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Phase reconstruction is used for feedback control in adaptive optics systems. To achieve performance metrics for
high actuator density or with limited processing capabilities on spacecraft, a wavelet signal processing technique
is advantageous. Previous derivations of this technique have been limited to the Haar wavelet. This paper derives
the relationship and algorithms to reconstruct phase with O�n� computational complexity for wavelets with the
orthogonal property. This has additional benefits for performance with noise in the measurements. We also
provide details on how to handle the boundary condition for telescope apertures.
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1. INTRODUCTION
Closed-loop adaptive optics (AO) systems require an estimate
of the wavefront phase to command the 2D controllable de-
formable mirror actuators [1,2]. Most implemented systems
reconstruct the phase at discrete locations called phase
points. To simplify system calculations, oftentimes these
phase points are registered to actuator locations, then the nec-
essary phase correction is determined for the control law
without interpolation.

The AO community has developed several algorithms for
wavefront phase reconstruction. Ideally the approacheswould

1. Be computationally efficient for a large number of data
points,

2. Be robust to measurement noise, and
3. Result in perfect reconstruction of the wavefront using

noise-free wavefront sensor data.

The first property is essential for future telescopes that
increase the number of actuators or sensor measurements
seeking diffraction-limited performance. The second property
depends on the mathematical operations performed by the
algorithm and, in general, depends on the statistics of the
measurements, including correlations. The final property
was discussed previously by Southwell [3] and Poyneer et al.
[4], and the difficulty arises from the pupil geometry interac-
tion with the algorithm.

The original wavefront reconstruction techniques used
matrix-vector multiplication [3,5–7] with computational com-
plexity of O�n2� or higher. Later, the Fourier transform
technique was proposed by Freischlad [8], with further refine-
ment by Poyneer et al. [4], and hasO�n log2 n� complexity, lim-
ited by the speed of the implementation of the fast Fourier
transform for the change of basis. In essence, their treatment
of the wavefront sensor measurements as a filtering operation
is similar to the concept of this paper, except that their
filtering operations occur on the global data set and solve
the entire phase surface at once. During the same time period

as Poyneer et al. [4], Gilles et al. [9] produced a multigrid
preconditioned conjugate-gradient method with the same
computational complexity.

The first O�n� work in accurate wavefront reconstruction
was performed by MacMartin, where he developed a multire-
solution hierarchic reconstructor [10]. His work down-
sampled by a factor of 4 or more, and results show that
the larger downsampling factor decreases the relative perfor-
mance and increases the noise multiplier. Our work in this
paper uses a downsampling factor of 2, which gives improved
performance of the second property.

AdditionalO�n�work followed, such as that fromGilles [11].
This work was a direct application of a multigrid solver of a
minimum-variance reconstructor based on a sparse approxi-
mation of the wavefront inverse covariance matrix. Vogel also
improved sparse matrix methods [12] and a multigrid least-
squares algorithm [13]. Another minimum-variance solver that
followed is the fractal iterativemethod [14,15], which performs
a change of basis (using a fractal preconditioner). Minimum-
variance reconstruction is an excellent choice, as it is optimal
in the sense of maximizing the Strehl ratio [16].

In the last few years, several new wavefront reconstruction
algorithms have been proposed. Rosensteiner has produced
the cumulative reconstructor, which is a direct integration re-
constructor [17]. More recently, de Visser has shown the
SABRE algorithm using B-spline basis functions [18].

Wavelets were first applied to wavefront reconstruction by
Dowla [19]. This original work did not fully exploit the fea-
tures of the discrete wavelet transform (DWT) and was an
approximation. Hampton and co-workers developed an algo-
rithm that used the complete DWT and were able to perform
reconstruction using the Haar wavelet [20,21]. This paper
extends on their work to allow for the use of wavelets with
the orthogonal property.

In this research, we will further describe the benefits of
wavelet phase reconstruction. The wavelet technique offers
a computational efficiency of O�n� using finite impulse
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response filters. Hampton’s derivation uses the Haar wavelet
and then either uses a Poisson smoother or recommends a
denoiser as a follow-up step [22]. Our derivation in this paper
is made to be robust to noise using wavelets that have a longer
basis length, yielding a smoother reconstruction without a
follow-up step. Using noise-free data, the approach also yields
an exact reconstruction with a zero mean of the 2D data. We
also extend Hampton’s work to provide for a solution that
requires no boundary conditions for the Haar wavelet on a
square aperture where the side dimensions are a power of 2.

Whilemostground-basedAOsystemscanbebuiltwithappro-
priate computational power, space-based AO systems have to
workwithin the available size,weight, andpower requirements
of a flight-certified processor. Increasing the actuator or sensor
densities will quickly consume the available resources using
the traditional approaches. By applying signal processing
concepts to this problem, we are able to reduce the process-
ing requirements.

The wavelet approach is based on a multiresolution analy-
sis solution type. As a consequence of how the DWT is
employed, the grid size must be a power of 2. In a Cartesian
coordinate frame, wavefront values are reconstructed first on
a 2 × 2 grid, then 4 × 4, then 8 × 8, and expands by a power of 2
in size for each iteration. Iteration in this context means that
the matrix dimension of processed data is doubled each time,
not that the full data are processed repeatedly. However, there
is no preconditioner or approximation required. The solution
algorithm constructs the data for each iteration entirely using
the slope measurements provided from the Shack–Hartmann
wavefront sensor.

