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A challenge systems engineers and designers face when applying system failure risk
assessment methods such as probabilistic risk assessment (PRA) during conceptual
design is their reliance on historical data and behavioral models. This paper presents a
framework for exploring a space of functional models using graph rewriting rules and a
qualitative failure simulation framework that presents information in an intuitive manner
for human-in-the-loop decision-making and human-guided design. An example is pre-
sented wherein a functional model of an electrical power system testbed is iteratively per-
turbed to generate alternatives. The alternative functional models suggest different
approaches to mitigating an emergent system failure vulnerability in the electrical power
system’s heat extraction capability. A preferred functional model configuration that has a
desirable failure flow distribution can then be identified. The method presented here helps
systems designers to better understand where failures propagate through systems and
guides modification of systems functional models to adjust the way in which systems fail
to have more desirable characteristics. [DOI: 10.1115/1.4042913]

Introduction

The design, manufacture, and deployment of complex systems
require extensive investment of personnel, resources, time, and
money to produce systems that meet requirements [1,2]. Schedule
and cost overruns are common on large systems such as aircraft,
spacecraft, power plants, ships, and other systems [3]. A signifi-
cant percentage of schedule and cost overruns, and reduced sys-
tems capabilities as compared to original requirement documents
can be traced back to architectural decisions made during the con-
ceptual phase of system design [4]. Architectural decisions that
are made with incorrect or missing information, or that are made
with high degrees of uncertainty in the data can lead to incorrect
decisions being made that then leads to cost increases and sched-
ule slips [5]. As a result, it is important that architectural decisions
are made with good, complete information to increase the likeli-
hood of systems being delivered on time, on budget, and meeting
requirements.

Of particular interest to this research is how potential system
failures are assessed and acted upon during the conceptual phase
of system design. Common techniques of identifying failure risks
and then mitigating them such as failure mode and effects analysis
[6] and probabilistic risk assessment (PRA) [7,8] can miss emer-
gent system behaviors and, while some information is provided to
designers to aid in decision-making, little guidance is given on

specific flow impacts due to failure events. Extensive work has
been done to understand failure paths from a component and/or
functional basis [9–16] but comparatively little effort has been
expended in looking at flows of material, energy, and data through
systems, and how their disruption or failure can impact overall
system failure.

Specific Contributions. This paper contributes a method to
identify functional models that have a desirable distribution of
flow failure events across a large space of failure scenarios. The
method identifies flows that are most often associated with fail-
ure events and automatically explores a variety of potential alter-
native functional models to identify models that have lower flow
failure concentrations. Visualizations of these alternatives are
presented to the user, allowing quick iteration of functional
architectures in the context of limited embodiment information.
This contribution arises from the combination of a generative
approach for building functional models and an evaluation
approach that qualitatively simulates the failure performance of
each functional model.

Related Work

This work contributes a concept exploration method grounded
in the historical behaviors and failures of similar systems. This
section describes relevant past work upon which this method is
built, in areas including conceptual design, risk and reliability
analysis, and computational support for these activities.

Conceptual Design. Within the conceptual phase of design,
there are several distinct steps including (1) ideation, (2) early sys-
tem architecture studies, (3) and system modeling and trade stud-
ies [17]. During the last step of conceptual design, high-level and
black box models produced in the previous step are refined into
subsystem, functional, and component models [18]. A variety of
modeling techniques and methods are commonly used to help
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make informed decisions based on trade studies such as functional
models; risk, reliability, failure, availability, and robustness mod-
els; and other related modeling and assessment methods
[6,19–25]. These design decisions directly impact later subsystem
and component design, and if made incorrectly due to a lack of
information or a misunderstanding of the fundamental nature of
the system’s design, significant rework and redesign costs can be
incurred [26,27]. Timely information on which to base design
decisions is critical for the delivery of an on-time and on-budget
system that performs as intended [20,25].

