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ABSTRACT

We present the Epidemic routing protocol implementation in ns-3.
It is a full-featured DTN protocol in that it supports the message
abstraction and store-and-haul behavior. We compare the perfor-
mance of our Epidemic routing ns-3 implementation with the exist-
ing implementation of Epidemic in the ONE simulator, and discuss
the differences.
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1 INTRODUCTION

In this work we present the implementation of the Epidemic rout-
ing protocol [11] in ns-3 [1]. While several Mobile Ad-hoc Net-
work (MANET) routing protocols are available in ns-3, it does not
currently include any Disruption Tolerant Network (DTN) proto-
cols, and development of such protocols typically proceeds with
other simulators, such as The ONE simulator [4]. In various routing
simulation efforts [7-9] we have encountered the need to simulate
both MANETs and DTNs in the same simulator, and so have de-
veloped an architecture for integrating the two. Since there are no
other DTN routing protocols in ns-3, we evaluate our results by
comparing against the same simulation run in the Opportunistic
Network Environment (ONE) simulator.

DTN routing protocols typically deal with “messages” as opposed
to “packets”. Messages may range in size from a few kB to hundreds
of MB, which means they need a mechanism for fragmenting and
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reassembling these messages on a hop-by-hop basis to meet lower
layer requirements. DTN routers also buffer messages if a next-hop
is not available, and may replicate messages to multiple next hops.
These features differentiate DTN routing protocols from MANET or
traditional Internet Protocol (IP) routing protocols. This also leads
to various design architectures. DTNs are often implemented as
an application-overlay network with Convergence Layer Adapters
(CLAs) for particular network types, instead of a native layer-3
routing protocol. The application-layer approach (e.g. the Bundling
Protocol [10]) has advantages in ease of development and flexibility,
but prevents the overlay from interoperating with traditional IP
applications. Due to these limitations, we implement DTN routing
protocols as native ns-3 routing protocols so they can be used with
the existing ns-3 application classes. In addition we have designed
an IP convergence architecture that supports DTN messages made
up of multiple packets. Our implementation includes application
classes to generate such messages. All of this code is available from
our website!, and we are in the process of contributing it to the
ns-3 distribution.

2 PRIOR WORK

This is not the first attempt at implementing the Epidemic routing
protocol in ns-3. In 2015 Alenazi et al. published their ns-3 imple-
mentation of Epidemic [2], the code for which began the review
process for inclusion in ns-3 in 2013, however that process appeared
to stall in 2015, and the authors did not respond to our inquiries
about the status. The existing code however was available online
and we attempted to use this version for our DTN simulations,
however limitations in this implementation rapidly became appar-
ent and necessitated developing our own implementation. Since
Alenazi’s implementation routes only atomic packets, not complete
messages, we will refer to his implementation as PacketEpidemic
in the remainder of the paper, for ease of reference.

The PacketEpidemic implementation for Network Simulator
3 (ns-3) implements the Epidemic logic discussed in [11], how-
ever it possesses many limitations. As mentioned, PacketEpidemic
handles individual packets instead of messages. PacketEpidemic’s
node discovery mechanism results in incorrect operation for nodes
with large buffers, where the nodes repeatedly resend messages
that have already been transferred. Also, PacketEpidemic does not
support control message fragmentation, so control messages are
limited to the size of one User Datagram Protocol (UDP) packet.
Large message buffers can generate summary vectors that exceed

!https://tancad.net/projects/dtn-simulation/
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the size of a UDP packet and when this happens the ns-3 simula-
tion crashes. The lack of control packet fragmentation restricts the
number of messages that a node can handle. Our ns-3 Epidemic
implementation addresses the need for control packet fragmenta-
tion and as a result, the control packet headers, node discovery, and
data handling, are significantly different from PacketEpidemic.

3 CODE STRUCTURE

We note that implementing Epidemic routing was not our end
goal, but a stepping stone to the implementation of many other
DTN routing protocols in ns-3, so some design decisions take into
account not just epidemic, but other protocols as well. We borrowed
the top-level code structure from Alenazi’s Epidemic [2], so all
ns-3 DTN routing protocols are broken into four main classes. Our
Epidemic implementation forwards groups of data packets called
messages instead of atomic packets. Section 4 describes how the
protocols generate messages and segment them into individual
packets. This section provides an overview of the code structure.
The DTN routing protocol contains a group of packet classes, packet
queue class, queue entry class, and routing protocol class. The
Unified Modeling Language (UML) diagram in Figure 1 shows the
relationships functions and attributes used by all ns-3 Epidemic
protocols to implement DTN logic. We also borrow from our prior
experience implementing DSDV for ns-3 [6].

