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Abstract. We present a systematic robustness analysis for several
feedback controllers used in photolithographic critical dimension �CD�
control in semiconductor manufacturing. Our study includes several con-
trollers based on either the exponentially weighted moving average
�EWMA� estimation or Kalman filters. The robustness is characterized by
two features, namely the controller’s stability margin in the presence of
model mismatch and the controller’s sensitivity to unknown noise. Simu-
lations on the closed-loop control system are shown for the performance
comparison. Both the analysis and the simulations prove that the
multiple-dimensional feedback controller developed in this paper using
the average of previous inputs and outputs outperforms the other con-
trollers in the group. © 2007 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

The critical dimension �CD�, a measurement of lines and
ditches in the circuit, is a key parameter in characterizing
the performance of semiconductor products. In a manufac-
turing process, improving the stability of the CD output
results in yield improvement and cost reduction. It is
known that the CD in a semiconductor product depends on
the performance of exposure tools, in which the photoli-
thography process takes place. These tools are equipped
with onboard controllers that are able to monitor and adjust
many parameters in the system. However, the dose and
focus in the exposure tools are controlled by the users,
typically a run-to-run controller. It is up to the process en-
gineers to determine the best way of the control. A reliable
controller of the dose and focus is essential in a manufac-
turing process to achieve stable run-to-run CD geometry.
Several different types of feedback controllers are used by
semiconductor manufacturers. In this paper, we introduce a
systematic study on some of the representative run-to-run
controllers. In addition, in this paper we introduce a feed-
back controller with a specially designed weighting method
to achieve guaranteed stability and robustness.

This work is motivated by an Intel project of run-to-run
controller design and implementation, which is a teamwork
involving a group of process engineers, equipment engi-
neers, and factory automation and controller designers
across different organizations. Controller design and opti-
mization is a key integral part in the entire project. Given
the large volume of existing work on the run-to-run control,
we found that a systematic method of controller analysis is

a must-have for efficient validation and evaluation of the
control algorithms to be implemented in manufacturing. As
an integrated effort of run-to-run controller development,
we must take into account the uncertainties and random
noise in the process equipment. The goal of the paper is
twofold: to analyze the robustness of several process con-
trollers with model mismatch; and to introduce a process
feedback controller for improved stability and robustness.
This feedback controller is an output feedback controller of
multiple dimensions with significantly improved stability
and reduced sensitivity to unknown noise.

In Section 2, we present four existing feedback control-
lers. The first two feedback controllers are based on the
estimation method of the EWMA �exponentially weighted
moving average� and the d-EWMA �double EWMA�, and
the third one is a high-dimensional extension of the EWMA
method. The fourth controller is based on the Kalman filter.
In addition, a feedback controller of multiple dimensions is
introduced that is proved to have better stability and robust-
ness. In Section 3, state-space dynamical models of con-
trolled processes are derived. The robustness study of the
controlled processes is conducted based on these models. In
Sections 4, we compare the stability of the four controllers
under model mismatch. In Section 5, we compare the sen-
sitivity of the four controllers under unknown noises. In
Section 6, simulations are shown for the performance of the
closed-loop system using all the controllers, and the results
are consistent with the analysis and conclusions made in
the previous sections.

2 Feedback Controllers
The run-to-run control of semiconductor manufacturing
processes has been investigated by a number of researchers1537-1646/2007/$25.00 © 2007 SPIE
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from both universities and industrial research
laboratories.1–8 For instance, a process control system used
by some semiconductor manufacturers was discussed in
Refs. 17 and 18. The configuration tool for this system
provides the user with the flexibility to define weighting
parameters to optimize the performance of the controller. In
Refs. 17 and 18 it was shown that equally weighting his-
torical data can reduce the sensitivity to random noise. An-
other popular control algorithm is based on the EWMA
algorithm, which uses exponential weighting factors. Some
basics on EWMA can be found in the run-to-run control
monograph.19 Some typical applications of lithography
APC can also be found in Ref. 15. In Ref. 21, the stability
conditions and tuning guidelines are developed for multiple
variable EWMA and double EWMA controllers with me-
trology delays.