Functional and Flow Modeling. A number of modeling para-
digms exist to model systems during conceptual design [28,29].
Of particular interest to this research, functional and flow methods
of modeling systems during the conceptual phase of design can be
used to help free engineers from component considerations and
allows more creativity with finding new system design solutions
[18]. While there are many different functional and flow taxono-
mies and grammars [30–60], this research uses the functional
basis for engineering design taxonomy [18] (herein referred to as
FB) to represent functions and flows within systems. The FB tax-
onomy abstracts functions and flows from the physical compo-
nents and transported material, energy, or data that they represent.
Of particular value is the potential for simulating abstract models
constructed using FB, which is possible so long as that model has
(1) topological consistency and (2) conservation of material and
energy [61].

The functional basis has several attributes that make it attrac-
tive in this context. First, its abstract mixture of human-
interpretable and physics-based language makes it suitable for
both simulation and feedback. Second, FB has large and growing
popularity in the design methodology community, as evidenced
by over 1200 citations on the FB original article [18]. This is
important because (1) there is an existing body of work upon
which to build and (2) a critical mass of adoption is useful to
when model libraries are involved. However, many other func-
tional and flow taxonomies and grammars may also be used.
Engineers and designers working on different projects and differ-
ent systems within different organizations may find benefits and
drawbacks to specific functional and flow taxonomies and gram-
mars. Reviewing potential benefits and drawbacks of functional
and flow taxonomies and grammars is beyond the scope of this
article.

Conceptual to Component Design. Grammar rules have been
developed to aid designers and automated design tools in identify-
ing conceptual design configurations that are likely to be realiz-
able in physical component design [62–64]. Helms and Shea [65]
prescribe a general approach for synthesis of product architectures
using the function behavior structure framework [66]. This model
supports synthesis of component architectures from a functional
model, and makes explicit the need for simulation and evaluation
to close the synthesis loop. Similarly, Kurtoglu and Campbell
developed grammar rules to convert functional models into
component-level configuration flow graphs [62]. More specific to
the domain of functional architectures, Sridharan and Campbell
[63] generated 69 grammar rules from 30 products located in the
design repository [67] to create a framework for generating func-
tional models.

It should be noted that there is significant heterogeneity of mod-
eling languages in which grammars are implemented. For this
research, the selection of the FB modeling taxonomy was inten-
tional. Not only is FB a functional description with high general-
ity, but there exist several computational tools for evaluating FB
models which is required to close the computational design syn-
thesis loop. The recent development of several simulation
approaches to evaluate failures in functional models [10,11,68]
enables a new generative design loop for examining reliability of
functional architectures.

Decision Support Tools. Evaluation methods and decision
support tools have been developed to aid systems designers to
make conceptual architectural decisions. These methods and
tools can be broadly categorized as: simulation-function,
simulation-component, expert knowledge and experience, and
historical function/component. A high-level review of tools
useful for failure analysis and related analysis techniques that
fall within the four categories listed previously is provided
below.

Simulation-Function. Within the simulation-function cate-
gory, the function failure identification and propagation (FFIP)
method and related flow state logic method identify potential
failure flow pathways through a functional model [9,10]. In the
context of this work, failure flow is defined as a flow that either
is unexpectedly present or a flow that is unexpectedly absent.
The inherent behavioral in functional models (IBFM) framework
extends FFIP to include the ability to generate multiple func-
tional models to drive toward a solution that can balance the cost
and risk of a system, and a pseudo time-step [16,68,69]. A num-
ber of other risk and failure analysis tools have been developed
from FFIP including the uncoupled failure flow state reasoner
[11,70], a method of building prognostic systems in response to
failure modeling [12], and other related methods and tools
[13,14,71–73]. Several tools for ontology-driven metamodeling
and early conceptual design down-selection were produced as
part of the Defense Advanced Research Program Agency
(DARPA) adaptive vehicle make project [74–76]. While these
methods are useful for identifying and understanding failure
sources within a system, they generally lack the ability to iden-
tify specific flow paths that are more often implicated in potential
system failure events.

Simulation-Component. Several simulation-component meth-
ods exist including the reliability block diagram method [77]
widely used in industry and a method developed by O’Halloran
et al. that simulates component performance at varying levels of
fidelity based on model fidelity [78]. While these types of
methods are useful for understanding reliability of a system and
O’Halloran’s method is useful for simulating expected system
performance, both rely upon historical data. This limits the ability
of this class of method to identify emergent system behaviors.
Further, little guidance is provided by the results of these methods
to identify specific flows within the system that are at higher risk
of failure.

