysis, we must inject random variation into the simulations.
Therefore, the position and heading angle of each search vehicle at
t = 0 is randomized before each simulation, which influences the initial
guess trajectories as well. Second, we must impose a feasibility check
on the solver’s output so that infeasible solutions are excluded from the
analysis.

It is instructive to compare the search performance versus mission
duration of our optimal search trajectories against well-known deter-
ministic search patterns. For the single-USV survey mission described
in Section IV-A, the following sections describe the feasible lawnmower
and box-spiral trajectories which provide benchmarks for comparison.

1) Manually Specified Lawnmower Pattern: Computing the
shortest path for a lawnmower coverage pattern to completely cover a
polygonal area has been found to be NP-hard; as a result, approximate
algorithms are proposed to plan efficient lawnmower trajectories in
[99]. Additional examples are proposed in [100], which minimizes the
number of turns along the path, and Huang [101] suggested that these
patterns are time optimal for a robotic lawnmower.

We wish to generate a benchmark lawnmower trajectory that com-
pletely covers the 2000 m × 2000 m search area of Fig. 20 in the
manner that an MCM operator programs a waypoint-based mission for
a given sensor sweep width. The 200-kHz FLS used in our example
has a nominal range of 400 m, so we select waypoints that place
north/south-aligned track lines with 400-m track spacing, offset by
200 m from the search area’s east/west boundaries. Whereas a SSS
survey would perform the necessary U turns outside the search area,
we assume that the FLS does not incur a performance penalty for turning
motions [i.e.,Fr(�x) = 1]. Therefore, the long track lines are connected
by short legs offset 200 m from the search area’s north/south boundaries
to avoid wasted effort. This waypoint pattern is denoted by white circles
in Fig. 28.

Using our previous problem scaling, initial condition
�x(0) = [1 DU, 7 DU, 0 rad, 0 rad/TU]� allows the USV to begin
its mission prealigned with the first track line, thereby minimizing
unnecessary path length. We ensure feasibility of this lawnmower
pattern by constructing its 90° turns with clothoid curves (see
Appendix C) and propagating a control input through the EOM,
producing the green state trajectory in Fig. 28. This trajectory was

Fig. 29. Lawnmower and box-spiral pattern search performance versus mis-
sion duration.

Fig. 30. Partially completed box-spiral survey pattern for Tf = 2800 s.

used to recalculate PND on our 500 × 25 × 25 discretization baseline
for different values of Tf , plotted as blue crosses in Fig. 29, where
each data point represents an entire mission that completes as much of
the lawnmower pattern as possible in the time available.

A linear fit of the PND and Tf data produces the formula

PND(Tf ) = −0.000254(Tf ) + 0.951. (31)

Equation (31) confirms thatPND(Tf ) ≈ 1 forTf = 0 s, a trivial mission
with no search effort; andPND(Tf ) = 0 forTf ≈ 3745 s, sufficient time
to completely cover the search area.

2) Manually Specified Box-Spiral Pattern: Spirals are another
popular deterministic search pattern, and box spirals are very similar to
the lawnmower trajectories discussed previously. While both patterns
achieve complete coverage, Hsu and Lin [101] suggested box spirals as a
minimal-energy alternative to time-optimal lawnmower patterns, since
box spirals require less turning effort. Using the same assumptions,
waypoint spacing, and initial condition as in Section V-A1, we generate
a benchmark box-spiral trajectory that completely covers the 2000 m
× 2000 m search area of Fig. 20. The feasible state trajectory for this
pattern is shown as a green line in Fig. 30, whereas the waypoint pattern
is denoted by white circles.
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Fig. 31. Performance comparison between optimal search trajectories and
exhaustive search patterns.

