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A Navier—Stokes Analysis of the
Stall Flutter Characteristics of the
Buffum Cascade

Stefan Weber
Post-Doctoral Research Associate, Numerical stall flutter prediction methods are much needed, as modern jet engines re-
Deutsche Forschungsgemeinschaft, quire blade designs close to the stability boundaries of the performance map. A Quasi-3D
Navier—Stokes code is used to analyze the flow over the oscillating cascade designed and
Max F. Platzer manufactured by Pratt & Whitney, and studied at the NASA Glenn Research Center by
Professor, Buffum et al. The numerical method solves for the governing equations with a fully
Fellow ASME implicit time-marching technique in a single passage by making use of a direct-store,
i . periodic boundary condition. For turbulence modeling, the Baldviomax model is
Department of Aeronautics and Astronautics, used. To account for transition, the criterion to predict the onset location suggested by
Naval Postgraduate School, Baldwin and Lomax is incorporated. Buffum et al. investigated two incidence cases for
Monterey, CA 93943-5000 three different Mach numbers. The low-incidence case at a Mach number of 0.5 exhibited
the formation of small separation bubbles at reduced oscillation frequencies of 0.8 and
1.2. For this case the present approach yielded good agreement with the steady and
oscillatory measurements. At high incidence at the same Mach number of 0.5 the mea-
sured steady-state pressure distribution and the separation bubble on the upper surface
was also found in good agreement with the experiment. But computations for oscillations
at high incidence failed to predict the negative damping contribution caused by the
leading edge separatiofiS0889-504X00)01304-Q
Introduction nonlinearized unsteady Navier—Stokes equations. Furthermore,

A review of aeroelastic prediction methods for axial-flow tur-recent steady and dynamic stall computations for single airfoils
P have yielded markedly improved agreement with measured hys-

bomachlnery[;] _showed that_the C(_)mmo_nly u_sed unsteady fI0“49’eresis loops if the Baldwin and Lomd#®] algebraic turbulence
models were limited to two-dimensional linearized methods. DUz 4| \vas replaced by the one-equation Baldwin and Biith
Ing dthgt past _tt\)/:/el\t/e ye?rs, tremend;)Ltjs advancéesl Irl]a CFDl.h Spalart and Allmard8] models and the laminar-to-turbulent
made 1t possibie 1o replace some of these models by nonlinggl,sition onset and length was incorporated into computations, as
three-dimensional flow models. However, the simulation of strong, o wn by Ekaterinaris and Platd@], Sanz and Platzé10], We-
viscous flow effects is still fraught with many uncertainties, maksar and Platzef11], Weber et al[lé] and Eulitz[13)]. '
ing it difficult to predict some important aeroelastic phenomena. T approach presented in this paper is based on the reasoning
One of these phenomena is stall flutter, where the currently usgden apove. Although three-dimensional flutter computations are
empirical correlations for the stall flutter boundary prediction resently being developed, for example by BaK!4] and Chew
compressor and fan blades have yet to be replaced by “rationalt 4| 115], we believe that such an approach is still premature for
computational methods based on the solution of the Naviefne analysis of stall flutter. Therefore, the present analysis is based
Stokes equations. These uncertainties are caused by the Wgli-the Quasi-3D Navier—Stokes equations without any further
recognized difficulties to model laminar-to-turbulent flow transifinearization assumptions. Such an approach was also adopted by
tion and turbulent flow in the presence of strong flow oscillationgye [16], Eguchi and Wiedermanfil7], Abhari and Gileq18],
Furthermore, it is likely that stall flutter cannot be modeled by;riper and Carstenl9], Weber et al[20,21], Kato et al.[22],
purely two-dimensional methods because separated flows tendrighcer et al[23], Carstens and Schmft24], Fourmaux 25], and
be three-dimensional. This situation is complicated even furthefy and Murthy[26]. The turbulence modeling still relies on the
for the case of high subsonic/transonic stall flutter due to the fagimple algebraic Baldwin—Lomax model, but the transition onset
mation of shock waves. _ _ . criterion introduced by Baldwin—Lomax is incorporated. The re-
In this situation the computational fluid dynamicist has nguits are evaluated by comparison with the oscillating cascade
choice but to proceed to increasingly more demanding flow moghreasurements of Buffum et 427] which appear to be the most
eling and to evaluate the validity of the model against welkeliable data for such a comparison at the present time.
controlled experiments. Most investigators are agreed that the
modeling has to be based on the Navier—Stokes equations. HaWathematical Model

ever, great savings in CPU times can be achieved if the flow is ) ) o .
_The present algorithm solves the nondimensinalized time-

decomposed into a steady nonlinear flow upon which small ha ¢ . . .
monic perturbations are superimposed. The most recent exaw@?&endem Quasi-3D Navier—Stokes equations. The equations are
erived for anm, ¢-coordinate system witim in axial and¢ in