Expert Knowledge. Expert knowledge and experience play a
large role in several methods that are important to industry. Fail-
ure mode and effects analysis [6] and the related failure modes,
effects, and criticality analysis [79] use expert knowledge and sys-
tem experience to identify and understand potential failure scenar-
ios within a proposed system. Expert elicitation is often used in
producing fever charts and other graphical representations of risk
within a system [80]. Expert knowledge and experience methods
in general do not adequately capture potential emergent system
behaviors—especially complex failure events.

Historical Function/Component. Several methods have
examined the link between historical performance of functions
and components, and their expected behavior in new systems. The
function failure design method [81] provides a matrix-based
approach to linking a function to potential component solution
failure modes. The risk in early design method [82] connects his-
torical risk information to ongoing design efforts and provides a
fever chart view for ease of understanding by novice risk analysts.
While these methods do well at identifying historical failure infor-
mation on a functional level, they do not adequately uncover
emergent system behaviors.
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Risk and Failure Analysis. Many other methods of failure and
risk analysis exist that can help system designers to make risk and
failure-informed architectural decisions during conceptual design.
PRA combines fault tree analysis and event tree analysis [7,8]
with an analysis of potential initiating events that can lead to
failure [83]. The nuclear industry heavily uses PRA to identify
potential emergent system behaviors and ensure safety of nuclear
power plants [84]. A popular method of identifying potential fail-
ures uses Markov chains that are built to model state transitions in
a system where probabilities of state transitions are known or can
be assumed. The Markov chains are then randomly walked using
Monte Carlo sampling to determine the probability of being in
each state [85–88]. The Markov chain Monte Carlo sampling
approach is especially applicable in the PRA context (e.g.,
Ref. [89]) because of its relative efficiency of approximating
Bayesian posteriors. The method presented in this paper differs in
that the failure simulation is deterministic for a large set of differ-
ent state spaces. Repetition of this simulation on single functional
model occurs only by sampling from different combinations of
initiating failure events.

Relevant Simulation Details. Given that the method presented
in this paper is intended to facilitate exploration over a population
of graphs, some heuristics are necessary to combat combinatorial
explosion. Subsampling a representative space achieves this goal,
but requires a method to calculate graph similarity prior to evalua-
tion. Graph similarity algorithms can be classified as edit distance,
feature extraction, and iterative [90]. Feature extraction is selected
here due to simplicity of implementation, speed of evaluation, and
existing evidence for a correlation between graph-level features
(e.g., diameter and node degree) and system-level reliability (e.g.,
Refs. [91] and [92]). Additionally, the bag-of-functions feature
approach has been successfully used to measure similarity
between functional models [93,94].

In the area of software debugging with model checking, one
common strategy is to validate an abstraction of values, states,
and transitions [95]. This type of model checking is in many ways
analogous to the approach presented in this paper. While both exe-
cute abstractions of the system to search for issues, the method
presented in this paper combines a formalism for abstracting and
simulating complex systems with a means to search the design
space.

In summary, the conceptual phase of the systems engineering
design process provides systems designers with an opportunity to
make significant architectural decisions that can drastically impact
the outcome of the design process and the performance of the sys-
tem. A variety of tools and methods are available to help support
engineers in making informed decisions during the conceptual
phase. Many such tools and methods rely on functional modeling
techniques and a number of methods exist to analyze failure
within this context. However, none of the existing methods sur-
veyed is able to directly assess failures from a flow perspective
over a space of related functional models and use that information
to help make architectural decisions.

Methodology

The method presented below is specifically intended for use
during the conceptual phase of design when architectural deci-
sions are being made and the design has not been finalized. The
method’s inputs include a single functional model from the user, a
library of IBFM [15,68,69] simulation components, and (option-
ally) a specification of each IBFM state’s probability to serve as
an initiating failure event. The method’s output is a visualization
of several alternative functional models and the vulnerability of
each flow therein to failures. Figure 1 graphically depicts the
method. The first three steps are preparatory steps to develop a
functional model of the system, develop the IBFM simulation,
and specify probabilities of failures. The next five steps are the
core of the methodology where new functional models are

automatically generated, validated, simulated, evaluated, and then
the process is iterated to create additional new child populations
of functional models. The final step in the methodology is used to
select the most desirable functional model to proceed forward
with in the design process.