In this section, we introduce some feedback controllers
based on EWMA estimation that are widely used in the
semiconductor industry for a variety of process steps. Then,
in the next few sections, we use stability analysis and H�

control theory to analyze the robustness of these control-
lers. Let us assume a linear model defined by the following
algebraic equations

yt = aut + c + wt, �1�

where yt is the measured output from the tth run, ut is the
control input applied to the tth run, wt is a random distur-
bance with zero mean and unknown distribution, a is the
sensitivity from ut to yt, and c is a slowly varying parameter
determined by other known or unknown factors. We call c
the intercept of the model. A variety of processes in semi-
conductor manufacturing can be modeled in this way. The
estimation of the value of both a and c is available using
historical data from previous manufacturing activities or
experimentation. However, an accurate value of the coeffi-
cients is not available due to equipment aging, the variation
of wafer quality, and changes in the process environment.
Thus, in the feedback control, estimated values of the co-
efficients are used. As a result, a feedback controller is
always designed with a model mismatch. Such a model
mismatch is an uncertainty in addition to the unknown
noise in the process. Due to the complexity of the processes
and the lack of physical models for semiconductor manu-
facturing equipment, the model mismatch can be relatively
large. In this paper, we carry out a thorough performance
analysis of feedback controllers in the presence of model
mismatch. In addition to the model mismatch, the study
also includes the unknown noise wt, for which no a priori
information such as the probability distribution or the co-
variance matrix is assumed. Following the literature of con-
trol engineering, a general linear output feedback control
system has the following form:

�t = F�t−1 + G�t−1,

ut = C�t−1, �2�

where ut is the control input to be computed using the feed-
back law. In Eq. �2�, ut is determined by an intermediate
variable �t. The variable �t follows the dynamics defined in
Eq. �2�, in which �t represents the measured data from the

process, and C, F, and G are constant matrices to be se-
lected in the feedback design. In this paper, we defined �t
by the error of the process output, yt−yT. All the feedback
control laws introduced in this section, except for the one
using a Kalman filter, are presented in the unified form of
the dynamical system in Eq. �2�. The purpose of using this
form is because of its convenience in the robustness analy-
sis derived in the next two sections. However, we would
like to emphasize that the quality of performance of a con-
troller is determined by the way it is designed and imple-
mented, but not by its formality. In addition, engineering
knowledge from lithographic process engineers is indis-
pensable in the effort of finding a good controller. This is
the primary reason our research project was developed
around real manufacturing data and the collaboration with
process engineers.

Let ā represent the estimation of a, a coefficient in Eq.
�1�. Then the factor of model mismatch is defined as fol-
lows:

� =
a

ā
.

It is used in this paper as a measure for the magnitude of
the model mismatch. If �=1 and if the value of c is known,
then we have an ideal model that matches exactly with the
true process. However, the performance of a controller de-
signed based on the estimation ā can be significantly down-
graded if ��1. In addition to the model mismatch, it is
known that the value of the intercept, c, drifts during a real
production process due to environmental changes and the
system aging problem. Therefore, it is also critical to esti-
mate the value of c for the purpose of feedback control. For
the estimation of c, an EWMA method is defined as fol-
lows:

c̄t = ��yt − aut� + �1 − ��c̄t−1, �3�

where � is a constant weight. If the variation of c follows
the stochastic model of a first-order integrated moving av-
erage of a sequence of white noise, and if the weight in the
stochastic model is known, then it can be proved that the
EWMA estimation minimizes the mean squared error.12

However, if the values of a and � are not accurately
known, then the EWMA estimation becomes inaccurate and
even unstable. It is a known fact that under different con-
trollers the impact of model mismatch on a control system
or a manufacturing process is different. It is desired that a
feedback controller can be designed to reduce the impact of
the model mismatch in a process. The goal of this paper is
to study the impact of the model mismatch for the photo-
lithographic process under several feedback controllers,
which are introduced in the rest of this section. We first
introduce a feedback controller based on an EWMA esti-
mation. Using ā, an estimation of a, the EWMA formula in
Eq. �3� is revised as follows:

c̄t = ��yt − āut� + �1 − ��c̄t−1. �4�

A simple controller based on the EWMA estimation of c is
a direct inverse of the estimated model
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ut =
1

ā
�yT − c̄t−1� ,

where yT is the target value of the process output. Substi-
tuting Eq. �4� into the feedback controller yields

ut =
1

ā
�yT − ��yt−1 − āut−1� − �1 − ��c̄t−2� =

�

ā
�yT − �yt−1

− āut−1�� +
1 − �

ā
�yT − c̄t−2� = �ut−1 +

�

ā
�yT − yt−1� + �1

− ��ut−1 = ut−1 −
�

ā
�yt−1 − yT� .

Thus, the feedback controller can be represented by the
following dynamical system with model mismatch:

ut = ut−1 −
�

ā
�yt−1 − yT� = ut−1 −

��

a
�yt−1

− yT� �Controller I� . �5�

This formula is a special case of Eq. �2� in which �t=ut,
�t=yt−yT, F=1, G=−� / ā, and C=1. Later, this formula is
called the EWMA feedback controller and is referred to as
Controller I. Under this controller, the control input at each
run depends on the control input and the process output of
the previous run. It is interesting to point out that the origi-
nal model of the process is static. However, the closed-loop
system under the feedback controller becomes dynamic in
the sense that ut is a function of ut−1. For a dynamic system,
issues such as stability, robustness, and sensitivity to noise
become critical to the performance, as evidenced by the
literature of robust control and H� control.

