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Abstract

Successful lab designs are a valuable resource that
should be re-used and shared among educators and be-
tween institutions. A collaborative, community-sourced
design effort maximizes the benefit of the effort and ex-
pertise required to build and test an effective lab exer-
cise. Unfortunately, infrastructure requirements, hetero-
geneous operating environments, and the desire to incen-
tivize individual student work pose significant challenges
that necessitate frequent updating, redesigning and re-
testing of assignments, creating a significant mainte-
nance burden. To address these challenges, we present
Labtainers: a container-based framework for the devel-
opment, deployment and assessment of Linux-based cy-
ber security lab exercises. Docker containers present a
consistent environment that reduces the need for frequent
updates, but with considerably less overhead than VM-
based approaches. This enables a modest laptop to host
labs consisting of multiple networked components. As
such, the Labtainers framework is able to simulate a vari-
ety of security-relevant scenarios on a standalone student
machine, without the need for elaborate infrastructure.
Moreover, Labtainers’ scripting support allows exercises
to be customized on a per-student basis, then collected
and evaluated automatically on the instructor machine.
This capability enables the instructor to assign exercises
where each solution is unique to the student with little or
no increase in complexity of lab setup or assessment.

1 Introduction

Designing effective lab assignments requires the inven-
tion of exercises that are engaging and encourage inter-
est, meet educational objectives of reenforcing material,
are free from errors, and strike the correct balance be-
tween challenging students and discouraging them. A
lab that succeeds in each of these areas takes a signif-
icant investment of time and expertise, and, more than

likely, considerable testing through trial, error, and stu-
dent feedback.

Educational materials for cybersecurity involve addi-
tional challenges. They are often sensitive to the details
of particular implementations or operating environments.
They may require infrastructure that can simulate inter-
action between multiple machines. These requirements
impose significant maintenance costs: labs must be fre-
quently updated, rebuilt and re-tested. Instructors must
either develop hosting infrastructure, or handle the het-
erogeneity of student’s personal machines. The former
case involves considerable overhead in terms of labor
and funding; in the latter case, it is difficult to simulate
the wide variety of environments used by students to per-
form their labs.

Labtainers is a framework for developing and deploy-
ing Linux-based multi-component cybersecurity labs
hosted entirely on a student’s computer. We use Docker
containers [3] to provide a controlled and consistent exe-
cution environment across all student computers regard-
less of the Linux distribution and configuration present
on individual student platforms. This allows each lab de-
signer to control which software packages are present,
the versions of libraries, and specific configuration set-
tings, e.g., /etc file values. These configurations may
vary between labs, and they may vary between multi-
ple containers deployed in a single lab. Labtainers pro-
vide the advantages of a consistent execution environ-
ment without requiring one or more individual Virtual
Machines (VM) per lab, and without requiring all labs to
be adapted for a common Linux execution environment.
A student laptop that struggles to run two or more VMs
can readily run multiple containers simultaneously.

The framework includes automated assessment of stu-
dent lab performance, and it supports individualizing
labs to discourage sharing results between students.

As of this report, we have ported several labs from
the SEED lab collection [6]. We have also developed
some simple exercises to demonstrate features of the



framework. These include our multi-component telnet
lab, which illustrates plaintext password transmission in
telnet and mitigation of the vulnerability using ssh.
We refer to this example lab throughout our overview of
the framework in Section 2.

2 Labtainers Framework

In this section, we describe the Labtainer framework’s
support for individualizing labs and for automated as-
sessment of student lab performance. Following, we
cover networking support for multi-component labs.

2.1 Labtainer Actors

The Labtainer framework supports three main types of
users, or actors.

The first is the Lab Designer, who is responsible for
for creating the laboratory exercise so that it will meet
its learning objectives. The lab designer determines if
and how the lab is parameterized and whether automated
assessment will be supported. The syntax used for lab
configuration and parameterization can be found in the
Labtainer Lab Designer User Guide. [16]

The second is the Instructor. This individual assigns
the lab to the students and assesses their work. The in-
structor may or may not work with the lab designer to
create the exercise.