Develop Functional Model. The first step is for the designer to
create a functional model for the system of interest. This model
takes the form of a directed graph where nodes are typed accord-
ing to the functions they represent and edges are typed according
to flows the flows they represent. This model will be used as a
seed to begin the process of analyzing failure flows.

Develop Inherent Behavioral in Functional Models Simula-
tion. Given a seed model, an IBFM simulation is prepared [15].
This simulation must capture the designer’s abstract knowledge
about the system. This includes the following:

(1) Functions, including the operational modes and mode tran-
sition conditions applicable to each.

(2) Flows.
(3) Modes and the associated flow behaviors associated with

each.

Fig. 1 The method presented here includes nine distinct
steps, as shown in this graphic
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(4) Conditions and the flow state behavior associated with trig-
gering them.

Given these elements, IBFM enables qualitative simulation of
the functional model. More details about IBFM can be found in
Ref. [15].

Specify Probabilities. The method presented in this paper can
be performed with either internal initiating events caused by failed
modes of functions within the system or by external events that
occur outside of the system boundary and propagate into the sys-
tem as failure flows. The case study below uses internal initiating
events as a demonstration.

For internal initiating events, each failed mode of each function
is treated as equally likely to occur as the default approach.
However, if a probability of occurrence is known for an internal
initiating event, then that probability is used instead. With exter-
nal initiating events, the authors recommend only using probabil-
ities that are grounded in reality and are realistic. When not using
probabilities specific to a function’s failed state, the frequency of
occurrence of failure flows associated with each flow can be ascer-
tained on a normalized basis. With specific probabilities available,
these frequencies can be weighted according to their expected
likelihood.

Automatically Generate Similar Functional Models. Using
the designer’s functional model as a seed automatically generates
locally similar functional models according to a limited set of
graph grammar rules (e.g., Table 1). These grammars perturb the
model by removing functions and by re-inserting functions that
are already present—new functionality is not added. The result is
a means to generate different functional architectures while pre-
serving the gist of the design intent. These grammars must be
capable of both adding and removing elements, and must conform
to topological consistency and conservation rules for FB.

Validate Automatically Generated Functional Models. For a
functional model to be simulatable, two main requirements must
be met: (1) conservation of mass and energy, and (2) each func-
tion’s inputs and outputs must be consistent with established
semantics [61]. This can be done at generation time through care-
ful construction of grammars, or naively by iteratively discarding
noncompliant models and then generating replacements. Active
model checking requires software that captures the two
requirements—like that developed in Ref. [61].

Run Simulation on Each Functional Model. Next, each
model in the population is simulated using IBFM. By default, an
IBFM experiment runs simulations using every possible failure
state as an initiating event. Scenarios are then run for all paired
combinations of simultaneous initiating events, and the number of
simultaneous events increases until a prescribed cutoff. The

failure rate of each flow in the model is captured as described in
Algorithm 1.

Depending on the available computing power, this simulation
can be repeated with valid combinations of multiple initiating
events. While here it is recommended to characterize each model
according to its most vulnerable edge max(F), other performance
measures can be used (e.g., the mean and variance of the edge
failure frequency distribution).

Iterate Best Performing Models. Iteration consists of two
steps: (1) selecting a parent population and (2) generating a child
population.

A diverse parent population of models is sampled from this local
space using roulette wheel selection (with replacement) and a per-
formance measure that linearly combines resiliency R (defined as
the ability of the system to continue to function in spite of failure
events occurring) and uniqueness U (as proposed in Eq. (1)). A
model’s resiliency R is normalized to the maximum resiliency in
the population Rpopulation_max. A model’s uniqueness U can be quan-
tified by applying a clustering algorithm such as density-based spa-
tial clustering of applications with noise [96] and then taking the
inverse of the number of total models in that model’s cluster. A full
pairwise distance matrix between models is needed to support this
clustering and can be generated from the graph feature representa-
tion using cosine distance. A weighting factor k between 0 and 1
captures preference for resiliency versus uniqueness

pselection ¼ k
R

Rpopulation max
þ 1# kð ÞU (1)

Next, a child population is generated by applying one randomly
selected grammar rule to each parent in a randomly selected loca-
tion. If a branching factor greater than 1 is applied, the process
closely resembles breadth first tree search. If so, pruning the child

Table 1 Naive generative grammar language

Rule Recognize Apply

Add parallel path Any two edges on the graph with a valid connecting path Add a parallel copy of the shortest path between those
edges.