In a real manufacturing process, an engineer may not
trust the decision solely based on one previous measure-
ment. A sequence of measurements can be used in the it-
erative formula. As a result, the dimension of the feedback
controller becomes higher. The feedback controller can be
written into the form of Eq. �2�, with the following vari-
ables and matrices:

�t = ut,

�t = �yt − yT yt−1 − yT ¯ yt−N − yT�T,

F = 1,

G = −
�

ā
�w1 w2 ¯ wN� ,

C = 1, �6�

where wj, j=1,2 , . . . ,N, are constant weights satisfying

w j � 0, j = 1,2, . . . ,N ,

�
j=1

N

w j = 1. �7�

In this paper, the following linear weights are used:

1

1 + 2 + ¯ + N
�N − j + 1� .

The selection of the weights depends on the perfor-
mance of the process and the quality of the data. For a
process with very slow autocorrelation, a short period of
historical data can be used and an equal-weight schema like
the one in Ref. 18 can be applied. To accommodate a rela-
tively significant autocorrelation and noisy data, it is rec-
ommended to use more historical data and varying weights.

A controller defined by Eq. �6� is called an extended
EWMA controller and referred to as Controller II. This con-
troller is a simple extension of Controller I �EWMA�. In
fact, a compact iterative representation can be derived from
Eq. �6�. As a result, ut equals ut−1 plus a correction term

−
�

ā
�
j=1

N

w j�yt−j − yT� ,

which is the averaged error based on a sequence of previ-
ous runs. Controller II is considered in this paper because it
is a more stable controller than the EWMA controller.

For systems with fast drift in the intercept, a double
EWMA or d-EWMA method can be used to estimate both
the intercept and its rate of change. Although an ordinary
lithographic process has a slow intercept drift, under certain
situations when the incoming thin-film thickness sensitivity
is increased, the intercept drift could become faster. In this
paper, we adopt the d-EWMA method from Ref. 13, which
is different from some existing d-EWMA methods such as
the one addressed in Ref. 10. Suppose the output follows
the model

yt = aut + c + pt . �8�

Given yt and ut, the intercept c+ pt and the drifting factor p
are estimated by

d̄t = �1�yt − āut� + �1 − �1��d̄t−1 + p̄t−1� ,

p̄t = �2�yt − āut − d̄t−1� + �1 − �2�p̄t−1. �9�

The feedback control is determined as follows:

ut =
1

ā
�yT − d̄t−1 − p̄t−1� .

Similar to the case of EWMA, the controller based on
d-EWMA has an iterative formula defined by the following
dynamics:

Mao and Kang: Benchmark study of run-to-run controllers…

J. Micro/Nanolith. MEMS MOEMS Apr–Jun 2007/Vol. 6�2�023001-3

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Micro/Nanolithography,-MEMS,-and-MOEMS on 2/15/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



ut =
1

ā
�yT − d̄t−1� −

p̄t−1

ā
=

1

ā
�yT − �1�yt−1 − āut−1� − �1 − �1�

��d̄t−2 + p̄t−2�� −
p̄t−1

ā
=

1

ā
�yT − �1yt−1 + �1āut−1 − �1

− �1��yT − āut−1�� −
p̄t−1

ā
=

1

ā
��1yT − �1yt−1 + āut−1�

−
p̄t−1

ā
= ut−1 −

�1

ā
�yt−1 − yT� −

p̄t−1

ā
.

To summarize, the iterative formula of the d-EWMA feed-
back controller is

ut = ut−1 −
�1

ā
�yt−1 − yT� −

p̄t−1

ā
= ut−1 −

�1�

a
�yt−1 − yT�

−
p̄t−1�

a
�Controller III� . �10�

In the form of Eq. �2�, we have

F = 1, G = �−
�1

ā

1

ā
�T

, C = 1,

�t = ut, �t = �yt − yT p̄t�T.