for this type of approach was presented by Clark and HAll ™ L
following the work of Hall and Crawley3], Kahl and Klose[4], circumferential direction. It represents S1-stream surfaces of revo-

and Montgomery and Verddis]. On the other hand, time linear- Ution atfa rar(]jiusr (‘j".’ith a yariallt;:e str%am sulgfahce t.hiclgneBsm hik
ization imposes limits on the oscillation amplitudes and hence it fgcount for three-dimensional flow effects. Following Benetschi

prudent to evaluate time-linearized results against solutions of #f) the Favre-averaged governing equations in strong conserva-
ion law-form transformed to curvilinear coordinatgs ») can be

gh/en in a rotating frame of reference as follows:

Contributed by the International Gas Turbine Institute and presented at the 4

International Gas Turbine and Aeroengine Congress and Exhibition, Munich, Ger- 1 1

many, May 8—11, 2000. Manuscript received by the International Gas Turbine Insti- 30+4 ( E-—E,|+d,|F-=—F,|=0 (1)
tute February 2000. Paper No. 2000-GT-385. Review Chair: D. Ballal. ‘C'\ Re ™ K Re v
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in whichJ=d(m, ¢)/d(&, ) is the Jacobian matrix of transforma-with « the ratio of the specific heats, afiin case of a rotor flow

tion, and wherdJ is the vector of conservative variables

p
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ae{ Pom b
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0(01

U= (2)

E andF are the Euler fluxes
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andE, andF, the viscous fluxes
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where
(7)
(8)

Eeo =WmTmmt W Tme T Om >

FeU:Wme¢+W¢7W+ Ug s

as the angular velocity. To model the turbulent stresses, a turbu-
lent eddy viscosity is computed following the turbulence model of
Baldwin and Lomax6]. The laminar viscosity is predicted by
Sutherland’s law. The onset of laminar/turbulent transition is
found with the criterion suggested by Baldwin and Lon{&%
using C,,tm Of 14. Furthermore, an effective thermal transport
coefficient is introduced, using a laminar and a turbulent Prandtl
number.

Equation(1) is nondimensionalized referring to the free-stream
total density, the free-stream total velocity of sound, the free-
stream total viscosity, and the chord length.

Numerical Method

A finite volume technique is applied for the numerical solution
of Eg. (1), which is discretized in a node-centered form. Central
and antisymmetric differences are used to compute the viscous
fluxes. The inviscid fluxes are computed with an upwind FDS
scheme by Ro¢29]. At each volume cell face it solves for an
approximative Riemann problem by computing a numerical flux
function. For example in thé direction, the definition of the flux
function for a cell face located at{ 1/2j) is:

~ 1 . . A o~
E(U)i+1/2J=§[E(UL)i+1/2+E(UR)i+1/2

= (REALE(UR=UL))i+ 122l (14)
with the initial state vector§), at the left andJ at the right side
of the cell face[¢ the left andR¢ the right matrices of the left and
the right eigenvectors, respectively and the diagonal matrix of
eigenvalues with respect 2 The components of the matrices are
obtained using the Roe average.

With Eq. (14), a characteristic wave decomposition is achieved,
resulting in two acoustic waves, one shear, and one entropy wave.
Herein the eigenvalues describe the characteristic speed and the
direction of the waves. Consistent with the characteristic compat-

and the source vectd due to the coordinate transformation foribility relations, the change of the characteristic variable across

the S1-system

0
1dr p JrB
- PUer m ™ TB Im
&, =3B ©)
0
0

The transformed components of the heat figpand the stress
tensorr are given in more detail in Weber et 4R0]. In these

the cell face can be computed due to the particular eigenvalue
formulation.

To assure a minimum amount of artificial viscosity in the whole
computational domain, a method suggested by Haf8fj is
implemented, as well as a correction of the eigenvalues to over-
come a nonphysical negative entropy change across expansion
fans. The spatial discretization of the inviscid fluxes is extended to
third-order accuracy by applying the MUSCL technidi34d] to-
gether with the TVD scheme by Hart¢80] and the van Albada
limiter function to avoid stability problems.

The fully implicit time-integration of Eq.(1) is performed

equation$ denotes the density arpjthe pressure. The abso|utesecond'0rder accurate in time fO”OWing the scheme of Rai and

and relative velocity components avg,,v,, andwgy,,w,, re-
spectively. The contravariant velociti#g andW?” are given by:

Wg:rgm(wm_cgm)"_ggo(wqa_cgqp) (10)
and

Wn:fﬂm(wm_cnm)"' 7]¢(W(p_cmp) (11)

with the components of the contravariant cell face velocitfes”
which have to be introduced due to the time-dependent defor
tion of the grid. The volume specific total energy, and the
rothalpyH,,; assuming perfect gas are defined as:

erot:K_1+§(vm+v¢)_Qrpvxp (12)
and
€rott P
rot— mp (13)
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Chakravarthy[32]. Time accuracy is improved by using Newton
subiterations to minimize linearization errors at each time step
while the system of equations itself is solved iteratively by a
Gauss—Seidel relaxation method. For unsteady computations best
performance in terms of accuracy and convergence was found by
using three Newton subiterations at each time step.