Box-spiral PND(Tf ) values, recalculated on our 500 × 25 × 25 dis-
cretization baseline, are plotted as red squares in Fig. 29 for different
values of Tf . As before, each data point represents an entire mission
that completes as much of the box-spiral pattern as possible in the time
allotted. This data reveal a linear relationship nearly identical to the
lawnmower pattern, and the best linear fit yields the formula

PND(Tf ) = −0.000257(Tf ) + 0.952. (32)

The mean of the lawnmower and box-spiral patterns’ linear fits are
depicted by a black line with constant slope in Fig. 29. A constant slope
is expected, since lawnmower and box-spiral trajectories implement
“exhaustive search.” Recall that exhaustive search with a definite range
sensor yields a detection probability PD equal to the coverage ratio,
the fraction of search area covered by the sensor. Therefore, a “cookie
cutter” sensor with sweep width W , mounted on a vehicle moving
at constant velocity V , in a search area A, produces a probability of
detection PD(t) =W V t/A that is linear with time [21, Ch. 2, p. 4].
We have simply plotted the complement, PND(Tf ) = 1− PD(Tf ), in
Fig. 29.

3) Optimal Search Trajectories From Solver: Monte Carlo
simulations were conducted for the mine survey problem of Section IV-
A to analyze the optimal search performance for a range of mission
durations between 15 and 60 min, spaced at 2-min intervals. Using
our previous problem scaling, ten simulations were conducted for each
value of Tf , with initial states drawn from a uniform U(min., max.) or
normal N (mean, std. dev.) probability distribution as follows:

x(0) ∼ U(0, 0.1) DU

y(0) ∼ U(0.5, 2.5) DU

ψ(0) ∼ N (0, π/12). (33)

Initial turn rate r(0) = 0. The initial guess is computed from an open-
loop rudder step input that commands a right turn when y(0) is in the
western half of the search area, and commands a left turn when y(0) is
in the eastern half of the search area.

The mean objective values of PND from the ten simulations con-
ducted for each value of Tf are plotted as the blue line in Fig. 31, while
a quadratic curve fit to these data is shown as the dashed magenta line.
The mean of the two deterministic search patterns derived previously
is shown as a black line for comparison purposes. The plots intersect
at roughly Tf = 3280 s and an objective value of PND = 10%. This

Fig. 32. Lawnmower search results for a single USV with FLS when mission
time is limited to Tf = 3000 s: (a) 675-m track spacing leaves coverage gaps;
(b) 550-m track spacing achieves near-optimal time-limited search performance.

plot clearly indicates that an optimal search strategy outperforms de-
terministic exhaustive search patterns for time-limited missions less
than about 55 min in duration. However, it also suggests that operators
would be better off selecting a deterministic search pattern if there is
sufficient time to execute it to completion.

B. Optimal Lawnmower Pattern Lane Spacing

Numerous simulations (see Fig. 31) have verified that GenOC tra-
jectories outperform exhaustive search patterns with constant track
spacing, particularly under time or resource constraints. However, most
unmanned vehicle missions are still specified by a set of waypoints that
denote a lawnmower search pattern, since straight and level motion
along parallel track lines produces the best sidescan or SAS imagery.
In such cases, optimal trajectories can be used to establish performance
benchmarks for conventional mission planning methods.

Specifically, for a given sonar and mission duration, it is usually
possible to select a constant lawnmower track spacing that approaches
the optimal search performance benchmark computed by GenOC. For
example, Fig. 32(a) and (b) illustrate 50-min (time-limited) search
performance for lawnmower patterns with track spacing of 675 and
550 m, respectively. The 675-m track spacing is suboptimal for the given
scenario, leaving gaps in sonar coverage, while the 550-m track spacing
does not. In this manner, near-optimal lawnmower search performance
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Fig. 33. Performance comparison between optimal search trajectories and
lawnmower patterns with near-optimal track spacing.

for a range of track spacing values can be plotted as a function of
mission duration in Fig. 33. The upper plot indicates track spacing
values corresponding to the best lawnmower search performance in
the lower plot (red), as compared with the optimal GenOC trajectory
(blue). This type of analysis can also be used as a mission planning tool
to recommend the best lawnmower track spacing for a given vehicle,
sensor, and mission profile.

