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ABSTRACT 

Current International Maritime Organization (IMO) and U.S. Coast Guard 

regulations require inclining tests of vessels to use three heel-measuring devices, one of 

which must be a pendulum. This is a problem since pendulums are required to be at least 

10 feet in height and newer vessel designs are constrained by overhead clearance and 

deck space. To investigate this problem, this thesis examines five different stability test 

results that were submitted to the U.S. Coast Guard Marine Safety Center (MSC). The 

author identified and inputted random error into the independent variables used 

to calculate each vessel’s metacentric height (GM). The independent variables were 

then used in a Design of Experiment (DOE) to examine which factors had the strongest 

effect on GM. Of the factors analyzed, the device used to measure heel angle proved to 

be the most significant. The author then constructed three different miniature models to 

conduct inclining experiments in a controlled environment. The heel-measuring 

devices used during these experiments were a smartphone and pendulum. In all three 

miniature model experiments, the smartphone demonstrated better precision over the 

pendulum. This thesis recommends keeping current standards and regulations intact 

until further data and research are gathered. 
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EXECUTIVE SUMMARY 

The United States Coast Guard (USCG) is the primary regulatory authority for U.S. 

flagged commercial vessels. The USCG dictates and oversees regulations pertaining to 

commercial vessel operations that include but is not limited to stability, machinery, 

electrical, lifesaving, and fire protection systems. The regulations that govern these systems 

are defined in the Code of Federal Regulations (CFR). The focus of this study is the 

stability requirements found in 46 CFR Subchapter S. Currently, vessels that are newly 

constructed or have undergone major modifications are required to verify intact stability 

with a test known as the incline experiment (IE). This experiment verifies the location of 

the vertical center of gravity (KG) which is the basis for determining positive, neutral, or 

negative stability. Current regulations stipulate that three measuring devices be used to 

measure the incline of the vessel during the experiment. Devices authorized are: 

pendulums, manometers, digital inclinometers, and laser pendulums. However, of the three 

devices required, one must be a pendulum. Since newer vessel designs make it difficult to 

mount pendulums, required to be at least 10 feet in height, owners are requesting to conduct 

stability tests without pendulums. A feasibility analysis was conducted to determine 

whether performing stability tests without pendulums provides an equivalent level of safety 

to other authorized alternate measuring devices.  

Two separate experiments were set-up to analyze and draw conclusions regarding 

the feasibility of not using pendulums during an IE. The first experiment analyzed raw data 

collected from five separate stability tests that were verified and approved by the USCG. 

The author developed an Excel-based model to detect factors that had the greatest impact 

on the calculation of GM. Of the four factors analyzed, the analysis revealed that the type 

of device used was the most significant. However, no conclusive evidence proved that one 

measuring device was superior to another. To improve the results of the model, additional 

factors influencing the outcome of GM need to be collected. It is recommended that 

witnessing live stability tests be carried out to gather additional data not found in submittals 

to the USCG. Such data would include prevailing weather conditions during each weight 
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shift, identifying additional sources of error during set-up, and measuring the exact 

locations of each measuring device relative to the centerline of the vessel.  

The second experiment performed was an analysis of three separate stability tests 

conducted on three miniature vessel models. An IE was performed on each model to 

observe how different factors affect the resultant GM in a controlled environment. 

Furthermore, each hull had a different design as an additional factor for analysis. The heel 

measuring devices used for each experiment were a pendulum and smartphone. The 

experiment found that smartphones consistently provided better precision in the calculation 

of GM. However, determining which device provided better accuracy could not be found 

since the theoretical GM of each model was unknown. Furthermore, the heel angles 

produced by each hull design were notably different according to the corresponding 

moment-tangent plots. It is unclear whether this was a result of external factors such as 

water fluctuations during the experiment or due to the hull design. It is recommended to 

replicate the experiments with longer periods of time between weight shifts to minimize 

error due to water disturbances. In addition, adjusting factors on a single model, such as 

height of the pendulum, could be carried out to examine its overall effect on GM.   

Prior to setting up the experiments, finding relevant research that pertained to IEs 

was needed. Two different articles were found that investigated primary factors that 

contributed to IE systematic error and the use of smartphone technology to measure heel 

angles in lieu of pendulums. The first article, titled “Uncertainty Analysis Procedure for 

the Ship Inclining Experiment” (Woodward et al. 2016), found that systematic errors for 

IEs were similar to those identified for hydrodynamic testing on ship models. Research 

into errors found in ship model testing procedures prescribed by the International Towing 

Tank Conference (ITTC) was carried out. The ITTC is the organization that has the 

“responsibility for the prediction of the hydrodynamic performance of ships and marine 

installations based on the results of physical and numerical experiments” (International 

Towing Tank Conference 2018). The article described how the errors found in the ITTC 

standards could be applied to actual IE data. After applying errors found in the ITTC 

standards, the authors conducted a sensitivity analysis via partial derivatives to calculate 

which factors had the greatest impact on KG. The article examined nine separate factors 
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affecting KG for five different vessel types. In the end, the article concluded that “no one 

parameter can be identified in all cases as problematic from the studies.” (Woodward et al. 

2016, 86). Next, the second article researched was “The Application of Smartphone in Ship 

Stability Experiment” (Djebli et al. 2015). The article examined existing procedures that 

govern the conduct of IEs, identified as the classical method that require pendulums. It 

investigated whether a new device could be adopted by the International Maritime 

Organization (IMO) during an IE. The IMO is the organization under the United Nations 

(UN) that prescribes international shipping standards for all countries signatory to its 

conventions. The authors of the article conducted an experiment using a miniature ship 

model to conduct an IE using only a pendulum and smartphone to measure heel angles. 

The article concluded that “the accuracy of the obtained measurements using this new 

method is similar to the classical method based on pendulum measurements and is even 

better regarding simplicity, bulk, accuracy, readout, and robustness” (Djebli et al. 2015, 6). 

The article concluded that the IMO consider smartphone devices as an authorized 

alternative device.  

Based on the relevant research, a process was needed for finding feasible solutions 

to the problem statement. The author developed a general methodology that followed sound 

systems engineering practices to accomplish this. The process included defining the overall 

objectives, developing a process or architecture to follow, and finally collecting and 

entering data into the architecture to derive results. For the first experiment, the author 

contacted the Marine Safety Center (MSC), a division within the USCG, which is tasked 

with reviewing and approving all plan review documents pertaining to stability 

calculations. By law, the owners of newly constructed vessels are required to submit IE 

results to this office for review prior to beginning commercial operations. The MSC sent 

the author five IE submissions from small passenger vessels (SPV) that used a variety of 

heel measuring devices during their respective experiments. The submissions were studied 

and modeled to replicate the results. Factors focused on were: GM, test weights and their 

shift distances to create different moments, lightweight displacement, and recorded heel 

angles. To predict which factor had the greatest influence on stability, a designed 

experiment was developed to measure the change in GM as the remaining four factors were 
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adjusted to three different error levels. The factors included in the design of experiment 

(DOE) were test weights used, test weight shift distances, heel angle accuracy, and the type 

of device used. Lightweight displacement was not included for the analysis due to the wide 

subjectivity of estimating weights to add or remove during the lightweight survey. This 

DOE was applied to five different IE submissions that each had six weight shifts to 

calculate GM. The DOE was set-up with four factors, three error levels that followed a 

normal distribution, and was replicated ten times for each weight shift and produced over 

24,000 data points for analysis. The error levels that were applied to the DOE were based 

on current standards governing IEs and reasonable estimation by the author. The DOE 

analysis concluded that the type of device used had the greatest level of significance for all 

five vessels. To explore why the type of device used provided the highest level of 

significance, the raw, non-parametric, data from the IE submissions was analyzed without 

applied error. This identified any outliers or skewness within the data and provided insight 

if any device disproportionately shifted the GM which would account for the strong level 

of significance in each DOE. Three out of the five vessels each had one device that had a 

wide range of GM calculations, but the median values were mostly consistent across all 

three vessels. There was no clear indication that one device was superior to the other. 

For the second experiment, three separate IEs were conducted on three miniature 

hull models constructed by the author. The purpose of the experiment was to provide 

insight to the systematic errors during IEs in a controlled environment. The three different 

hull types used were V-hull, pontoon, and barge designs and were all constructed of 

Styrofoam boards. The models were outfitted with a pendulum, test weights, and a 

smartphone as the alternate measuring device. The same procedure found in the CFR and 

IMO standards was used during the experiment. The V-hull model produced the best results 

during the experiment due to the higher degree of precision between measuring devices. 

As the experiment was carried out using the remaining two hull models, the precision 

became progressively worst. It was unclear whether this was a product of the hull design 

or other external factors that were acting on the models. Although all attempts were made 

to minimize water fluctuations during the experiment, further experimentation is needed to 

produce better results. In all three models, a two-sample t-test between measuring devices 
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was used to detect statistical differences. In all three experiments, the level of significance 

was 90% indicating strong differences between devices.  
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I. INTRODUCTION 

The introduction chapter provides an overview of the purpose and general 

guidelines for conducting an inclining experiment (IE). The author examines current 

regulations that govern the conduct of IEs and challenges if such regulations can be updated 

to incorporate newer technologies. This led to the identity of the problem statement: Do 

alternative devices that measure heel angles during the IE offer an equivalent level of safety 

to pendulums? Next, a systems engineering (SE) process was developed for finding 

solutions to the problem statement. Finally, this section provides an overview of the thesis 

organization.   