This is referred to as Controller III. All controllers intro-
duced above have been used by semiconductor manufactur-
ers for the run-to-run process control. Next, we introduce a
feedback controller whose dynamics have multiple dimen-
sions. In this feedback controller, it uses the average of
both the control input and the process output variation from
several previous runs. Although this controller can be writ-
ten equivalently to the general form of some existing
EWMA formula,20 the following specially designed weight-
ing method has two significant advantages: it improves the
stability of the controlled system in the presence of signifi-
cant model mismatch; and it reduces the impact of un-
known disturbances in the system, which is very important
for industrial manufacturing processes in which little is
known about the process noise. These claims will be
proved in the next few sections. The iterative formula of the
feedback controller is defined as follows:

�t = �ut ut−1 . . . ut−N+1�T,

�t = �yt − yT yt−1 − yT ¯ yt−N+1 − yT�T,

F = �
w1 w2 ¯ wN−1 wN

1 0 ¯ 0 0

0 1 ¯ 0 0

¯ ¯ ¯ 0 0

0 0 ¯ 1 0
	

N�N

�Controller IV� ,

G = −
�

ā �
w1 w2 ¯ wN

0 0 ¯ 0

¯ ¯ � ¯

0 0 ¯ 0
	 ,

C = �1 0 ¯ 0� . �11�

In this paper, it is called Controller IV. Because it is de-
signed based on the averaged control value of an EWMA
controller, we also call it an averaged EWMA controller.
Comparing to the extended EWMA, i.e., Controller II �ex-
tended EWMA�, they both use the averaged output error,
� j=1

N �� / ā�wj�yt−j −yT�. However, the matrices, F in the two
controllers are different to accommodate different �t. The
design in Controller IV �averaged EWMA� is able to reduce
the impact of the unknown noise in the process. In fact,
Controllers I, II, and IV are identical if N=1, i.e., we use
the data from the most recent run only.

Before the end of this section, we introduce a controller
based on a Kalman filter.14 The advantage of this approach
is to deal with both the system noise and the sensor noise in
one framework, provided the covariance of the noise is
known. The system is defined by

yt = aut + ct.

Suppose the intercept term ct=yt−aut satisfies the
IMA�0,1,1� model, ct= c̄t−1+v1t , c̄t=�ct+ �1−��c̄t−1= c̄t−1

+�v1t, where v1t is a white sequence. Suppose yt is mea-
sured with sensor noise. We define the system output by
zt=yt−aut+v2t, where v2t is the sensor noise. It is a white
sequence having zero cross correlation with the sequence of
v1t. The dynamics are summarized as follows:

ct = c̄t−1 + v1t,

c̄t = c̄t−1 + �v1t,

zt = yt − aut + v2t. �12�

Given zt, we want to estimate c̄t as the prediction of ct+1. In
the presence of system noise v1t and the sensor noise v2t, a
Kalman filter is used to achieve an optimal estimation. De-
fine

X = �ct

c̄t
�;

then the dynamical system �12� has the following form:

Xt = AXt−1 + Bv1t, A = �0 1

0 1
�, B = �1

�
� ,

zt = CXt + v2t, C = �1 0� . �13�

Suppose the covariances of v1t and v2t are Qt and Rt, re-
spectively. Then the covariance matrix of Bv1t is
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�1 �

� �2�Qt.

Let X̂0 be the initial estimation of the initial state X0. Let P0
be the covariance matrix of X0. Then the following Kalman

filter provides an estimation X̂t,

X̂t = X̂t
− + Kt�zt − CX̂t

−� , �14�

where

X̂t
− = AX̂t−1, Kt =

Pt
−CT

CPt
−CT + Rt

,

Pt
− = APt−1AT + �1 �

� �2�Qt−1, Pt = �I − KtC�Pt
−. �15�

In feedback control, the estimation of c̄t, which is �0 1�X̂t,
is used as the prediction of ct+1. The control input for the
tth. run is defined by

ut =
1

a
�yT − �0 1�X̂t−1� . �16�

The Kalman filter is introduced as an option of feedback
design. However, it has fundamentally different structure
and properties from the other controllers because the con-
trol gain of the closed-loop system is time-varying under
the Kalman filter.

3 State-Space Dynamical Model of the Closed-
Loop Systems

For the reason of robustness analysis and the application of
H� control theory, in this section we derive a state-space
model for the controlled process. It is known that the state-
space representation of a given system is not necessarily
unique. The models in this paper are derived specifically
for the purpose of study and analysis conducted in the sec-
tions that follow. Under Controller I �EWMA�, we define
the state variables of the process �1� by

Xt = �yt − yT ut −
yT − c

a
�T

. �17�

Then, the dynamics of Eqs. �1�–�5� satisfies

Xt = �− �� a

−
��

a
1 	Xt−1 + �wt

0
� . �18�

Different from some existing analysis in the literature, the
state variable defined by Eq. �17� is translated by

yT,
yT − c

a
.

If Xt= �0 0�T is a stable equilibrium of Eq. �18�, then the
translation defines the stable operating point of yt and ut.
Similar translations are used for state-space analysis of
other controllers in this paper.