Finally, the Student performs the laboratory exercises.
Students are oblivious to the underlying framework that
configures and individualizes their labs, and which will
later gather any artifacts that may be required for assess-
ment.

2.2 Using Labtainers

Students initiate a Labtainer exercise from any Linux
system, (e.g., a VM on a laptop), that includes the Docker
package. The start command names the lab, and the
framework then pulls all necessary Docker containers
from the Docker Hub and configures them for use by the
student. Once configuration is complete, the student is
presented with a set of virtual terminals that provide in-
structions and access to the lab environment. These ter-
minals typically have bash shells via which the student
interacts with the containers, which appear to the stu-
dent as individual Linux systems, (e.g., clients, routers,
servers), interconnected with one or more networks. The
stop command collects a set of artifacts from the stu-
dent’s activity and places them in a zip file that the stu-
dent then forwards to the instructor.

After gathering the zip files from all students for a
given lab into a single directory, the instructor starts a

special instructor container created for the lab. This con-
tainer automatically assesses student artifacts and pro-
vides the instructor with a summary of each student’s
performance. The instructor is also provided with copies
of each student’s home directory and relevant artifacts
along with an instance of the original lab execution en-
vironment, allowing inspection and review of student re-
sults.

Labs need not be designed for automated assessment
or parameterization. But when they are, the lab designer
performs this work, to the benefit of the instructor. Labs
are designed primarily through use of configuration files,
as illustrated in the discussion below. Several worked
examples are available, as described in Section 4.

2.3 Individualizing labs for each student
Lab parameterization is intended to discourage students
from sharing lab solutions, or finding solutions on the
Internet. Labs are parameterized through symbolic sub-
stitution of values within the source code or data files
that are part of the lab. The lab designer identifies these
files, the symbols within the files, and the type of replace-
ment that is to occur. For example, a symbol represent-
ing an array buffer size might be replaced by a random
value bounded by a configurable minimum and maxi-
mum. Random values are created using a random num-
ber generator that is seeded with a string specific to each
student and lab. (Seeds are created by concatenating a
pre-defined string for the lab with the student’s email ad-
dress.) In the case of a buffer size parameter, the seed
would be used to set the buffer size in that student’s in-
stance of the lab.

Parameterization can be used to change computations.
For example, changing the buffer size might affect how
a buffer overflow is crafted. It can also be used to cus-
tomize stored artifacts. In our telnet lab, the student
is directed to telnet to a server and display the content
of a specific file. Parameterization causes the content of
this file to be unique to the student, e.g., containing the
results of a hash keyed with the student’s unique seed.
For example:

FSTRING : HASH_REPLACE : \

telnetlab.server.student=filetoview.txt : \

TELNET_STRING : mytelnetfilestring

causes the symbol TELNET_STRING in the file
filetoview.txt to be replaced with a hash of
the string “mytelnetfilestring” keyed with the student’s
lab-specific seed.

As will be seen below, the assessment configuration
file syntax includes an ability to name parameter symbols
such that the assessment function automatically com-
pares the results from each student’s artifacts with values
generated specifically for that student.



2.4 Automated Assessment of Goals

Labtainer automated assessment functions provide in-
structors with binary indicators of student achievement
of specific goals. While future work may incorporate the
ability to define higher-level evaluation logic, the feed-
back currently provided is somewhat similar to forensic
indications of specific activity. As such, the goals tracked
by automated assessment simply reflect whether specific
inputs or outputs were generated. This functionality is
not intended to fully assess student comprehension or
performance; rather, it serves as an aid to instructor judg-
ment. Depending on the lab and the instructor, metrics
generated by automated assessment may be sufficient to
grade a lab. Alternatively, they may be viewed as broad
indicators of progress, or confirmation that the student
engaged with the lab environment in addition to writing
a lab report. In addition to measurement of individual
student progress, suitably designed Labtainer goals ag-
gregated across students might also highlight difficult or
problematic areas of the lab. These could be used to iden-
tify areas in which the assignment or instructional mate-
rials could be improved in the future.

