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ABSTRACT 

This report explores the merits of light aircraft carrier (CVL) design 

implementation in future U.S. Naval Force composition and how set-based 

design (SBD) can be used to produce the ideal CVL design for a future maritime 

conflict scenario. The scenario is based on the Naval Postgraduate School’s 

“Maritime War—2030” scenario written by Captain Jeff Kline. 

The size and expense of Nimitz and Ford class aircraft carriers represent 

a strategic vulnerability in future maritime conflict. Using smaller aircraft carriers 

will reduce the risk to grand strategy as well as life cycle and operating costs, 

provided a light aircraft carrier can facilitate the assorted rotary wing, fixed wing, 

electronic attack, and unmanned systems required for the conflict. 

SBD thinking can be used to produce a feasible design for a CVL by 

mapping a design space to meet the needs of a potential future conflict. This 

thesis examines the trade space in major design areas such as tonnage, aircraft 

launch method, propulsion, and performance in order to illustrate the merits of 

SBD in designing naval assets for a future force. 
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EXECUTIVE SUMMARY 

This report seeks to use set-based design (SBD) principles and 

mathematical modeling to create a method by which one can, given a set of 

existing ship design prototypes, narrow the design space to arrive at an optimal 

design solution for a Light Aircraft Carrier (CVL). The design requirements for the 

CVL were derived based on a Maritime-2030 conflict scenario authored in 2016 

by Captain Jeff Kline of the Naval Postgraduate School. Based on this scenario, 

the following stakeholder requirements were derived for the CVL: 

1. Must displace a target objective value of 50,000 tons with a 
minimum objective value of 40,000 tons. 

2. Must achieve a target objective for speed of 30 knots with a 
minimum objective value 27 knots. 

3. Must be capable of supporting a minimum of 48 sorties per day. 

4. Must be able to support all variety of aircraft supported by a Ford 
class CVN, i.e., fixed wing strike, fixed wing electronic attack, rotary 
wing, and unmanned aerial systems. 

The method of analysis was developed by collecting a sample of all 

aircraft-carrying vessels worldwide to build a design space and then examining 

them for hull design, power plant shaft horsepower (SHP) output, and flight deck 

design. The hull design optimization was the subject of the mathematical 

modeling efforts. The hull designs for each ship were graphed and mapped in 

terms of optimization coefficients used in hydrodynamics and ship design. A 

linear regression was then applied to each set to establish a formula to predict an 

optimal value for each coefficient. Each ship prototype could then be analyzed 

and compared based on its deviation from the ideal coefficient values given the 

design requirements.  

Once the mathematical modeling was complete, it was used in conjunction 

with SBD principles to narrow the design space. Ultimately, the findings show 

that the French design, Charles deGaulle, is the ship that is best suited to the 

Design Reference Mission. It is the ship that meets all of the threshold 



 xvi 

requirement values. The design space was narrowed down to two possible 

candidates: The Charles deGaulle, and the Russian Ovel class aircraft carrier. 

The latter, however, due to its use of a ramp launch system, is not able to 

support the variety of aircraft required for the future of Naval Aviation.  

This report concludes that, for an existing design solution that is a light 

alternative to Ford class CVNs, a design based on the Charles deGaulle is the 

best solution. While the finding itself is subject to the interpretation of the design 

requirements, the method and model developed in the process is feasible for 

selecting an alternative from a design space given a set of stakeholder 

requirements. 

Suggestions for further research include a cost benefit analysis of the CVL 

compared to other ships in the class and of the Ford class. Given that the results 

are based on currently existing designs that are in service, data should be readily 

available. Further refinement to the modeling process is also recommended to 

yield three-dimensional values for the hull optimization coefficients instead of 

two-dimensional gateway values.  

 

Reference 
Kline, Jeffery. 2016. “Maritime War of 2030.” Naval Postgraduate School, 

Monterey, CA. 
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I. INTRODUCTION 

This report addresses the feasibility of applying set-based design (SBD) 

and mathematical modeling to recommend a design for a light aircraft carrier 

(CVL) if the United States were to commission such a ship as part of a future 

force structure. To approach this topic, this report outlines a possible future 

maritime conflict scenario, offers a justification of why CVLs would be valuable 

assets in such a scenario, and illustrates how SBD thinking could be used to 

design a CVL that best facilitates the role of naval aviation in the future.  The final 

result will be a SBD based method to narrow a design space of currently existing 

ship designs and a recommendation as to which of a given set of designs is most 

suited to a Design Reference Mission and set of stakeholder requirements. 

A. GEO-POLITICAL SITUATION 

The Design Reference Mission (DRM) for the ship that is the subject of 

this report is predicated on a maritime conflict scenario authored by Capt. Jeff 

Kline of the Naval Postgraduate School’s Operations Research department. 

According to Capt. Kline’s scenario, China has continued its trend of military, 

political, and economic expansion, having terraformed island facilities in the 

South China Sea to support military assets to control the flow of goods, 

particularly oil, through the region, despite protest from nations, such as the 

United States and the Philippines. Additionally, China has threatened to assume 

governorship of the island of Natuna Basar. Increase energy trade and a more 

economically liberal Chinese government has led to a non-aggression pact 

between China and Taiwan, making Taiwan a de-facto Chinese military and 

economic federation (Kline 2016).     

Also in Capt. Kline’s maritime conflict scenario, the Russian economy has 

stabilized through energy trade, and it has maintained control of the Crimean 

Peninsula. President Putin’s successor maintains strong rhetoric about building a 

greater Russia through expansion given a warming Arctic and the reclamation of 
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traditional Russian lands, particularly Gotland in the Baltic Sea. Additionally, 

Russia is strengthening its forces in the Kuril Islands in the Sea of Okhotsk. This 

is done in an effort to extend maritime control from the two islands to support its 

ships patrolling the entrance to the Arctic passage (Kline 2016). 

Also in the Pacific region, tensions on the Korean Peninsula remain high 

due to North Korea’s ballistic and cruise missile capabilities. In Capt. Kline’s 

scenario, Japan and the United States have strengthened ties in order to counter 

the expansionism of China and Russia. The United States has also strengthened 

ties with Singapore, Okinawa, and the Philippines for the purposes of ship and 

aircraft stationing to maintain a strong presence in the region. Australia has also 

responded to the growing tension by strengthening their air and naval forces, as 

well as allowing for the stationing of a U.S. battalion landing team in Darwin 

(Kline 2016). 

B. CVL MISSION REQUIREMENTS 

Given the scenario described in Section A, the future of maritime conflict 

will be in the littoral and coastal environments with the goal of achieving 

economic and political influence with minimal destruction. This can be achieved 

with detachments of rotary wing (RW) and unmanned aerial vehicles (UAVs). 