A. BACKGROUND  

Conducting an IE is the primary method for verifying intact stability for new and 

modified vessels. The test is used in the commercial and military sectors to ensure vessel 

designs meet the specifications for positive stability by locating the vertical center of 

gravity (KG). The American Society for Testing and Materials (ASTM) defines the 

inclining experiment as “moving a series of known weights, normally in the transverse 

direction, and then measuring the resulting change in the equilibrium heel angle of the 

vessel. By using this information and applying basic naval architecture principles, the 

vessel’s KG is determined” (American Society for Testing and Materials [ASTM] 2014, 

777). By performing an IE, the stability of the vessel in different loading conditions, sea-

states, or following major repairs can be predicted accurately.  

The general theory of how an IE measures KG is based on geometry and some basic 

naval architecture principles. The factors influencing the calculation of KG are the center 

of buoyancy above the keel (KB) and the height of the metacenter above the keel (KM). 

First, the KB of a vessel is the centroid of where all underwater buoyant forces are focused 

above the keel. The KB is determined by the shape of the underwater hull. As vessels pitch 

and roll, the portion of the underwater hull that is submerged changes resulting in the KB 

shifting. When the KB shifts at small angles, namely zero to four degrees, the lines of 



 2 

action drawn through the different points of KB that intersect at a single point above the 

keel is known as the metacenter (M), as seen in Figure 1.  

 

Figure 1. Illustration of the Metacenter as the Center of Buoyancy Shifts. 
Source:  ASTM (2014). 

Examining Figure 1, as the center of buoyancy (B) changes, the metacenter (M) 

remains stationary above the keel and the distance between the two points is known as 

height of the metacenter or KM. This value is calculated during an IE or taken from the 

vessel hydrostatic table, which is derived in the detailed design phase by the naval architect. 

The metacenter is used as the reference point for determining the vessel stability condition 

prior to adding personnel, fuel, and cargo during its operational life-cycle. The initial 

stability condition is based on the relative distances between the metacenter and center of 

gravity, which are fixed points during an IE. The distance between these points is known 

as the metacentric height (GM). The general equation for calculating GM is 

GM = KM – KG. 
 

Observing the above equation, when GM is positive, the center of gravity is located 

below the metacenter and the vessel is said to have positive stability. However, if the GM 

is non-positive, the center of gravity is at or above the metacenter and the vessel is in a 

neutral or unstable condition, respectively. Figure 2 illustrates the relationship among GM, 

KM, and KG.  
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Figure 2. Illustration of the Relationship of GM, KM, and KG. Adapted from 
ASTM (2014). 

To evaluate where the center of gravity (G) is focused in relation to the keel, the 

vessel is prepared in the lightship condition and surveyed prior to beginning the IE. The 

lightship condition means that the “vessel is complete in all respects, but without 

consumables, stores, cargo, crew and effects, and without any liquids on board except that 

machinery fluids, such as lubricants and hydraulics, are at operating levels” (ASTM 2014, 

777). The surveys performed during the IE include taking draft readings, measuring the 

salinity of the water in which the vessel is floating, freeboard readings on each side of the 

vessel to measure the lightship displacement, and a complete inspection of the vessel to 

determine items that should be added or removed to meet the definition of lightship.  

When surveys are completed, external weights are added to the vessel to induce a 

port or starboard heel. The amount and size of test weights is dependent on the lightship 

displacement and the amount of heel required to reach a maximum of four degrees. The 

four-degree limit is to ensure the metacenter remains in a fixed position for the duration of 

the IE. According to international and domestic regulations, the test weights are required 
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to be certified or validated to limit the error of the calculated moments. In some 

circumstances, if the use of test weights is prohibitive due to lack of open deck space, the 

moments can be created by filling ballast tanks and exchanging water between the port and 

starboard side. However, this method is not preferred since ullage readings are required to 

measure the amount of water shifted for each heel angle recorded. Taking manual ullage 

readings will generally not be as accurate as certified weights when performing the test. 

Figure 3 is an illustration of shifting an external test weight in the transverse direction 

resulting in a heel angle.  

 

 

Figure 3. Illustration of Shifting a Test Weight in the Transverse Direction 
with a Resulting Heel Angle. Source: ASTM (2014). 

As test weights are being shifted creating different moments, the resulting heel 

angle is being recorded by a minimum of three different measuring devices. Currently, 

devices that are authorized per domestic regulations are: pendulums, digital inclinometers, 

manometers, and laser pendulums.  

Since the test weight, test weight shift distance, lightship displacement, and 

resulting heel angle are all known, the GM can be calculated for each test weight shift using 

the following equation.  
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𝐺𝐺𝐺𝐺 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑡𝑡𝑤𝑤𝑔𝑔ℎ𝑡𝑡 (𝑤𝑤) ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑡𝑡𝑤𝑤𝑔𝑔ℎ𝑡𝑡 𝑡𝑡ℎ𝑤𝑤𝑖𝑖𝑡𝑡 𝑑𝑑𝑤𝑤𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑑𝑑) 

𝑑𝑑𝑤𝑤𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡 (∆) ∗  tan (ℎ𝑡𝑡𝑡𝑡𝑑𝑑 𝑑𝑑𝑑𝑑𝑔𝑔𝑑𝑑𝑡𝑡 (𝜃𝜃))
 

 

By observing the above equation, “since GM and ∆ remain constant values for the 

duration of the IE the ratio between (w)(d) / tan 𝜃𝜃 will be constant” (ASTM 2014, 778) 

This equation will be the basis for all modeling results that will be produced in the 

proceeding chapters. To confirm the accuracy of the test, the moments are plotted against 

the tangents of the heel angles which should result in a straight line as seen in Figure 4. 

The grouping of vertical dots represents each weight shift with each individual dot 

representing each heel angle measuring device.  

 

 

Figure 4. A Depiction of a Typical Moment-Tangent following an IE.   
Source: ASTM (2014). 
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If the moment-tangent plot does not result in a straight line for all weight shifts, this 

could indicate that unwanted moments occurred or error was introduced during the 

experiment. If this does occur, an investigation should be conducted to find the root cause 

of why the moments and tangents do not plot as a straight line. Depending on the findings, 

measurements or the entire experiment may need to be redone.   

B. PROBLEM DEFINITION  

Current regulations prescribed by the IMO and USCG require three separate heel 

measuring devices during the IE, of which, one must be a pendulum. Recently, owners of 

commercial small passenger vessels (SPV) have been inquiring on the feasibility of 

conducting IEs without pendulums. SPVs are generally no more than 65 feet in length and 

carry passengers for hire. Much of the space along the centerline of these vessels is covered 

by permanent structures with fixed seating. As newer SPV designs are developed, less 

space is being allocated for mounting pendulums, which typically span 10–12 feet, during 

the IE. Weather conditions are another factor that may have a large effect on pendulum 

use. With the exception of perfect calm conditions, tiny movements of the vessel “make a 

typical three-meter (9.8′) pendulum swing 0.80 to 2.40 inches in a haphazard pattern” 

(Dalrymple-Smith 2016, 32). A 2.40-inch oscillation would result in a 1.15-degree error, 

which is significant. This is approximately equivalent to adding a 150-pound weight 

10 feet off the centerline to a vessel with a displacement of 10,000 pounds with a GM of 

7.5 feet. To combat oscillations, a large tub may be placed at the bottom of the pendulum, 

as seen in Figure 5. The tub would be filled with a heavy viscous liquid, such as motor oil, 

to stabilize oscillations and would need to be properly disposed of after the test.  
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Figure 5. An Illustration of a Tub that would Hold Viscous Liquid to Dampen 
Pendulum Oscillations. Source: Dalrymple-Smith (2016). 

Finally, constructing and mounting pendulums is a time-consuming task compared 

with using the other authorized measuring devices. This would incur additional time 

needed for construction and set-up. 

As technology matures and new innovations are developed, alternate devices may 

offer the same level of precision and accuracy as pendulums which have been the primary 

IE device for hundreds of years. Currently, there is limited research being conducted to 

analyze if alternate measuring devices offer an equivalent level of safety to pendulums. 

Developing a model that could analyze the factors having the greatest effect on GM would 

be useful to study this problem. By studying which factors have the greatest effect, it can 

be evaluated whether heel measuring devices have a significant impact on GM results. This 

in turn could lead to recommendations to promulgate new policy to allow vessel owners 

the option of using pendulums during an IE.  

C. SYSTEMS ENGINEERING PROCESS  

To evaluate the problem definition, the systems engineering (SE) process was used 

to study the feasibility of not using pendulums during an IE. The SE process is “a 
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predefined set of activities selectively used to accomplish Systems Engineering tasks” 

(International Council on Systems Engineering [INCOSE] 2004, 12). The SE task for this 

thesis was to decompose the problem definition and study its different constituent parts. 

By studying the individual parts that make up the IE, the different functions and their 

connectivity to the IE as a whole could be examined to understand the problem and how to 

model it. To model the problem, a process that was objective, repeatable, and traceable 

needed to be developed. This would include defining the objectives, developing 

architectures, designing a model, and verifying those elements to form viable solutions to 

the problem. The process followed was adopted from the International Council on Systems 

Engineering (INCOSE) handbook that is illustrated in Figure 6.   