Add parallel subgraph Any two edges on the graph with a valid connecting path Perform “Add Parallel Path” for all paths in between those
edges. Propagate copy forward and backward to satisfy
conservation of mass and energy.

Add series Any function Insert a copy of function in series connected by function’s
own flow type.

Remove node Any function Remove that function and connected flows. Repeat on
nodes that fail a validation check until model is valid or
empty.

Algorithm 1 Functional model population simulation process

1: for each model M in the population do
2: Initialize a zero vector of failure counts F to capture the failure fre-

quencies of all flow edges in the model
3: Generate a list of scenarios S containing initiating events and their

corresponding nodes
4: for each specified scenario S do
5: Simulate M under conditions of S until the model reaches steady-

state
6: for each failed edge in the resulting M do
7: Increment its total failure count in F, normalized by the proba-

bility of the initiating event
8: end for
9: end for
10: Take max(F) to describe this model’s resiliency
11: end for
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population back to the initial population size after simulation miti-
gates combinatorial explosion of IBFM simulations. This process
is visualized in Fig. 2.

Stop Iteration After Performance Metrics Have Been Met.
The steps of generating models, simulating their performance, and
iterating are repeated until stopping criteria are met.

Two parameters capture the stopping criteria: The first dictates
an acceptable level of uniqueness U specified by the user. The
second dictates a performance threshold (in this case model resil-
iency R is quantified by the model’s most vulnerable edge). When
there exists a set of N models (where N is user-specified) in the
most recent generation where all N models exceed the perform-
ance threshold and the uniqueness threshold, the process stops.
Given that the population size is held constant, it is feasible to
quantify the uniqueness of each model via clustering on the full
pairwise comparison matrix using vector space similarity meas-
ures (e.g., cosine similarity) and the child’s lineage. An alternative
approach for large populations of constant size halts the search
when the explained variance ratio of the principal component
analysis of the data set’s feature representation dips below a given
threshold.

Assess Final Population of Functional Models. After the
stopping criteria are met, a subset of models is selected from the
full history of generated models. These models are selected to
possess (1) high or low resiliency as desired and (2) high unique-
ness with respect to each other. Because the relationship between
a functional model and its performance in simulation is ambigu-
ous, it is valuable to allow the user to decide between a variety of
local optima. The purpose of using uniqueness to draw a final pop-
ulation of models is to provide samples from different localities in
the final results, as these are more likely to solve the problem in
meaningfully different ways. This enables a user to choose the
best architecture strategy to fit the design context.

When visualizing the resulting models, the rates at which flows
failed are indicated by both thickness and color of the edges. The
functionality to show both good and bad examples is motivated by
conceptual design exploration tools like morphological evaluation

machine and interaction conceptualizer [97], which provides crea-
tive stimulus by showing both highly common and highly uncom-
mon component configurations to match a given functional
model. Given this stimulus, the designer can assess which topol-
ogy to pursue and iterate upon, or draw inspiration to make tweaks
to the functional model.

Any number of methods can be used for determining unique-
ness U, though all but the most naive will rely on some means of
clustering the final population. This may include straightforward
clustering (e.g., k-means), projection of the bag-of-features repre-
sentation into lower dimensions (e.g., principle component analy-
sis), or sampling from far-apart sections of the search tree
according to each model’s lineage.