Boundary Conditions and Unsteady Grid Generation. The
numerical treatment of the far field boundary conditions follows a

mgethod of characteristics proposed by Chakravar®3}. For the

up- and downstream boundaries, the number of physical boundary
conditions depends on the number of characteristics entering the
computational domain neglecting all viscous terms. At the inflow
boundary the total pressure, the total temperature, and the inflow
angle are imposed. At the outflow boundary only the exit pressure
is prescribed. For viscous flows Stokes’ nonslip condition is ap-
plied on the surface of the blade, assuming an adiabatic wall and
a vanishing normal pressure gradient. The assumption of a zero
normal pressure gradient for unsteady flows is still correct if the
reduced frequency of the blade oscillation is small.
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At the periodic boundary use is made of the direct store methasidchord point with an amplitudé of 1.2 deg at an interblade
introduced by Erdos et al34]. This boundary condition allows phase angleb of 180 deg. The reduced frequenky27fc/U.,
the simulation of harmonically oscillating blades for any interwas varied between 0.4 and 1.2. The stagger apgi€the low-
blade phase angle with only one passage. Convergenceaspect-ratio fan blade tip section was 60 deg, the chord lemgth
achieved if the difference between the flow quantities compareds 0.0889 m, and the soliditys was 1.52.
with the flow quantities of the previous cycle are below a certain In this paper we analyze only the steady and oscillatory data for
limit. To avoid large storage requirements, the flow variables atfree-stream Mach number of 0.5 and a Reynolds number Re of
the periodic boundaries are not stored at each time step, makingx 10°. The corresponding experimental results as well as the
use of a technique introduced by Peitsch e{3#]. details of the test facility were discussed and given in detail by
The simulation of the blade motion requires an unsteady regeBuffum et al.[27].
eration of the C- or O-type grid. Therefore, the grid is divided into All steady-state and unsteady computations for the Buffum cas-
three zones. The first zone includes the blade surface and the gade were performed on an O-type 24a1 point Navier—Stokes
lines inside the boundary layer preserving the orthogonality of tlgid. Several grids were tested and the initial wall spacing de-
grid on the surface. This zone moves as a solid body accordingd@ased until the solution became independent of the grig for
the chosen mode of oscillation. Wrapped around the first zoneds1.5. The grid is shown in Fig. 1, including a magnification of
the second zone, which is surrounded by a stationary nondeforme leading edgétop left) and the trailing edgébottom righi.
ing third zone. The second zone is deformed at each time step and ) )
the grid is regenerated by solving the Laplace equation. Experi-Steady-State Low-Incidence Flow. Before running an un-
ence shows that it is not necessary to run the grid regeneratiorp&ady computation, a steady-state solution was computed. In Buf-
each time step. Instead, it is sufficient to use a linear interpolatifim et al.[27], the in-flow anglea corresponding to low inci-
between newly regenerated grids. The third zone is kept fixed 4§nce was given to be 60 deg at a pressure mgig/p.. of 0.93.
save the orthogonality of the grid at the outer boundaries. In order to obtain good agreement with the experimental data, the
The Navier—Stokes code has been tested extensively for a PaESSure ratio for the numerical simulation had to be changed to

riety of steady and unsteady subsonic and transonic test ca$e836, resulting in an averaged inflow angle of 61.1 deg. The
such ag20,21,28. computed data were compared with the measured chordwise pres-

sure coefficient distributions with a definition of the steady pres-

sure coefficient as follows:
Computations were performed to investigate the flutter charac- (f) _
teristics of the Buffum cascade. This cascade was developed to X P c P
improve the understanding of the unsteady flow phenomena which C (E) - pT
cause stall flutter. The measurements were taken in the wind tun- o
nel of the NASA Glenn Research Center, where this linear nine- Two steady-state computations, one fully turbulent and one in-
blade cascade was installed. A series of steady and oscillateiyding transition, were performed. In Fig. 2 the predicted pres-
measurements were taken for free-stream Mach numbers of G@res are seen to compare well with the experimental data.