3.1 Packet Classes

The packet classes are the packet header declarations used by
the DTN protocols. Each packet header is its own class because
the packet header is a data structure that defines a packet. The
packet classes inherit ns-3’s Header class. The Header class defines
a packet and provides the interface for other classes to interact
with the packets. The routing class and packet queue class inter-
act with the packet class to read and write packet headers. Since
packet headers have various types of information, they have their
own accessors and mutators. However, all packet header declara-
tions require a Serialize and Deserialize function because of
the Header class. The Serialize function writes the header in-
formation to a packet buffer, and the Deserialize function reads
from a packet buffer. These functions are required because ns-3
passes packets between nodes as byte arrays. When a node receives
a packet, it uses the Deserialize function to obtain the header
information. The Print function permits another class to print the
header to the screen or log file.

3.2 Packet Queue and Queue Entry Classes

The Packet Queue Class manages a node’s message buffer. The
Routing Protocol class interacts with the Packet Queue class to
manage messages and generate control packets. The Packet Queue
class implements a protocol’s buffer management scheme, some-
thing which is much more significant in other DTN protocols.
The m_BufferSize attribute defines the maximum size of the mes-
sage buffer in bytes. Enqueue adds messages to the buffer, and
Dequeue removes messages from the buffer. After a node adds a
message to the message buffer, DropExpiredMessages removes
expired messages. If the message buffer is full, Purge removes
messages according to the protocol’s queue management scheme.

FindDisjointMessages generates the list of messages to replicate
according to a protocol’s message priority. The Drop function re-
moves a selected message from the buffer. The GetSize function
returns the number of messages in the buffer.

Since messages are groups of packets, the message buffer requires
a data structure to group packets. The m_queue is a map matching
a message ID to a queue entry defined by the Queue Entry class. A
queue entry is a data structure that stores the packets belonging
to a message, the IP header, expiration time, and message ID. The
GetMessageByteSize returns the number of packets contained in
message. The GetMessagePacketTotal returns the total number
of packets belonging to a message. The GetCurrentPktCnt returns
the number of packets currently contained in the queue entry.
The GetPacketSize returns the size a data packet in a message.
AddPacket adds a packet to the queue entry. GetPackets returns
all of the packets contained in a message. The Packet Queue uses
the Queue Entry functions to generate control packets, manage
the message buffer, and retrieve messages for the Routing Protocol
class.

3.3 Routing Protocol Class

The Routing Protocol class inherits from ns-3’s Ipv4RoutingProtocol.
The Routing Protocol class implements the control logic of the
DTN protocols. The Recv<Protocol> function executes the con-
trol packet exchange based on the packet headers defined in the
packet class. The Routing Class initializes the packet queue. The
routing class interacts with the packet queue class to generate
control packets, and the routing protocol class interacts with the
packet queue class to store and retrieve messages. The SendBeacons
function transmits beacon packets at the specific interval. The
SendDisjointMessages calls the FindDisjointMessages from
the Packet Queue class to generate the list of message to transmit to

another node. Then SendDisjointMessages calls SendMessageFromQueue

to transmit the messages from the generated message list. When a
node receives a packet, RouteInput determines the interface, buffer,
or function to execute. RouteInput handles the logic for buffering
incomplete messages and acknowledging messages described in
Section 4. RouteOutput handles packets leaving a node.

4 MESSAGE GENERATION AND HANDLING

The ONE and ns-3 handle node data differently. This section dis-
cusses how ns-3 and the ONE implement message handling and
generation. The discussion includes the differences between the
ns-3 PacketEpidemic implementation and our ns-3 Epidemic imple-
mentation to handle messages, and ns-3 application-layer message-
traffic generation.

4.1 ONE Behavior

In the ONE, traffic generation uses messages. The ONE does not
have packets like IP networks, so the ONE does not have packet
header definitions. Messages are similar to bundles from the Bundling
Protocol [10] because messages are the base unit of DTN data. Un-
like IP packets, messages can be any size. The ONE handles mes-
sages as a single object. The ONE does not fragment messages, and
the ONE does not permit partial messages to propagate throughout
the network. If a node does not completely receive a message, then
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Figure 1: DTN UML Diagram

the node drops the partially received message. In the ONE, mes-
sages do not carry control instructions, and nodes share control
information by directly accessing another node’s data structures in
memory. The ONE does not include the overhead of exchanging
control instructions in its simulation results.