With the evolution of technology, all future conflict will see an increased use of 

electronic and information warfare; as such, aircraft such as E-2s, EA-18Gs, and 

drones such as the FIRESCOUT will have an ever-increasing value to fleet 

commanders. Capital ships will still be necessary for political deterrence through 

the threat of power projection with FW assets; however, in a future conflict 

wherein we can expect the enemy to employ unconventional tactics, such as 

swarm, use of fewer and larger capital ships (Gerald R. Ford-sized CVNs) breeds 

an inherent vulnerability with respect to Centers of Gravity. Smaller aircraft 

carriers and LHA/LHDs can potentially accomplish many of the same strategic 

objectives with less risk to grand strategy and are more cost effective. 
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1. Projected Operational Environment 

Naval aviation assets will be required to operate in three main 

environments. The first is the traditional blue water battlespace to maintain 

control of the seas and protect the movement of goods and services. The second 

is the littoral environment to perform Anti Access/Area Denial (A2/AD) functions 

in places like the South China Sea, the Baltic Sea, and the Sea of Okhotsk. 

Finally, naval aviation will be required to operate in an environment where it can 

project power ashore without undue risk to the aircraft carrier. 

2. Potential Tasking 

CVL missions will be both offensive and defensive in nature. Based on my 

interpretation of the Maritime-2030 scenario, possible offensive mission 

scenarios for aircraft embarked aboard CVLs include: 

• overland power projection 

• establishment and maintenance of air superiority 

• strike coordination and reconnaissance (SCAR) in both overland 
and ocean environments 

• electronic attack 

Defensive mission scenarios include displays and use of force to protect sea 

lanes, deter regional aggression, and protection of amphibious landing forces. 

Other missions include humanitarian assistance and disaster relief (HA/DR) and 

command and control (C2) for both U.S. and multinational forces. 

It will be necessary for a CVL to be able to defend against air, surface, 

and subsurface threats. The threats can range from capitol ships, advanced 

aircraft, and missile systems to FIAC and suicide crafts and mines. The origin of 

these threats can range from highly organized and sophisticated state actors to 

non-state sponsored terrorist organizations. Tactics can range from conventional 

naval tactics, such as an exchange of missile salvos in open ocean, to swarm 

and suicide tactics. 
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3. Mission Definition 

All necessary operational activities for a CVL are used in order to meet the 

requirements for mission success. Each mission capability is defined and 

categorized according to Naval Power 21 (England et al. 2002). Mission 

capabilities are illustrated using the Joint and Naval Capabilities Terminology List 

and are presented in Table 1. 

The Naval Power 21 model is composed of both Sea Power 21 and 

Expeditionary Maneuver Warfare capabilities. This model was chosen because 

the future maritime conflict outlined in the previous section will involve significant 

support to expeditionary forces. It will be necessary for the CVL to perform this 

function as well as the blue water missions.   

Table 1.    Mission Capability Areas. Adapted from Assist. SECNAV 
(RDA) Chief Engineer (2007). 

Sea Shield 
Mission Capability Definition Mission Sub-Capability 

Force Protection 

Preventative measures 
taken against hostile 
actions against DOD 
personnel, resources, 
facilities, and critical 
information. Force 
Protection does not 
include actions taken to 
defeat the enemy or 
protect against accidents, 
weather, or disease.  

Protect against SOF and 
terrorist threats 

Mitigate effects of 
CBRNE 

Surface Warfare 

The ability to conduct 
maritime operations in 
order to destroy or 
neutralize enemy naval 
surface forces and 
merchant vessels. 

Provide self-defense 
against surface threats 

Conduct offensive 
operations against 
surface threats 
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Sea Shield 
Mission Capability Definition Mission Sub-Capability 

Undersea Warfare 

The ability to conduct 
operations to establish 
battlespace dominance in 
the underwater 
environment, which 
permits friendly forces to 
accomplish a full range of 
potential missions and 
denies an opposing force 
the effective use of 
underwater systems and 
weapons. It includes 
offensive and defensive 
subsurface, 
antisubmarine, and mine 
warfare operations.   

Provide self-defense 
against subsurface 
threats 

Neutralize open ocean 
submarine threats 

Neutralize submarine 
threats in the littorals 

Counter minefields from 
deep to shallow water 

Theater Air and Missile 
Defense 

All defensive measures 
designed to destroy 
attacking enemy aircraft 
or missiles in the Earth’s 
envelope of atmosphere, 
or to nullify or reduce the 
effectiveness of such 
attacks (JP 1–02). The 
integration of joint force 
capabilities to destroy 
enemy theater missiles in 
flight or prior to launch or 
to otherwise disrupt the 
enemy’s theater missile 
operations through an 
appropriate mix of 
mutually supportive 
passive missile defense, 
active missile defense, 
attack operations, and 
supporting command, 
control, communications, 
computers, and 
intelligence measures.   

Provide self-defense 
against air and missile 
threats 
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Table 1. (con’t) Mission Capability Areas. Adapted from Assist. 
SECNAV (RDA) Chief Engineer (2007). 

Sea Strike 
Mission Capability Definition Mission Sub-Capability 

Strike 
An attack to damage or 
destroy an enemy 
objective or capability.  

Conduct strike operations 

Conduct special 
operations 

Conduct offensive 
information operations 

Provide aircraft 
survivability 

Strategic Deterrence 

The prevention from 
action by fear of the 
consequences. A state of 
mind brought about by 
the existence of a 
credible threat of 
unacceptable 
counteraction.  

Provide Assured 
Survivability 
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Table 1. (con’t) Mission Capability Areas. Adapted from Assist. 
SECNAV (RDA) Chief Engineer (2007). 

Sea Basing 
Mission Capability Definition Mission Sub-Capability 

Deploy and Employ 

In naval usage, the 
change from a cruising 
approach or contact 
disposition to a 
disposition for battle.  2. 
The movement of forces 
within operational areas.  
3. The positioning of 
forces into a formation for 
battle.  4. The relocation 
of forces and materials to 
a desired area of 
operations. Deployment 
encompasses all 
activities from origin or 
home station through 
destination, specifically 
including the continental 
United States, 
intertheater, and 
intratheater movement 
legs, staging, and holding 
areas.  The strategic, 
operational, or tactical 
use of forces.  

Close the force and 
maintain mobility 

Provide at sea arrival and 
assembly 

Allow selective offload 

Reconstitute and 
regenerate at sea 

Provide Integrated Joint 
Logistics 

The ability to provide 
effective, responsive, and 
efficient movement and 
sustainment capacity, 
exercise control from end 
to end, and provide 
certainty to the supported 
Joint Force Commander 
that forces, equipment, 
sustainment, and support 
will arrive where needed 
and on time in all 
domains.   