0.5, and 0.8 at low and high incidence. In the experiment all Figure 2 also includes experimental data on the neighboring
blades were executing a harmonic pitching motion around tiéades to indicate the degree of periodicity in the test cascade. The
difference between the development of the boundary layer without
and with transition is seen to be small. A re-laminarization was
predicted at the trailing edge while the strongest influence of tran-
sition could be seen close to the leading edge. In Fig. 3 the pres-
sure distribution at the leading edge is given in more detail. Both
computations predicted the stagnation point slightly on the lower
surface, reaching &p of 0.5. Starting from the stagnation point,
the flow was accelerated on both surfaces of the blade, as can be
seen from the two suction peaks. The higher acceleration was

Computational Results and Discussion

(15)

0.5

O Exp. upper surface blade 0
M Exp. lower surface blade 0
0.4 H OExp. upper surface blade -1 J
4 Exp. lower surface blade -1
AN Exp. upper surface blade +1

0.3 A Exp. lower surface blade +1
Q.
m Q o2}
H I
ERESEELE 0.1
gssa
ms 0
o —— turbuient computation
" —— - computation with transition
- "N‘Z"n T 02 04 06 08 1
- Aty . . . .
,/};///II",'".... X/C
////Z’!l:'.'!l
Fig. 2 Steady-state pressure distribution, M=0.5, a
Fig. 1 O-type 241 X 61 point grid for the Buffum cascade =61.1deg, Re=0.9X10°
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1 T T T T T 10 T T T T
09 1 O Exp. upper surface blade 0 ] sl m u Exp. lower surface 4
08 | HExp. lower surface blade 0 1 O Exp. upper surface
o7} <Exp. upper surface blade -1 . 6} —— turbulent computation -
06 b 4 Exp. lower surface blade -1 N — —- computation with transition
/\Exp. upper surface blade +1 4 F J
0.5 1 AExp. lower surface blade +1 1 n
0.4 H turbulent computation 1 — 2
O 034 NS —~- computation with transition . K
(&) 2 9
1 02 O
0.1 @
X -2
o >
=0.1 -4
-0.2
-6
-0.3 ]
~0.4 1 -8
-05 , . A . ;
0 0.02 0.04 %& 0.08 0.1 0.12 -10 o Y o 06 08
X 1
X/c
Eig- 3 Eteady-state pressure disstribution at leading edge, M Fig. 5 Real part of unsteady pressure distribution at low inci-
=05, @=61.1deg, Re=0.9X10 dence, k=1.2, ®=180deg, M=0.5, Re=0.9X 10°

gecause the passage-to-passage periodicity was too poor. For
analysis of the unsteady data a first harmonic unsteady pressure
r%oefficient is defined as follows:

found on the upper surface, e.g., the fully turbulent flow predi
tion reached aCp of —1 (Fig. 3. The transition criterion of
Baldwin—Lomax predicted a laminar region for 11 percent cho

length on the lower surface. On the upper surface the turbulent X

flow started at 1 percent chord length. Furthermore, a separation | Past c

bubble was found on the upper surface. The bubble length was Cpist 7) =0 (16)
c ap,Us,

approximately 5.5 percent of chord length independent of transi-
_tion, whil_e_the bubble si_ze was bigger for the cor_nputation, i_ncl_ud- In Figs. 5 and 6 the real or in-phase part Re() and the imagi-
ing transition. The predicted steady-state velocity vector distribyyry or out-of-phase part Im() of the first harmonic unsteady pres-
tion including transition is given in Fig. 4. One can see that thg,re coefficient are compared with the experimental data for a
separation occurs on the upper surface of the blade at the pQifiyced frequency of 1.2.

where the curvature of the blade surface changes sign. The real part is seen to agree well with the measured data.

Flutter at Low Incidence. At low incidence oscillatory mea- Again, the fully turbulent computation differed only slightly from
surements were taken for reduced frequencies of 0.4, 0.8, and i€ computation, including transition. The biggest difference was

However, fork=0.4, the measured data have not been publish&nd on the upper surface of the blade between the leading edge
and 16 percent chord length. Although the trend of the measured

out-of-phase part of the unsteady pressure is predicted well, the
quantitative agreement is worse than for the in-phase part. The
7 7%, influence of transition is again strongest on the upper surface be-

/0/4 /{’ tween the leading edge and 16 percent chord length. Similar re-

%
f / i /%
e B e

7%,
At i

B Exp. lower surface

[/ 6t . 0O Exp. upper surface ]
M//////w ¢ turbulent computation
/i /47//%77;,/ ~ / 4 ——- computation with transition
Iy

i /u//;«'g;;g,

1 J[ZW,“;/’V ’ /,{-r.'.’."//l/ / / 2

e | 5, &
e )
///"’// 7/ /// E,

A .
4 A | :
/// -8 J ‘ F 08 1

/ o] 0.2 0.4 0.6
4 X/c
Fig. 4 Steady-state velocity vectors at leading edge, M=0.5, Fig. 6 Imaginary part of unsteady pressure distribution at low
a=61.1deg, Re=0.9%10° incidence, k=1.2, ®=180deg, M=0.5, Re=0.9X10°
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unstable .