Case Study

This section contains an illustrative case study based on a real-
world system to demonstrate the workings of the method pre-
sented previously. It should be noted that the example, while
based on a real, physically embodied system that has significant
heritage and pedigree as a research platform and is relevant to real
hardware flown on the space shuttle and future American crewed
spacecraft, has been intentionally fictionalized. In specific, the
functional model has been simplified and the failure results, while
representative, are not exhaustive. No claim to accuracy is made.
The results of the case study are illustrative of the method’s
capabilities but cannot be taken as evidence of how to design the
specific system presented below without further expansion, refine-
ment, and verification of the analysis. The authors explicitly state
that no real-world design decisions should be made using the
information presented here without doing an appropriate, com-
plete, and sufficiently detailed analysis. The case study presented
here is for demonstration purposes only.

The following case study demonstrates the mechanism of the
method on a simplified functional model of the advanced diagnos-
tics and prognostics testbed electrical power system testbed [98]
which was designed to be analogous to power systems found on
the space shuttle and future crewed American spacecraft. Various
model descriptions of this system have been used in prior work to
demonstrate failure simulation in conceptual design for FFIP [9]
and IBFM [15]. In general, the model consists of a battery, an
inverter, and three loads—a fan, a pump, and an indicator light.
The model also contains a switch and several breakers. The func-
tionality of this system—which is used as a seed model—is cap-
tured in Fig. 3. The remainder of this section will address the
question, “in what ways might we redesign the functional archi-
tecture of this system to improve system reliability?”

For this example, the IBFM simulation is specified as in
Ref. [15], and failure mode probabilities are assumed to be
equal—analogous to a noninformative prior.

After specifying the seed model to define the local search space,
alternatives are iteratively generated. To facilitate this example, a
simple set of grammar rules is shown in Table 1. A much more
comprehensive and data-driven graph rewriting language for func-
tional models of electromechanical products was presented in
Ref. [63]. Figure 3 shows an application of the rule “add parallel
subgraph” between two randomly selected edges, indicated by the
dashed lines. The backbone of the inserted subgraph is shown via
the same dashed lines. Additional nodes and edges are added to
this new subgraph until the resulting model adheres to conserva-
tion of mass and energy. These additional components are indi-
cated with long dashed lines.

This process is repeated to generate a population of randomly
perturbed models in the local design space. Next, each model in
the population is simulated using IBFM, and a score is calculated
for the performance of each model. Snippets of two failure heat
maps for two generated concepts are shown in Figs. 4 and 5.
These snippets capture the flows with the highest failure rate in
each model. While the model in Fig. 4 would be characterized by
its highest flow failure rate of 50, the model in Fig. 5 would be

Fig. 2 Visualization of roulette wheel sampling with branching
factor of 1. Generated models expand outward into the search
space toward local regions that are potentially interesting (as
opposed to optimal). Higher fitness is represented as light, and
lower fitness as dark. When the search concludes, results are
selected for presentation to the user with respect to perform-
ance and global uniqueness.

Journal of Computing and Information Science in Engineering SEPTEMBER 2019, Vol. 19 / 031001-5



quantified according to its (comparatively better) worst-case flow
failure rate of 35. It should be noted that while this case study
uses low failure rate, medium failure rate, and high failure rate as
generic terms, a real-world analysis performed using the method
would set these terms to numeric values that are appropriate to the
specific system being analyzed and the customer.

Next, candidates from the current population are selected for iter-
ation according to performance and uniqueness, as illustrated in
Fig. 2. While Fig. 4 has poor performance, it may still have a high
probability of selection if it is extremely different from the rest of
the current population. After selection, the next generation is itera-
tively resampled and created until the stopping criteria are met.

Ultimately, a series of varied heat maps as shown in Figs. 4
and 5 are presented to the user. Based on the model in Fig. 4, a
user may realize that they need to pursue alternative functions for
cooling the inverter function, while the model in Fig. 5 may per-
suade the user to investigate adding parallel cooling functionality.

Discussion

The method presented in this paper contains several benefits for
practitioners as well as a few open questions on the philosophy of
failure events. This section discusses the benefits and open ques-
tions of the method.

A significant benefit of the method is the ability for systems
engineers to identify functional models that conform to desired
flow failure concentration levels. The systems engineer can drive
model iteration toward either a highly concentrated flow failure
paradigm or a distributed flow failure paradigm. While the case
study mentioned previously demonstrates evolving a model
toward a solution that distributes failure flow concentrations
across the model by adding in redundancy, specific system design
considerations may warrant concentrating failed flows into a few
specific flows. Concentrating failure flow into a few flows may be

beneficial, for instance, if systems engineers are including sacrifi-
cial subsystems [72]. In other situations, it may be beneficial to
spread out failure flows across several redundant subsystems [99].