 

Figure 6: Iterative Model Engineering Approach. Source: INCOSE (2014).  

This approach will be used as the basis for two different models used to form 

solutions for the defined problem. The objective for each model was to determine the 

feasibility of not using pendulums during an IE while still achieving the same level of 

accuracy and precision. Furthermore, after formulating the objective, a system architecture 

was defined. A system architecture is “a fundamental and unifying structure defined in 

terms of elements, information, interfaces, processes, constraints, and behaviors” (Maier 

and Rechtin 2002, 287). By organizing the different IE components into a process, the 

constraints and connectivity of the different variables that affect metacentric height (GM)  
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could be evaluated. The components specifically examined were the size of the test weights 

and their shift distances that formed various moments, heel angles generated as a result of 

the moments, and the type of instrument used to measure the heel angle. Two different 

architectures were generated using a Microsoft Excel-based data analysis tool developed 

by the author and evaluated miniature vessel models. The architectures developed would 

serve as the means for meeting the stated objective. Next, the design and synthesis portion 

of the process was gathering and producing data from the architectures developed. 

Finally, the different models were verified against the original objectives, architecture, and 

design to ensure it met the needs of producing feasible solutions to the problem definition. 

This process will be the basis for determining the feasibility of not using pendulums during 

an IE.      

D. THESIS ORGANIZATION 

The remaining chapters of this thesis are organized as follows: Chapter II 

introduces similar research and current regulations pertaining to the IE. Chapter III covers 

the raw data collected for the DOE analysis and performs an initial overview of the data. 

Chapter IV details the different sources of random error that were inputted to the DOE 

analysis. Chapter V details the analysis for the Microsoft Excel-based DOE model. Chapter 

VI provides the set-up, procedure, and analysis of the IEs performed on three different 

miniature models constructed by the author. Finally, Chapter VII provides the conclusions, 

recommendations, and future work for this study.   
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II. LITERATURE REVIEW AND CURRENT REGULATIONS  

This chapter gives a relevant literature review for on-going research for methods of 

reducing systematic error in the IE as well as new technologies being considered as 

alternate measuring devices. In addition, an overview of domestic and international 

regulations pertaining to the IE for commercial vessels will be covered.  

A. LITERATURE REVIEW 

Limited research exists for investigating IE systematic error or comparing 

authorized alternate measuring devices. This section reviews published articles that analyze 

error and uncertainty for calculating KG during the IE and examines the feasibility of using 

smartphones as an authorized device. 

In the article “Uncertainty Analysis Procedure for the Ship Inclining Experiment,” 

the authors developed a procedure to identify “experimental uncertainty in the estimate of 

KG obtained by the IE” (Woodward et al. 2016, 86). The authors noted that uncertainty 

applied to ship model hydrodynamic testing, which is governed by procedures found in 

International Towing Tank Conference (ITTC) standards, could also be applied to the IE. 

By applying the methodology in the ITTC standards, the paper examined uncertainty for 

all independent variables and conducted a sensitivity analysis via partial derivatives. The 

paper concluded that none of the variables could be identified as “problematic” but 

provided guidelines for estimating the confidence interval for KG and recommendations 

on removing uncertainty. Figure 6 provides a graphic of the papers findings for each 

independent variable that contributed to KG.  

Examining Figure 6, the factors that had the most frequent component uncertainty 

were heel angle and draught. A similar analysis will be performed by examining the 

metacentric height in lieu of the center of gravity as the response variable for the DOE 

analysis and miniature model experiment.  
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Figure 6. Results from the “Uncertainty Analysis Procedure for the Ship 
Inclining Experiment” Article for Component Uncertainty in KG. Source: 

Woodward et al. (2016). 

Next, a journal article titled, “The Application of Smartphone in Ship Stability 

Experiment” looked at the feasibility of conducting IEs using smartphones to measure the 

heel angle (Djebli et al. 2015, 1). The paper described an experiment that utilized a 

miniature vessel model and conducted an IE with a smartphone and pendulum to measure 

heel angles. The experimental set-up can be seen in Figure 7 that depicts a six-foot-long, 

one-foot wide miniature British Ship Research Association (BRSA) trawler.  

 



 13 

 

Figure 7. Experimental Set-up of BRSA Trawler for the Experiment. 
Source: Djebli et al. (2015). 

The results of the experiment were that there was no significant difference between 

the pendulum and the smartphone. In addition, the smartphone provided a much lower 

standard deviation for the obtained measurements and was much easier to set-up. The 

article concluded that using the smartphone technology should be recommended to the 

IMO and other regulatory agencies that oversee ship stability tests. The same experiment 

will be performed on three miniature models that will be described in the proceeding 

chapters to examine the differences between a smartphone and pendulum.    

B. INTERNATIONAL STANDARDS 

The IMO is an agency of the United Nations (UN) that collectively brings together 

countries with maritime borders to set international standards for safe shipping. In 2008, 

the IMO published Resolution MSC.267(85) which is the Adoption of the International 

Code on Intact Stability (IMO 2008). The code covers the international requirements for 

intact stability for vessels conducting international trade. Since the IE is a critical procedure 

for ensuring positive stability but has high potential for introducing systematic error, the 

code provides detailed instructions for the test procedure. The code recommended the use 

of three pendulums that are four to six meters in length but required at least two in order 
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“to allow identification of bad readings at any one station” (International Maritime 

Organization [IMO] 2008, 71). It further states that alternate devices that have the same 

accuracy as pendulums can only be used in conjunction with at least one pendulum. 

Alternate devices that the IMO currently authorizes are digital inclinometers and u-tube 

manometers. There was no mention of laser pendulums. However, the code does allow for 

flag-state administrations, such as the USCG, to waive the pendulum requirement if 

mounting pendulums is determined to be impractical due to vessel constraints.    

C. DOMESTIC REGULATIONS 

The USCG is the regulatory agency that governs commercial vessel regulations for 

U.S. flagged vessels. Regulations for vessel stability requirements are generally found in 

Title 46 of the Code of Federal Regulations Subchapter S as well as USCG published 

guidelines that clarify regulations. Currently, USCG requirements are in sync with IMO 

standards and require three measuring devices with at least one pendulum to be used during 

the IE. Alternate devices used during the IE need an equivalent level of accuracy to the 

pendulum. The only noticeable difference between international standards and the USCG 

guidelines is the USCG authorization of laser pendulums if they have the same level of 

accuracy as traditional pendulums. In addition, there is no allowance for vessel owners not 

to use at least one pendulum during an IE or for the allowance of smartphone technology.     
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III. RAW DATA FOR DESIGN OF EXPERIMENT ANALYSIS  

This chapter will discuss the raw data gathered for the Excel-based model that 

will be produced for the analysis and results chapter. In addition, moment-tangent plots 

will be generated based on the raw data submitted to the USCG in order to draw 

expectations of what the DOE analysis may reveal.   

A. RAW DATA 

To provide an analysis on whether alternate measuring devices offer an equivalent 

level of accuracy to pendulums, raw data from IEs that had been conducted on existing 

vessels was needed. Per 46 United States Code of Federal Regulations (CFR) Subchapter 

S Subpart 170.075(a) states that owners of commercial vessels are required to submit plans 

to the USCG Marine Safety Center (MSC) for plan review pertaining to vessel stability. 

This is to ensure commercial vessels meet minimum safety standards when carrying crew, 

passengers, or cargo. Part of the required submittal package to MSC includes a plan that 

shows the location of KG, which is generally done when an IE is performed. Since plans 

are reviewed and stored at MSC, the author contacted that office and requested IE 

submittals to analyze. Specifically requested were data from vessels that used alternate 

devices along with pendulums during IEs. The MSC was able to furnish the author with 

five separate IE submittals from commercial SPVs regulated under 46 CFR Subchapter T. 

These five vessels were all regulated under the same rules but vastly differed in their size, 

shape, and configuration. Due to the different hull shape dimensions, the test weight to 

displacement ratios will be noticeably different for each vessel. For vessels with narrower 

beams, additional test weights were needed to create the necessary moments for heeling 

the vessel to four degrees. For vessels with wider beams, test weights could be extended 

further off centerline requiring less overall test weights to be used for the necessary 

moments. Furthermore, the details regarding each vessel IE procedure will be discussed in 

the sections below; however, identifiable information such as vessel name or its general 

characteristics will not be disclosed to protect the privacy of vessel owners who submitted 

these plans to the USCG.  
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1. Vessel One Raw Data Analysis 

Vessel one was one of the smaller vessels used for the analysis and had a 

displacement of approximately 12,000 pounds. For the IE conducted, the vessel owners 

used two pendulums and one digital inclinometer to measure the heel angle during the 

experiment. Over 1,400 pounds of external test weights were used for six separate weight 

shifts that produced moments for the calculation of GM. Figure 8 is a moment-tangent plot 

from the raw data of the IE.  

 

 

Figure 8. Moment-Tangent Plot of Vessel One Raw Data 

Examining Figure 8, all data points for the moment tangent plot are along straight 

lines indicating there were no unwanted moments or faulty angle readings during the entire 

experiment. It is expected that significant statistical differences will not be detected 

between the measuring devices during the DOE analysis. This is due to the plotted points 
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being nearly stacked on top of one another that indicates strong agreement among all the 

devices used.  