Provide sustainment for 
operations at sea 

Provide shipboard and 
mobile maintenance 

Provide force medical 
services 
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Sea Basing 
Mission Capability Definition Mission Sub-Capability 

Pre-Position Joint Assets 
Afloat 

To place ships, 
equipment, or supplies at 
or near the point of 
planned use or at a 
designated location to 
reduce reaction time, and 
to ensure timely support 
of a specific force during 
initial phases of 
operation.   

Integrate and support 
joint personnel and 
equipment 

Provide afloat C2 
physical infrastructure 

Provide afloat forward 
staging base capability 
for joint operations 
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Table 1. (con’t) Mission Capability Areas. Adapted from Assist. 
SECNAV (RDA) Chief Engineer (2007). 

FORCEnet 
Mission Capability Definition Mission Sub-Capability 

Communications and 
Networks/Infrastructure 

An organization of 
stations capable of 
intercommunications, but 
not necessarily on the 
same channel.  

Provide communications 
infrastructure 

Provide network 
protection 

Provide network 
synchronization 

Provide information 
transfer 

Battlespace 
Awareness/Intelligence, 
Surveillance, and 
Reconnaissance 

The systematic 
observation of 
aerospace, surface, or 
subsurface areas, places, 
persons, or things, by 
visual, aural, electronic, 
photographic, or other 
means to obtain 
knowledge and 
understanding of the 
operational area’s 
environment, factors, and 
conditions, to include the 
status of friendly and 
adversary forces, 
neutrals and 
noncombatants, weather 
and terrain, that enables 
timely, relevant, 
comprehensive, and 
accurate assessment in 
order to successfully 
apply combat power, 
protect the force, and/or 
complete the mission.   

Conduct sensor 
management and 
information processing 

Detect and ID targets 

Provide cueing and 
targeting information 

Assess engagement 
results 
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FORCEnet 
Mission Capability Definition Mission Sub-Capability 

   

Command and 
Control/Decision Support 

The exercise of authority 
and direction by a 
properly designated 
commander over 
assigned and attached 
forces in the 
accomplishment of the 
mission. Command and 
control functions are 
performed through an 
arrangement of 
personnel, equipment, 
communications, 
facilities, and procedures 
employed by a 
commander in planning, 
directing, coordinating, 
and controlling forces 
and operations in the 
accomplishment of a 
mission.   

Provide mission planning 

Provide battlespace 
management 
synchronization 

Provide common PNT 
and environmental 
information 

Integrate and distribute 
sensor information 

Track and facilitate 
engagement of time 
sensitive targets 

Track and facilitate 
engagement of non-time 
sensitive targets 
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Table 1. (con’t) Mission Capability Areas. Adapted from Assist. 
SECNAV (RDA) Chief Engineer (2007). 

Expeditionary Maneuver Warfare 
Mission Capability Definition Mission Sub-Capability 

Maneuver 

1. A movement to place 
ships, aircraft, or land 
forces in a position of 
advantage over the 
enemy.  2. A tactical 
exercise carried out at 
sea, in the air, on the 
ground, or on a map in 
imitation of war.  3. The 
operation of a ship, 
aircraft, or vehicle to 
cause it to perform 
desired movements.  4. 
Employment of forces in 
the operational area 
through movement in 
combination with fires to 
achieve a position of 
advantage in respect to 
the enemy in order to 
accomplish the mission.   

Forward presence 

Homeland security 

Informational operations 

Intelligence 

1. The product resulting 
from collection, 
processing, integration, 
analysis, evaluation, and 
interpretation of available 
information concerning 
foreign countries or 
areas.  2. Information and 
knowledge about an 
adversary obtained 
through observation, 
investigation, analysis, or 
understanding.   

Support the 
Commander’s planning 
and decision making 
process 

Maintain comprehensive 
ISR network to support 
multiple concurrent 
expeditory missions 

Facilitate operational 
maneuver and precision 
engagement 

Develop intelligence 
expertise to meet 
evolving challenges of 
the 21st century 
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Expeditionary Maneuver Warfare 
Mission Capability Definition Mission Sub-Capability 

Fires 

The use of weapon 
systems to create a 
specific lethal or non-
lethal effect on a target.   

Joint and multinational 
fires 

Aviation fires 

Logistics – General 
across functional areas 

The science of planning 
and carrying out the 
movement and 
maintenance of forces.   

Sea basing 

Logistics - Supply 

The procurement, 
distribution, maintenance 
while in storage, and 
salvage of supplies, 
including the 
determination of kind and 
quantity of supplies.   

Sea basing 

Logistics - Maintenance 

1. All action taken to 
retain material in a 
serviceable condition or 
restore it to serviceability. 
It includes inspection, 
testing, servicing, 
classification to 
serviceability, repair, 
rebuilding, and 
reclamation.  2. All supply 
and repair action taken to 
keep a force in condition 
to carry out its mission.  
3. The routine recurring 
work required to keep a 
facility in such condition 
that it may be 
continuously used at its 
original or designed 
capacity and efficiency 
for its intended purpose.   

Sea basing 
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Expeditionary Maneuver Warfare 
Mission Capability Definition Mission Sub-Capability 

Logistics - Transportation The carriage of personnel 
and/or cargo.   

Sea basing 

Logistics – Health 
Services 

Logistics area supporting 
the joint force surgeon’s 
health service support 
mission. Includes 
supplying class VIII 
medical supplies, optical 
fabrication, medical 
equipment maintenance, 
blood storage and 
distribution, and medical 
gasses.   

Sea basing 

Command and Control 

The ability to exercise 
authority and direction by 
a properly designated 
commander over 
assigned and attached 
forces in the 
accomplishment of the 
mission. A commander 
performs command and 
control functions through 
an arrangement of 
personnel, equipment, 
communications, 
facilities, and procedures 
to plan, direct, 
coordinate, and control 
forces and operations in 
the accomplishment of 
the mission.   

Communications 

Situational Awareness 

Information Processing 
and Storage 

Interoperability 

New Capabilities 
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Expeditionary Maneuver Warfare 
Mission Capability Definition Mission Sub-Capability 

   

Force Protection 

Preventative measures 
taken to prevent hostile 
actions against 
Department of Defense 
resources, personnel, 
facilities, and critical 
information. Force 
protection does not 
include actions taken to 
defeat the enemy or 
protect against accidents, 
weather, or disease.   

CBRN Sense 

CBRN Sustain 

CBRN Shield 

CBRN Shape 

Aircraft Protection 

Aircraft Survivability 

Missile Defense Systems 

Improve Personal 
Protection 

Improve Personal 
Recovery Training and 
Capabilities 

 

4. Mission Success Requirements 

The operational situation will determine which of the mission sub-

categories listed in Table 1 will need to be completed to determine mission 

success. These sub-categories identify specific functions that, depending on the 

nature of the operation, will translate into operational activities necessary to 

accomplish the mission.   