No other method that the authors are aware of provides practi-
tioners with the ability to easily understand what flow paths fail-
ures preferentially follow as the model changes. As compared to
standard IBFM, this generative method provides insights into how
the distribution of emergent failures changes with subtle shifts in
functional architecture. Additionally, most other function-and-
flow-based methods of failure and risk analysis used during the
conceptual phase of system design are focused on failure of func-
tions. Examining the flows rather than the functions can provide
new insights into which flows are the most likely to be implicated
in failure events. This in turn can lead to systematic design efforts
to mitigate those specific failure flows.

A benefit of the heat mapping of failure flow concentrations is
that emergent failure flow behaviors that otherwise would be
missed can be examined by systems engineers. This may provide
new insights into emergent system behavior that otherwise would
not be available. Emergent system behavior is a significant con-
cern in complex systems and has been implicated in several past
noteworthy failures [100–102].

It should be noted that this is a stochastic design space search
method with a loose definition of optimality. Because the goal of
this method is to facilitate human-in-the-loop exploration of sys-
tem concepts, Pareto optimality (as a function of performance and
uniqueness) is useful only as an approximation. Uniqueness in
particular depends on contextual factors including the designer’s
preferences and the other models in the population. Further,
designers should be aware of the limitations of arrow’s theorem
with respect to multivariable optimization, especially with
human-guided preferences [103].

Changing the underlying probabilities of the functions failing
results in changed failure flow path likelihoods. This is in line

Fig. 3 Functional model of electrical power system
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with how “cut set” probabilities in PRA change when the basic
event failure probabilities are modified. It may be useful for prac-
titioners to perform sensitivity studies by varying probabilities in
the models to determine if specific failure flow paths have consis-
tently high failure rates. In such a scenario, the failure flow paths
with consistently high failure rates likely should be mitigated to
reduce the failure rate to a more acceptable level.

Predictive methods based on behavior models are sensitive to
modeling assumptions, while methods based on historical data are
sensitive to the particular characteristics and operating conditions
in which historical data is collected. While many components,
subsystems, and systems are similar to those previously con-
structed with respect to idealized behaviors and failure probabil-
ity, true novelty may cause such assumptions to be invalid.
However, PRA and other risk and failure methods are largely
underpinned on the concept that historical failure information is a
valid data source [104]. Another potential issue is that historical

data will only include information on what has happened. This
may cause specific failures that have not been observed but that
could occur to be missed in the analysis [105]. The authors advise
practitioners to carefully examine if a truly novel system, subsys-
tem, or component is being included in the models and if so, addi-
tional work to determine realistic behavior modes and failure
probabilities is warranted. Further, if sufficient historical data are
not available to assuage the practitioner that all likely failures
have been observed, additional work in identifying potential fail-
ures may be necessary.

While this article defines failure flow as a flow that either is
unexpectedly present or a flow that is unexpectedly absent [10],
there are a variety of other related definitions of failure flow and
the concept of a failure moving along flow paths through the func-
tional model of a system. For instance, failure flow can be defined
in the context of a failure moving between components or func-
tions [106]. Failure flow can also be defined as there being too

Fig. 4 A snippet heat map of a model with poor performance. The fan module fails in
many scenarios, indicated as a high failure rate in the flows related to cooling the
inverter. In some cases, the failure propagates to the flows related to the inverter,
which increases the failure rate of those flows.
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high or too low of a flow [12], as a transient non-nominal condi-
tion in a flow that causes a steady-state failure in a function
[14,16], as the reversal of a flow [107], or as a failure that jumps
between functions without following a nominal flow path [11]. A
more expansive definition of failure flow may be useful in expand-
ing the capabilities of the method presented in this article. How-
ever, including more types of failure flows may significantly
increase the complexity of the simulations and preparatory work
which may lessen the usefulness of the method as an ideation tool
during conceptual system design. Identifying how to strike a mid-
dle ground between a restrictive definition and an expansive defi-
nition of failure flow may be a fruitful area of future research.