2. Vessel Two Raw Data Analysis 

Vessel two was the smallest platform analyzed for the DOE with a displacement of 

approximately 6,500 pounds. The owners elected to use two digital inclinometers and one 

pendulum for the IE. Approximately 1,390 pounds of test weights were used to create the 

different moments needed for the experiment. Figure 9 is an illustration of the moment-

tangent plot submitted to the USCG for approval.  

 

 

Figure 9. Moment-Tangent Plot of Vessel One Raw Data 

Examining Figure 9, the individual devices appear to plot in a straight line and have 

a strong correlation. However, there are slight differences among devices at each weight 

shift. This is illustrated by the space among plotted points at each moment along the x-axis. 
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It is expected that there may be significant statistical differences among devices since the 

plotted points do not consistently overlap with one another. This would mean that there 

was not consistent agreement among devices for the duration of the IE.  

3. Vessel Three Raw Data Analysis 

Vessel three was the largest vessel used during the analysis with a displacement of 

approximately 1,000,000 pounds or 416.7 long tons. The owners used two digital 

inclinometers and one pendulum during the IE. Over 350,000 pounds of test weights were 

used to create the different moments needed to induce the necessary heel angles. Figure 10 

is an illustration of the moment-tangent plot submitted to the USCG for approval.  

 

 

Figure 10. Moment-Tangent Plot of Vessel Three Raw Data 

According to Figure 10, the data points for each individual device plotted as a 

straight line and appear to be strongly correlated. Inclinometer two does not appear to 

consistently agree with the heel angles of inclinometer one or the pendulum. Due to this 
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inconsistency, significant statistical differences among devices is expected during the DOE 

analysis. This does not mean that inclinometer two produced faulty readings during the IE. 

It means that there was a consistent bias that was introduced or that the other two devices 

are producing bias readings. The bias could be due to where the device was placed along 

the centerline or human error with regards to operating the device. Unfortunately, these 

details were not provided in the submittal to perform a more detailed analysis.  

4. Vessel Four Raw Data Analysis 

Vessel four was the second largest platform used for this analysis and had a 

displacement of approximately 29,000 pounds. The owners used two pendulums and one 

digital inclinometer during the IE. The vessel used approximately 500 pounds in test 

weights to induce the different moments necessary to heel the vessel. Figure 11 is an 

illustration of the moment-tangent plot for vessel four.  

 

 
 

Figure 11. Moment-Tangent Plot of Vessel Four Raw Data 
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Examining Figure 11, all devices during each weight shift appear to plot as a 

straight line and are strongly correlated. There is very little space among the plotted points 

at each moment indicating that all devices are in agreement. Based on this graph, it is 

expected that there should be no significant differences among devices used.   

5. Vessel Five Raw Data Analysis  

Vessel five was the third-largest platform used for this analysis with a displacement 

of approximately 15,000 pounds. The owners used two digital inclinometers and one 

pendulum for the IE. Over 2,000 pounds of test weights were used to create the different 

moments. Figure 12 is an illustration of the moment-tangent plot submitted to the USCG 

for approval.  

 

 
 

Figure 12. Moment-Tangent Plot of Vessel Four Raw Data 
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Examining Figure 12, all devices and their respective moment-tangent data points 

plotted as a straight line and appear to have a strong correlation. The individual data points 

in Figure 12 do not overlap with one another indicating there was no consistent agreement 

among devices during the IE. Therefore, it is expected that there will be significant 

statistical differences among devices when the DOE analysis is conducted.     

B. RAW DATA CONCLUSION  

Based on the raw data provided by the USCG, there was no consistent bias that 

could be identified that would skew the results. In addition, it could not be concluded that 

one measuring device was superior to the others. Examining all the moment-tangent plots 

in the previous sections, it is not anticipated that the test weight or test weight shift distance 

will be significant factors for the DOE analysis. Most plotted values do not have 

statistically significant differences for any given moment value when vertically aligned 

with the x-axis which represents the different moments. This means that the test weights 

and shift distance measurements were consistent throughout the experiment. The observed 

differences among the plotted values were more frequent when horizontally aligned with 

the y-axis. This axis plots the tangent of the heel angles produced by each measuring device 

during the IE. Due to the numerous vertical gaps observed among the plotted points, it is 

expected that the type of device used or the accuracy of the device used will produce the 

most significant differences in the results.  
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IV. INCLINING EXPERIMENT UNCERTAINTY 

This chapter discusses uncertainty regarding the independent variables used to 

calculate the metacentric height, GM. The uncertainty identified will be quantitatively 

estimated and used as input for the design of experiment (DOE) analysis in the 

proceeding chapter.  

A. TEST WEIGHT ERROR   

The test weight is the mass that is shifted to create different moments for the heel 

angles. Prior to the experiment beginning, test weights are required to be certified or 

validated by the person performing the IE (United States Coast Guard [USCG] 2016, 5). 

The devices used to verify test weight accuracy (i.e., scale or dynamometer) have error that 

is inherent to the device. After analyzing different certificates that accompanied the 

certified test weights, there was a wide range of accuracies that were noted based on the 

scale used and size of the test weight. The most reasonable error the author could deduce 

was to use three different error level settings for the DOE which were 0.50, 2.50, and 5.00 

pounds. Unfortunately, applying a consistent percentage error for all test weights was not 

feasible. Each IE submitted to MSC used different amounts of test weights to create the 

moments necessary to heel the vessel. For instance, vessel three used 20 different test 

weights during the IE opposed to vessel two which used six different test weights. Each of 

the weights ranged in size and each vessel used different scales which had different error 

associated with them. Since modern scales have rated accuracy levels of no more than five 

pounds, this was the maximum error level used for the DOE analysis. The five-pound 

maximum limit is less than one percent error from the total test weights used in each 

submittal analyzed.   

B. TEST WEIGHT SHIFT DISTANCE ERROR 

After the test weight is placed on board and shifted off the centerline, the naval 

architect performing the IE measures the exact distance to accurately calculate the moment. 

There are several sources of error with measuring this shift distance that include: accuracy 
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of the measuring device used (i.e., engineering scale or tape measure), using the exact 

reference point on the test weight after the shift, or human error of the observer recording 

the distance. Since all experiments used different devices and had different personnel 

observing the shift distance, error was adjusted to three different levels that included 0.25, 

0.50, and 1.00 inches. These values are representative of the probable error for the test 

weight shift distance and would account for all sources of error previously mentioned for 

shifting test weights.   

C. LIGHTWEIGHT DISPLACEMENT ERROR  

During the IE, vessels are generally in the lightship condition. The lightship 

displacement is calculated prior to the experiment beginning by taking draft and freeboard 

readings on each side of the vessel. After recording the salinity of the surrounding water, 

the displacement can be calculated by referring back to the hydrostatic tables or it is 

manually calculated. After calculating the lightship displacement, a lightship survey is 

conducted to add or subtract weight that is not considered part of lightship. During the 

survey, if additional items were identified that needed to be added or removed, the naval 

architect would either estimate the approximate weight of the item or physically remove or 

add it to the vessel. These items, along with other sources of weight (e.g., bilge water, fuel 

in tanks), create unnecessary moments which could invalidate the test. The items to be 

added or removed are at the discretion of the person-in-charge (PIC) or flag-state or 

classification society to make the determination if the vessel is in the lightship condition 

(IMO 2008). For these reasons, this factor likely has the greatest source of error. 

For the analysis conducted, no sources of error were applied to the lightship 

displacement. Each test that was analyzed had a wide range of items that needed to be 

added, removed, or estimated prior to the test beginning. If the weight was estimated, the 

item would be added or removed after the completion of the test. Since all vessels had 

different personnel overseeing the test effort, there was a wide range of subjectivity of how 

much error to add for each vessel during the lightship survey which would introduce a large 

bias in the data. Therefore, lightship displacement values were kept constant throughout 

each analysis. 
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D. HEEL ANGLE ERROR 

Each IE examined for this analysis employed only pendulums and digital 

inclinometers to measure heel angles. Therefore, laser pendulums and manometers could 

not be observed. The different errors associated with pendulums and digital inclinometers 

are explained further in the following paragraphs.  

1. Pendulum Error  

The pendulum is the primary device required in all IEs and has two main sources 

of error when calculating heel angles. These sources of error include measuring the height 

of the pendulum and measuring the deflection after the vessel heels as seen in Figure 8.  

 

 
 

Figure 13. Illustration of a Pendulum Used during IE.  

By measuring the total deflection of the pendulum at a known height, the angle of 

inclination (θ) can be calculated using the following equation.  

𝜃𝜃 = 𝑡𝑡𝑑𝑑𝑑𝑑−1 �
𝑑𝑑𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑤𝑤𝑑𝑑𝑑𝑑
ℎ𝑡𝑡𝑤𝑤𝑔𝑔ℎ𝑡𝑡

� 
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For both height and deflection measurements, there is human error involved. For 

the set-up of the analysis, error was only applied to the deflection of the pendulum and not 

the height. This was done to have an even comparison and produce a balanced DOE since 

digital inclinometers only had one source of error applied to them. This is not to say 

pendulums and digital inclinometers only have one or two sources of error, but those were 

errors that could reasonably be estimated. Other sources of error affecting the pendulum 

deflection include: oscillations due to weather, workmanship during construction of the 

pendulum, and the distance off centerline the pendulum was placed. To develop error levels 

for the DOE, an examination of different commercial engineering scales were researched. 