4.2 ns-3 Behavior

Since ns-3 implements the entire network stack, our ns-3 protocols
define groups of packets generated by one source node destined to
another node as a message. A message is equivalent to RFC-5050’s
bundles as the base unit of DTN data. The UDP packets used to
share routing information between nodes are control packets. Con-
trol packets are not messages because they are routing protocol
specific, so they are not the base unit of DTN data. Our proto-
cols assume an IP-based convergence layer. Unlike the ONE, ns-3
cannot generate a message as a single object of any size, so large
messages are segmented into groups of individual packets. Each
packet is assigned a header with a custom identifier that associates
each packet with the rest of the DTN message. This architecture
integrates with the existing code base, and does not require the
modification of protocols below the routing layer. The following
subsections discuss how ns-3 defines and handles messages. The
discussion includes the differences from PacketEpidemic message
handling, and our ns-3 message-traffic generation.

4.3 Message Definition

Our ns-3 DTN data packet header shown in Figure 3 is the cus-
tom header that identifies a packet belonging to a message. The
Bundling Protocol (Request For Comments (RFC) 5050) [10] influ-
enced our ns-3 DTN data packet header design, but our ns-3 DTN
protocols do not implement the Bundling Protocol. The PacketEpi-
demic implementation does not have a header for DTN message
layer, instead, it uses only UDP packets as the base unit of data with
the IP address identifying source and destination nodes.

Each DTN data packet header contains a Message Identification
Number, last hop, packet count, and packet index. The Message
Identification Number in Figure 2 is a 64-bit unsigned integer de-
rived from the source Node Identification Number and timestamp.
The first 16-bits of the Message Identification Number are the source
Node Identification Number. The last 48-bits are the message’s gen-
eration timestamp in microseconds. The source Node Identification

012 3 456 78

16-bit Source Node ID

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

48-bit Timestamp

Figure 2: Message Identification Number
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64-bit Message Identification Number

16-bit Last Hop 32-bit Total Number of Packets

32-bit Packet Index

Figure 3: DTN Data Packet Header

Number used by the DTN packet header is the node number from
ns-3, which automatically assigns a unique integer to every node
in the simulation.

The range of scenarios we expect to simulate require a node to
generate several messages in a millisecond at most, but will not
require generation of more than one message in a microsecond. The
timestamp is in microseconds to ensure that every Message Identi-
fication Number is unique. While a per-node sequential message
counter would also create a unique identifier, our ns-3 protocols
require message generation time and source node identification
for routing decisions, so this information is dual-purpose. Some
scenarios studied would exceed the largest time in microseconds
represented by a 32-bit timestamp, therefore we use 48-bits for the
timestamp. The last hop field is the 16-bit Node Identification Num-
ber of the last node that forwarded the message. Nodes use the last
hop to buffer incomplete messages for message reconstruction. The
32-bit total number of packets and the 32-bit packet index support
reordering during message reassembly.

4.4

In PacketEpidemic, nodes pushed all packets selected for trans-
mission to the link layer immediately after completing the control
packet exchange. ns-3’s link layer contains a packet queue that
has a limited size. This link-layer packet queue is First In First

Message Handling
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Figure 4: DTN Acknowledgement Header

Out (FIFO) and cannot be manipulated by higher layers in the net-
work stack, they can only add packets [3]. When a node’s message
buffer equals or exceeds the size of the packet queue, then the node
will fill the packet queue and any new packets sent to the full queue
are dropped. The link layer will attempt to transmit the packets in
FIFO order regardless if the destination node is connected. If the
first node moves out of range, then the link layer will still trans-
mit the packets. As a result, the node wastes available bandwidth
and meeting opportunities. This behavior is not a requirement of
the Epidemic routing protocol, but is a limitation specific to the
PacketEpidemic implementation.

In order to improve link utilization, ACK packets in Figure 4
control the message exchange sequence. ACK packets do not ac-
knowledge messages reaching their final destination, rather, they
are a hop-by-hop acknowledgement of messages transmitted be-
tween two connected nodes. When a node receives a complete
message from another node, it sends an acknowledgement packet
consisting of the 64-bit Message Identification Number, 16-bit Node
Identification Number, and 16-bit Message Status. The Message
Identification Number is the received message’s message ID. The
Node Identification Number is the node that received the message.
The Message Status block permits adding reliability in future work.
The Message Status indicates if a node received a message success-
fully. If the message transfer is unsuccessful, then Message Status is
zero. We do not retransmit such messages, but such reliability may
be a desirable future enhancement and is supported by the header.