5. Requirements Decomposition 

This section presents an interpretation of the necessary requirements for a 

CVL based on the DRM. The model developed in Chapter IV can be used by any 

stakeholder regardless of perceived requirements.  

Based on the concept of lessening strategic vulnerability and saving cost, I 

conclude that a viable CVL should be roughly half the tonnage of a Gerald R. 

Ford class CV (about 90-100 kilotons), making it comparable with an LHA/LHD 

class ship. This is appropriate because, given the geopolitical situation described 
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in the Maritime-2030 scenario, the CVL will be called upon to support amphibious 

engagements with Expeditionary Strike Groups in addition to patrolling open 

ocean. The CVL should have a target speed of 30 knots, with a minimum 

acceptable speed of 27 knots so that it can transit quickly to provide crisis 

response.  

Also, given that the CVL will be called upon to support Expeditionary 

Strike Groups, the sortie rate of a CVL must meet or exceed the sortie rate of an 

LHA/LHD class ship. This sortie rate is calculated based on assumptions 

regarding the availability of mission capable aircraft and the number of aircraft 

aboard ship. The America class LHA can carry 30 aircraft (Janes IHS Markit 

2017a); assuming that at any given time 20% of these aircraft are mission 

capable, that leaves 24 aircraft. With a planning factor of 2.0 sorties per aircraft 

per day, that is a total of 48 sorties per day as a minimum acceptable value for a 

CVL. To support the movement of aircraft to achieve this sortie rate, the CVL 

must have a minimum of two flight deck elevators.  

Finally, the CVL must be able to carry all variety of aircraft supported by a 

Ford class CV. This means it must be able to carry fixed wing fighter and attack 

aircraft, propeller and jet powered electronic surveillance and attack aircraft, 

rotary wing aircraft, and unmanned systems.  
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II. SET-BASED DESIGN 

A. HISTORY 

Toyota Motor Corporation implemented its set-based concurrent 

engineering (SBCE), also known as set-based design (SBD), design model in 

1995. Jonathan Chan explains in his 2016 thesis titled “Implementing Set Based 

Design into Department of Defense Acquisition” that SBD operates using delayed 

decisions, ambiguous communication, and the manufacture of numerous 

prototypes in order to ultimately build faster and cheaper cars. Through 

incorporation of SBCE principles, Toyota was able to have prototype models 

enter the production phase months ahead of its competitors at reduced cost 

(Chan 2016).   

Chan further explains that Toyota’s success with SBD garnered attention 

from private industries and government acquisition alike. The U.S. Navy began 

using SBD in 2007 with the preliminary and contract design for the Ship to Shore 

Connector Program. Use of SBD with the Ship to Shore Connector demonstrated 

the viability of the method for shipbuilding and its use is encouraged in the 

shipbuilding acquisitions process (Chan 2016). 

B. SBD DEFINED 

SBD can be defined as engineers and project designers “reasoning, 

developing, and communicating about sets of solutions in parallel and relatively 

independently” (Sobek 1997, 202). A feasible solution is achieved by considering 

many design alternatives and eliminates infeasible alternatives. This method of 

systems engineering allows for adaptable and conceptually robust design 

solutions. Set-based design places an emphasis on use of decentralized 

manufacturing teams to keep humans in the loop when designing intricate and 

complex, large-scale systems, (e.g., ships). 

Set-based design stands in contrast with the traditional acquisition design 

method known as Point Based Design (PBD). An example of PBD is the classic 
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design spiral, where each design iteration attempts to create a solution that 

meets stakeholder requirements. PBD has five basic steps: 

• Define the problem. 

• Generate a large number of design alternatives. 

• Conduct a preliminary AoA leading to a single design concept. 

• Modify the selected concept until stakeholder requirements are 
met. 

• If the selected concept fails to satisfy stakeholder requirements, 
begin again from either step one or two (Singer et al. 2009). 

Figure 1 shows the classic PBD design spiral. 

 

Figure 1.  Classic Design Spiral. Source: Singer et al. (2009). 

Some disadvantages to the PBD method are, first, that it does not always 

produce a globally optimal solution, (i.e., a solution that is as good or better than 

all other feasible solutions). Also, the number of iterations around the spiral are 
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limited by the time and budget available. Thus, there can be a tendency to 

declare a design complete simply for having run out of time, not through having 

achieved an optimal solution (Singer et al. 2009).   

The Toyota-based SBD process has four main features: 

• Define a broad set of design parameters to allow for concurrent 
design. 

• Keep these sets open longer to define tradeoff information. 

• Gradually narrow the sets until a globally optimal solution is 
revealed and refined. 

• Increase the design fidelity as the sets narrow (Singer et al. 2009). 

One of the major differences between this approach and PBD is that in PBD the 

critical interfaces are defined by set parameters early on, which constrains the 

design space before all of the available tradeoff information is obtained. This 

could result in a less-than optimal solution. Figure 2 illustrates the concept of 

narrowing the design parameters.  

 

Figure 2.  Parallel Set Narrowing Process Illustrated by a Toyota Design 
Manager. Source: Ward et al. (1995). 
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Another advantage to the delayed decision making inherent in SBD is the 

effect that it has on life cycle cost. In PBD, decisions are made early on, having a 

great effect on the product despite the limited available knowledge. The delayed 

decision making of SBD has the following effects on the final product: 

• It allows the product to achieve a balance between stakeholder 
requirements and feasibility. 

• It allows for the inclusion of the latest available technology. 

• It allows for tracking of competitive products and changes to 
stakeholder requirements (Bernstein 1997).  

Overall, contrary to the traditional approach of making design decisions 

early and sticking to those decisions to the extent possible, it is clear that the 

SBD method of delayed decision making has great merit.   

C. HOW TO DO SBD 

The execution of SBD can be broken down into three principle concepts:  

• Consider a large number of design alternatives through 
understanding of the design space. 

• Allow specialists to consider the design from their own perspective. 

• Use the intersection between individual sets to optimize a design 
and establish feasibility before commitment. (Singer et al. 2009) 

It is important to consider all aspects of the design, including performance, 

producibility, and acquisition complexity. 

Understanding the design space means defining the feasible regions of 

the space. Once this is established, explore tradeoffs by using multiple designs 

to find alternatives. The system engineer should then communicate the possible 

solutions from these alternatives back to the other design team members and the 

Design Integration Manager (DIM) (Singer et al. 2009). 