The outline of this paper is as follows. Section 2 details
the necessary signal processing theory to explain the notation
and how wavelets are related to wavefront reconstruction.
Section 3 derives the wavefront reconstruction algorithm
for the first two iterations. Section 4 derives additional steps
to improve performance for data from a telescope with obscu-
rations. Section 5 provides some discussion and simulated
wavefront reconstruction examples for several cases. We pro-
vide concluding remarks in Section 6 and further math details
in Appendix A.

2. THEORETICAL FRAMEWORK
A. Two-Dimensional Signal Processing
The derivation for wavelet phase reconstruction requires
some building blocks from multidimensional signal process-
ing. We begin by defining a 2D sequence, x�n1; n2�, which is
a known quantity at each lattice point �n1; n2�. We define
the lattice to be finite in extent and have dimension lengths
of powers of 2, usually of the form 2N × 2N .

We define two unit-shift operators, z1 and z2, where the
subscript denotes either the n1 or n2 direction. These defini-
tions arise from the 2D Z-transform

X�z1; z2� �
X∞

n1�−∞

X∞
n2�−∞

x�n1; n2�z−n1
1 z

−n2
2 : (1)

A 2D filter H�z1; z2� is separable if it can be factored as two
functions of a single variable, as in H�z1; z2� � H1�z1�H2�z2�.
To express the 2D filtering convolution [23], we can write

y � H�z1; z2�x�n1; n2� � H1�z1�H2�z2�x (2)

To simplify notation, we use operator notation and disre-
gard the indices. Equation (2) is written with the sequence
on the right side as the operand. When multiple operators
are written, they are performed from right to left starting from
the operand. The presence of a filter in operator notation im-
plies the convolution operation (traditionally expressed as
h � �x for 2D convolution). Since the filter is separable, we
observe that H1�z1�H2�z2�x � H2�z2�H1�z1�x and that the or-
der of operation does not change the final result.

The algorithm proposed here is performed on a multigrid,
and it is multiresolution [24]. To move between the resampled
lattices, the downsample and upsample operators are used.
We define downsampling by a factor of 2 as

y1 � D1x ⇔ y1�n1; n2� � x�2n1; n2�;
y2 � D2x ⇔ y2�n1; n2� � x�n1; 2n2�;
y3 � D1D2x � D2D1x ⇔ y3�n1; n2� � x�2n1; 2n2�: (3)

The downsampling operator discards the odd-index entries
for the downsampling phase of 0 and discards the even-index
entries for the downsampling phase of 1, the latter of which is
not shown in Eq. (3). This concept will be further explored
later in Section 5.B.

Likewise, the upsampling operator can be defined as

y1 � U1x ⇔

(
y1�2n1; n2� � x�n1; n2�
y1�2n1 � 1; n2� � 0

;

y2 � U2x ⇔

(
y2�n1; 2n2� � x�n1; n2�
y2�n1; 2n2 � 1� � 0

(4)

for each dimension. Equation (4) shows the relationship for
upsampling phase 0; swap the x�n1; n2� and 0 to show upsam-
pling phase 1.

Equation (4) is also separable, and the relationship y �
U1U2x � U2U1x shows that the order of operations can be
swapped. Although downsampling and upsampling by any
positive integer factor is possible, this algorithm only uses a
factor of 2. Thus, both operator forms do not show the resam-
pling factor,only thedimension inwhichtheoperatorperforms.

Separable filters have useful properties to simplify imple-
mentation by dealing with only one dimension at a time. How-
ever, when a serial grouping of operators perform in the same
dimension, in general the order of operations cannot be
changed arbitrarily. This restriction is shown in Fig. 1. We
must use the Noble identities to correctly establish the rela-
tionship in instances such as

Fig. 1. Noble identities in a block diagram showing the equivalency
of Eq. (5) for both dimensions. The serial combination of two oper-
ations that both occur in the same dimension cannot change order
without changing the filtering operation.
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y1 � D1H�z21�x � H�z1�D1x;

y2 � D2H�z22�x � H�z2�D2x: (5)

B. Tree Structure and Two-Dimensional Quadrature
Mirror Filters
A tree structure is a signal processing technique to decompose a
single-dimensionalsignal,x�n�, intomultiplechannels.Inthecase
of this algorithm, each branch has two channels. In multirate
systems, the channels are usually a low- and high-pass filters.

A special circumstance of the tree structure is referred as a
quadrature mirror filter (QMF), shown in Fig. 2. It is composed
of four filters, two used for analysis (with tildes) and two used
for synthesis (without tildes). We can express the output as a
function of the input using

y � �G�z�UD ~G�z� �H�z�UD ~H�z��x: (6)

The filters that are used in a QMF system are specifically
designed in a manner to cancel out aliasing effects due to non-
ideal frequency response of the filters such that

G�z�UD ~G�z� �H�z�UD ~H�z� � z−L; (7)

which means that the output y is a perfect reconstruction of x
shifted by L. The perfect reconstruction property of the filters
is explained in detail in [25]. The shift can be thought of as a
processing delay of the filters.

The channels can be named “approximation” and “details”
based on the approximation looking similar to the original sig-
nal at a lower sampling rate and the details providing informa-
tion of how the approximation differs from the higher
resolution signal. The DWT takes the original sequence and
creates the approximation and details sequences. The inverse
transform performs the opposite. Apart from a few excep-
tions, it turns out that the approximation contains more
Shannon entropy than the details [26].

Inthecaseofamultidimensionalsignal,wecandecomposein
each dimension independently. In the case of a 2D signal, this
becomesatwo-level implementationwith fouroutputchannels.

The four output channels can be described similar to the
QMF terminology, where xLL is the approximation and xLH ,
xHL, and xHH are the details. Figure 3 depicts the 2D DWT.
Here the approximation also maintains more Shannon
entropy than the details. This will be discussed further in
Section 5.A.