After the transmitting node determines message priority, the
node fetches the first message. A node transmits the complete mes-
sage and waits for an ACK before sending the next message. The
receiving node queues the message’s packets in a message reception
buffer. The receiving node maintains a message reception buffer for
each node that is connected. Each connection’s receiving buffer can
buffer only one message. When a message is complete, the receiving
node transmits an ACK. RouteInput handles message reconstruc-
tion and ACK generation. Upon receiving the ACK, the transmitting
node transmits the next message. The Recv<Protocol> function
handles ACK reception. If the connection breaks, then the node
resets the message reception buffer for that connection. A node
considers a connection broken when the node does not receive any
packets from that neighbor for two beacon intervals. When a node
does not receive a complete message, it deletes the partial message.
As aresult, nodes do not forward partial messages.

Deleting partial messages may seem wasteful, but dropped mes-
sages due to a lost packet occurs infrequently (e.g. less than 0.1% of
the time in the Helsinki scenario).

While ACKs improve link efficiency, they also have limitations.
First, a node requires a large link layer buffer because the buffer
must store all of the packets contained in a message. When the link
layer’s packet buffer exceeds the packet limit, the node removes

the newest packets from the queue. As a result, those packets fail
to transfer causing messages to drop. ns-3’s link layer limits the
number of packets that can be stored in the buffer, so the scenario
configuration file must increase the link layer’s buffer to accom-
modate the expected message sizes. Second, the link layer buffer
deletes packets based on a time-limit. When a packet exceeds the
time-limit, the link layer buffer deletes the packet. For the purposes
of this work, the example scenarios set the link layer buffer to the
size of the node’s message buffer. The scenarios set the packet queue
time-limit to two beacon intervals because two beacon intervals
correspond to a dropped connection.

4.5 Message Generation

The DTN Application generates message traffic using the DTN
Packet Header, and is adapted from the On-Off Application. The
DTN Application generates UDP packets with the DTN Packet
Header. The message size parameter in bytes and packet size de-
termines the number of generated packets. The DTN Application
generates one message according to the entered parameters. The
Message Identification Number uses the source Node Identification
Number and message generation time. If a scenario requires more
than one message, then the scenario must include multiple DTN
Application message generators.

Since future work may use packets instead of messages for data
traffic, our ns-3 DTN protocol implementation is backwards compat-
ible with raw UDP packets. When a node generates a UDP packet
that does not have the DTN Packet Header, the DTN router on that
node creates a DTN Packet Header for that data packet. RouteInput
handles DTN Packet Header generation for standard UDP packets.
The Message Identification Number uses the packet’s generation
time in microseconds and the packet’s source Node Identification
Number to generate the Message Identification Number. A node
then treats each packet as an individual message, permiting ns-3’s
default UDP packet generators to work with the DTN protocols.

5 NODE DISCOVERY

DTNs do not have constant connectivity, so nodes must discover
other nodes to initiate a connection. Unlike ns-3, the ONE simulator
handles node discovery independently of any routing protocol. As
a result, the ns-3 DTN protocols must include a node discovery
mechanism.

In PacketEpidemic, nodes transmit BEACON control packets at
a specific time interval for node discovery. The BeaconInterval
defines the frequency of beacon transmission. To ensure that all
nearby nodes can receive the beacon, the node broadcasts a beacon
using the network’s broadcast address. Nodes are likely to be syn-
chronized in sending broadcasts, resulting in lost beacons due to col-
lisions. In order to prevent synchronization among nodes, a uniform
random variable staggers the beacons. The BeaconRandomness vari-
able defines the upper bound of the uniform random distribution
to add to the base beacon interval. Since each beacon starts the ex-
change process between nodes, nodes with many packets buffered
may already be exchanging packets when the next beacon interval
occurs. The HostRecentPeriod prevents hosts from re-exchanging
redundant control packets [2], however nodes with large buffers
will exceed the HostRecentPeriod used PacketEpidemic resulting
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Figure 5: DTN MessageType Header

in the nodes re-exchanging control packets and messages while
already transferring messages. This causes messages to be sent and
re-sent multiple times wasting bandwidth.