1 T T T
@ steady-state, Cm = -0.23

]
3

Q. 0
(&)

'a

E
8- G 05
A
g 4
) N
§l 1 = —— k=1.2, = 0.49, turbulent
: oo Epminen ST M E v
e turbulent computation : - Kk=12Z2=05 1’w‘.‘t';‘ ;‘r:: sition
——- computation with transition =l z=051w i
-2 : L
-5 L . : . -1 -0.5 ) 0.5 1
0 0.2 0.4 0.6 0.8 o
X/ic

. . . o Fig. 9 Predicted pitching moment coefficient at low incidence,

Fig. 7 Local stability analysis at low incidence, k=12, ® g_130 deg, M=0.5, Re=0.9X10°

=180deg, M=0.5, Re=0.9X10°

Figure 9 shows a counterclockwise variation of the pitching

dx
—8
c n

cm(t)= (17)

phase part of the Unseacy pressure detormines he damping M. dUrng one oscilation cycle thus indicating posiive
S;ﬁgﬁlizn dgn:g?ngl?)g?amzttlérnzyIillsrn(ic():rr]r\:)evr\l/lifhnt(:tr?]giﬂt?z ttrif];erlﬁcreased reduced frequency. In_this f_igure the time-dependent
dependent moment coefficient: development of the moment coefficient is plotted versus the non-
' dimensional pitching angle’ =[ «(t)— vy]/@. As already seen
F X | from Fig. 7, including transition slightly increased the damping.
- f EX D(E,t It is of special interest to study the behavior of the separation
— bubble as a function of the oscillation frequency. Therefore, com-
apsU:, putations for a reduced frequencylof 0.2 were also performed.
with F the vector pointing from the pivot location to an arbitrarylhe bubble length during the blade oscillation was almost 22 per-
point on the surface and, the unit vector normal to the blade ¢ent of chord length, independent of the reduced frequency. For a
surface. A positive value corresponds to a damped oscillation. réduced frequency of 0.2, the largest bubble size occurred shortly
Buffum et al. presented a local stability analysis by plottingfter reaching the highest pitching angle. For the reduced frequen-
(0.5—x/c)IM(Cpys—Cpsdasi- The numerically predicted local sta-Cies of 0.8 and 1.2 the maximum was reached almost a quarter
bility in comparison with the experimental data is given in Figs. gycle later. Furthermore, a separation bubble of a maximum size
and 8 for reduced frequencies of 1.2 and 0.8, respectively. F&fr3 percent chord length was predicted on the lower surface. The
both reduced frequencies the computed local stability was gred@étoble occurred shortly before reaching the lowest pitching angle
than the measured stability between 0 and 40 percent chord lengi§l vanished completely a quarter cycle later. As expected, a

and smaller thereafter. The incorporation of transition for a r

duced frequency of 1.2 slightly increased the stability.

unstable .

stable

(0.5-X/C) Im(Cp,,-Cp,,),..
|
N

o&-@ Experiment
turbulent computation

_5 1 L 1 L
0 0.2 04 0.6 0.8 1

X/C

Fig. 8 Local stability analysis at low incidence,
=180deg, M=0.5, Re=0.9X10°

k=038, ®

Journal of Turbomachinery

rther decrease of the reduced frequency decreased the damping
parameter even more. It is also interesting to note that the blade is
subjected to a pitching moment fluctuating between positive and
negative values for all reduced frequencies.

At low-incidence convergence of the unsteady computations
was reached after 6 to 8 cycles using 1000 time steps per cycle
and three Newton subiterations for each time step.

Steady-State High-Incidence Flow. Contrary to the experi-
mentally determined inflow angle of 70 deg at a pressure ratio of
1.03, the best agreement between the measured and computed
pressure distribution was obtained for a pressure ratio of 0.97
resulting in an inflow angle of 67.2 deg; see Fig. 10.

At this angle, the predicted pressure distribution on the lower
surface agreed well with the measured data up to 70 percent chord
length and was slightly too high thereafter. On the upper surface
good agreement was found between the leading edge and 20 per-
cent chord length. Starting at 20 percent chord length the pre-
dicted pressure was slightly higher until 45 percent chord length
and again between 75 percent chord length and the trailing edge.