For the d-EWMA analyzed in Castillo and Hurwitz.10 a
state-space model was derived. However, it is different
from the d-EWMA in Chen and Guo,13 which is adopted in
this paper to define Controller III. Furthermore, the state-
space model derived in this section has a transformation,
which is able to provide important information about the
equilibrium point of the controlled process. We define the
state variable as follows:

Xt = �yt − yT ut −
yT − �pt + c�

a
p̄t − p�T

, �19�

where p̄t is the d-EWMA estimation denned by Eq. �9�.
Note that the meaning of stability in this case is different
from the conventional definition. Due to the drift term pt,
the controller has to drift accordingly to maintain yt around
a constant value. Therefore, the stability of the controlled
process at Xt=0 implies that the actual control input, ut,
drifts with the time-dependent function defined in the trans-
formation used in Eq. �19�,

yT − �pt + c�
a

.

In the state space, the dynamical equations of the controlled
process �8�–�10� under Controller III �d-EWMA� have the
following form �Eq. �20��. Its derivation is omitted due to
space limitations.

Xt = �
− �1� a − �

−
�1�

a
1 −

�

a

− �1�2� �2a 1 − �2�
	Xt−1 + �

p�1 − ��
p

a
�1 − ��

�2p�1 − ��
	

+ � 1

0

�2
	�t �20�

The state-space models of the controlled process under
Controller II �extended EWMA� or IV have higher dimen-
sion than that under Controller I �EWMA� and Controller
III �d-EWMA�. For Controller II, define the state variable
as follows:

Xt = �ut −
yT − c

a
yt − yT yt−1 − yT ¯ yt−N+1 − yT�T

. �21�

Then, the dynamical equation of the controlled process
�1�–�6� is
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Xt = �
1 −

��

a
	1 −

��

a
	2 ¯ −

��

a
	N−1 −

��

a
	N

a − ��	1 − ��	2 ¯ − ��	N−1 − ��	N

0 1 0 ¯ 0 0


 
 
 � 
 

0 0 0 ¯ 1 0

	Xt−1 + �
0

1

0



0
	

T

wt. �22�

Under Controller IV �averaged EWMA�, the state variable
is defined by

Xt = �yt − yT ut −
yT − c

a
yt−1 − yT ut−1 −

yT − c

a
¯ yt−N+1

− yT ut−N+1 −
yT − c

a
�T

. �23�

The dynamical equations in state space for the controlled

process �1�–�11� has the following form:

Xt = �
− ��	1 a	1 − ��	2 a	2 ¯ − ��	N−1 a	N−1 − ��	N 
	N

−
��

a
	1 	1 −

��

a
	2 	2 ¯ −

��

a
	N−1 	N−1 −

��

a
	N 	N

1 0 0 0 ¯ 0 0 0 0

0 1 0 0 ¯ 0 0 0 0


 
 
 
 � 
 
 
 

1 0 0 0 ¯ 0 1 0 0

	Xt−1 + �
1

0



0
	wt. �24�

4 Robustness Analysis: Stability in the
Presence of Model Mismatch

The robustness analysis conducted in this paper is twofold:
the stability of the controlled process in the presence of
model mismatch; and the sensitivity of the system to un-
known disturbances. In this section, we focus on the stabil-
ity of a controlled process under the controllers introduced
in Section 2, using the dynamics model derived in Section
3. Due to the time-varying parameters in Kalman filters, it
is not addressed in this section and the next section. How-
ever, the Kalman filter is included in the simulations shown
in Section 6. It is well known that the stability of a dynami-
cal system is determined by its eigenvalues, which are the
roots of the characteristic equations defined by

�I − det�A� = 0,

where A is the matrix in the dynamical system, and I is the
identity matrix. Under Controller I �EWMA�, the controlled
process �Eq. �18�� has the following characteristic
equation:16

��� − �1 − ���� = 0. �25�

Thus, the eigenvalues of the system are

� = 0; � = 1 − �� .

For the system to be asymptotically stable, the absolute
value of all eigenvalues must be less than 1. Therefore, the
controlled process is stable if and only if

0 � �� � 2. �26�

If the model mismatch defined by � is big enough so that
�� is out of the range �0, 2�, the system becomes unstable.
As a result, the process drifts away exponentially by a
small disturbance or perturbation in the system.

Given a controller, the range of �� in which the system
is kept stable is an important measure of the robustness of a
controller. Because �� is a common factor in all feedback
controllers I–IV, we can directly compare the robustness of
these controllers. In the following, we call �� the feedback
gain ratio.

For Controller III �d-EWMA�, the characteristic equa-
tion of Eq. �20� is
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���2 + ��1� + �2� − 2�� + �1 − �1��� = 0.