Likewise, if the four channels are known, we can perform
the 2D inverse DWT to perfectly reconstruct the original 2D
sequence.

C. Wavelets in Tree Structure and Factoring Wavelets
In engineering applications, reference to wavelets implies
the presence of both low- and high-pass filters. There are
many classes of wavelets based on their inherent properties
including orthogonal, vanishing moments, and others. The
proposed algorithm relies on the orthogonal property, which
means the Haar, Daubechies, and biorthogonal families of
wavelets can be used.

The Haar wavelet is the most simple and was originally in-
troduced in 1909 [27]. The Haar low- and high-pass filters are
defined as

g�z� ≜
1���
2

p �1� z−1�; g�−z� ≜
1���
2

p �1 − z−1�: (8)

The coefficient of the Haar wavelet is to ensure that the output
is normalized with respect to the input. The Haar high-pass
filter has a nice property:

g�−zN� �
 XN−1

l�0

z−l

!
g�−z� ∀ N ≥ 1

�
 XN2−1

l�0

z−2l

! ���
2

p
g�z�g�−z� if N is even; (9)

which will be needed later to simplify expressions. The first
expression is used when a high-pass filter is needed; the sec-
ond expression is used when a low-pass filter is needed. Equa-
tion (9) reveals that high-order complexity filters can be
implemented as a delayed summation of first-order filters.
Its complete proof is shown in Appendix A.

The filters associated with the orthogonal wavelet families
can be factored as follows:

G�z� � g�z�G0�z�; H�z� � g�−z�H0�z�;
~G�z� � g�z� ~G0�z�; ~H�z� � g�−z� ~H0�z�: (10)

In the particular case of the Haar wavelet, the factoring can
be G0�z� � H0�z� � ~G0�z� � 1; ~H0�z� � −1. The factoring of
Eq. (10) makes phase reconstruction possible for wavelet fam-
ilies with the orthogonal property.

D. Relationship of Wavelets to Shack–Hartmann
Measurements
The Fried model of a Shack–Hartmann sensor [5] is shown in
Fig. 4. The model defines the relationship between slope mea-
surements and phase point values as

Fig. 3. Two-dimensional QMF for the analysis section.

Fig. 2. Tree structure of a QMF for a single dimensional signal x�n�.
Tree structures with the perfect reconstruction property result in y�n�
being equivalent to a shifted x�n�. The channel with ~G�z� is a low-pass
filter, and the channel with ~H�z� is a high-pass filter.
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XF �m;n� � 1
2
�Φ�m;n − 1� −Φ�m − 1; n − 1�

�Φ�m;n� −Φ�m − 1; n��;

YF �m;n� � 1
2
�Φ�m − 1; n� −Φ�m − 1; n − 1�

�Φ�m;n� −Φ�m;n − 1��: (11)

Equation (11) was rewritten from its original form in [5] to
appear in causal form. As a result, close observation of
Eq. (11) reveals that the slope measurements can be written
as a separable filtering operation on the phase points. It in-
volves one low-pass filter and one high-pass filter and is stated
in operator form as

XF � g�−z2�g�z1�Φ;

YF � g�−z1�g�z2�Φ: (12)

The relationship of Eq. (12) is the connection of the Haar
wavelet to the Fried geometry; XF and YF are the slope mea-
surements. Figure 5 depicts the block diagram relationship of
the Hudgin [6] and Fried geometries to the wavefront. How-
ever, as we will see in Section 3.A, there is not a direct solution
to solve for Φ based on these equations. In order to recon-
struct Φ from the slope measurements, the tree structure
2D QMF is employed. We are then able to specify some addi-
tional information to reconstruct the wavefront.

3. PHASE RECONSTRUCTION ALGORITHM
A. Iteration for Level 1
From observation of the 2D QMF in Fig. 3, we can write equa-
tions that relate the phase points to the four channels of the
2D QMF as

ϕ1
LL � D2D1

~G�z2� ~G�z1�Φ;

ϕ1
LH � D2D1

~H�z2� ~G�z1�Φ;

ϕ1
HL � D2D1

~G�z2� ~H�z1�Φ;

ϕ1
HH � D2D1

~H�z2� ~H�z1�Φ: (13)

We have swapped the order of the operators in Eq. (13) for
a convenience of notation and use the superscript 1 to denote
the first iteration, not an exponent. Using the factoring of
Eq. (10) in Eq. (13), we can make the following substitutions:

ϕ1
LH � D2D1

~H0�z2� ~G0�z1��g�−z2�g�z1�Φ�
� D2D1

~H0�z2� ~G0�z1�XF ;

ϕ1
HL � D2D1

~G0�z2� ~H0�z1��g�z2�g�−z1�Φ�
� D2D1

~G0�z2� ~H0�z1�YF : (14)

The remaining two quantities, ϕ1
LL and ϕ1

HH , do not have a
simple relationship to the slope measurements XF and YF , be-
cause the filters of Eq. (13) are both low pass or high pass,
whereas the slope definitions require one of each.

If they did have a trivial relationship, then reconstruction
would be a simple 2D inverse DWT transform. We need to
further explore ϕ1

LL and ϕ1
HH in order to determine if such

a reconstruction is possible.