Our Epidemic implementation also uses beacons for node dis-
covery. A node broadcasts beacons at a set interval plus a random
delay to minimize beacon collisions. However, we do not use a
HostRecentPeriod to prevent hosts from re-exchanging redun-
dant control packets, instead each node remembers the neighbors
with which it is currently in contact. Every time a node receives
a control packet or data packet from another node; it updates its
record of connected nodes. A node considers a connection broken
when the node does not receive anything from the neighbor for
two beacon intervals.

A node can have more than one radio interface and IP address,
so IP address is not a sufficient identifier to prevent two nodes from
restarting a connection when they detect the second radio interface.

The BEACON control packet is a MessageType header with the
field set to BEACON. The MessageType header field indicates the type
of control packet. Since a node does not know whether another
node has more than one IP address, the beacon must include the
Node Identification Number. Therefore, the MessageType header
includes the 16-bit Node Identification Number. Figure 5 illustrates
the MessageType Header. ns-3 provides a unique number to every
node in a simulation. A node uses the Node Identification Number to
determine whether a node is considered connected. If a node is not
connected, then the node adds the Node Identification Number with
a timestamp to its list of connected nodes. Then, the node continues
the control packet exchange. If the Node Identification Number is
in the list of connected nodes and the connected timestamp does
not exceed two beacon intervals, then the node ignores the BEACON.
However, every data packet and control packet other than BEACONs
update the connection timestamp. A BEACON changes the timestamp
only when the timestamp exceeds two beacon intervals because it
is considered as a new connection.

6 EPIDEMIC LOGIC

The ns-3 Epidemic control logic performs four main steps as shown
in Figure 6. After receiving a BEACON, nodes exchange REPLY and
REPLY_BACK control packets. REPLY and REPLY_BACK control pack-
ets are the summary vectors discussed in [11]. The goal of sending
message summaries is to avoid sending messages that the other
node already contains in its buffer. Since both nodes are likely
to send a response to a beacon at the same time, an anti-entropy
session prevents node responses from colliding. The node with
the lower IP address sends its message summary first as a REPLY
packet. When the node with the higher IP address receives the
REPLY packet, it sends a response using the REPLY_BACK packet. Af-
ter a node receives the list of messages that the other node contains,
the node sends messages that the other node does not have in its
buffer.

BEACON

REPLY

REPLY_BACK

Messages
O >

Figure 6: Epidemic Control Packet Exchange Sequence

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

64-bit Message Identification Number

32-bit Hop Count

Figure 7: EpidemicHeader

6.1 Message Identification and Limits

Since our implementation manages messages instead of packets,
we use a different EpidemicHeader than PacketEpidemic [2]. Fig-
ure 7 illustrates the EpidemicHeader. First, the 64-bit Message
Identification Number from Section 4 replaced the 32-bit packet
identification number. Since the Message Identification Number
includes the source node and timestamp of message generation, we
do not use a separate timestamp field.

The ONE uses hop limits and message Time to Live (TTL) to
reduce network resource consumption. The lower 48-bit portion of
the Message Identification Number permits the routing protocol
to remove expired messages from a node’s buffer. When a node
receives a message, the node checks the timestamp against the
maximum age of a message. If the timestamp exceeds the amount
of time a message can live, then the node discards the message. The
EpidemicHeader 32-bit hop count field is used limit the number of
hops that a message can traverse. When nodes generate a message,
they initialize the hop count to the maximum number of hops
allowed. At each hop, the node decrements the hop count and
when the hop count reaches zero, the message is discarded.

6.2 Control Packet Identification

The MessageType Header in Figure 5 identifies control packets.
Since the ONE simulator uses shared data structures to exchange
routing information it did not implement control packets. In our
implementation, control packets are not messages (the do not have
a DTN message header). Control packets share routing specific in-
formation between two neighboring nodes. The 8-bit Message Type
field indicates the type of control packet. For Epidemic, control pack-
ets are BEACON, ACK, REPLY, and REPLY_BACK. The MessageType
Header encapsulates the control packets in order to identify the
control packet. When a node receives a packet, it checks the Mes-
sage Type field for the packet type to call the appropriate packet
header class.