A study of the influence of three-dimensional effects due to the
formation of corner vortices was performed by varying the
Sl-stream surface thickness of the grid shown in Fig. 1. The
two-dimensional numerical results with and without transition
shown in Fig. 10 could not be improved by this Quasi-3D com-
putation. Transition onset was found at 0.6 percent chord length
on the upper surface while laminar flow to 13 percent chord

OCTOBER 2000, Vol. 122 / 773
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0.2 x . . T 8 ‘ - \ -
[OExp. upper surface blade 0 0 Exp. upper surface
HExp. lower surface blade 0 61 B Exp. lower surface
<OExp. upper surface blade ~1 L turbulent computation
0.1 @ Exp. lower surface blade -1 =
/\Exp. upper surface blade +1
AExp. lower surface blade +1
—
a 2
o o
? 5)
o
[T}
o
-0.1 |
— turbulent computation
— =~ computation with transition
-02 Y " o3 o5 8 8 . . .
i : X/C : : 1 0 0.2 0.4 0.6 0.8 1
X/c
227 2](-1(()3 S;e:igztitioe pressure  distribution, M=05, a Fig. 12 Real part of unsteady pressure distribution at high in-
< deg, : cidence, k=1.2, ®=180deg, M=0.5, Re=0.9%X10°

length was predicted on the lower surface. The turbulent boundafyieaqy Jow incidence computations, the predicted imaginary
layer was re-laminarized at the trailing edge. Including transitiogh 4t high incidence is in better agreement with the experimental
improved the predicted pressure distribution on the upper surfge& it than the real part. A similar behavior was found for the
between the leading edge and 20 percent chord length. In Fig. L{ ,ceq frequencies of 0.4 and 0.8. The overall agreement became
the steady-state Mach number contours show the separated figiiiy \yorse with decreasing reduced frequency. The opposite
region on the upper surface. A bubble of almost 50 percent chqg avior was found for the low-incidence computations.
length was found that was 10 percent longer than the measure Fig. 14 snapshots of the unsteady Mach number contours at
bubble. a reduced frequency of 1.2 are shown. The snapshots were taken
Flutter at High Incidence. Measurements for reduced fre-at four different times during one cycle Here the development
quencies of 0.4, 0.8, and 1.2 were taken at high incidence. In Fi§é.the separation bubble from a small bubble to a bubble extend-
12 and 13 the computed real and imaginary parts of the first hdtg to 64 percent chord length can be seen.
monic unsteady pressure coefficient at a reduced frequency of 1.2\ comparison of the low- and high-incidence measurements of
are compared with the experimental results. Although the mee local stability, Figs. 7, 8, 15, 16, 17, shows that the leading
sured trend of the real part, especially on the upper surface, viRslge region makes a decisive cont_rlbutlon to the tqtal stablllty_._ln
predicted by the computation, the agreement is less accurate tHih low-incidence case the leading edge contributes positive

for the low incidence case; see Fig. 5. However, in contrast to tH@mping, whereas in the high-incidence case the flow separation
near the leading edge on the upper surface causes a destabilizing

pitching moment. As seen in Figs. 15, 16, 17, the computations
fail to capture this destabilizing leading edge moment, but the
local moment contribution from about 15 percent chord to the

6 T T T T

0 Exp. upper surface
B Exp. lower surface ]
turbulent computation

2
-
2
o
o 0
S’
E
~2
-4} 4
_6 1 1 - Fl
0 0.2 0.4 0.6 0.8 1
X/C

. Fig. 13 Imaginary part of unsteady pressure distribution at
Fig. 11 Steady-state Mach number contours, M=0.5, « high incidence, k=1.2, ®=180deg, M=0.5, Re=0.9% 10°
=67.2 deg, Re=0.9%X10° ' ’ ’ ’
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Fig. 16 Local stability analysis at high incidence, k=0.8, ®
=180deg, M=0.5, Re=0.9X10°
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Fig. 14 Predicted unsteady Mach number contours at high in- oy
cidence, k=1.2, ®=180deg, M=0.5, Re=0.9X10° ‘f 0 e e —d
Q.a oo ST @9
e |
trailing edge are predicted quite well fee=1.2, while significant & _4 r\ \ stable ]
differences are apparent up to midchord for the0.8 andk o \
=0.4 cases. A separation bubble is found to exist on the Uprse \\
surface during the complete oscillation cycle. ¥t 0.14T the i X e .
bubble reaches its smallest length of 34 percent chord Iengg -2t o .tEx:-'l)::T::::mputaﬁon 7
which is 16 percent less than in the steady-state solution. T~ ——~ computation with transition
largest bubble is seen &t 0.9T, where it reaches a length of 65

percent chord. On the lower surface the flow remained attach _3 " . L !
during the complete oscillation cycle. 0 0.2 04 0.6 0.8 1
The pitching moment hysteresis loops and the damping para... X/ic
eter in dependency of the reduced frequency are given in Fig. :Hig. 17 Local stability analysis at high incidence, k=04, ®
=180deg, M=0.5, Re=0.9X10°
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o -2r @@ Experiment h .45, turbulent
e -—— turbulent computation 0 .49, turbulent 1
.49 with transition
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X/C o
Fig. 15 Local stability analysis at high incidence, k=12, ® Fig. 18 Predicted unsteady aerodynamic moment coefficient
=180deg, M=0.5, Re=0.9X10° at high incidence, ®=180deg, M=0.5, Re=0.9%X10°
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The almost elliptical shape of the hysteresis loops indicate a line&¥2] Weber, S., Jones, K. D., Ekaterinaris, J. A., and Platzer, M. F., 1999, “Tran-
response of the flow field to the prescribed motion. Furthermore, Sonic Flutter Computations for a 2D Supercritical Wing,” AIAA Paper No.