C. Search Performance Versus Time Discretization

One of the most important aspects of motion planning in a com-
putational optimal control framework is the choice of discretization
scheme, as this directly impacts accuracy and computational run time.
In general, numeric trajectory approximations converge to their contin-
uous counterparts as the number of computational nodes increase [102],
[103]. While increasing the number of nodes can improve solution ac-
curacy, designers must balance this accuracy against the computational
demands required by high-node discretizations. Moreover, high-node
control trajectory solutions may be infeasible for implementation on
an actual vehicle system. A detailed theoretical discussion on this
topic is beyond the scope of this article, but an excellent overview
on pseudospectral optimal control theory is provided in [104], with
convergence and consistency proofs given in [105].

Hurni recommended using “the lowest possible number of nodes
for feasible and safe trajectories,” and proposed a novel criteria for
selecting the number of nodes based on the distance a ground vehicle
must travel; and the size of the obstacles it must avoid along the way
[58]. We have assumed an obstacle-free environment for MCM search
planning. Moreover, we do not require real-time algorithms for dynamic
replanning. Instead, we generate an optimal search strategy for the entire
MCM mission, subject to any prior information we possess. The lack
of a real-time constraint grants us the luxury of computing multiple
solutions with increasingly fine discretization schemes in our search for
an optimal and feasible search trajectory. Solutions whose feasibility
cannot be verified by control trajectory propagation are rejected.

Fig. 34. Solver performance versus number of time nodes for a single-vehicle
30-min survey. (a) Solver-provided objective values. (b) CPU runtimes.

We will demonstrate this concept for the 30-min mine detection
survey mission described in Section IV-A. Fig. 34(a) plots the objective
values for ten optimal single-vehicle solutions, each computed at a
different time discretization usingnt time nodes. We observe that as the
number of time nodes increases, the numeric solution’s objective value
converges to PND ≈ 0.320. The plotted objective values are the raw
solver outputs, calculated directly from the nt solution nodes, which
we denote as Jout. Fig. 34(b) plots the times required to compute each
solution using a 2.30-GHz Xeon CPU (complete processor specifica-
tions are listed in [106]). We note that there is a large increase in run
time required to compute solutions with more than 40 time nodes, and
the 50-node solution takes nearly twice as long as the 30-node solution.
Moreover, the 40-node solution takes nearly 5 s longer to compute than
the 30-node solution, yet only decreases PND by 0.003. For this reason,
30-node solutions were selected as an acceptable compromise for the
plots presented in Section IV-A.

To support performance comparisons between different numeric
solutions, solution trajectories must first be transferred onto a
common discretization scheme. This is achieved by interpolating con-
trol trajectories, propagating state variables through the system’s ODEs,
and recalculating objective values on our 500 × 25 × 25 discretization
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Fig. 35. Optimal search trajectories versus number of time nodes: (a) 30-min
single-vehicle survey; (b) 25-min two-vehicle survey.

baseline. Objective values corresponding to these ODE-propagated
state trajectories are designated by Jode. Finally, the propagated trajec-
tories are compared against the solution nodes to assess each solution’s
feasibility. In this example, all of the numeric solutions with greater
than 50 nodes fail the feasibility criteria proposed in [58] and are
therefore deemed infeasible. Feasible search trajectories from these
single-vehicle simulations are illustrated in Fig. 35(a). By way of
comparison, Fig. 35(b) shows feasible optimal trajectories computed
with different numbers of time nodes for a 25-min two-vehicle mine
detection survey.

Note that high-node solutions incorporate periodic turning motions
into their trajectories. This has the benefit of aiming the vehicle’s FLS
to cover a larger portion of the search area, reducing the accumulated
probability of nondetection. Recall that we have not penalized the
detection rate of this FLS for turning motion as we would for an SSS,
i.e., the shaping function Fr(�x) = 1 for this problem. This increased
complexity yields diminishing returns, however; the optimal trajecto-
ries computed using 30 or more time nodes are remarkably similar,

and all of them achieve PND within 3% of the 50-node best performer.
Table IX summarizes the search performance for all of these one- and
two-vehicle survey trajectories.