B. Iteration for Level 2
In this algorithm, when there is an unknown quantity, we ap-
ply the 2D DWT and break apart the unknown quantity into 4
new channels. We now explore the second iteration to deter-
mine if any further substitution of Φ is possible with known
slope measurements. Because we have two unknown quan-
tities, we must do this for both the ϕ1

LL and ϕ1
HH channels. First

we will only consider ϕ1
LL; we start by writing out the expres-

sions for the four channels in the analysis:

ϕ2
LL∕L � D2D1

~G�z2� ~G�z1�ϕ1
LL

� D2D1
~G�z2� ~G�z1�D2D1

~G�z2� ~G�z1�Φ;

ϕ2
LH∕L � D2D1

~H�z2� ~G�z1�ϕ1
LL

� D2D1
~H�z2� ~G�z1�D2D1

~G�z2� ~G�z1�Φ;

ϕ2
HL∕L � D2D1

~G�z2� ~H�z1�ϕ1
LL

� D2D1
~G�z2� ~H�z1�D2D1

~G�z2� ~G�z1�Φ;

ϕ2
HH∕L � D2D1

~H�z2� ~H�z1�ϕ1
LL

� D2D1
~H�z2� ~H�z1�D2D1

~G�z2� ~G�z1�Φ: (15)

Weareusingthesuperscript2fortheseconditerationandadd
the ∕L subscript for the ϕ1

LL data. There is additionally a ∕H
analysis for the ϕ1

HH data. For brevity, we will only state the
HH results at the end of this section, since their development
follows the same analysis, but we emphasize that the resulting
expression is not exactly the same. Examining Eq. (15) reveals
thatwhileϕ2

LL∕L isonlycomposedof low-pass filters, theremain-
ing three channels have a combination of low- and high-pass fil-
ters. If we factor the filters as in Eq. (10), we will again find
substitutionswith themeasuredslopedata.Forϕ2

LH∕Lweobtain

Fig. 4. Fried geometry relationship between phase points and their
measured slope lattice for a single lenslet. A Shack–Hartmann sensor
will have an array of these lenslets.

Fig. 5. Block diagram relationship between the phase points and the
Hudgin and Fried geometries.
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ϕ2
LH∕L � D2D1

~H0�z2�g�−z2� ~G�z1�D2D1
~G�z2� ~G0�z1�g�z1�Φ

� D2D1
~H0�z2� ~G�z1�D2D1

~G�z2� ~G0�z1��g�−z22�g�z1�Φ�
� D2D1

~H0�z2� ~G�z1�D2D1
~G�z2� ~G0�z1�g�z2�

� ���
2

p
XF

�
;

(16)

where the final step uses the high-pass filter simplification of
Eq. (9). Using the same procedure, we can also solve for
ϕ2
HL∕L as

ϕ2
HL∕L � D2D1

~G�z2� ~H0�z1�g�−z1�D2D1
~G0�z2�g�z2� ~G�z1�Φ

� D2D1
~G�z2� ~H0�z1�D2D1

~G0�z2� ~G�z1��g�−z21�g�z2�Φ�
� D2D1

~G�z2� ~H0�z1�D2D1
~G0�z2� ~G�z1�g�z1�

� ���
2

p
YF

�
:

(17)

The final channel,ϕ2
HH∕L, yields twopossible simplifications:

ϕ2
HH∕L � D2D1

~H0�z2�g�−z2� ~H�z1�D2D1
~G�z2� ~G0�z1�g�z1�Φ

� D2D1
~H0�z2� ~H�z1�D2D1

~G�z2� ~G0�z1��g�−z22�g�z1�Φ�
(18)

or, similarly,

� D2D1
~H0�z1� ~H�z2�D2D1

~G�z2� ~G0�z1��g�−z21�g�z2�Φ�:

The two possible substitutions arise from the flexibility of
having two high-pass filters. Either simplification is exact
when using noise-free data. Rather than choosing one defini-
tion over the other, we take an average:

ϕ2
HH∕L � 1

2
D2D1

~H0�z2� ~H�z1�D2D1
~G�z2� ~G0�z1�g�z2�

� ���
2

p
XF

�
� 1

2
D2D1

~H�z2� ~H0�z1�D2D1
~G0�z2� ~G�z1�g�z1�

� ���
2

p
YF

�
:

(19)

The averaging of Eq. (19) allows for some robustness to
noise in the slope measurements at very little computational
cost. The 1∕2 coefficient simply assumes additive white Gaus-
sian noise. Correlation statistics analysis may provide a better
coefficient. Using the same process for the HH data, we now
state the results as

ϕ2
LH∕H � D2D1

~H0�z2� ~G�z1�D2D1
~H�z2� ~H0�z1�g�−z2�

� ���
2

p
YF

�
;

ϕ2
HL∕H � D2D1

~G�z2� ~H0�z1�D2D1
~H�z1� ~H0�z2�g�−z1�

� ���
2

p
XF

�
;

ϕ2
HH∕H � 1

2
D2D1

~H0�z2� ~H�z1�D2D1
~H�z2� ~H0�z1�g�−z2�

� ���
2

p
YF

�
� 1

2
D2D1

~H�z2� ~H0�z1�

…D2D1
~H0�z2� ~H�z1�g�−z1�

� ���
2

p
XF

�
: (20)

We have now completed the derivation of the second iter-
ation and show it in Fig. 6. While the equations look complex
on paper, actual implementations are straightforward and

efficient in processing performance. Every expression is
simply a serial grouping of the filter-filter-downsample-
downsample block.

C. Further Iterations
We are able to generalize the formulation for additional iter-
ations and include the necessary information in Section 2 of
Appendix A.