Once the design space is mapped and the individual design teams have 

labored on their solutions, it is necessary to integrate the solutions into the larger 

context through intersection. This is done by identifying the intersections of the 
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feasible regions of each group. The goal is to create a smaller set of unified 

global concepts. This process requires an increase in design fidelity over time, 

reducing the design set based on an increased amount of knowledge and detail, 

not from arbitrary decisions and limitations (Singer et al. 2009). Figure 3 

illustrates the SBD/SBCE process. 

 

Figure 3.  Set-Based Concurrent Engineering. Source: Bernstein (1997). 
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III. DESIGN ELEMENTS 

In order to narrow the design space of ship designs, we will evaluate the 

prototypes based on their hull design, power output in terms of shaft horsepower 

(SHP), and their flight deck design. This chapter focuses on the principles of ship 

design and hydrodynamic coefficients with which to optimize hull design.   

A. HULL OPTIMIZATION COEFFICIENTS 

This section defines key coefficients necessary for hull optimization. Later 

sections will explore how to use these coefficients to optimize hull design.   

1. Froude Number 

The Froude number is used in hydrodynamics to determine the resistance 

of a partially submerged object, such as a ship’s hull, moving through the water. 

The Froude number, Fn, is based on the speed-length ratio. It is defined as 

follows (Watson 1998, 168): 

 
where uo is the vessel’s speed, go is, in this case, the force of gravity, and lo is the 

waterline length of the vessel. The Froude number figures into many of the 

relevant calculations necessary in determining the optimum hull design for a ship 

(Watson 1998, 168).   

2. Displacement–Length Ratio 

The displacement–length ratio (DLR) is a measure of how heavy a ship is 

relative to its length at the waterline. DLR is defined as the ratio of displacement 

Δ (expressed in units of long tons displacement) to the length at the waterline L 

(in feet), as follows (Watson 1998, 172): 
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. 
This expression can be used to compare the relative mass of ships. Ships 

with a lower displacement length ratio, i.e., lighter relative to water line length, will 

be lighter and faster, whereas ships with higher displacement length ratios will be 

heavier. Because both numerator and denominator are volumetric, the result is 

non-dimensional (Paris 2015).  

3. Prismatic Coefficient 

The prismatic coefficient Cp is a ratio of the ship’s volume, , to the 

product of its maximum cross sectional area (Ax) and its length L in feet, as 

follows (Saunders 1957, 192): 

. 
The prismatic coefficient is a value between 0 and 1 that defines how the 

ship’s displacement is distributed along the hull. It is used to determine the level 

of hull drag and wave-making resistance by measuring the rate of change in the 

cross sectional area of a ship’s hull (McClary 2017).  

4. Length-to-Beam Ratio 

The length-to-beam ratio balances wave-making resistance with carrying 

capacity and internal space. A low length-to-beam ratio yields a wider vessel with 

a more spacious interior. A high length-to-beam ratio yields a narrower vessel 

with less resistance moving through the water. Combatants typically have length-

to-beam ratios ranging from 7 to 10 (Watson 1998, 65). 

5. Beam-to-Draft Ratio 

The beam-to-draft ratio is a comparison between the amount of internal 

cargo space and how shallow the ship can operate. The relationship between 

these two factors will affect bottom design and stability. The appropriate beam-to-
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draft ratio will be somewhat determined by the length, but most combatants have 

a beam-to-draft ratio between 2.5 and 3.5 (Watson 1998, 70). 

6. Maximum Section Coefficient 

The maximum section coefficient is the comparison of the area largest 

midship cross section to a rectangle. A higher maximum section coefficient 

indicates a more box like design, whereas a lower coefficient indicates a more 

cut away design. The maximum section coefficient Cx is defined as follows, 

where T represents draft and B represents (Saunders 1957, 902): 

. 
Aircraft carriers are typically very box-like in their midship cross section; this 

analysis assumes a maximum section coefficient of 0.99 for all the aircraft 

carriers examined. 

7. Block Coefficient 

The block coefficient, CB, is defined as the ratio of the ship’s underwater 

volume by the volume of a rectangular prism with dimensions’ length, beam, and 

draft. It is a measure of the ship’s slenderness or fullness of form.  It is defined as 

follows (Saunders 1957, 192): 

. 

B. OPTIMUM COEFFICIENT VALUES 

This section defines the range of optimal values for each of the 

coefficients outlined previously. The value ranges are generalized to combatant 

ships. A few are specific to aircraft carriers, but some interpretation of data will be 

required to determine the optimum trade off values. 
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1. Design Lanes of CP and Displacement–Length Ratio 

Optimum values for the prismatic coefficient and the displacement–length 

ratio can be determined using a set of design lanes created by Captain H.E. 

Saunders in his 1957 publication, Hydrodynamics in Ship Design: Volume Two.    

The upper design lane is bounded by the displacement–length quotient 

and the fatness ratio (not used in this report), while the lower is bounded by 

prismatic coefficient values. The model for the ships compared in this report uses 

the upper design lane, for which normal combatants usually have a DLR value 

between 40 and 100. Captain Saunders admits, however, that unique design 

requirements may cause a ship’s design parameters to fall outside of the lanes 

outlined in Figure 4. For example, an ice breaker may have a fatness ratio that 

falls well above the established design lanes due to the nature of its mission 

(Saunders 1957, 466).   
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Figure 4.  Design Lane of Prismatic Coefficient, Displacement–Length 
Ratio, and Fatness Ratio. Source: Saunders (1957, 466). 

2. Maximum Section Coefficient, Draft, and Beam 

Optimal values for these parameters are highly subjective and dependent 

on the nature of the mission, partially because variations in CX itself causes little 

change in hull resistance. Ships intended for higher speeds may utilize higher 

values for CX and sacrifice beam length in order to lower the longitudinal 

waterline curvature and reduce wave-making resistance. Ships that require high 

internal storage space, deck space (such as a flight deck), and high stability may 

use lower CX values (Saunders 1957, 468). Aircraft carriers fall more into the 

latter category and tend to have CX values closer to 0.99.   
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The optimum beam-to-draft ratio is 2.0. This is the most efficient surface 

area per volume and yields a semi-circular hull. This is rarely achieved, however, 

and most combatants have a beam-to-draft ratio between 2.5 and 3.0. Length-to-

beam ratio is a tradeoff between resistance and stability. Higher length-to-beam 

ratios are favored in combatants, ranging from 7.0 to 10.0. Figure 5 shows 

Captain Saunders’ graph featuring a mean value for length and beam based on 

successful ship designs of the past.  

 

Figure 5.  Plot of Length–Beam Ratio and Beam on Ship Length. Source: 
Saunders (1957, 470). 