In general, engineering scale tick marks had gaps of 1/32nd, 1/16th, and 1/8th of an inch. If 

using a 10-foot pendulum, these markings would correspond to approximately 0.02, 0.03, 

and 0.06 degrees of heel, respectively.    

2. Digital Inclinometer Error  

The digital inclinometer is a mature technology that has been around for many 

years. This device is placed along the centerline of the vessel and records the heel angle 

via internal components. Depending on the specifications of the device, it can take up to 

10 sample readings and return the mean and standard deviation for each weight shift. This 

significantly reduces device error relative to pendulums that generally oscillate during the 

IE. The USCG has set the specifications that all digital inclinometers shall meet which is 

“when employed as a substitute for up to two of the required pendulums, digital 

inclinometers must have a precision of at least ± 0.01 degrees with an accuracy of ± 0.05 

degree.” (USCG 2016, 6). The inherent accuracy of the digital inclinometer was the only 

error applied for this analysis. Other errors for the digital inclinometer that were omitted 

were precision of the angular deflections and the transverse position of the device off 

centerline. It was assumed that the location error would nearly match the pendulum 

location error and, therefore, would have little impact during the analysis. The range of 

error levels used were 0.01, 0.03, and 0.05 degrees for the device accuracy. These values 

were chosen based on the above USCG specifications with 0.05 degrees being the 

maximum permissible error. It should be noted that a 0.05-degree digital inclinometer 
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reading is approximately equal to a 1/10th inch deflection for a 10-foot pendulum. This 

means that the error levels applied to both devices are relatively similar and ideal for 

comparison.  
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V. DESIGN OF EXPERIMENT ANALYSIS AND RESULTS 

This chapter will discuss how the analysis was set-up to examine five separate IEs 

that were conducted on U.S. flagged Small Passenger Vessel (SPVs). In addition, the 

design of experiment (DOE) results will be analyzed to look at which factors had the 

greatest impact on GM. In addition, a non-parametric analysis from the factors with the 

greatest level of significance will be evaluated to determine why the DOE produced the 

results that it did. 

A. ANALYSIS SETUP 

The MSC provided the author with five separate IE submittals from commercial 

SPVs. The raw data from the submittals was used as the baseline for the analysis. The 

information that was extracted from the submittals were: pendulum heights and deflections, 

inclinometer heel angles, test weights with shift distances, lightweight displacements, and 

final GM calculations. These factors were duplicated in the Microsoft Excel analysis tool 

to generate the same results. After verifying the spreadsheet accuracy with the MSC 

submittals, the author wanted to explore if there were any statistical differences between 

pendulums and the authorized alternate measuring devices used for each vessel. The only 

alternate devices that were used from submitted IEs were digital inclinometers. Therefore, 

an initial null and alternate hypothesis was formed and used as the objective for the DOE 

seen below. 

 
𝐻𝐻𝑂𝑂:𝐺𝐺𝑡𝑡𝑑𝑑𝑡𝑡𝑀𝑀𝑀𝑀𝑡𝑡𝑑𝑑 𝐻𝐻𝑡𝑡𝑡𝑡𝑑𝑑 𝐴𝐴𝑑𝑑𝑔𝑔𝑑𝑑𝑡𝑡𝑡𝑡 𝑖𝑖𝑑𝑑𝑀𝑀 𝑃𝑃𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑑𝑑𝑀𝑀𝑑𝑑𝑡𝑡 = 𝐺𝐺𝑡𝑡𝑑𝑑𝑡𝑡𝑀𝑀𝑀𝑀𝑡𝑡𝑑𝑑 𝐻𝐻𝑡𝑡𝑡𝑡𝑑𝑑 𝐴𝐴𝑑𝑑𝑔𝑔𝑑𝑑𝑡𝑡𝑡𝑡 𝑖𝑖𝑑𝑑𝑀𝑀 𝐷𝐷𝑤𝑤𝑔𝑔𝑤𝑤𝑡𝑡𝑑𝑑𝑑𝑑 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑡𝑡 
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With the spreadsheet model prepared and an objective null hypothesis formed, 

random error was applied to the test weight, test weight shift distance, and heel angle. The 

random error applied followed a normal distribution since that was what the data most 

likely followed and would be verified during the non-parametric analysis of the GM results. 
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A random number generator that followed a normal distribution was used for the model. 

To generate the random numbers, the raw data provided in the submittals was inputted as 

the mean value and the standard deviation was the three different error levels discussed in 

the previous chapter. A GM calculation with the applied error was generated for each 

weight shift and compared against the baseline GM calculation.  

To analyze whether the random error applied had any meaningful influence on the 

model, a DOE was set-up to measure which factors had the highest level of significance. 

In addition, the type of device used for the calculation of GM was added as the fourth 

factor. All four factors had three levels and were all replicated 10 times. Therefore, there 

were 810 data points generated per weight shift, as seen in the below calculation.  

𝐷𝐷𝑑𝑑𝑡𝑡𝑑𝑑 𝑃𝑃𝑑𝑑𝑤𝑤𝑑𝑑𝑡𝑡𝑡𝑡 𝑑𝑑𝑡𝑡𝑀𝑀 𝑊𝑊𝑡𝑡𝑤𝑤𝑔𝑔ℎ𝑡𝑡 𝑆𝑆ℎ𝑤𝑤𝑖𝑖𝑡𝑡 = 3 𝐿𝐿𝑡𝑡𝐿𝐿𝑡𝑡𝑑𝑑𝑡𝑡4 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 10 𝑅𝑅𝑡𝑡𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 

𝐷𝐷𝑑𝑑𝑡𝑡𝑑𝑑 𝑃𝑃𝑑𝑑𝑤𝑤𝑑𝑑𝑡𝑡𝑡𝑡 𝑑𝑑𝑡𝑡𝑀𝑀 𝑊𝑊𝑡𝑡𝑤𝑤𝑔𝑔ℎ𝑡𝑡 𝑆𝑆ℎ𝑤𝑤𝑖𝑖𝑡𝑡 = 810 𝐷𝐷𝑑𝑑𝑡𝑡𝑑𝑑 𝑃𝑃𝑑𝑑𝑤𝑤𝑑𝑑𝑡𝑡𝑡𝑡 

The five IEs each had six weight shifts. Therefore, there were 24,300 GM 

calculations for the analysis for all vessels. The DOE was set-up in Minitab statistical 

software. The software provided five separate balanced full factorial designs with the 

previously mentioned factors, levels, and replicates. After generating different full factorial 

designs, all were inserted into the spreadsheet model to produce GM calculations based on 

the combination of factors and levels. After running all the combinations in the model, the 

generated GM calculations were placed back in the Minitab software for analysis. Minitab 

generated five separate Analysis of the Variance (ANOVA) tables that provided key 

insights to each IE.   

B. DOE ANALYSIS  

After running Monte Carlo simulations with random errors inputted into each of 

the three factors previously mentioned, a GM was calculated for each trial. The resulting 

GM was analyzed in Minitab via ANOVA tables. All factors and their contribution to the 

overall IE error were plotted as Pareto charts as seen in Figures 14, 15, 16, 17, and 18 

where factor “A” represents the device used, factor “B” is the test weight error, factor “C” 

is the test weight shift distance error, and factor “D” represents the accuracy of the device 
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being used. The combination of factors, such as “AB,” represent interactions among 

factors. The chart is plotted with all factors on the vertical axis and the level of significance 

on the horizontal axis. The level of significance is the probability of rejecting the null 

hypothesis which, in this scenario, is that there is no difference between pendulums and 

digital inclinometers with respect to their measured heel angles. A red dashed line is drawn 

at the 90% level of significance value since this is a common threshold for rejecting null 

hypotheses.   

 

 

Figure 14. DOE Results from Vessel One Analysis 
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Figure 15. DOE Results from Vessel Two Analysis 

 

Figure 16. DOE Results from Vessel Three Analysis 
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Figure 17. DOE Results from Vessel Four Analysis 

 

Figure 18. DOE Results from Vessel 5 Analysis 
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In all the results presented in the previous figures, the type of device used for 

measuring heel angle was the most significant factor for each vessel. This means that there 

is high confidence that if the model were run 100 times, it would be expected that there 

would be statistical differences among all devices for all trials. The DOE was set-up with 

the null hypothesis that there was no difference among heel measuring devices for 

calculating GM. According to the previous figures, the null hypothesis of assuming there 

is no difference among measuring devices can be rejected. To explore further why the type 

of device used was significant in all five vessels, an analysis of each devices’ raw data as 

it contributed to GM will be examined in the next section.  

C. NON-PARAMETRIC DEVICE DATA 

Since all DOEs concluded that the type of device used during the experiment had 

the greatest impact on calculating GM, examining the non-parametric data may explain 

why. This section will display and plot the GM calculations from the raw data without 

random error applied. It will show the mean, standard deviation, median, minimum, 

maximum, and range for all GM calculations. In addition, the GM calculations will be 

transformed into dot plots to visualize the data for skewness and outliers.  