By developing this level of k implementation, we are able to
scale the algorithm for any power-of-2-sized data quickly. This
algorithm is possible due to the flexibility of the high-pass fil-
ter combined with the simplification of Eq. (9); hence, the no-
menclature wavelet phase reconstruction is appropriate. Due
to these features, we are able to swap out definitions of chan-
nels withΦ using the known, measured quantities XF and YF .

D. Setting the Mean and Waffle Values
At the final iteration, we have two sets of 2 × 2matrices and no
further downsampling is required. The upper-left scalar
value of each is significant and represents the ϕLL channel that
has gone undetermined for all prior iterations. Each value rep-
resents undetected modes of the Fried geometry: the piston
and waffle modes. The piston represents the mean of the en-
tire Φ data set. Since the Shack–Hartmann sensor only
measures differences between phase points and not absolute
values, the mean value cannot be known. We can assign it a
value of zero and accept that we are within a constant value of
the actual piston of the wavefront. A separate sensor is
required for measuring the piston. The waffle mode represents
a nuisance checkerboard pattern along the phase points
with a mean of zero. We show the completed 2D QMF
analysis section structure in Fig. 7, where all values
are known.

E. Synthesis Section
Up until this section, all of the previous algorithm code has
been used to iteratively create the four-channel blocks of
the analysis section. We separated each unknown channel
into four subchannels. While we did not have the direct infor-
mation for each channel, we were able to substitute for it us-
ing the measurements that were available. The analysis
section is now complete and must now take the four channel
blocks and perform the inverse DWT, as shown in Fig. 8. In
doing so, we recreate the unknown channel of the previous
iteration. We recursively perform this until we have no more
four-channel blocks, which is the final solution of the wave-
front phase surface.

Fig. 6. 2D QMF diagram of the channels at the second iteration. The
upper left and lower right are each divided into four channels.
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F. Implementation Efficiency
This wavefront reconstruction algorithm can be split across
multiple processors. The channel definitions use information
that was calculated in the previous iterations or shared at the
same iteration. The common operations can be seen in
Eq. (20). In most cases of the algorithm, the

���
2

p
multiplica-

tions in the derivation come in pairs, which can be handled
as a trivial binary shift operation.

The quantity ofmultiplications to determine allϕ channels is
approximately upper bounded by O�10�FL�2n∕3�, where FL is
the filter length, which for approximation purposes we take to
be the max of the filter lengths for ~G�z�, ~G0�z�, ~H�z�,
and ~H0�z�. Filter lengths are explained in further detail in
Section 5.C. DeterminingΦ requiresO�20�FL�2n∕3�multiplica-
tions. Thus, a Daubechies 6 filter reconstruction is comparable
to other algorithms in computational requirement.

4. TELESCOPE APERTURES
The wavefront reconstruction algorithm presented in
Section 3 can be directly applied to data from a telescope with
a nonsquare aperture and other features such as a segmented
primary mirror and central obscurations from the secondary
mirror and support structure. There will, however, be errors
near the boundary edges where the Fried model is incorrect.
For improved performance, this section explains how to cor-
rect for errors at the boundary for masked data stored within a
2N × 2N matrix. However, this improvement is costly computa-
tionally compared to the original algorithm. The results
presented here are a full theoretical explanation, and reduc-
tions in operations would be used in an actual real-time im-
plementation. We begin by defining the mask, or window
function, as

w�n� �
�
0 outside aperture
1 inside aperture

; (21)

where we use notation n � n1, n2 to simplify the expressions.
We define the Fried gradient operator as

∇F �z� �
�
g�z1�g�−z2�
g�−z1�g�z2�

�
; (22)

which calculates the values XF and YF for Eq. (12).
With these two definitions, we can now define two sets of

indices for the boundary and inside the aperture as

B � fnj‖∇Fw�n�‖ ≠ 0g;
W � fnj‖∇Fw�n�‖ � 0 and w�n� � 1g:

�23�

The reconstruction algorithm presented in Section 3 using
the Haar wavelet is expressed as an operator H such that

Φ�n� � H�∇FΦ�n�� (24)

provided the mean and waffle modes are both zero. Since
phase reconstruction involves only linear operators, it is
linear. By having this property, we can then write the
expression

∇F �w�n�Φ�n�� � w�n�∇FΦ�n� � �∇F �w�n�Φ�n�� −w�n�∇FΦ�n��

� w�n�
"
XF �n�
YF �n�

#
� E�n�; (25)

where we define the error, E�n�, to be the quantity in square
brackets. Since it can be easily seen that E�n� is identically
zero outside the boundary, as

E�n� � 0 ⇔ n∉B; (26)

the error can be written as

E�n� �
X
l∈B

� ~Xl

~Yl

�
δ�n − l�; (27)

where δ�n� is the 2D Kronecker delta function. The quantities
~Xl and ~Yl are the incorrect slope boundaries that contribute
to the error. Solving for these values allows their contribution
to the error to be canceled.

We can solve for ~Xl and ~Yl by performing the Haar
reconstruction operator to both sides of Eq. (25), which
results in

w�n�Φ�n� � H
�
w�n�

�
XF �n�
YF �n�

��
�
X
l∈B

~XlH
��

δ�n − l�
0

��

�
X
l∈B

~YlH
��

0
δ�n − l�

��
∀ n: (28)

By taking the Fried gradient operator of both sides of
Eq. (28), we obtain, for n ∈ W,

�
XF �n�
YF �n�

�
� ∇FH

�
w�n�

�
XF �n�
YF �n�

��
�
X
l∈B

ΓX
~Xl �

X
l∈B

ΓY
~Yl:

(29)

Fig. 7. 2D QMF performed iteratively on the upper left and lower
right until scalar values remain.