6.3 Summary Vector

While Epidemic uses the same control packet sequence as Pack-
etEpidemic, the SummaryVectorHeader in Figure 8 differs. The
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Figure 8: Epidemic SummaryVectorHeader

SummaryVectorHeader defines REPLY and REPLY_BACK control pack-
ets. We use a 64-bit Message Identification Number in place of
packetEpidemic’s 32-bit packet identification number. PacketEpi-
demic’s 32-bit Summary Vector Length counts all of the packets
held by a node’s buffer. In our Epidemic implementation, the 16-bit
Summary Vector Length counts the number of Message Identifi-
cation Numbers in the SummaryVectorHeader. A 16-bit unsigned
integer is large enough cover a SummaryVectorHeader. Since the
MessageType Header encapsulates the SummaryVectorHeader, a
node identifies the other node using the Node Identification Num-
ber instead of the IP address because nodes can have more than
one IP address.

PacketEpidemic did not support control packet fragmentation. In
order to support fragmentation, the Fragmentation Block identifies
whether there are more SummaryVectorHeader packets. When the
Fragmentation Block is one, more SummaryVectorHeader packets
remain. When the Fragmentation Block is zero, that packet is the
last SummaryVectorHeader. Once a node receives one with the
Fragmentation Block set to zero, the node continues the message
exchange sequence. The control packet fragmentation can tolerate
packet loss if the lost packet had the fragmentation block set to one,
but the fragmentation protocol does not support retransmission of
control packets. If the lost control packet had the fragmentation
block set to zero, then the control packet sequence would stop until
a beacon restarts the exchange sequence.

7 EVALUATION

Our primary interest in implementing DTN protocols in ns-3 is
to gain fidelity and account for the cost associated with control
message exchanges and the overhead of layer-2 protocols, which
can not be simulated in the ONE and other popular DTN simulators.
With this in mind, our reference point is the performance of the
same protocol in the ONE simulator. We note that this comparison
would be impossible without support for segmenting messages into
multiple packets, due to the use of relatively large messages as the
base unit of transmission in the ONE and other DTN simulators.
We compare the protocols using three different mobility scenarios,
all of which are run in the ONE, which outputs and ns-2 mobility
trace which in turn is input to ns-3. In this way, while there is still
randomness in the mobility, there is no difference in the mobility of
the nodes between the two simulators. Each parameter set is run 10
times with different seeds for the random number generator. The

Helsinki mobility scenario is an urban environment, which is the de-
fault scenario for the ONE simulator and hence appears commonly
in DTN simulation literature. Bold Alligator is our interpretation
of a US Marine Corps exercise, and Omabha is our interpretation of
the historic amphibious assault at Omaha Beach during World War
II. While we do not have room here to fully specify each scenario,
they are presented in detail in LT Mauldin’s master’s thesis [5].

7.1 Helsinki

Table 1 shows that ns-3’s Epidemic returns lower Message Delivery
Ratio (MDR), higher average latency, and lower message replication
overhead. Both simulators show that Epidemic’s MDR increases
as buffer size increases. Link layer overhead and control packets
reduce available bandwidth to share messages. The ONE does not
include the time or bandwidth consumed by control packets, so
the ONE version increases message replication because nodes have
more time to share messages. ns-3’s increased sensitivity to trans-
mission speed and higher latency highlights the impact of the added
overhead.

7.2 Bold Alligator

In ns-3 and the ONE, Epidemic’s MDR and average latency increase
asymptotically with buffer size. Epidemic’s average hop count in-
creases from the 5 Megabyte (MB) to 10 MB buffer, but Epidemic
shows minimal change in average hop count for larger message
buffers in both simulators. Message replication overhead in the
ONE and ns-3 follow the same trend. Larger message buffers return
minimal change in message replication overhead.

While both versions of Epidemic share trends, ns-3 consistently
returns lower MDR, higher average latency, and lower message
replication overhead. To illustrate this observation, Table 2 contains
the percent difference between ns-3 and the ONE. ns-3’s MDR is
66% to 74% percent lower than the ONE. Average latency is 52%
to 108% higher. As buffer size increases, the difference in average
latency between ns-3 and the ONE increases. Message replication
overhead is 19% to 31% lower in ns-3. Larger message buffers and
higher speed radios increase the message replication overhead
performance gap between simulators.