VI. CONCLUSION

The key contribution of this article is the development of
engineering-based sensor models for various sonars typically used in
MCM. These models compute mine detection rate as a function of sonar
design parameters and search vehicle trajectories. Next, the probability
that searchers following these trajectories will fail to detect mines in
an area of interest is used to quantify the residual risk after different
MCM missions. We cast this risk as a GenOC objective function to be
minimized over all feasible search trajectories that satisfy constraints
imposed by vehicle dynamics. Examples are provided that illustrate
this trajectory optimization approach, and initial results suggest that
the GenOC solution framework is suitable for optimal motion planning
of autonomous minehunting missions under temporal, spatial, and
dynamic constraints. The authors are actively developing a mission
planning tool for MCM based on this computational framework, and
are working to expand the class of problems that can be solved using
this approach.

APPENDIX

A. Nomoto Steering Model for REMUS 100 AUV

We derive a Nomoto steering model for the REMUS 100 AUV from
the lateral steering equation in [46, eq. (118)]

⎡
⎢⎣
m− Yv̇ −Yṙ 0

−Nv̇ Izz −Nṙ 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣
v̇(t)

ṙ(t)

ψ̇(t)

⎤
⎥⎦

+

⎡
⎢⎣
−Yv mu0 − Yr 0

−Nv −Nr 0

0 −1 0

⎤
⎥⎦
⎡
⎢⎣
v(t)

r(t)

ψ(t)

⎤
⎥⎦ =

⎡
⎢⎣
Yδr

Nδr

0

⎤
⎥⎦ δr(t) (A.1)

where

v(t) sway velocity in the y-axis direction;

r(t) yaw rate;

ψ(t) yaw angle;

δr(t) rudder angle;

m vehicle’s mass;

IZZ vehicle’s moment of inertia about the z-axis;

Y hydro. coefficients producing sway forces;

N hydro. coefficients producing yaw moments.

In general, control inputs and state variables (and their derivatives)
produce nonlinear hydrodynamic forces and moments. It is common
practice, however, to approximate these effects by multiplying each
contributing variable with a linearized hydrodynamic coefficient. In
(A.1), Y and N denote coefficients that produce sway forces and yaw
moments, respectively, while subscripts denote their corresponding
control input or state variable. Assuming that sway velocity is zero
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TABLE IX
OPTIMAL TIME-LIMITED SEARCH PERFORMANCE VERSUS THE NUMBER OF DISCRETE TIME NODES FOR MINE DETECTION SURVEY MISSIONS

(no sideslip), we rearrange (A.1) as[
Izz −Nṙ 0

0 1

][
ṙ(t)

ψ̇(t)

]
+

[
−Nr 0

−1 0

][
r(t)

ψ(t)

]
=

[
Nδr

0

]
δr(t).

(A.2)

Manipulating the ṙ(t) expression from (A.2) into the form of our first-
order Nomoto steering model [see (1)], we have

(Izz −Nṙ) ṙ(t) = Nr r(t) +Nδr δr(t)

ṙ(t) =
Nr

(Izz −Nṙ)
r(t) +

Nδr

(Izz −Nṙ)
δr(t)

ṙ(t) =
1

T
[K u(t)− r(t)] (A.3)

where T = (Nṙ − Izz)/Nr ,K = −Nδr/Nr , and u(t) = δr(t). Sub-
stituting values from [46] for the yaw axis moment of inertia Izz and
the hydrodynamic coefficientsNṙ ,Nr , andNδr produces the REMUS
100 model parameters listed in Table II.

B. Problem Scaling

For our search problems, the vehicle models from Section II-A can
be scaled by canonical units of distance (DU), time (TU), and velocity
(VU = DU/TU) to produce dimensionless variables designated by
overbar notation: x = x/DU, y = y/DU, ψ = ψ, r = r/(1/TU) =
(TU)r, t = t/TU, and u = u. Note that angular variables for heading
ψ and control input u = δr (rudder angle) are already expressed in
dimensionless units of radians. The chosen scaling must also be applied
to constant model parameters, such as forward velocity V , as well
as the gain K and time T constants of the Nomoto steering model:
V = V/VU, K = K/(1/TU) = (TU)K, and T = T/TU. Substitut-
ing these expressions into our original expressions for x and y yields
their state-space equations in nondimensional units

ẋ =
dx

dt
=
d(DUx)

d(TU t)
=

DU
TU

dx

dt
= VU ẋ

ẋ =
1

VU
ẋ =

1

VU
V cosψ = V cosψ. (A.4)