While Figure 5 represents a range of optimal values based on past ships, 

this is not to say that a ship design cannot fall outside of the values presented if 

the DRM calls for it.  
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IV. MODEL DEVELOPMENT 

This report proposes a solution based on currently existing ship designs 

due to constraints on time and resources. Data was collected using Janes IHS 

Markit regarding aircraft carrying vessels from around the world. The Appendix 

contains a full compilation of the collected data. This section contains an analysis 

of the data based on the factors presented and explained in sections A and B.   

A. MATHEMATICAL MODEL 

We construct the mathematical model by analyzing the data presented in 

the Appendix and suggesting a regression formula or applicable range as 

needed. Table 2 shows a summary of the initial data collected.  

Table 2.   Baseline Data 

 
 

Figure 6 shows the displacement to length ratio as a function of the 

Froude number. Saunders’ design lanes are also shown in Figure 6 for 

reference. Existing data do not fall within the lanes, which suggests that a 

different model should be applied. A linear regression, also shown in the figure, 

seems to fit the data very well within the range of applicability of the Froude 

numbers considered, namely between approximately 0.20 and 0.40. 
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Figure 6.  Displacement–Length Ratio vs. Froude Number 

From the data, the linear relationship is: 

. 
In this equation, the displacement ∆ is in long tons, the length L is in feet, and the 

Froude number Fn is dimensionless. 
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Figure 7 shows the prismatic coefficient as a function of the Froude 

number, along with Saunder’s design lanes. Most of the aircraft carriers under 

consideration fall outside the lanes. This suggests that a different model is 

needed. From examining Figure 7, it appears that a linear is a reasonable 

tradeoff between simplicity and accuracy in the applicable range of Froude 

numbers.  

 

Figure 7.  Prismatic Coefficient vs. Froude Number 

From the data presented here, the linear regression shows the 

relationship is: 

. 
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Figure 8 summarizes the values of the block coefficient from our data. 

 

Figure 8.  Block Coefficient vs. Froude Number 

A linear regression fitting of the data yields the following expression: 

. 
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Figure 9 shows the length-to-beam ratio distribution.  

 

Figure 9.  Length vs. Beam 

A linear best-fit yields the following relationship: 

. 
In this expression, both the length and the beam are in feet and the range of 

applicability is for length between 600 and 1100 feet. 

Another quantity that needs to be developed is an estimate for the 

required shaft horsepower for the ship to make speed. This is a function of both 

the size and the speed of the ship. Therefore, we need to develop a formula that 

takes both size and speed into consideration. In general, the shaft horsepower is 

proportional to a direct product of the resistance and the speed of the ship. The 

constant of proportionality depends on the particular hull shape and the 

propulsion mechanism used. The resistance of a ship is directly proportional to 

its wetted surface and the speed squared. The constant of proportionality is 

related to the flow field around the hull, as well as other physical parameters 

such as roughness. It should be noted that the constant of proportionality is not 
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constant but it is taken as such in our case since the intent is to produce an 

approximate workable model. The wetted surface is proportional to the 

underwater volume to the (2/3) power. This is of course valid for geometrically 

similar hulls, which is not an unreasonable assumption for ships of a given class. 

It will vary from one class to another. Finally, the underwater volume is directly 

proportional to the ship’s displacement. Putting all of the above arguments 

together, we can arrive at a simple expression relating shaft horsepower (SHP) 

to speed, V, and displacement ∆, as shown: 

. 
In this expression, SHP is in horsepower, displacement is in tons, and speed is in 

knots. The coefficient, c, is usually referred to as the admiralty coefficient and is 

commonly used in preliminary powering estimates (Watson 1998, 167). 

Figure 10 shows the distribution of the admiralty coefficient for the ships in 

the database. 

 

Figure 10.  Admiralty Coefficient 
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From this graph it appears that a constant coefficient, c=0.005, which is 

the average value for all ships in the selection, is applicable. It should be noted, 

however, that not all ships in the database have the same speeds, and the 

admiralty coefficient is a function of the speed. Therefore, we graph the same 

coefficient as a function of the Froude number (Figure 11).  

 

Figure 11.  Admiralty Coefficient vs. Froude Number 

From this graph, a linear relationship between c and Fn is evident. This 

relationship is 

. 
For the range of Froude numbers 0.2 to 0.4, this expression provides a better 

estimate of the admiralty coefficient, and thus the required shaft horsepower for a 

given displacement. 

B. APPLICATION EXAMPLE 

As an example of application of the formulas developed in section A, let us 

suppose we want to do a conceptual design for a CVL around 50,000 tons with a 

sustained speed of about 30 knots or 50 ft/sec.  
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We can use the displacement/length ratio formula to determine the length. 

 
 
Substituting the values, we get, 

. 
 
From this expression, we can evaluate the required length, L, in feet. Using 

algebra, this comes out to 930 ft. The beam, B, can then be calculated by 

. 
The block coefficient is 

. 
The underwater volume of the ship is 50000 tons times 35 or 1,750,000 

cubic feet. Recall the definition of the block coefficient, 

. 
 

Using the values for L and B, we can evaluate the expected draft of the 

ship, T, approximately 33 feet. 

Finally, the admiralty coefficient c is calculated. 

. 
The required shaft horsepower is 

. 
The above methodology can be easily tailored with different starting 

values (or initial requirements) and can be used to generate a large number of 

candidates for trade studies and analyses of alternatives. 
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V. ANALYSIS OF ALTERNATIVES 

We now have enough information, based on the explanation of the DRM 

and the mathematical modeling illustrated in Chapter IV, to draw some 

conclusions using SBD principles regarding what sort of ship design should be 

considered. As explained in Chapter II, SBD is a process wherein design 

prototypes remain in consideration until infeasibility causes them to be eliminated 

from consideration. In order to form a conclusion, we will first consider all of the 

designs listed in the Appendix, then eliminate designs that are rendered 

infeasible based on the performance criteria set forth in the DRM and the 

mathematical model.  

In this section, we will begin with all 14 ship prototypes and eliminate 

infeasible designs until we are left with one or a set of feasible solutions. 

Figure 12 illustrates the initial set of possible designs.  

 

Figure 12.  Initial Design Space 
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Our first criterion is that we would like a ship which displaces about 50,000 

tons, based on the logic outlined in Chapter I.  We will now consider all design 

solutions that are 50,000 -± 10,000 tons displacement, and eliminate the 

infeasible solutions. Figure 13 shows the feasible tonnage solutions. 

 

Figure 13.  Feasible Tonnage Solutions 

We are given a length and beam for each ship. We will next consider 

length-to-beam ratios. Based on the linear regression in Chapter IV, we can 

calculate the ideal beam width for each ship and determine the deviation. This 

ensures the best possible balance between internal carriage capacity and 

waveform resistance. Table 3 displays the results.  
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Table 3.   Ideal Beam Width 

 
 

Because we are trying to minimize the deviation, we will consider any 

design that is not within two standard deviations from zero to be infeasible. 