7.3 Omaha

Epidemic’s MDR and average latency increase asymptotically with
buffer size. Message replication overhead decreases with larger mes-
sage buffers, the ONE shows a steep decrease compared to ns-3’s
shallow decrease in message replication overhead. Both versions of
Epidemic show that average latency increases asymptotically with
larger message buffers. Epidemic’s performance in ns-3 is close to
the ONE in Table 3. ns-3’s MDR is within 35% of the ONE, and the
simulators match at several data points. At small buffer sizes, ns-3
has lower latency than the ONE, but large message buffers show
ns-3 has higher latency. With respect of message replication over-
head, ns-3’s message replication overhead is 60% to 83% lower than
the ONE. Higher transmission speeds increase the performance gap
in message replication overhead between ns-3 and the ONE.
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Table 1: Helsinki Simulator Performance Difference

MDR Average Latency Message Replication Overhead Ratio
5MB | 10MB | 25MB | 50 MB | 100MB | 5MB | 10MB | 25MB | 50MB | 100MB | 5MB | 10 MB | 25 MB | 50 MB | 100 MB
6 Mbps -62% -70% -78% -78% -77% -2.8% 27% 72% 82% 73% -27% -11% 50% 35% 43%
12 Mbps | -32% -45% -56% -62% -61% -27% -5.3% 48% 82% 99% -56% -50% -27% -15% -14%
24 Mbps | 11% -10% -25% -31% -36% -38% -23% 23% 66% 105% -69% -68% -59% -55% -49%
36 Mbps 34% 12% -2.7% -12% -20% -44% -29% 12% 56% 95% -73% -73% -69% -67% -62%
54 Mbps | 50% 38% 17% 8.9% -4.2% -47% -32% 6.8% 42% 80% -76% -77% -76% -76% -72%
Table 2: Bold Alligator Simulator Performance Difference
MDR Average Latency Message Replication Overhead Ratio
5MB | 10MB | 25MB | 50MB | 5MB | 10MB | 25MB | 50MB | 5MB | 10 MB | 25 MB 50 MB
12 Mbps | -77% -74% -73% -74% 60% 66% 86% 90% -19% -25% -26% -27%
24 Mbps | -74% -71% -69% -70% 58% 56% 96% 99% -21% -28% -29% -29%
36 Mbps | -72% -70% -67% -68% 52% 60% 92% 108% -21% -32% -29% -31%
54 Mbps | -71% -69% -66% -67% 53% 60% 89% 100% -30% -32% -31% -31%
Table 3: Omaha Simulator Performance Difference
MDR Average Latency Message Replication Overhead Ratio
5MB | 10MB | 25MB | 50 MB | 100MB | 5MB | 1I0MB | 25MB | 50MB | 100MB | 5MB | 10 MB | 25 MB | 50 MB | 100 MB

6 Mbps 0% -16% -25% -31% -35% -27% -17% 8.8% 26% 43% -74% -73% -60% -61% -65%
12 Mbps 10% -8.1% -15% -21% -26% -35% -22% 0% 13% 33% -77% -75% -65% -68% -71%
24 Mbps | 19% 0% -15% -16% -20% -39% -30% -10% 3.7% 29% -79% -79% -69% -74% -75%
36 Mbps 23% 0% -9.1% -11% -16% -42% -29% 12% 5.7% 29% -80% -79% -72% -75% -78%
54 Mbps | 29% 1.9% -8.8% -13% -17% -41% -30% -9.1% 3.2% 26% -83% -81% -75% -78% -79%
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Figure 9: Scenario aggregate performance

7.4 Aggregate Scenario Performance

This section compares the overall performance of ns-3 and the ONE
using MDR, average latency, average hop count, and message repli-
cation overhead. The bar graphs are an average of all buffer sizes,
transmission speeds, and protocol data points for each scenario.
Each bar graph uses a 95% confidence interval.

Figure 9(a) compares aggregate protocol and scenario MDR be-
tween the ONE and ns-3. Within Bold Alligator, ns-3 delivers 61%
fewer messages than the ONE, and 24% fewer messages in Omaha.
ns-3 delivers 17% fewer messages in Helsinki. Across all scenarios
and protocols, ns-3 delivers 31% fewer messages than the ONE.

Figure 9(b) compares aggregate average latency for protocols
and scenarios between simulators. Epidemic’s average latency is
21% higher in ns-3 than the ONE. In relation to network overhead

in Figure 9(c), protocols with higher message replication overhead
tend to return a smaller difference between simulators. Helsinki’s
average latency in ns-3 is 202% higher than the ONE. Bold Alliga-
tor’s average latency is 160% higher in ns-3 and Omaha’s average
latency is 53% higher in ns-3. Across all scenarios and protocols,
ns-3’s average latency is 119% higher than the ONE.