Validating the results of the method presented in this article is
an important step that must be performed by a human. The
method has been designed with the expectation that a human is
included in the loop of iterating upon and evaluating new func-
tional models, in order to validate that those models are reasona-
ble in the context of the system being analyzed. While it may be
possible to fully automate the method with a sufficiently robust
model library and extensive graph grammars, achieving a suffi-
ciently high level of accuracy to support full automation may be
overly burdensome on the practitioner. This method is meant to
be used in conceptual system design when rapid analysis and
design iterations are desirable. Other potential methods of
partially validating the underlying method exist, although such
validations have already been conducted in in the literature. For
instance, the simulation may be validated but the simulation
approach (IBFM) is a separate work that has already been pub-
lished [15,68]. Validation of whether alternative functional mod-
els are useful in ideation is already widely accepted in the
literature as well [108]. While it would be possible to validate
whether alternative functional models generated from a library of
behavior simulations are useful for ideation, such an approach
requires a significant and robust model library that does not cur-
rently exist. Creation of a robust model library would likely only
be useful for a specific class of systems and would not guarantee
validity of the method for other systems. For these reasons, the
authors recommend that a human remain in the loop to provide a

“sanity check” on ideated functional models, to perform selection
of the best models to be further iterated, and to determine when to
terminate the iteration loop.

One open area of research on the method presented previously
is what happens in the case where two models are simulated
where one has no redundancies and the other has many parallel
redundancies. IBFM currently does not heavily penalize the cost
of adding new nodes. It may be desirable to adjust the penalty
function parameters for adding redundancies to a system model to
assist in the trade-off between the costs associated with adding
redundancy and the benefits of added redundancy to mitigate
potential failures. However, systems engineers must consider if
parallel flow redundancy provides true benefit in stopping a failure
flow before the flow leads to system failure, or if redundant flows
merely provide alternative pathways to system failure as in the
case of a drop in electrical voltage propagating through redundant
power feeds in a data center. In the data center’s case, had the
energy flows been truly independent and redundant, a failure flow
caused by a voltage drop on one of the power lines coming into
the facility likely would not have impacted the other redundant
power lines and electrical distribution systems in the facility.

An area of future work is to combine the concept of “cut sets”
derived from PRA and used in some FFIP-based methods with the
vulnerability of each type of flow, redundant subsystems, and
comparing different models with global metrics (e.g., ratio of
failed flows per model). Further refining the IBFM’s method of
optimization within the context of the method presented in this
paper is expected to be a useful area of further research.

Another potential area of future work centers on how probabil-
ities are calculated and assigned to the functional model. While
this research assigns informative priors (i.e., probability distribu-
tions that are grounded in empirical data of past failures on the
same or similar components or functions), it may be useful to look
at noninformative priors (i.e., probability distributions that are
uniform for all functions or components and have no historical
knowledge of component or function performance).

While many PRA methods are by definition concerned with
both the likelihood and consequence of failures, the approach in

Fig. 5 A snippet heat map of a model with medium performance. In this case, grammar rules have added an additional sub-
graph for exporting material, which led to a reduced rate of failure in the associated flows.
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the paper addresses only likelihood. Because of the high level of
abstraction of functional models, and the necessity of using con-
textual information to assess the consequences of a failure, evalu-
ating failure severity is purposely left to the user. The challenge
of capturing context and failure consequences is deferred to future
work.

Conclusion

The framework presented in this paper represents a way to gen-
eratively explore a space of functional models, assess their vulner-
ability to failure, and present a designer with a variety of
alternative options. The approach is human-in-the-loop; the
designer must interpret the results according to the specific con-
text of the problem. Given a library of IBFM models and a graph
rewriting language for perturbing functional models, this approach
enables a designer to make quick risk-of-failure-informed-deci-
sions about functional architectures. These decisions are founded
not on only experience or historical data, but on (1) qualitative
simulation of potential failure propagation and (2) a set of
solutions automatically generated to mitigate those failures. This
allows systems designers to make large system architectural deci-
sions very early in the conceptual design process where the cost
of making decisions and significantly changing the design is rela-
tively inexpensive both in cost and in schedule time.
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