Figure 14 shows the remaining feasible solutions. All three of the remaining ships 

meet the objective requirement for number of aircraft to be carried on board (≥ 30 

aircraft) (Janes IHS Markit 2017d, 2017j, 2017k). 

 

Figure 14.  Feasible Length-to-Beam Ratio Solutions 
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We can further narrow down the feasible set by considering SHP and flight 

deck design. We already calculated the ideal SHP to achieve our target value of 

30 knots (50ft/sec) in the example in Chapter IV. 

 
 

The Liaoning and Admiral Kuznetzov both have an SHP output of 200,000 

SHP and can achieve speeds of 30 knots (Janes IHS Markit 2017j, 2017k). The 

Charles deGaulle does not meet the target objective value of 30 knots, but does 

meet the minimum objective value of 27 knots (Janes IHS Markit 2017d).  

Having not eliminated any design based on SHP, one must finally 

consider the flight deck design. All three ships meet the minimum objective value 

of two flight deck elevators and, based on the length-beam calculations, all three 

ships can carry a sufficient number of aircraft to meet the target sortie rate 

outlined in Chapter I. The Liaoning and Admiral Kuznetzov, however, use a ramp 

for a launch system, while the Charles deGaulle uses a catapult (Janes IHS 

Markit 2017j, 2017k, 2017d). This is significant because it means that only the 

Charles deGaulle can meet the final requirement of supporting all aircraft that 

can be supported by a Ford class CV, particularly the E-2 Hawkeye. This means 

that any mission task outlined in Table 1 which requires the electronic capabilities 

of the E-2 cannot be achieved if either the Liaoning of the Admiral Kuznetzov 

designs are selected. We are left with the Charles deGaulle.    
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VI. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSION 

As this report is predicated on the use of existing designs, it can be 

concluded that, based on the stated assumptions and analysis of the data, the 

Charles deGaulle is the existing ship design to recommend as a CVL for the 

future fleet force. This design will be able to support the future needs of Naval 

Aviation while lessening strategic vulnerability compared to a Ford class CVN. 

It should be emphasized that this is based on the assumptions made as 

explained in this chapter. These assumptions were made to illustrate the 

applicability of the proposed mathematical model in the SBD process. Different 

assumptions might have resulted in different conclusions. While some 

compromise must be made in speed, it is essential to use the full arsenal of 

aircraft, including those so necessary for electronic and information warfare, in a 

future maritime conflict. 

B. RECOMMENDATIONS FOR FURTHER RESEARCH 

The cost benefit analysis regarding the CVL is beyond the scope of this 

report and is a necessary factor to consider before recommending a design. 

Given that the recommendations in this report are based on currently existing 

designs, sufficient data should be available to conduct a reliable cost estimation 

into the life cycle cost of a CVL.  

Also, further research should be conducted to incorporate the self defense 

systems for each ship given modern threats. An analysis of ship defense 

capability will aid in determining which ship design presents the least strategic 

vulnerability in terms of operational risk. 

Expanding beyond recommendations regarding existing designs, it would 

be worth researching the feasibility of varying the launch method on some of the 

larger light aircraft carriers, such as the Liaoning and Admiral Kuznetzov, so that 
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a CVL could have an increased sortie rate per day while still being able to 

support the variety of aircraft required for the modern mission.  
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APPENDIX.  BASELINE SHIP DATA 

 

 
 

Gerald R. Ford. Source: Janes IHS Markit (2017g). 
Displacement (Tonnes) 100000 
Length (ft) 1092 
Beam (ft) 134 
Flight Deck Length (ft) 1092 
Flight Deck Width (ft) 256 
Draught (ft) 41 
# Aircraft 80 

Fixed Wing 

F-35C 
F/A-18E/F 
E/A-18G 
E-2D 
UAS 

Rotary Wing MH-60S 
MH-60R 

Launch Mechanism Electric Catapult 
# Aircraft Lift 3 

Propulsion 
Nuclear 
2 A1B Reactors 
4 Shafts 

Primary SHP 402307 
Top Speed (kt) 30 
Range (NM) N/A 
# Total Manning 4550 
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Queen Elizabeth.  Source: Janes IHS Markit (2017n). 
Displacement (Tonnes) 65000 
Length (ft) 932 
Beam (ft) 127 
Flight Deck Length (ft) 909 
Flight Deck Width (ft) 240 
Draught (ft) 36 
# Aircraft 40 
Fixed Wing F-35B 

Rotary Wing 

Merlin 
Wildcat 
Chinook 
Apache 

Launch Mechanism Ski Jump 
# Aircraft Lift 2 

Propulsion 

Integrated Full Electric Propulsion 
2 gas turbine alternators (93,870 
SHP) 
2 16V 38B diesel generators (30306 
SHP) 
2 12V 38B diesel generators (22800 
SHP) 
4 induction motors (53640 SHP) 
2 shafts 

Primary SHP 93870 
Top Speed (kt) 26 
Range (NM) 7000 
# Total Manning 1681 
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Liaoning.  Source:  Janes IHS Markit (2017k). 
Displacement (Tonnes) 59000 
Length (ft) 999 
Beam (ft) 115 
Flight Deck Length (ft) 999 
Flight Deck Width (ft) 230 
Draught (ft) 34 
# Aircraft 50 
Fixed Wing J-15 

Rotary Wing Z-18 
Z-9 

Launch Mechanism Ski Jump 
# Aircraft Lift 2 

Propulsion 

8 boilers 
4 turbines (200000 
SHP) 
4 shafts 

Primary SHP 200000 
Top Speed (kt) 30 
Range (NM) 8500 
# Total Manning 2826 
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Admiral Kuznetzov.  Source:  Janes IHS Markit (2017j). 
Displacement (Tonnes) 59000 
Length (ft) 992 
Beam (ft) 115 
Flight Deck Length (ft) 999 
Flight Deck Width (ft) 230 
Draught (ft) 34 
# Aircraft 50 

Fixed Wing 
Su-33 
MiG-29K 
Su-25 

Rotary Wing 
Ka-27 
Ka-52K 
Ka-31 

Launch Mechanism Ski Jump 
# Aircraft Lift 2 

Propulsion 
8 boilers 
4 turbines (200000 SHP) 
4 shafts 

Primary SHP 200000 
Top Speed (kt) 30 
Range (NM) 8500 
# Total Manning 3452 
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Vikramaditya.  Source:  Janes IHS Markit (2017l). 
Displacement (Tonnes) 45000 
Length (ft) 928 
Beam (ft) 100 
Flight Deck Length (ft) not listed 
Flight Deck Width (ft) not listed 
Draught (ft) 33 
# Aircraft 30 
Fixed Wing MiG-29K 