The assessment functions do not track time spent per-
forming the lab. This is deliberate, because our intent
is to promote exploration by students at their own pace.
To further encourage exploration, the typical manner of
Labtainer goal assessment will indicate that a given goal
has been met so long as there is at least one indication of
its having been met, regardless of the quantity of failures
that precede or follow that event.

Goals are defined in terms of artifacts gathered from
the student lab sessions. These artifacts include the entire
home directory of the student containers, selected system
files identified by the lab designer, and files containing
the stdin and stdout streams from student interactions
with selected programs. The framework captures copies
of stdin and stdout by using the student’s .profile
to hook the bash shell with functions similar to the ZSH
preexec and precmd functions [7] . These functions inter-
cept all bash commands, allowing augmentation of com-
mands before they are executed. The framework causes
selected commands to use the bash tee function to make
copies of stdin and stdout into timestamped files.

The lab designer locates results within the artifacts by
assigning their symbolic names in the configuration file
settings. For example:

fileview = client:telnet.stdout : \

4 : STARTSWITH : My string is:

assigns the symbol fileview a value equal to the fourth
space-delimited token on the first line that starts with
“My string is:” within stdout of the program named
telnet. Since there may be many instances of stdout

files from invocations of telnet, the framework main-
tains a set of fileview symbols, one per timestamp.

The results extracted from student artifacts are com-
pared to expected values to determine whether goals have
been met. Goals evaluate as true or false, and are defined
in configuration file entries. For example, the entry

telnetview = matchany : \

string_equal : fileview : \

parameter.FSTRING

will indicate that the student achieved the telnetview

goal if any of the timestamped fileview symbols match
the value of the FSTRING parameter. In this example,
the FSTRING parameter is unique to each student, as
described in the previous section.

2.5 Networks of Containers
This section describes use of Labtainers to create a sim-
ple network of containers consisting of client and server
computers.

Each container within the lab is defined by a Dock-
erfile which specifies the packages and files within the
file system of the container image. The Labtainer base-
line image includes a set of packages useful for many
labs, including common development tools such as gcc,
vim and python. All lab-specific Dockerfiles reference
this baseline image, or an image derived from that base-
line. The Dockerfile then identifies additional packages
and files for the container. In this example, the client
container includes the telnet package. The server con-
tainer baseline image includes the xinetd, sshd and
rsyslog services. The server’s lab-specific Dockerfile
builds on this image to also include the telnet service.
Outside of Labtainers, typical Docker containers do not
include multiple services, and their logs are forwarded to
the host and collated with other container logs. More-
over, a Dockerfile typically starts a single service using
the ENTRY directive. Labtainers are not conformant with
this model because our goal is for the containers to ap-
pear as typical Linux systems. The ENTRY directive for
our example server container starts a simple script that
launches rsyslog and xinetd. The former causes sys-
tem log entries to appear in their familiar locations within
/var/log, and the latter launches the telnet and sshd

services in response to incoming network connections.
Docker images generated from Dockerfiles for each

of the lab’s containers are implicitly referenced in the
start.config file created by the lab designer for each lab.
This file identifies the containers and defines the net-
works within the lab. The configuration file entry for our
example network is:

NETWORK SOME_NETWORK

MASK 172.20.0.0/24



GATEWAY 172.20.0.100

A container connects to networks by naming the net-
works in the configuration file entry for that container.
For example:

CONTAINER client

USER ubuntu

TERMINALS 2

SOME_NETWORK 172.20.0.2

CONTAINER server

USER ubuntu

TERMINALS 1

SOME_NETWORK 172.20.0.3

The container names of client and server resolve to their
corresponding Dockerfiles per the Labtainer naming con-
vention. These entries assign network addresses to the
containers, and define the number of virtual terminals to
be created and attached to each container when the lab
runs.

These three configuration file entries suffice to define
the simple network seen by students when performing
the example lab. When the lab starts, the virtual termi-
nals are created and present bash shells, allowing the
student to interact with the containers which appear to
be independent Linux systems connected by a network.
The server container offers the telnet service, which
the student can reach by issuing a telnet command
from the client bash shell. All of the students will see
the very same telnet server and client, regardless of
the Linux distribution they are running, and regardless of
what packages are installed on their Linux hosts.