. L s . 99-0798.
in contrast to the low-incidence case, the pitching moment is 36%93] Eulitz, F., 1999, “Unsteady Turbomachinery: Numerical Simulation and Mod-

to be positive for all reduced frequencies. . . elling,” Proc. ODAS 99ONERA-DLR Aerospace Symposium.
Convergence of the computations for the different high{14] Bakhle, M. A., Srivastava, R., Stefko, G. L., and Janus, J. M., 1996, “Devel-
incidence cases was obtained after 8 to 12 cycles. As for the opment of an Aeroelastic Code Based on an Euler/Navier—Stokes-
low-incidence case, 1000 time steps per cycle in combination with _ Aerodynamic Solver,” ASME Paper No. 96-GT-311. )
three Newton subiterations for each time step were used. All conyt® €hew, J. W., Marshall, J. G., Vahdati, M., and Imegrum, M., 1998, “Part

. Speed Flutter Analysis of a Wide-Chord Fan Blad®ybc. 8th Int. Symp. on
putations were performed on SGI Octane 250 MHz, R10000 Unsteady Aerodynamics and Aeroelasticity of Turbomachissckholm,

workstations, and Pentium 11-400 Linux PCs. Kluwer Academic Publishers.
. [16] He, L., 1993, “New Two Grid Acceleration Method for Unsteady Navier—
Concludlng Remarks Stokes Calculations,” J. Propul. Powé;, pp. 272.

L . HJ] Eguchi, T., and Wiedermann, A., 1995, “Numerical Analysis of Unstalled and
At low incidence the Steady and oscnlatory flow cases showe Stalled Flutter Using a Navier—Stokes-Code with Deforming MeshEsgdt.

encouraging agreement with the experiment. As expected, the 7th int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomach-

computed aerodynamic damping increased with increasing oscil- ines Elsevier Science b.v. Amsterdam.

lation frequency. These results are consistent with the timda8] Abhari, R. S., and Giles, M., 1997, “A Navier—Stokes Analysis of Airfoils in

linearized Navier—Stokes computations of Clark and HE@” Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping,”
On the other hand, at high incidence the numerical model failed;, ASVE J. Turbomach.119, pp. 77-84.

. o . | &IQ] Gruber, B., and Carstens, V., 1998, “Computation of the Unsteady Transonic
to predict the negative damping close to the leading edge although™ rio in Harmonically Oscillating Turbine Cascades Taking Into Account Vis-
the steady-state solution was in good agreement with the mea- cous Effects,” ASME J. Turbomach120, pp. 104—111.
sured data. [20] Weber, S., Benetschik, H., Peitsch, D., and Gallus, H. E., 1997, “A Numerical

This failure suggests to explore the use of more Sophisticated Ap(;j)roach to Unstalled and Stalled Flutter Phenomena in Turbomachinery Cas-
i : cades,” ASME Paper No. 97-GT-102.
.tranSItlon and turbmence. mOdehng' SU(.:h models .Were e_llre_ach/l] Weber, S., Gallus, H. E., and Peitsch, D., 1998, “Numerical Solution of the
incorporated for the prediction of dynamic stall on single airfoils

o ) - . Navier—Stokes Equations for Unsteady Unstalled and Stalled Flow in Turbo-
and led to significantly improved agreement with the available  machinery Cascades With Oscillating Blade®Foc. 8th Int. Symp. on Un-

experimental data, as summarized by Ekaterinaris and P[&kzer steady Aerodynamics and Aeroelasticity of TurbomachiBesckholm, Klu-
Therefore, it is planned to apply these models in the next series of Wwer Academic Publishers.
computations for the Buffum cascade [22] Kato, D., Outa, E., and Chiba, K., 1998, “On Sub-Cell Structure of Deep