Fig. 8. Synthesis section of the 2D QMF.
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Using linearity, we define the impulse responses:

ΓX �n;l� � ∇FH
�� δ�n − l�

0

��
∈ R2×1;

ΓY �n;l� � ∇FH
�� 0

δ�n − l�

��
∈ R2×1 (30)

for n ∈ W, l ∈ B. These definitions can be precomputed and
have no dependence on the slope measurements.

Using the impulse responses ΓX �n;l� and ΓY �n;l� for n ∈ W
and l ∈ B, we can solve for ~Xl and ~Yl in Eq. (28) from a set of
linear equations as

�
XF �n�
YF �n�

�
− ∇FH

�
w�n�

�
XF �n�
YF �n�

��

�
X
l∈B

ΓX �n;l� ~Xl �
X
l∈B

ΓY �n; l� ~Yl (31)

for n ∈ W. The left-hand side is known from the measured
gradients, and Eq. (31) yields nW � 2jWj equations in nB �
2jBj unknowns, with jWj and jBj the number of sample points
inside the aperture and on the boundary, respectively. It can
easily be seen that Eq. (31) can be written in matrix form as

zW � Γ~zB; (32)

where zW and ~zB are the corresponding nW × 1 and nB × 1 vec-
tors on the left- and right-hand sides of Eq. (31) and Γ is the
corresponding nW × nB matrix. Equation (32) is underdeter-
mined and therefore is a least-squares solution. The solution
for ~zB � �ΓTΓ�−1ΓTzW can be reduced in operations due to
many zero-value eigenvalues.

To give an idea of the dimensionality, for a 64 × 64 data ma-
trix containing a circular aperture with radius ρ � 29, the
matrix Γ ∈ R4976×456. However, since all gradients on the boun-
dary yield redundant information, it turns out that the number
of unknowns can be considerably reduced. In this example,
the matrix ΓTΓ can be decomposed as

ΓTΓ � UΛUT ; (33)

where λi � diag�Λ� are the eigenvalues as shown in Fig. 9.
The first 283 eigenvalues are zero, and only M � 173
eigenvalues are not zero. As a consequence, we can factor

ΓTΓ � Ū Λ̄ ŪT ; (34)

with Λ̄ � diag�λ1;…; λM�, λi > 0 and Ū ∈ RnB×M orthonormal.
Based on this decomposition, the corrective term zB can be
solved as

α � Λ̄−1ŪT Γ̄TzW ; ~zB � Ū α; (35)

where the matrices Λ̄−1ŪT Γ̄T and Ū are M × nW and nB ×M ,
respectively. In the example, they would be 173 × 4976 and
456 × 173, respectively.

Having solved for ~zB, we now can use ~Xl and ~Yl in Eq. (31),
so that we have the corrected gradients of w�n�Φ�n� as

X �n� � XF �n� �
X
l∈B

~Xlδ�n − l�; Y �n� � YF �n� �
X
l∈B

~Ylδ�n − l�:

(36)

Using the corrected gradients X and Y , the wavefront
reconstruction algorithm is then run (with the option of a dif-
ferent wavelet for better results) to obtain the wavefront
phase estimate.

5. DISCUSSION
A. Discarding the HH Channel
Under light turbulence assumptions, the HH channel should
be very small and contain little energy that is needed for
reconstruction. Another way of stating this is that since the
Shannon entropy is low, it contains little information about
the nature of the wavefront. If computational constraints exist
to meet feedback control bandwidth requirements, the entire
HH channel can be disregarded and set to zero. The result
then becomes an approximation of the actual wavefront.

B. Resampling Phase Effects on the Boundary
Conditions
As discussed a number of times, the choice of wavelets has an
effect on the phase reconstruction and its sensitivity to noise.
Higher-order wavelets (such as the Daubechies family) yield
filters with longer impulse response and better filtering capa-
bilities.

The drawback of filters with longer impulse response is
clearly the fact that their responses have longer transients
and they are affected by boundary conditions. Wavelet filters
are specifically designed to cancel aliasing effects that arise
from having nonideal filters (G�z� and ~G�z� are not ideal
low-pass filters, and H�z� and ~H�z� are not ideal high-pass fil-
ters). While the convolution operation is still close to the
boundary, this aliasing cancellation effect has not fully initial-
ized, and this is also known as the transient region (because
the wavelets are not operating as designed). Thus, the output
of reconstruction in this region is unreliable.

On the other hand, the Haar wavelet, which yields the sim-
plest first-order filters at all the stages, if properly imple-
mented, is completely independent of the boundary
conditions, provided the data matrix is square with dimen-
sions as a power of 2.

This can be obtained by adding a positive shift at the analy-
sis network (see Fig. 2), so that the four filters become
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Fig. 9. Eigenvalues of the 64 × 64 circular aperture in monotonic
order.
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~G�z� � zg�z�; ~H�z� � zg�−z�;
G�z� � g�z�; H�z� � −g�−z�; (37)

using g�z� defined in Eq. (8). With this choice of filters, the
“approximation” and “details” signals a�m� and d�m� in Fig. 2
can be related to the input x�n� as

a�m� � 1���
2

p �x�2m� 1� � x�2m��;

d�m� � 1���
2

p �x�2m� 1� − x�2m��; (38)

and the output becomes

y�2m� � 1���
2

p �a�m� − d�m�� � x�2m�;

y�2m� 1� � 1���
2

p �a�m� � d�m�� � x�2m� 1�: (39)

This yields perfect reconstruction y�n� � x�n�, n � 0;…;

N − 1, provided the data length N is even, regardless of
boundary conditions. In other words, in the case of the Haar

wavelet, the effects of boundary conditions get discarded by
the resampling operations.