Rotary Wing 
Helix 27 
Helix 28 
Helix 31 

Launch Mechanism Ski Jump 
# Aircraft Lift 1 

Propulsion 
8 boilers 
4 turbines (200000 SHP) 
4 shafts 

Primary SHP 200000 
Top Speed (kt) 29 
Range (NM) 13800 
# Total Manning 1326 
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America.  Source:  Janes IHS Markit (2017a). 
Displacement (Tonnes) 45000 
Length (ft) 855 
Beam (ft) 198 
Flight Deck Length (ft) 819 
Flight Deck Width (ft) 118 
Draught (ft) 19 
# Aircraft 30 
Fixed Wing F-35B 

Rotary Wing 

MV-22 
AH-1 
UH-1 
MH-53 
MH-60 

Launch Mechanism none 
# Aircraft Lift 2 

Propulsion 
2 gas turbines (70000 SHP) 
2 auxiliary motors (10000 SHP) 
2 shafts 

Primary SHP 70000 
Top Speed (kt) 22 
Range (NM) 9500 
# Total Manning 1204 
  

 
 

 

 



 49 

 

 
 

Charles deGaulle. Source: Janes IHS Markit (2017d). 
Displacement (Tonnes) 42000 
Length (ft) 858 
Beam (ft) 105 
Flight Deck Length (ft) 858 
Flight Deck Width (ft) 211 
Draught (ft) 31 
# Aircraft 40 

Fixed Wing Rafale F2 
Rafale F3 
E-2C 

Rotary Wing 

AS 565 
AS 322 
Super Puma 
Dauphin 

Launch Mechanism Catapult 
# Aircraft Lift 2 

Propulsion Nuclear 
2 shafts 

Primary SHP 81801 
Top Speed (kt) 27 
Range (NM) N/A 
# Total Manning 2571 
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Sao Paulo.  Source: Janes IHS Markit (2017e). 
Displacement (Tonnes) 32800 
Length (ft) 869 
Beam (ft) 168 
Flight Deck Length (ft) 850 
Flight Deck Width (ft) 154 
Draught (ft) 28 
# Aircraft 39 

Fixed Wing A-4 
Tracker/Trader 

Rotary Wing UH-12/13/14 

Launch Mechanism Catapult 
# Aircraft Lift 2 

Propulsion 

6 boilers 
2 turbines (126000 
SHP) 
2 shafts 

Primary SHP 126000 
Top Speed (kt) 30 
Range (NM) 7000 
# Total Manning 2096 
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Juan Carlos I.  Source:  Janes IHS Markit (2017i). 
Displacement (Tonnes) 27000 
Length (ft) 757 
Beam (ft) 105 
Flight Deck Length (ft) 664 
Flight Deck Width (ft) 105 
Draught (ft) 23 
# Aircraft 30 
Fixed Wing AV-8 

Rotary Wing 
Chinook 
Sea King 
NH-90 

Launch Mechanism Ski Jump 
# Aircraft Lift 1 

Propulsion 
1 gas turbine (26550 SHP) 
2 podded propulsors (29,500 SHP) 
2 MAN 324016V (21080 SHP) 

Primary SHP 26550 
Top Speed (kt) 21 
Range (NM) 9000 
# Total Manning 296 
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Cavour.  Source:  Janes IHS Markit (2017b). 
Displacement (Tonnes) 26000 
Length (ft) 773 
Beam (ft) 128 
Flight Deck Length (ft) 722 
Flight Deck Width (ft) 112 
Draught (ft) 25 
# Aircraft 20 

Fixed Wing AV-8B 
F-35B 

Rotary Wing 
EH 101 
SH 90 
AB 212 

Launch Mechanism Ski Jump 
# Aircraft Lift 2 

Propulsion 4 gas turbines (118000 SHP) 
2 shafts 

Primary SHP 118000 
Top Speed (kt) 28 
Range (NM) 7000 
# Total Manning 1334 
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Hyuga.  Source:  Janes IHS Markit (2017h). 
Displacement (Tonnes) 19000 
Length (ft) 646 
Beam (ft) 108 
Flight Deck Length (ft) not listed 
Flight Deck Width (ft) not listed 
Draught (ft) 32 
# Aircraft 11 
Fixed Wing none 

Rotary Wing SH-60K 
MH-101 

Launch Mechanism none 
# Aircraft Lift 2 

Propulsion 4 gas turbines 
2 shafts 

Primary SHP 100000 
Top Speed (kt) 30 
Range (NM) 6000 
# Total Manning 372 
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Principe De Asturias.  Source:  Janes IHS Markit (2017m). 
Displacement (Tonnes) 17464 
Length (ft) 643 
Beam (ft) 80 
Flight Deck Length (ft) 575 
Flight Deck Width (ft) 95 
Draught (ft) 31 
# Aircraft 26 
Fixed Wing AV-8B 

Rotary Wing SH-3 
AB 212EW 

Launch Mechanism Ski Jump 
# Aircraft Lift 2 

Propulsion 2 gas turbines (46400 SHP) 
1 shaft 

Primary SHP 46400 
Top Speed (kt) 25 
Range (NM) 6500 
# Total Manning 920 
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Chakri Naruebet.  Source:  Janes IHS Markit (2017c). 
Displacement (Tonnes) 11480 
Length (ft) 600 
Beam (ft) 100 
Flight Deck Length (ft) 573 
Flight Deck Width (ft) 90 
Draught (ft) 20 
# Aircraft 29 
Fixed Wing none 

Rotary Wing 
S-70-B7 
MH-60S 
Chinook 

Launch Mechanism Ski Jump 
# Aircraft Lift 2 

Propulsion 
2 gas turbines (44250 SHP) 
2 diesel (11780 SHP) 
2 shafts 

Primary SHP 44250 
Top Speed (kt) 26 
Range (NM) 10000 
# Total Manning 813 
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Giusepi Garibaldi.  Source:  Janes IHS Markit (2017f). 
Displacement (Tonnes) 10262 
Length (ft) 591 
Beam (ft) 110 
Flight Deck Length (ft) 570 
Flight Deck Width (ft) 100 
Draught (ft) 22 
# Aircraft 18 
Fixed Wing none 

Rotary Wing 

EH 101 
SH 90 
AH 129 
AB 212 

Launch Mechanism Ski Jump 
# Aircraft Lift 2 

Propulsion 4 Gas Turbines (81000 SHP) 
2 shafts 

Primary SHP 81000 
Top Speed (kt) 30 
Range (NM) 7000 
# Total Manning 591 
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