Unlike MDR and average latency, message replication overhead
in Figure 9(c) displays different trends between military and urban
scenarios. ns-3 returns lower message replication overhead than
the ONE by 61%. However, ns-3’s message replication overhead is
88% higher in Bold Alligator and 2.5% higher in Omaha. We note
that the ns-3 protocols increase message replication overhead due
to messages circling within clusters of nodes. The ONE protocols,
except for Epidemic, do not have this behavior because nodes check

75



Implementation of Epidemic Routing with IP Convergence Layer in ns-3
J. Rohrer, A. Mauldin

whether a message traversed the other node. If the message already
traversed the other nodes, then the node does not transmit the
message. Helsinki does not form node clusters, so ns-3’s Helsinki
does not return the higher message replication overhead.

Messages circling within clusters does occur with the ONE’s
Epidemic, so the ns-3’s message replication overhead is 65% lower
than the ONE. Across all scenarios and protocols, ns-3’s message
replication overhead is 5% higher than the ONE.

In summary, ns-3 delivers fewer messages and experiences higher
average latency than the ONE. Protocols that share more data to
make routing decisions tend to deliver fewer messages in ns-3 than
the ONE. Message replication overhead depends on node mobility
due to implementation differences. Scenarios that form clusters
of nodes return higher message replication overhead in ns-3. Sce-
narios that do not form clusters of nodes return lower message
replication overhead in ns-3.

8 CONCLUSIONS

ns-3 and the ONE employ different levels of abstraction to simulate
network protocols. The ONE focuses on simulating the behavior
of opportunistic routing protocols, so the ONE abstracts every-
thing below the routing layer. In contrast, ns-3 simulates the entire
network stack. The ns-3 routing protocols require packets for mes-
sages, node discovery, and sharing routing information between
nodes. The ONE does not include link layer overhead, packet header
overhead, or control packet overhead.

The ONE sends DTN data as a single object called a message, and
the ONE shares routing information by directly accessing commu-
nicating nodes’ memory data structures. Our ns-3 DTN protocols
assume an IP convergence layer adapter by defining groups of pack-
ets that compose a DTN message. Control packets share routing
information between nodes in ns-3. When comparing the effec-
tive throughput of messages transmitted between two connected
nodes, the addition of packet headers and link layer overhead re-
duces effective throughput by 40% to 70% relative to the ONE’s
radio bandwidth. Depending on the scenario and protocol, packet
headers added during message segmentation in ns-3 make up 2% to
5.5% of all transmitted data. Depending on the routing protocol and
scenario, ns-3’s control packets can consume a significant portion
of transmitted data. Control packets make up 0.1% to 33% of all
transmitted data in ns-3. Protocols that share less information for
routing decisions transmit fewer/smaller control packets. While
control packets contribute to network overhead, message replica-
tion represents a larger fraction of network overhead. For protocols
that use the same message limit algorithm, ns-3 protocols with
more control packets consume more power.

When comparing the ONE and ns-3 DTN protocols, the ns-3
protocols returned 31% lower MDR and 119% higher average latency
aggregated across all protocols and scenarios. Message replication
overhead varies between scenarios. In Helsinki, the ns-3 protocols
return lower message replication overhead than the ONE.

Both simulators demonstrate sensitivity to buffer size. Larger
message buffers return higher MDR. In Helsinki, larger message

buffers reduce average latency. Bold Alligator and Omaha show that
larger message buffers increase average latency. ns-3 shows greater
sensitivity to transmission speed than the ONE. In ns-3, higher
transmission speeds return higher MDR, lower average latency,
and increase message replication overhead. Higher transmission
speeds in the ONE return small changes in MDR, slightly reduces
average latency, and increases message replication overhead. ns-3’s
increased sensitivity to transmission speed is due to control packets,
packet headers, and link layer overhead.

Based on our findings, our future DTN protocol development
will continue in ns-3 instead of the ONE. While the ONE permits
faster development of new protocols, and ns-3’s simulations take
25 to 50 times longer than the ONE, and ns-3 requires a separate
program to analyze the large trace files; the ONE’s abstraction may
not reflect actual protocol performance. The sharing of routing
information via shared data structures subsidizes performance of
protocols with very large control packets. Considering control pack-
ets transmission impacts protocol performance analysis and link
layer overhead significantly, and also significantly reduces message
replication, as shown in our ns-3 results.
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