If the data length is a power of 2, this will be true for all
resolution levels in the decomposition.

C. Effects of Filter Selection on Noise
The major contribution of this work, compared to Hampton’s
derivation [20], is the availability of the factored polynomials
G0�z� and H0�z�. The Fried model is not always an accurate
reconstruction of the wavefront, since it only relates neighbor-
ing sample points, as seen in Eq. (11). Some have suggested
other reconstruction polynomials such as a Taylor series,
since they have a longer basis and therefore have a smoothing
property.

The Daubechies family filters are numbered starting at 1
(which is the Haar wavelet), and each number corresponds
to different filter lengths (or equivalently polynomial lengths).
The number of filter coefficients in ~G�z�, ~H�z�, G�z�, and H�z�
are all twice the Daubechies number. For example, Daube-
chies 3 uses filters of length 6.

The factored coefficients of the filters are shown in Figs. 10
and 11. Each filter is centered when being applied, due to the
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Fig. 10. Coefficients of the ~G0�z� factored polynomials for the Daubechies family.
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Fig. 11. Coefficients of the ~H0�z� factored polynomials for the Daubechies family.
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implementation of treating the data as periodic. The filter co-
efficients are not symmetric about their midpoint. The filters
~G0�z�, ~H0�z�, G0�z�, and H0�z� are always shorter in length
by 1.

These factored polynomials of the wavelet factoring offer
the same characteristics as the other approaches, while also
fitting into the wavelet technique. Longer polynomials can
smooth the noise, but the choice of filter length should be

considered against the dimension length of the data. Having
a large filter length but using smaller-sized data does not yield
better results.

The frequency response for the Daubechies family is shown
in Fig. 12, which is also called a Max-flat filter. By increasing
the filter length, the rejection band performance is improved.
The noise has an impact on each of the four channels (LL, LH,
HL, and HH). This improved noise rejection implies that the
noise will be diminished on a subset of the channels. When we
also consider Shannon entropy, it is more important to have
less noise on the LL channel, since it contains more informa-
tion about the nature of the wavefront.

As AO systems increase in size, and therefore also the
density of actuators and sensors, the larger filters are more
robust than the Haar wavelet and are an appropriate choice.
For example, in Fig. 13, we show the results of several recon-
structions using the Daubechies family wavelets with 10 and
3 dB signal-to-noise ratios (SNRs).

(a)

(b)
Fig. 12. (a) Digital frequency response of ~G�z� for the Daubechies
family. The frequency response for ~H�z� would be mirrored at π∕2.
(b) The digital frequency response of ~G0�z� for the Daubechies family.
The frequency response for ~H0�z� would be mirrored at π∕2. The fil-
tering improvement can be readily seen.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 13. (a) Original 128 × 128 wavefront; the remaining images are
all reconstructed with (b) the Haar wavelet (the result is the same as it
would be for [20]), (c) the 10 dB SNR Haar wavelet, (d) the 3 dB SNR
Haar wavelet, (e) the 10 dB SNRwith the Daubechies 3 wavelet, (f) the
10 dB SNR with the Daubechies 3 wavelet, (g) the 10 dB SNR with the
Daubechies 9 wavelet, and (h) the 3 dB SNR with the Daubechies 9
wavelet.

(a) (b)

Fig. 14. (a) Original 256 × 256 wavefront with a telescope mask
applied and (b) the reconstructed wavefront using the Daubechies
3 wavelet.
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Fig. 15. Rows (a) 220, (b) 177, and (c) 90 from Fig. 14 are shown.
In each plot, the dashed curve shows the original wavefront, com-
pared against the reconstructed wavefront shown by the solid curve
for Daubechies 3 and by the dotted curve for Daubechies 9.
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Using only the Haar wavelet, the resulting reconstruction
contains a 2 × 2 checkerboard pattern. The pattern is also ap-
parent at a larger resolution in Figs. 13(c) and 13(d). With the
longer wavelet lengths, we are able to have a smoothing effect
on the result, as shown in Figs. 13(e)–13(h). Hampton et al.

perform smoothing using an iterative Poisson solver in [22],
which relies on having a previously reconstructed wavefront
as an estimate and gradient data that are independent from the
estimate. In our work, we are able to provide the smoothing
effect from longer filter lengths, which can be seen in compar-
ing Figs. 13(e)–13(g) or 13(f)–13(h).

D. Telescope Apertures with Obscurations
In the previous section, we provided example results using a
square aperture. We now consider a realistic segmented
mirror telescope scenario where there is an outer edge that
is nonsquare and central obscuration by a secondary mirror
and its support structure. We simulated this by generating
data on a square aperture and then using zero value entries
outside of the telescope aperture mask.

In Fig. 14, the algorithm is applied to simulated data for a
notional segmented telescope system. We do not use any
boundary correction or modification of the measured wave-
front data, and the result is still successful in reconstructing
the wavefront. In Fig. 15, we plot the 256 pixels across a row
for the original wavefront in comparison with two reconstruc-
tions using the Daubechies 3 and Daubechies 9 wavelets. The
reconstruction has errors near the boundary edges. Since the
Daubechies 3 wavelet is shorter in filter length, it is able to
converge to the actual wavefront values closer to the edge
than the Daubechies 9. The Daubechies 9 wavelet also has
more smoothing than the Daubechies 3 due to increased filter
length, and its result has less error in reconstruction when far
enough from the edges that they have no influence.