Therefore, the eigenvalues of the system in Eq. �20� are

� = 0,

� =
1

2
�2 − ���1 + �2� ± ��2 − ���1 + �2��2 − 4�1 − �1��� .

�27�

Controller III �d-EWMA� is stable if and only if

�2 − ���1 + �2� ± ��2 − ���1 + �2��2 − 4�1 − �1��� � 2.

�28�

The stability under d-EWMA was addressed in Ref. 11.
However, Eq. �27� is different from the one derived in Ref.
11 because the d-EWMA addressed here is the modified
method from Ref. 13. In addition, the state-space model in
Eq. �20� of the controlled process under Controller III �d-
EWMA� is derived using the state variable �Eq. �19��,
which contains a transformation. If a controller is stable,
then the transformation provides the stable equilibrium.
Note that a stable system is not necessarily stabilized at the
desired equilibrium, especially when p�0. In this case, the
equilibrium of Eq. �20� under Controller III �d-EWMA� is
moved by model mismatch. More specifically, let’s assume
zero noise wt=0. Suppose the model mismatch exists, i.e.,
��1. Then from the state variable defined by Eq. �19� and
the dynamics defined by Eq. �20�, the stable equilibrium is
defined by

�
− �1� a − �

−
�1�

a
1 −

�

a

− �1�2� �2a 1 − �2�
	Xt−1 + �

p�1 − ��
p

a
�1 − ��

�2p�1 − ��
	 = 0.

If the system has drift p�0, and model mismatch, ��1,
the equilibrium is not Xt=0. Therefore, yt is not necessarily
stabilized at its desired value. However, in the case of p
=0, both Controller I �EWMA� and Controller III �d-
EWMA� are able to stabilize the system at yT in the pres-
ence of model mismatch, provided � satisfies Eq. �26� or
�28�.

Under Controller II �extended EWMA�, the system has
higher dimensions and the derivation of the characteristic
polynomial becomes more involved. Thanks to the special
structure of the matrix in Eq. �22�, it is possible to derive
the characteristic equation in an explicit form:

���N + ���	1 − 1��N−1 + ��	2�N−1 + ¯ + ��	N� = 0.

�29�

Its eigenvalues can be easily found by numerical computa-
tion. However, an explicit expression of eigenvalues is not
available. A computational example is shown later in this
section.

Controller IV �averaged EWMA� developed in this pa-
per is a high-dimensional dynamics. The characteristic
equation of Eq. �24� under Controller IV �averaged
EWMA� consists of a higher-degree polynomial. Taking

advantage of the triangular structure of the matrix in Eq.
�24�, we can derive the following characteristic equation:

�N��N + ��� − 1�	1�N−1 + ��� − 1�	2�N−2 + ¯ + ���

− 1�	N� = 0. �30�

For the purpose of the stability study, we use data from
a manufacturing process to model the coefficients in Eq.
�1�. In the controllers, we assume inaccurate values of the
coefficients to test the stability with model mismatch. In
this case, ��1. In Controllers I–IV, they all have a com-
mon term, ��, the feedback gain ratio. In the following, the
eigenvalues of the controlled process are computed for the
feedback gain ratio in the range of �0,3�. It is known that a
linear system is asymptotically stable if and only if all ei-
genvalues lie in the unit disk of the complex plane, i.e.,
�� � �1 for all eigenvalues �. The value of max�A � �−1 for
each controller is plotted in Fig. 1. If the value is less than
zero, the controlled process under the feedback controller is
asymptotically stable.

In this figure, the horizontal axis represents the value of
the feedback gain ratio, ��, which is proportional to the
model mismatch. The vertical axis represents the value of
�� �−1, where only the eigenvalue with the largest absolute
value is used. In the figure, the dotted curve is from the
process under Controller I �EWMA�. The curve is below
zero when �� is within the interval �0,2�. It implies that the
controlled process under Controller I �EWMA� is stable for
the value of �� in this interval. It is a known result in the
literature.16 The star curve represents Controller IV �aver-
aged EWMA�. The dashed curve is Controller II �extended
EWMA�. Both have the largest interval of model mismatch
in which the system is maintained stable. Actually, the con-
trolled process under Controller IV �averaged EWMA� or II
�extended EWMA� is stable for the feedback gain ratio to
be as large as 12. The least robust controller is Controller
III based on d-EWMA, which is represented by circles in
the figure. The process becomes unstable when the feed-
back gain ratio is larger than 1.3. From Fig. 1, Controller
IV �averaged EWMA� and controller II �extended EWMA�

Fig. 1 Stability of controlled process.
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have the best stability robustness; Controller I �EWMA�
has good stability robustness relative to Controller III �d-
EWMA�. The stability robustness is summarized in Table 1.