Similarly, we have

ẏ = V sinψ. (A.5)

Likewise, scaling by canonical units for ψ and r yields the nondimen-
sional expressions

ψ̇ =
dψ

dt
=

dψ

d(TU t)
=

1

TU
dψ

dt
=

1

TU
ψ̇

ψ̇ = TU ψ̇ = (TU) r = r, and (A.6)

ṙ =
dr

dt
=
d(1/TU) r

d(TU t)
=

1

TU2

dr

dt
=

1

TU2 ṙ

ṙ = (TU2) ṙ = (TU2)
1

T
(Ku− r)

= (TU2)
1

TUT

(
K

TU
u− r

TU

)

=
1

T

(
K u− r

)
. (A.7)

Equations (A.4) through (A.7) confirm that our scaling has not changed
the underlying dynamics of the problem. To ensure the objective
function J is calculated properly, physical units in the detection rate
equation must also be scaled by the appropriate canonical units. The
Poisson Scan rate λ is scaled using TU to yield the nondimensional
form

λ = λ/(1/TU) = (TU)λ. (A.8)

Recall from (17) that our range-dependent PL includes a spherical
spreading term 20 log10(‖�ω − �x(t)‖) and an acoustical absorption
term a‖�ω − �x(t)‖. At each time t, we compute the distanceD between
a vehicle and target. Scaling this distance yields

D = ‖�ω − �x‖

D =
√

(ωx − x)2 + (ωy − y)2 + (ωz − z)2

D =
√

(dx)2 + (dy)2 + (dz)2

D =

√
(DU dx)2 + (DU dy)2 + (DU dz)2

D = DU

√
dx

2
+ dy

2
+ dz

2

D = DUD. (A.9)

SoD = D/DU, as expected. The attenuation coefficient a has units of
dB/m and must be scaled by canonical distance DU (dB represents a

Authorized licensed use limited to: NPS Dudley Knox Library. Downloaded on August 14,2020 at 17:45:39 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KRAGELUND et al.: GENERALIZED OPTIMAL CONTROL FOR AUTONOMOUS MINE COUNTERMEASURES MISSIONS 27

Fig. 36. PL and SE for a nominal 200-kHz FLS with FOM = 72 dB. (a)
Physical range. (b) Nondimensional range.

ratio and is dimensionless already) as

a =
a

1/DU
= (DU)a. (A.10)

Finally, the equation for PL in dB using dimensionless quantities
becomes

PL(D) = 20 log10(D) + a(D) (A.11)

PL
(
D
)
= 20 log10

(
DUD

)
+

a

DU

(
DUD

)

PL
(
D
)
= 20 log10 (DU) + 20 log10

(
D
)
+ a

(
D
)

(A.12)

which has an additional term due to the distance scale factor. The level
curves in Fig. 36 verify that PL computed with (A.11) as a function of
physical distanceD [see Fig. 36(a)] is equivalent to PL calculated with
(A.12) as a function of nondimensional distance D with DU = 100 m
[see Fig. 36(b)]. These curves also show the SE versus range for the
200-kHz FLS with FOM = 72 dB, derived in Section III-E1. Note that
SE is zero at a range of 400 m.

C. Initial Guess

When choosing an initial guess trajectory for numeric optimization,
the guess should itself be a valid candidate solution to the problem of
interest. This implies that the initial guess should

1) have the same initial condition �x(0) = �x0 as the problem of
interest;

2) have the same time node discretization as the problem of interest;
3) be feasible, i.e., obey state variable constraints and control limits.
The first two requirements are easy to address while encoding a prob-

lem of interest into the GenOC framework. Satisfying the feasibility
requirement depends on the sophistication of the initial guess trajectory,
which corresponds to the amount of prior information we wish to
incorporate. Ideally, we would like to find an optimal solution without
knowing beforehand what a “good” initial guess looks like. A trivial
guess which satisfies the first two requirements, for example, would be a
zero velocity trajectory that remains at�x0 for all time. Unfortunately, the
constant velocity vehicle models defined in Section II-A do not permit
acceleration, and the solver would be unable to find another solution
trajectory. Similarly, a guess that specifies a trivial control trajectory
u(t) = 0 for all time is infeasible under our definition, because the
vehicle would travel at constant velocity and heading until it departed
its operating area.