Since the purpose of this example lab is to highlight
the fact that telnet passes passwords over networks in
clear-text, the tcpdump utility is available on the server
container for use by the student to observe network traf-
fic. When the student starts the tcpdump program, its
stdout is automatically captured within timestamped
files as described in Section 2.4. If the student is directed
to attempt a telnet login with a specific password, e.g.
plaintextpassword, that password will appear in the
stdout file. As described in the Section 2.4, the de-
signer could define a goal corresponding to the pres-
ence of the prescribed password in a tcpdump stdout
artifact. Though quite simple, such a goal would indi-
cate that the student started the tcpdump program on the
server, and then attempted a telnet login. This limited,
though potentially informative, automated assessment of
the example lab is realized through two configuration file
entries. This entry in the results.config file:

password_on_wire = tcpdump.stdout : \

CONTAINS : plaintextpassword

and this entry in the goals.config file indicates
not only that the student ran tcpdump, but that
plaintextpassword was on the wire:

ran_tcp_dump = is_true: password_on_wire

3 Discussion

In this section, we provide a brief overview of related
work, contrast various approaches to providing labora-
tory exercises, and discuss the limitations of Labtainers.

3.1 Related Work

Time and infrastructure resource requirements often
compel security instructors to seek lab support from
centralized security lab projects such as DeterLab [11].
RAVE (Remote Access Virtual Environment) [12, 20],
and EDURange [19]. We note that the Tele-Lab project
[21] is similar to these, but offers only test accounts.
In contrast to all of these, which require students to
connect to the infrastructure platform, Labtainers frees
students to work unconnected, thus further encouraging
self-paced and intermittent activity. In addition, contain-
ers afford more fine-tuned lab environments and are sim-
pler for instructors to manage and deploy.

The SEED project [5, 4, 6] has developed 33 freely
available labs in three categories: vulnerability and at-
tack, design and implementation, and exploration. Com-
plementing these, Wang has developed a set of lab exer-
cises for IT security [18]. These labs are not parameter-
ized, neither do they support automated assessment.

Parameterization of security labs was incorporated
into Tele-Lab. [21] In contrast to Tele-Lab, where param-
eters are predefined and stored in a parameter database,
Labtainers parameterizes each lab by using metadata as-
sociated with the student. PolyLab randomizes lab exer-
cises by using hashes. [8], but this framework does not
support the virtualization provided by Labtainers.

Ala-Mutka surveyed automated assessment technolo-
gies used in programming courses [1], e.g. [10, 14, 13];
however, none were directly applicable to Labtainers.

3.2 Why not VMs?

Several alternatives are available to instructors who wish
to offer cybersecurity labs: hands on experience involv-
ing physical machines, virtual machines hosted on an
infrastructure-as-a-service (Iaas) platform, virtual ma-
chines hosted on each student’s laptop, and containers
executing either on the student’s Linux host or in a Linux
virtual machine hosted on the student’s system.

Hay et al. suggested the use of virtual machines to sup-
port security labs [9]. The advantages of containers were
discussed in Section 3.1. Some virtual machine chal-
lenges solved by using containers are discussed below.

On demand cloud computing resources, such as Ama-
zon Web Services (AWS) [2] require special permission
to run many simple network security exercises, such as



port scans and penetration testing. 1

Construction of an institutionally-owned and operated
virtual machine farm is likely to require considerable
initial hardware investment and technical expertise, as
well as an ongoing operational tail for maintenance, user
management, continuity of operations, and backups. A
proprietary system for managing VMs, such as vSphere
[17], usually requires local expertise and a support agree-
ment, while less costly open source options, such as
KVM [15], require even greater levels of institutional
expertise. If students are required to host a number of
VM images on their personal computers or laptops, the
resource requirements can quickly exceed what is avail-
able on the host. In contrast, Linux containers [22] of-
fer a less costly and less complex alternative that affords
lab designers and instructors greater control, without not
tethering students to a server farm.