To directly compare the analysis in this section to the
real data, a simulation is carried out. In the simulation, the
model mismatch varies from 1 to as large as six times the
value obtained from the real data. The root mean-square
CD error of the controlled process is plotted together with
the root mean-square CD error from the real data �see Fig.
2�. The results show that Controller IV �averaged EWMA�
has the best performance, which has a smaller error than
the real data for a very large model mismatch. Controller II
�extended EWMA� has bounded error. But the error is in-
creased significantly when the model mismatch is larger
than two times. Controller I �EWMA� becomes unstable for
a large model mismatch. Controller III �d-EWMA� is un-
stable even for a small model mismatch. This result of the
simulation is highly consistent with the analysis summa-
rized in Table 1.

5 Robustness Analysis Sensitivity to Unknown
Disturbances

We noted in the last section that the robustness study con-
ducted in this paper consists of stability and sensitivity to
unknown disturbances. The stability issue is addressed in
the last section. Now, we focus our attention on the sensi-
tivity issue. The analysis is conducted based on the H�

control theory. In semiconductor manufacturing, a large
number of unknown disturbances and random noise with
little or no a priori information make it extremely challeng-
ing to control a product output around its target value.
Given two different controllers, and supposing both are
stable, it is a known fact that the variation of the output
measure of the process under one controller could be bigger
or smaller than that under the other controller. The reason is
that different controllers have different sensitivity to the
disturbances in a process. Thus, stability is an important
issue but not enough to fully characterize the performance
of a controller. A goal of this section is to develop a method
that quantitatively measures the sensitivity of feedback
controllers. The method of analysis helps process engineers
to select a better controller that is relatively less sensitive to
unknown disturbances in a process so that the output of the
product has smaller variation around its target value.

In this study, we treat the disturbance as an input for
which we have no information about its probability distri-
bution and covariance matrix. Thus, the analysis is espe-
cially useful when noise does not necessarily follow a sta-
tistical model, such as integrated moving average or white

noise. The performance of a controller is measured by the
error yt−yT. The sensitivity of unknown disturbance to the
output error is measured by an H� gain. In general, con-
sider a linear dynamical system

xt = Axt−1 + Bwt,

zt = Cxt, �31�

where zt is the output of the system, xt is the state variable,
and wt is the unknown disturbance. In the case of a stable
system and zero disturbance, wt=0, the output of the sys-
tem asymptotically approaches an equilibrium value. How-
ever, when wt�0, the value of zt varies around the equilib-
rium point. For systems less sensitive to wt, the variation is
smaller. To measure the sensitivity of z to the disturbance
w, we define its H� gain. The H� gain is less than or equal
to a number � if and only if

�
t=1

n

�zt�2  �2�
t=1

n

�wt�2

for an arbitrary input sequence wt� and an arbitrary integer
n�1.9 The lower bound of the gain can be defined using
the transfer function in the following way:

� = max
�

�̄�GT�j��G�j���� , �32�

where G�·� represents the transfer function of Eq. �31�, �̄ is
the largest eigenvalue, and j=�−1.

For the process control of Eq. �1� under Controller I, II,
III, or IV, the state-space equations of the controlled system
are defined by Eqs. �18�, �20�, �22�, and �24�, respectively.
From the state-space representation, the transfer functions
can be calculated; then the H� gain is computed. To reflect
the sensitivity of the controlled process in the presence of
model mismatch ���1�, we compute the H� gain for the
gain ratio �� within the range of �0,2�, in which all con-

Table 1 Stability robustness of controlled process.

Controller Range of �� for stability

Controller IV 0����12

Controller II 0����12

Controller I 0����2

Controller III 0����1.3

Fig. 2 Root mean-square CD error in controlled processes.
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trollers are stable except for Controller III �d-EWMA�,
which is stable in the interval �0,1.3�. The model used for
computation is constructed based on data from a manufac-
turing process. The H� gain of the controlled process under
the four feedback controllers is shown in Fig. 3.