For the data provided in each dot plot, a standardized method was developed to 

evaluate each vessel objectively. First, the data was evaluated for outliers. Outliers are 

values that are significantly higher or lower than the mean value of the sample set. These 

values can add bias to the data leading to a misinterpretation during the analysis. Next, the 

data was evaluated for skewness. Skewness is the degree to which the data set is non-

symmetric about the mean. Skewness or the symmetry of the data set could indicate if the 

raw data was normally or nonnormally distributed. This would validate the assumption of 

using a normal distribution for the DOE error inputs. Finally, a comparison of the median 

values and range of the GM calculations were examined for each vessel indicating accuracy 

and precision.  
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1. Vessel One Non-parametric Analysis 

The GM calculations for each device used on vessel one can be seen in Table 1 and 

Figure 19. The red dashed line represents the mean value among all devices— 

approximately 3.1 feet.   

Table1. Non-parametric GM Calculations for Vessel One (in feet) 

 Digital Inclinometer Pendulum #1 Pendulum #2 
Mean  3.08 3.12 3.11 

Standard Deviation 0.05 0.10 0.16 
Median  3.10 3.11 3.08 

Minimum 3.01 3.01 2.84 
Maximum 3.13 3.26 3.35 

Range  0.12 0.25 0.51 
  

 

Figure 19. Non-parametric Dot Plot of GM Results for Vessel One 

Reviewing the calculations for each device, there were no outliers in the data. In 

addition, there did not appear to be skewness and therefore it was reasonably assumed the 

data was normally distributed. The median values among devices is within 0.03 feet from 

one another, and the range of values appears consistent. Overall, the digital inclinometer 

provided the best precision. 
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2. Vessel Two Non-parametric Analysis 

Next, the non-parametric data from vessel two was examined as seen in Table 2 

and Figure 20. The red dashed line represents that mean value among all devices—

approximately 11.1 feet. 

Table 2. Non-parametric GM Calculations for Vessel Two (in feet) 

 Digital Inclinometer #1 Digital Inclinometer #2 Pendulum 
Mean 11.42 10.31 11.62 

Standard Deviation 2.32 0.80 0.44 
Median 11.21 10.49 11.67 

Minimum 8.91 8.91 10.99 
Maximum 14.89 11.03 12.15 

Range 5.99 2.13 1.16 
 

 

Figure 20. Non-parametric Dot Plot of GM Results for Vessel Two 

After evaluating the data, it is clear that GM calculations for digital inclinometer 

#1 were more variable than the other two devices. There were no outliers for each of the 

devices and there does not appear to be skewness. The span of GM calculations for digital 

inclinometer #1 had almost a six-foot range between the minimum and maximum values. 

Although digital inclinometer #1 had the lowest precision, the median values were 
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approximately one-foot from each other, indicating consistency among devices since 

vessel two had an approximate GM of 11 feet. Overall, the pendulum provided the best 

precision. 

3. Vessel Three Non-parametric Analysis 

Furthermore, the non-parametric data from vessel three was examined and can be 

seen in Table 3 and Figure 21. The red dashed line represents that mean value among all 

devices—approximately 18.6 feet.  

Table 3. Non-parametric GM Calculations for Vessel Three (in feet) 

 Digital Inclinometer #1 Digital Inclinometer #2 Pendulum 
Mean  18.29 19.08 18.47 

Standard Deviation 1.63 3.17 0.43 
Median  18.35 18.94 18.48 

Minimum 16.67 15.07 17.99 
Maximum 19.90 23.77 18.95 

Range  3.23 8.70 0.97 
 

 

Figure 21. Non-parametric GM Results from Vessel Three (in feet) 

There were no outliers in the data and no apparent skewness. In addition, the 

median values were consistent at less than 0.6 feet. However, the range in data for both 
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digital inclinometers were significantly higher than the pendulum. For digital inclinometer 

#2, there was nearly an 8.5-foot range in GM calculations which is a significant fluctuation 

between weight shifts. The pendulum had the overall best precision with slightly under 

one-foot. 

4. Vessel Four Non-parametric Analysis 

Next, the data for vessel four was analyzed and can be seen in Table 4 and 

Figure 22. The red dashed line represents the mean values among all devices at 

approximately 5.4 feet.  

Table 4. Non-parametric GM Calculations for Vessel Four (in feet) 

 Pendulum #1 Pendulum #2 Digital Inclinometer 
Mean  5.36 5.39 5.50 

Standard Deviation 0.18 0.27 0.12 
Median  5.35 5.45 5.51 

Minimum 5.14 4.99 5.36 
Maximum 5.58 5.64 5.64 

Range  0.44 0.65 0.28 
 

 

Figure 22. Non-parametric GM Results from Vessel Four (in feet) 
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There was no outliers and no apparent skewness in the data. In addition, the median 

and range of values appear to be consistent as well. The device that provided the overall 

best precision was the digital inclinometer. 

5. Vessel Five Non-parametric Analysis 

Finally, the data for vessel five can be seen in Table 5 and Figure 23. The red dashed 

line represents the mean value among all devices at approximately 12.5 feet.  

Table 5. Non-parametric GM Calculations for Vessel Five (in feet) 

 Digital Inclinometer #1 Digital Inclinometer #2 Pendulum 
Mean  11.89 13.10 12.45 

Standard Deviation  2.19 0.57 0.18 
Median  11.63 13.25 12.39 

Minimum 8.85 12.01 12.29 
Maximum 14.54 13.62 12.78 

Range  5.69 1.61 0.49 
 

 

Figure 23. Non-parametric GM Results from Vessel Five (in feet) 

There appears to be some skewness in both digital inclinometers, and the 

median values are not consistent across all devices. The median value between digital 

inclinometer #1 and the other two devices is approximately two feet. Furthermore, there 
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were no outliers recorded for each device that would disproportionately affect the data. 

Also, the range in GM calculations were almost seven feet for digital inclinometer #1 with 

digital inclinometer #2 having a two-foot range. Overall, the pendulum provided the 

best precision.  

D. OVERALL NON-PARAMETRIC ANALYSIS 

The GM calculations for each vessel had variable results among each device. For 

three out of the five vessels, the pendulum provided a higher level of precision compared 

to the digital inclinometer. It should be noted that these same three vessels had significantly 

higher GM values and all used two digital inclinometers and one pendulum. It is unclear 

whether the higher GM values or the combination of devices used were the cause of the 

pendulums having more precision. In addition, at least one digital inclinometer for each of 

the three vessels had large deviations in comparison to the other two devices used during 

the IE. Reasons that may explain the various deviations for each device include the 

transverse and longitudinal position of the measuring device along the centerline, human 

or inherent device error in the measurements, weather conditions during the IE, or the 

design of the vessel. There was no data to support these theories since the submittals did 

not provide details on exact device placement relative to the vessel, prevailing weather 

conditions for each weight shift, how many personnel were recording measurements, or 

the overall design of the vessel and how weather interacts with the hull (i.e., sail area). 

Since these variables could not be further explored, a more detailed analysis could not be 

conducted.  

The key insights that were drawn from this analysis were that all experiments had 

at least one device that did not correspond with the other two. There are several factors that 

can account for these discrepancies, as was explained in the previous paragraph. The data 

could not provide which device had better precision in each analysis since there was no 

device that was consistently producing better results over the other devices used. Further 

information would need to be gathered from each of these IEs to identify the other external 

factors not accounted for in the data. This could lead to a clearer recommendation whether 

pendulums could be excluded from IEs.   
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VI. PHYSICAL EXPERIMENTATION 

This chapter examines IEs conducted on three separate physical models that were 

constructed by the author. The intent of the experiment was to perform IEs on miniature 

vessel models with different hull configurations and observe the impact to the GM 

calculations. The following paragraphs will cover the initial set-up, materials used, and 

configuration of the models. Finally, the analysis results of the experiment will enable 

conclusions to be drawn. 

A. INITIAL SET-UP AND PROCEDURE  

The primary purpose for this experiment was to explore how different hull 

configurations affected IE results among different heel measuring devices. By performing 

this experiment on a miniature level, the author could control external factors that were 

unknown in the MSC submittals. By limiting the external forces to the model, the impact 

to GM results could be observed. The systems engineering approach was applied to the 

experiment in order to develop, design, and fabricate three separate hull models and 

analyze the results of the two-different heel measuring devices used. A smartphone that 

measures heel angles via internal accelerometer and a pendulum were used for comparison. 

The equipment utilized for this experiment is summarized in Table 6. 
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Table 6. List of Equipment Used for Inclining Experiment for 
Physical Models 

Item Nomenclature Use 

Styrofoam Block Three of these rectangular Styrofoam boards that 
measured 30.4 cm x 15.1 cm x 2.5 cm were procured and 
used as the foundation for all hull configurations. 

Cylindrical Styrofoam 
Rods  

Styrofoam cylinder rods that measured approximately 
30.4 cm by 2.5 cm were used as pontoons for one of the 
hull models. Two pieces were cut in half, lengthwise, and 
glued to the bottom of the rectangular Styrofoam boards.   

Pendulum Mast  A 27 cm wooden mast was inserted into the stern portion 
of all models to suspend the pendulum.  