Where the physical component cannot be virtual-
ized, the solution may involve some combination of ap-
proaches, both physical and virtual networked together.
For example, the container could be connected through
inter-virtual machine networking to a virtual machine
running Windows.

3.3 Limitations
The Labtainers framework limits labs to the Linux exe-
cution environment. However, a lab designer could pre-
scribe the inclusion of a separate VM, e.g., a Windows
system, and that VM could be networked with the Linux
VM that hosts the Docker containers. Future work would
be necessary to include artifacts from the Windows sys-
tem within the framework’s automated assessment and
parameterization.

The process tree of the initial Linux process will not
look like a typical Linux system init process. Within con-
tainers that have no services, the initial process, i.e., pro-
cess ID 1, will be a bash shell. Containers having ser-
vices and logging will have an initial process that is the
script that launches the services as described in Section
2.5. However, other process trees will appear as they do
in a Linux system, and this includes inetd services.

Inquisitive students will see evidence of artifact collec-
tion. Home directories on containers includes a .local

directory that includes the Labtainer scripts that manage
capture and collection of artifacts. In addition, that di-
rectory contains the stdin and stdout files generated
by student actions. Further, when the student starts a
process that will have stdin and stdout captured, the
student will see extra processes within that process tree,
e.g., the tee function that generates copies of those data
streams. All of the containers share the Linux kernel with

1https://aws.amazon.com/premiumsupport/knowledge-

center/penetration-testing/

the Linux host. Changes to kernel configuration settings,
e.g., enabling ASLR, will be visible across all of the con-
tainers.

Our future work includes porting more labs, whether
on bare machines or in virtualized environments, to Lab-
tainers. In so doing, we will explore the limitations of
Dockers support for various security labs. For exam-
ple, we believe that a lab on iptables is possible, but we
do not know what is impossible other than heterogeneity
for the underling kernel. Another area of future work is
construction of a grammar for the lab specification lan-
guage.

4 Availability

Our initial release of the Labtainers framework includes
worked examples for several labs, many of which were
derived from SEED labs [6, 4]. These include:

• Format String Derived from the SEED Format
String Vulnerability Lab, this lab gives students first
hand experience exploiting vulnerabilities associ-
ated with the printf function. The lab is parameter-
ized such that one of the “secret” values displayed
by the exploited program is a random displayable
ascii character. Automated assessment confirms the
student performed each of the tasks identified in the
original SEED lab.

• Buffer Overflow Derived from the SEED Buffer
Overflow Vulnerability Lab, this lab requires the
student to craft a data file that exploits a buffer over-
flow when consumed by a vulnerable program. The
lab is individualized by changing the size of the
buffer to be overflowed, and by changing the con-
tent of a file the student is asked to display after
gaining a root shell. Automated assessment con-
firms the student displayed the target file while exe-
cuting the vulnerable program. And it confirms the
student took actions consistent with exploring stack
guards, as directed by the original SEED lab.

• One Way Hash Derived from the SEED One-Way
Hash Function and MAC, this lab introduces the
student to hash functions offered by the openssl pro-
gram. It highlights a simple use of parameterization
and goals to confirm the student turned in his or her
own zip file without individualizing any other as-
pects of the lab. It also demonstrates the ability to
enumerate several goals and then use a counting op-
eration to confirm that the student generated hashes
within at least N of the available hash algorithms as
prescribed by the SEED lab.

https://aws.amazon.com/premiumsupport/knowledge-center/penetration-testing/
https://aws.amazon.com/premiumsupport/knowledge-center/penetration-testing/


• Telnet An implementation of the simple example
described in Section 2. It demonstrates a lab with
multiple networked containers.

• Openvpn The student configures the openvpn ap-
plication to create an encrypted tunnel between a
client and a server, through a router. The student
then runs tcpdump to observe encrypted and unen-
crypted traffic. This lab illustrates the use of a sim-
ple router implemented within a container.

The Labtainer framework and user guides are available
at:

http://my.nps.edu/web/cisr/labtainers
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