Rotating Stall in an Axial Compressor,Proc. 8th Int. Symp. on Unsteady
Aerodynamics and Aeroelasticity of Turbomachjr&wckholm, Kluwer Aca-
Acknowledgments demic Publishers.
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Deutsche Forschungsgemeinschd@i~G) and the Naval Post- ASME J. Turbomach.121, pp. 341-347.
graduate School. [24] Carstens, V., and Schmitt, S., 1999, “Comparison of Theoretical and Experi-
mental Data for an Oscillating Transonic Compressor Cascade,” ASME Paper
No. 99-GT-408.
References [25] Fourmaux, A., 1999, “Blade-Row Interaction in a Transonic TurbinBroc.
[1] AGARDograh No. 298, 1987, AGARD Manual on Aeroelasticity in Axial- ODAS 99 ONERA-DLR Aerospace Symposium. ) )
Flow Turbomachines. [26] Lin, J.-S., and Murthy, D. V., 1999, “Unsteady Aerodynamic Analysis of an
[2] Clark, W. S., and Hall, K. C., 2000, “A Time-Linearized Navier—Stokes Oscillating Cascade at Large Incidence,” ASME Paper No. 99-GT-22.
Analysis of Stall Flutter,” ASME J. Turbomachl122, pp. 467—476. [27] Buffum, D. H., Capece, V. R., and El-Aini, Y. M., 1998, “Oscillating Cascade
[3] Hall, K. C., and Crawley, E. F., 1993, “Calculation of Unsteady Flows in Aerodynamics at Large Mean Incidence,” ASME J. Turbomadf2Q, pp.
Turbomachinery Using the Linearized Euler Equations,” AIAA 27, pp. 122-130. .
777-787. [28] Benetschik, H., 1991, “Numerische Berechnung der Trans- uhdr&thall-
[4] Kahl, G., and Klose, A., 1993, “Computation of Time Linearized Transonic Stramung in Turbomaschinen mit Hilfe eines impliziten Relaxationsverfahr-
Flow in Oscillating Cascades,” ASME Paper No. 93-GT-269. ens,” Doctorthesis, RWTH Aachen, Germany.

[5] Montgomery, M. D., and Verdon, J. M., 1995, “A Linearized Unsteady Euler [29] Roe, P. L., 1981, “Approximative Riemann Solvers, Parameter Vectors and
Analysis for Turbomachinery Blade Rows Using an Implicit Wave-Split Difference Schemes,” J. Comput. Phy43, pp. 357-372.
Scheme,”Proc. 7th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity30] Harten, A., 1983, “High Resolution Schemes for Hyperbolic Systems of Con-
of TurbomachinesElsevier Science b.v. Amsterdam. servation Laws,” J. Comput. Phys19, pp. 357—393.

[6] Baldwin, B. S., and Lomax, H., 1978, “Thin Layer Approximation and Alge- 31 van Leer, B., 1979, “Towards the Ultimative Conservative Difference Scheme

braic Model for Separated Turbulent Flow,” AIAA Paper No. 78-257. V. A | 's Method.” J. P L P
[7] Baldwin, B. S., and Barth, T. J., 1990, “A One-Equation Turbulence Transport l(,ﬂ_?ggond Order Sequel to Godunov's Method,” J. Propul. POBErpp.
'floogdgiquor High Reynolds Number Wall-Bounded Flows,” NASA TM [32] Rai, M. M., and Chakravarthy, S. R., 1986, “An Implicit Form of the Osher

“ " Upwind Scheme,” AIAA J.,24, No. 5, pp. 735-743.
[8] Spalart, P. R., and Allmaras, S. R., 1992, “A One-Equation Turbulence Mode " . .
for Aerodynamic Flows,” AIAA Paper No. 92-0439. t33] Chakravarthy, S. R., 1983, “Euler Equations—Implicit Schemes and Bound-

[9] Ekaterinaris, J. A., and Platzer, M. F., 1997, “Computational Prediction of the &y Conditions,” AIAA J.,21, No. 5, pp. 699-705. ) i
Airfoil Dynamic Stall,” Prog. Aerosp. Sci.33, pp. 759—846. [34] Erdos, J. 1., Alzner, E., and McNally, W., 1977, “Numerical Solution of Pe-

[10] Sanz, W., and Platzer, M. F., 1998, “On the Navier—Stokes Calculation of _ fiodic Transonic Flow Through a Fan Stage,” AIAA 15, pp. 1559-1568.
Separation Bubbles With a New Transition Model,” ASME J. Turbomach.,[35] Peitsch, D., Gallus, H. E., and Weber, S., 1995, “Computation of Unsteady

120, pp. 36-42. Transonic 3D-Flow in Turbomachine BladingsProc. 7th Int. Symp. on Un-
[11] Weber, S., and Platzer M. F., 1999, “Steady and Dynamic Stall Analysis of steady Aerodynamics and Aeroelasticity of TurbomachiBésevier Science
the NLR 7301 Airfoil,” ASME Paper No. 99-GT-21. b.v. Amsterdam.
776 / Vol. 122, OCTOBER 2000 Transactions of the ASME

Downloaded From: http://asmedigital collection.asme.or g/pdfaccess.ashx?url=/data/j our nals/j otuei/28683/ on 07/27/2017 Terms of Use: http://www.asme.or g/about-asme/ter ms-o