Wooden Spool  A wooden spool was attached to the top of the pendulum 
mast to separate the mast from pendulum string. This 
enabled the pendulum to swing freely unobstructed.  

Paper Clip  A paper clip was attached to the end of the spool to 
minimize the friction between the pendulum string and 
wooden spool.   

Pendulum String A monofilament string was attached to the top of the 
pendulum that measured approximately 25 cm in length 
and was attached to each wooden spool via paper clip.  

Plumb Bob  A small lead plumb bob was attached to the bottom of 
the pendulum string to ensure it remained straight and 
not fluctuations due to air movement in the laboratory.  

Engineering Scale  A small engineering scale that measured 15 cm in length 
was used to record the pendulum deflections. 

Test Weights A series of 20-gram test weights were used to create 
moments that induced different heel angles needed for 
the IE.  

Rubber Mat 

A rubber mat was placed on top of the Styrofoam block 
to create a friction barrier for the test weights and 
smartphone. This was to prevent slippage that would 
create unnecessary moments and to avoid risk of the 
smartphone dropping in the water.  

Smartphone  

A smartphone, specifically an iPhone 6 model 
MG632LL/A, was the other primary device used to 
measure the heel angle of the model. The specific 
application used was the Small Craft Motion Program, or 
SCraMP. SCramP was developed Leigh McCue, a 
professor within the Aerospace and Ocean Engineering 
department at Virginia Tech University.   
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Figure 24 is a picture of the complete set-up for one of the three models and 

includes all equipment except the cylindrical rods from Table 6. 

 

Figure 24. Assembled V-Hull Model to Measure Induced Heel Angles 

To conduct this experiment, the first step was to visually inspect all equipment to 

ensure correct set-up and alignment. This included inspecting the pendulum and all of its 

components. First, a sufficient air gap between the Styrofoam board and the plumb bob 

was examined. The plumb bob needed to be free of obstructions to obtain reliable results. 

In addition, verification of the engineering scale used for measuring pendulum deflections 

was inspected for vertical alignment with the pendulum mast. The engineering scale and 

pendulum needed to be nearly perpendicular to gain accurate readings during the IE. After 

the engineering scale was confirmed to be properly set-up, it was glued to the pendulum 

mast to lower the risk of it inadvertently moving during the experiment. Finally, the plumb 
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bob was aligned to the assumed zero point on the engineering scale. This was done by first 

choosing the zero point to use. After the point was chosen and marked, the paper clip that 

the plumb bob hung from was permanently fastened to the wooden spool via glue in order 

for the plumb bob to nearly align to that mark when the model was in the even keel position.  

Next, the model and all other test equipment used during the experiment (i.e., 

smartphone, test weights) were assumed to be part of each models’ lightship displacement. 

To measure the total displacement of the model, a digital scale was used with all equipment 

resting on the hull. The digital scale was verified to be calibrated and accurate to 0.1 grams. 

Furthermore, a rubber mat was placed on top of the hull to act as a non-skid surface for the 

different pieces of equipment as well as to make markings for the exact position for the test 

weights to be shifted. Therefore, prior to the experiment beginning, a trial run was 

conducted to visualize the approximate distances the test weights would need to be shifted 

to achieve the required heel. Since the same rubber mat was used on every model, the red 

and yellow markings seen in Figure 26 represent the initial and final test weight positions 

for the different hull configurations. It was found during the trial run that as test weights 

were shifted, a large amount of human contact with the model was needed. This in turn 

created substantial waves in the tub thus causing large oscillations to the pendulum and 

large fluctuations to the smartphone readings. To reduce disturbing the water during the 

experiment, strings were attached to the different test weights in order to minimize contact 

with the hull. Also, during each weight shift, a pen was used to dampen the oscillation by 

placing it in the direct path of the plumb bob and slowly backed off until the oscillations 

nearly diminished. However, the plumb bob still swung approximately 0.4 cm to either 

direction and therefore the mean value was taken from the period it produced.  

Prior to beginning the experiment, several measurements were taken that included 

the dimensions of the model, height of the pendulum mast, and the distance between marks 

for the test weights. In addition, the test weights were weighed on a calibrated scale. These 

measurements would be used to calculate various moments, heel angles and ultimately the 

GM for each model. Once the equipment was verified to be set-up correctly, the experiment 

began by gently placing the first model into the tub with the test weights at their initial 

marks. The initial readings from the pendulum and the smartphone were recorded. If the 
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devices had offsets from their even keel position, the offsets would be added or subtracted 

from the different readings to ensure the deflection or heel angle recorded started from the 

assumed zero point. With the equipment set, each test weight was individually shifted and 

the angle and deflection readings recorded. This was done a total of six times, three weight 

shifts per side, for each weight. The first hull tested was the v-hull followed by the pontoon 

and barge, respectively.  

B. PHYSICAL EXPERIMENT DATA AND ANALYSIS 

The raw data gathered from this experiment consisted of collecting the heel angle 

and deflection readings after each weight shift. The deflection and heel angle readings were 

measured by a fellow classmate taking the readings while the author recorded and oversaw 

the experiment. After the three test weights were shifted to one side with the measurements 

recorded, the model was lifted out of the tub and placed on a lab table. The distances from 

the initial starting point to its final position were measured. This was done to increase the 

accuracy of the test weight shift distance. Taking measurements while the model was 

floating proved to be difficult due to the excessive rolling and pitching produced during 

the experiment. After the shift distances were recorded, the test weights were placed in the 

even keel marked positions and the experiment was repeated for heeling the other side of 

the model. The following sections will detail the data and results for each model. At the 

end, the devices used for recording heel angles will be compared for analysis.   

1. V-Hull Model  

The first model tested was the V-hull model. This configuration provides the least 

water resistance when propelled in the forward direction due to its hydrodynamic design. 

This is a common hull design especially for smaller platforms that are built for speed in 

lieu of carrying cargo such as speed boats used in the SPV industry. The downside to this 

design is that it inherently has less reserve buoyancy for floatation since approximately 131 

cm3 was cut off the port and starboard bow. Figure 25 is a picture of the model during the 

IE with two test weights shifted to the starboard side.  
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Figure 25. Picture of the V-Hull Model with Two Test Weights Shifted to the 
Starboard Side.  

The principle characteristics of the V-hull model in Figure 26 are presented in  

Table 7.  

Table 7. Principle Characteristics of the V-Hull Model 

Principle Characteristic Dimension Unit 

Length Overall 30.4 cm 

Beam  15.1 cm 

Depth  2.5 cm 

Displacement  385.3 g 

Pendulum Height  27.3 cm 
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After the data was collected from each heel angle measuring device, a moment-

tangent plot was formed to compare the heel angle tangents and moments to validate the 

model design. Recalling from the previous chapters, the moments and heel angle tangents 

should plot as a straight line. Figure 26 is an illustration of the V-hull model results from 

the recorded data.   

 

Figure 26. Illustration of the Moment-Tangent Plot from the V-Hull Model. 

Based on the results seen in Figure 27, the experiment was successful since the 

pendulum and smartphone devices plotted as a straight line. It is worth noting that the 

results were not symmetrical about the y-axis. This is a result of the “toy” nature of the 

models that were not built to detailed specifications. The proceeding moment-tangent plots 

for the miniature models were also not symmetrical for the same reason. Next, the results 

were taken to calculate six separate GM calculations which were then averaged and 

compared. Figure 27 are the six separate GM calculations for each device used during the 

experiment. The red dashed line illustrates the mean GM from both devices, which was 

approximately 15.7 cm. 
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Figure 27. Non-parametric GM Results from V-Hull Model Experiment 

Analyzing the results in Figure 27, approximately half of the data points from each 

device overlapped indicating there was agreement among the devices. Table 8 is the 

numerical breakdown of the GM results and how they compared.  

Table 8. Non-parametric GM Results from the V-Hull Model 
Experiment 

  Smartphone (cm) Pendulum (cm) 
Mean  14.53 16.93 

Standard Deviation 1.84 2.31 
Median  14.94 16.34 

Minimum 11.44 14.60 
Maximum 16.26 21.31 

Range  4.82 6.72 
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Looking at the results in Table 8, the smartphone yielded the best overall results. 

The standard deviation for the smartphone was approximately 0.5 cm better than the 

pendulum indicating overall better precision. The range between the smartphone and 

pendulum GM results were a little less than 2.0 cm. Furthermore, a two-sample t-test was 

conducted for the six GM calculations that the devices produced. Assuming equal variances 

and a hypothesized mean difference of zero, there was approximately 93% confidence that 

there was a statistical difference between both sets of data. This high level of significance 

was expected since half of the data points in Figure 28 did not overlap.   

2. Pontoon Hull Model 

A pontoon boat design is a popular hull form found on SPVs that incorporates two 

independent buoyancy chambers that the vessel rides on. These types of hulls generally 

have shallower drafts and wider beams. This enables them to sail in higher sea states due 

to the increased stability and traverse areas with shallower water. This experiment was set-

up in the same manner as the V-hull and followed the same procedures for recording heel 

angles from the smartphone and pendulum deflections. Figure 28 is a picture of the pontoon 

model prior to beginning the experiment with the pontoons circled in red.  
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Figure 28. Picture of the Pontoon Hull Model in the Even Keel Position. 