A naive open-loop control trajectory is a good compromise between a
trivial (no information provided) guess, and an expert (full information
provided) guess. For example, a rudder angle step function, executed
at the proper time, will cause a search vehicle to turn in a circle
until the end of the simulation. This has the benefit of keeping the
vehicle in the search area and ensures that state variable limits are
not exceeded. In practice, we approximate a discrete step function
with a smooth sigmoidal curve centered at the step time [82]. This
simple control trajectory is then propagated through the motion model,
using a Runge–Kutta algorithm (e.g., the MATLAB ode45 solver) to
calculate the corresponding state variable trajectories to ensure initial
guess feasibility [see Fig. 37(a)].

If there is sufficient time to exhaustively search an area, an expert
initial guess can be provided that completely covers the area with a
deterministic search pattern. A number of algorithms for “coverage path
planning” exist [93], based on sensor sweep width. Deterministic search
patterns include spirals for searching circular areas [107]; and box
spiral, lawnmower, or zamboni patterns for searching rectangular areas
[108]. While these strategies may waste effort when the search area con-
tains subregions with near-zero target probability distribution [109], it is
usually possible to decompose the search area into smaller regions and
avoid this situation. Moreover, for rectangular search areas, line sweeps
conducted parallel to boundary edges are optimal for minimizing the
number of turns required [100]. This fact, plus the ease of implementing
these patterns with vehicle autopilots, explain the widespread use of
lawnmower patterns for underwater search operations.

These rectangular coverage patterns require path following con-
trollers to execute them. Coverage path planners often take this for
granted, assuming that the search area can be decomposed into smaller,
“easy to cover” cells; the vehicle need only visit all such cells to
achieve complete coverage [93]. Another approach is to extend the
line sweep track length by a vehicle-specific distance, assuming all
180° turns occur outside the search area and the vehicle reestablishes
straight-line motion before reentry on an adjacent track [110]. While
these approaches determine the geometric length, spacing, and number
of track lines for a given sweep width, they do not represent feasible
trajectories, per se.

To specify this type of coverage pattern as an initial guess trajectory
for an optimal control problem, we must convert a waypoint-based
specification into a feasible trajectory. Haugen suggested an approach
for constructing a feasible lawnmower path which used clothoids as
transition curves between waypoint segments. The clothoids are scaled
such that a vehicle following this trajectory obeys feasibility constraints
on its angular velocity and acceleration [111]. Depending on the track
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Fig. 37. Initial guess state and control trajectories. (a) Open-loop rudder step. (b) Lawnmower search pattern. (c) Box-spiral search pattern.

spacing and vehicle turning radius, one of three different U turn paths
are constructed to connect adjacent line sweep tracks. For our search
problems, we assume that the lawnmower track spacing permits a
piecewise U turn comprised of two 90° clothoids and a straight line
segment (Case A) [111]. This produces a feasible path in the horizontal
plane, which can be converted into a control trajectoryu(k) by inverting
the searcher model of Section II-A as follows:

Δx(k) = x(k + 1)− x(k)

Δy(k) = y(k + 1)− y(k)

ψ(k) = atan2 (Δy(k), Δx(k))

Δt(k) =

√
Δx2(k) + Δy2(k)

V

r(k) =
dψ

dt
(k) ≈ ψ(k + 1)− ψ(k)

Δt(k)

ṙ(k) =
dr

dt
(k) ≈ r(k + 1)− r(k)

Δt(k)

u(k) =
1

K
(r(k) + T ṙ(k)) . (A.13)
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Fig. 37(b) and (c) illustrates lawnmower and box-spiral initial guesses,
respectively, constructed using this clothoid method. Note that the
inverse kinematic equations of (A.13) differentiate state trajectories
using the forward Euler method, which requires small equally spaced
time steps to ensure accuracy and feasibility of the derivatives. Small
step size translates into a large number of nodes, which can drastically
increase solver run time. The latter makes a compelling argument
against supplying a deterministic search pattern for the initial guess.
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