The horizontal axis in Fig. 3 represents the feedback
gain ratio, ��, which is proportional to model mismatch.
The vertical axis represents the H� gain. In the figure, the
dotted curve is the H�, gain under Controller I �EWMA�.
We use 2 as a reference level of the H� gain. The curve of
Controller I �EWMA� is below the level of 2 for the gain
ratio in the interval of �0,1.2�. As the gain ratio exceeds 1.2,
the H� gain increases rapidly, which implies that a small
disturbance results in a relatively big output variation. The
most sensitive feedback controller is Controller II �ex-
tended EWMA�, represented by the dashed curve. In this
simulation, we chose N=10. The H� gain of the controlled
process under Controller II �extended EWMA� is around 2
for a small gain ratio and becomes much bigger when the
gain ratio increases. Controller III �d-EWMA� has a reason-
able H� gain for �� in the range of �0,0.8�, which is about
2/3 of the interval of Controller I �EWMA�. The controller
with the smallest sensitivity is Controller IV �averaged
EWMA�, represented by the star curve. It is below 2 for the
entire interval of w�� �0,2�. Actually the H� gain under
Controller IV �averaged EWMA� is under 2 for �t
� �2,2.4�, which is three times the size of the interval of
Controller III �d-EWMA� and twice that of Controller I
�EWMA�. The sensitivities of the controlled process under
the four feedback controllers are summarized in Table 2.

From Table 2, it is interesting to observe that Controller
II �extended EWMA� is the worst among the four control-
lers as far as the sensitivity to disturbances is concerned.
However, it is one of the most stable controllers, as shown
in the last section. It is a perfect example showing, that a
performance analysis of a feedback controller should in-
volve both stability and sensitivity to provide a comprehen-
sive evaluation of the controlled process.

6 Simulations of Closed-Loop Systems
To further compare the performance of the controllers, we
use a model based on the data from a manufacturing pro-
cess. The data include multiple preventive maintenance
�PM� events, rework lots, drift periods, irregular lot order,
and metrology delay. In the simulation implementation, the
metrology time and process time are synchronized to deter-
mine the lot order. In addition, deadband is used to keep the
dose and focus constant when CD output is in a tight range
of the CD target. Erroneous metrology readings are
screened out. The calibration is also applied to data after
each PM. For a direct comparison, we plot the simulation
results together with the CD output of the real data. Simu-
lations are carried out under Controllers I, II, III, IV, and
the one based on a Kalman filter. The goal of the simula-
tions is to evaluate the performance of the controllers in an
environment with model mismatch, system drifts, and un-
known noise. At first, the data from the manufacturing pro-
cess are used to establish a linear model of the process.
Then, we assume a model mismatch ��1. In addition, we
assume the model mismatch is not a constant. It changes at
a rate called the drifting factor. To simulate the real envi-
ronment, random noise is also added into the model. The
root mean square of the random noise is determined from
the real data. In Fig. 4, the rescaled root mean square of the
CD error is shown. The simulations clearly show that the

Fig. 3 H� gain of controlled process.

Table 2 H� gain of controlled process.

Controller H� gain Range of ��

Controller IV �2 �0.2.4�

Controller I �2 �0.1.2�

Controller III ��2 �0.0.8�

Controller II ��2 �0.0.2�

Fig. 4 Root mean square of CD error.
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controller based on the Controller IV �averaged EWMA�
has the smallest average error, which is consistently smaller
than the averaged error computed from the real data. Under
this controller, the root mean square of the error remains at
almost a constant level while the rate of drift changes in a
relatively large range. Relative to others, this controller is
less sensitive to the model mismatch, drifts, and unknown
noise. The controller based on the Kalman filter has the
second-best performance. The performance of EWMA is
similar to the Kalman filter-based controller. They both
work well when the model mismatch is relatively small;
and the error can be significantly enlarged in the case of a
large model mismatch and fast drifting. The extended
EWMA controller performs less satisfactorily relative to
EWMA. It is interesting to note that the extended EWMA
has a much larger stability region of model mismatch than
that of EWMA. However, the extended EWMA controller
is more sensitive to unknown noise. As a result, the ex-
tended EWMA performs less satisfactorily than EWMA.
The d-EWMA controller is most sensitive to both the
model mismatch and the random noise, although it has its
advantage for systems with a linear drift assuming an ac-
curate model.

7 Conclusion
The region of model mismatch and the H� gain provide
convenient tools for robustness study of feedback control-
lers. For the example analyzed, we found the averaged
EWMA controller �Controller IV� has the best overall per-
formance in terms of both robust stability and small sensi-
tivity to unknown noise. The EWMA feedback controller
�Controller I� is also reliable. The d-EWMA feedback con-
troller �Controller III� is relatively less satisfactory. The ex-
tended EWMA controller �Controller II� is one of the most
stable feedback controllers. However, it is relatively sensi-
tive to unknown noise. In a simulation of closed-loop con-
trol, the Kalman filter-based controller performs similarly
to the EWMA feedback controller. We would like to point
out that the analysis method using model mismatch and H�

gain is not limited to the example in this paper. It is a
general method of robustness analysis. The same idea is
applicable to a large variety of process controllers of indus-
trial manufacturing.
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