The principle characteristics of the pontoon model in Figure 28 are presented in 

Table 9.  

Table 9. Principle Characteristics of the Pontoon Model 

Principle Characteristic Dimension Unit 

Length Overall 30.4 cm 

Beam  15.0 cm 

Depth (including pontoons) 4.0 cm 

Displacement  492.2 g 

Pendulum Height  27.5 cm 
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Following the same established procedure to collect data, six weight shifts were 

conducted to induce three heel angles to the port and starboard side of the model. The 

model required three 20-gram weights to be shifted. Each weight shift produced 

approximately one degree of heel. There was no other error noted during the experiment. 

The data collected was transformed into a moment-tangent plot to analyze the validity of 

the experiment. Figure 29 is a plot of the moments and heel angle tangents from the data 

collected during the experiment.  

 

 
 

Figure 29. Illustration of the Moment-Tangent Plot from the 
Pontoon Hull Model. 

Visually observing the plot from Figure 29, both devices were linear with one faulty 

reading from the pendulum. The faulty reading was the first weight shift to the starboard 

side or where the first plotted point in the first quadrant has a moment of 130 cm-grams 

and a tangent of 0.010. The smartphone plotted points all touch the linear line indicating 
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consistent results. It is suspected that the faulty reading for the pendulum was due to the 

excessive oscillations during the experiment which caused the observer to incorrectly 

average the total period. In addition, based on the vertical spacing between plotted points, 

there were discrepancies in the heel angles recorded between the smartphone and 

pendulum. This could have occurred due to the position of the smartphone or pendulum 

along the centerline, error due to small water disturbances in the tub used, or human error 

when reading the deflections. Next, the data collected was used to calculate six separate 

GM values for the two separate devices. Figure 30 are the GM calculations from each 

device used during the experiment. The red dashed line illustrates the mean GM from both 

devices which was approximately 15.7 cm, the same as the V-hull model.  

 

Figure 30. Non-parametric GM Results from Pontoon Model Experiment 

Based on Figure 30, there was no overlap in the data indicating an accuracy 

difference between both devices. To further examine the GM results, Table 10 is the 

numerical breakdown of the GM calculations from the data collected. 
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Table 10. Non-parametric GM Results from the 
Pontoon Model Experiment  

  Smart Phone App Pendulum 
Mean  13.67 17.71 

Standard Deviation 1.74 2.26 
Median  14.35 16.93 

Minimum 10.79 15.61 
Maximum 15.03 21.73 

Range  4.23 6.12 
 

The results from Table 10 are very similar to those found in the V-hull model 

analysis. The precision for the smartphone yielded better results than the pendulum by 

approximately 0.5 cm and nearly 2.0 cm lower in the range between the minimum and 

maximum values. There was also a two-sample t-test run on both sets of GM calculations 

to determine whether there were significant differences between both samples using a 90% 

confidence interval. The t-test resulted in 100% level of significance meaning the null 

hypothesis of assuming there is no difference between heel measuring devices would be 

rejected.   

3. Barge Hull Model 

The last model used for the experiment was a rectangular shaped barge model. The 

barge design is not common in the SPV industry and generally is used to transport large 

amounts of cargo through inter-coastal waterways via tug boats. Unlike the V-hull and 

pontoon models, the entire barge underwater hull interacts with the water. This means that 

the model has additional buoyant forces that would enable it to carry heavier loads. Once 

again, the same procedure was followed of shifting three 20-gram weights to the port and 

starboard side of the model while recording heel angle and deflection measurements. 

Figure 31 is a picture of the barge model prior to beginning the experiment with the test 

weights in the even keel position. 
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Figure 31. Picture of the Barge Hull Model in the Even Keel Position. 

The principle characteristics of the pontoon model in Figure 31 are presented in 

Table 11.  

Table 11. Principle Characteristics of the Barge Model 

Principle Characteristic Dimension Unit 

Length Overall 30.4 cm 

Beam 15.1 cm 

Depth 2.5 cm 

Displacement 456.5 g 

Pendulum Height 27.0 cm 
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Based on the data collected, the moments and heel angle tangents were plotted to 

validate the experiment. Figure 32 is an illustration of the moment-tangent plot for the 

barge hull model.  

 

 

Figure 32. Illustration of the Moment-Tangent Plot from the Pontoon Hull 
Model. 

Based on the moment-tangent plot in Figure 32, both devices plotted as straight 

lines but the difference in tangents between plotted points at each weight shift was the 

greatest out of all three models. The weight shifts that occurred on the port side of the 

model produced better results than the weight shifts on the starboard side. This was based 

on the plotted points on the right side of the graph not touching the linear line. Figure 33 

are the GM calculations from each device used during the experiment. The red dashed line 

illustrates the mean GM between both devices which was 14.7 cm, approximately one 

centimeter lower than the V-hull and pontoon model. 
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Figure 33. Non-parametric GM Results from Pontoon Model Experiment 

The results in Figure 33 indicate that there were significant differences between the 

heel angle measuring devices. This is based on the lack of overlap among the data points. 

Furthermore, the GM calculations appear to be normally distributed since there does not 

appear to be skewness in the data and no apparent outliers. To further examine the GM 

results, Table 12 is the numerical breakdown of the GM calculations from the data 

collected. 

 Table 12.  Non-parametric GM Results from the Barge Model 
Experiment  

  Smartphone (cm)  Pendulum (cm) 
Mean  11.62 17.87 

Standard Deviation 2.63 3.19 
Median  11.81 16.88 

Minimum 8.09 15.19 
Maximum 14.69 23.81 

Range  6.60 8.62 
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The results from Table 12 has similar standard deviations and differences in the 

range of minimum and maximum as those found in the V-hull and pontoon models. The 

precision for the smartphone yielded the best results by approximately 0.5 cm and nearly 

2.0 cm lower in the range between the minimum and maximum values. There was also a 

two-sample t-test run on both devices to detect significant differences in the data. The t-

test resulted in 100% level of significance meaning the null hypothesis of assuming there 

is no difference between heel measuring devices would be rejected based on a 90% 

confidence level assuming no hypothesized mean difference.   
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VII. CONCLUSIONS 

This chapter includes conclusions regarding the problem definition, analysis for 

determining significant factors during the IEs, and overall results. In addition, it provides 

recommendations to the established regulations governing inclining experiments and 

future work recommendations. 

A. CONCLUSIONS  

The purpose of this research was to use the systems engineering process to examine 

the feasibility of conducting IEs without using pendulums as the primary device. From the 

analysis conducted, the type of device used provided the highest level of significance in all 

five vessels regarding GM determination. This meant the null hypothesis of assuming there 

was no statistical difference between pendulums and digital inclinometers was rejected. 

All other factors and their interactions did not provide the same pattern and their order 

appeared to be random. Except in vessel four, accuracy was not a strong predictor affecting 

GM calculations.  

To further analyze the strong statistical differences among devices, the non-

parametric data for the GM calculations that each device produced was observed. This 

identified any outliers or skewness within the data. It provided insight if any device 

disproportionately shifted the GM which would account for the strong level of significance 

in each DOE. Three out of the five vessels each had one device that had a wide range of 

GM results, but the median values were mostly consistent across all three vessels. There 

was no clear indication that one device was superior to the other during each IE.  

Finally, three separate miniature models were constructed by the author to conduct 

IEs in a controlled environment. The three models each had different hull configurations 

to control the external factors that were unknown for the DOE analysis. The devices used 

for each model were a smartphone and pendulum. After conducting IEs on each model, it 

was clear that the smartphone provided overall better precision, but without specific design 

calculations, the author was unable to state which device was more accurate in the 

calculation of GM.  
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B. RECOMMENDATIONS 

Based on the data provided in the MSC submittals and the experiments conducted 

with the miniature models, it is recommended that the current regulations remain intact. 

This means that at least one pendulum should be used for IEs until further research is 

conducted and analyzed. In both sets of analysis, the null hypothesis that there are no 

statistical differences among measuring devices was rejected. Until consistent results are 

obtained from a larger sample size, it is recommended that the IMO and USCG leave the 

regulations unchanged.    

C. FUTURE WORK  

Future work for personnel researching this topic should include collecting and 

analyzing IE data from local shipyards that conduct stability tests on commercial or 

military vessels. The submittals to MSC that were used for this thesis do not contain a 

myriad of external factor data that may have influenced the overall error for each IE. By 

physically witnessing IEs at shipyards, additional data could be recorded such as: weather 

conditions, tautness of the lines from the ship to the dock during each weight shift, location 

of measuring devices relative to the vessel, approximate distance off centerline, and 

number of personnel performing the measurements. In addition, other factors previously 

not identified could be observed and analyzed. 

Furthermore, constructing more miniature vessel models with different hull 

configurations could also be carried out. Prior to conducting the experiment, the height of 

metacenter (M) and center of gravity (G) could be calculated using naval architecture 

software or manual calculations so that the accuracy of the test results could be further 

analyzed. The experiment performed by the author was limited to only examining the 

precision between devices. In addition, the miniature vessel model results could be 

analyzed via design of experiment (DOE) as was done in the previous chapters.  

While the results of this thesis consistently show differences between heel 

measuring devices, it is feasible that with more data and using the spreadsheet model 

developed by the author could yield better results.  
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