Section 4 derived an additional correction that can be ap-
plied for errors due to the boundary. In Fig. 16, the corrected
reconstructed wavefront can be compared to the original
wavefront and the wavefront reconstructed with the algo-
rithm of Section 3 only. The improved performance near
the boundary edge is apparent. In addition, the correction also
estimates the wavefront hidden underneath the structural
support of the secondary mirror.

6. CONCLUSION
This paper provides a new derivation of wavelet phase
reconstruction that uses the wavelet families with the orthogo-
nal property. These families include the Haar, Daubechies, and
biorthogonal wavelets. Filters with a longer region of support
are able to smooth outmeasurement noise. The use of operator
notation simplifies the written expressions of the channel
definitions. The ability of a reconstruction algorithm to be
computationally efficient as the density of actuators or sensors
increases is important for future AO systems.

APPENDIX A: FURTHER DETAILS
1. High-Order Wavelet Simplification Proof
This proof shows how the results of Eq. (9) are determined.
We start with the definition

g�−zN�≜ 1 − z−N���
2

p (A1)

and the definition of the geometric series

XN−1

l�0

z−l ≜
1 − z−N

1 − z−1
: (A2)

We immediately observe that Eqs. (A1) and (A2) can be
combined:

g�−zN � � 1 − z−N���
2

p �

�P
N−1
l�0 z

−l
�
�1 − z−1����

2
p �

 XN−1

l�0

z−l

!
g�−z�:

(A3)

We have now shown the first result. The second result takes
some manipulation similar to the concept of polyphase de-
composition, where we split the sequence up into an even
and an odd component. We proceed from the result of
Eq. (A3) in

 XN−1

l�0

z−l

!
g�−z� �

 XN2−1
l�0

z−2l � z−2l−1

!
g�−z�

�
 
�1� z−1�

XN2−1
l�0

z−2l

!
g�−z�

�
 XN2−1

l�0

z−2l

! ���
2

p
g�z�g�−z�: (A4)

The first simplification is the realization that the sum of the
two sequences can be factored to 1� z−1. The final factoring
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Fig. 16. (a)–(c) Three rows from Fig. 14 are shown after applying
the boundary correction. In each plot, the dashed curve shows the
original wavefront, compared against the reconstructed wavefront
shown by the dotted curve for Daubechies 3 and by the solid curve
for Daubechies 3 that has the boundary correction applied. The com-
parison of these results with Fig. 15 shows improvement in the result
inside the aperture boundary.
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swaps with the Haar scaling function and needs a
���
2

p
to

cancel the denominator.

2. Iteration for Level k
After the second iteration, there are two unknown quantities
ϕ2
LL∕L and ϕ2

LL∕H . We now seek to generalize the formulas
for each level k ≥ 2. Until the final iteration, there will
still be two unknown quantities. We first write out the
formulas:

ϕk
LH∕L � �D2D1

~H�z2� ~G�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~G�z2� ~G�z1��Φ;

ϕk
HL∕L � �D2D1

~G�z2� ~H�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~G�z2� ~G�z1��Φ;

ϕk
HH∕L � �D2D1

~H�z2� ~H�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~G�z2� ~G�z1��Φ: (A5)

The intent of the exponential notation is that the operations
inside occur k − 2 times. We choose to express these equa-
tions as three groups, since the left group will be used to
modify the right group. Again we will factor ~H�z� on the left
side, then move g�−z� to the right. As it swaps position with
the downsampling operators, the noble identities will apply,
resulting in g�−z2k−1�. Then the high-order filter will be simpli-
fied to a delayed summation of the first-order filter. The rela-
tionship to the slope measurements can then be made. The
end result for the LL data is

ϕk
LH∕L � �D2D1

~H0�z2� ~G�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~G�z2� ~G0�z1��

  X2k−1−1
l�0

z−l2

!
XF

!
;

ϕk
HL∕L � �D2D1

~G�z2� ~H0�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~G0�z2� ~G�z1��

  X2k−1−1
l�0

z−l1

!
YF

!
; (A6)

with a combination summation for the HH∕L channel:

ϕk
HH∕L � 1

2
�D2D1

~H0�z2� ~H�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~G�z2� ~G0�z1��

  X2k−1−1
l�0

z−l2

!
XF

!

� 1
2
�D2D1

~H�z2� ~H0�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~G0�z2� ~G�z1��

  X2k−1−1
l�0

z−l1

!
YF

!
: (A7)

The HH data is again developed through the same manner
and results in definitions with some slight differences:

ϕk
LH∕H � �D2D1

~H0�z2� ~G�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~H�z2� ~H0�z1��

…

  X2k−2−1
l�0

z−2l2

! ���
2

p
g�−z2�YF

!
;

ϕk
HL∕H � �D2D1

~G�z2� ~H0�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~H0�z2� ~H�z1��

…

  X2k−2−1
l�0

z−2l1

! ���
2

p
g�−z1�XF

!
; (A8)

and the final channel, HH∕H, is again defined as a
combination:

ϕk
HH∕H � 1

2
�D2D1

~H0�z2� ~H�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~H�z2� ~H0�z1��

…

  X2k−2−1
l�0

z−2l2

! ���
2

p
g�−z2�YF

!

� 1
2
�D2D1

~H�z2� ~H0�z1���D2D1
~G�z2� ~G�z1��k−2

…�D2D1
~H0�z2� ~H�z1��

…

  X2k−2−1
l�0

z−2l1

! ���
2

p
g�−z1�XF

!
: (A9)

The summations represent either a zero-padded shift or a
circular shift of the data, and it should match the preferred
implementation of how the sequences are treated for boun-
dary conditions.
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