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Numerical stall flutter prediction methods are much needed, as modern jet engine
quire blade designs close to the stability boundaries of the performance map. A Qua
Navier–Stokes code is used to analyze the flow over the oscillating cascade designe
manufactured by Pratt & Whitney, and studied at the NASA Glenn Research Cen
Buffum et al. The numerical method solves for the governing equations with a
implicit time-marching technique in a single passage by making use of a direct-s
periodic boundary condition. For turbulence modeling, the Baldwin–Lomax model is
used. To account for transition, the criterion to predict the onset location suggeste
Baldwin and Lomax is incorporated. Buffum et al. investigated two incidence case
three different Mach numbers. The low-incidence case at a Mach number of 0.5 exh
the formation of small separation bubbles at reduced oscillation frequencies of 0.8
1.2. For this case the present approach yielded good agreement with the stead
oscillatory measurements. At high incidence at the same Mach number of 0.5 the
sured steady-state pressure distribution and the separation bubble on the upper s
was also found in good agreement with the experiment. But computations for oscilla
at high incidence failed to predict the negative damping contribution caused by
leading edge separation.@S0889-504X~00!01304-0#
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Introduction
A review of aeroelastic prediction methods for axial-flow tu

bomachinery@1# showed that the commonly used unsteady fl
models were limited to two-dimensional linearized methods. D
ing the past twelve years, tremendous advances in CFD h
made it possible to replace some of these models by nonli
three-dimensional flow models. However, the simulation of stro
viscous flow effects is still fraught with many uncertainties, ma
ing it difficult to predict some important aeroelastic phenome
One of these phenomena is stall flutter, where the currently u
empirical correlations for the stall flutter boundary prediction
compressor and fan blades have yet to be replaced by ‘‘ration
computational methods based on the solution of the Navi
Stokes equations. These uncertainties are caused by the
recognized difficulties to model laminar-to-turbulent flow tran
tion and turbulent flow in the presence of strong flow oscillatio
Furthermore, it is likely that stall flutter cannot be modeled
purely two-dimensional methods because separated flows ten
be three-dimensional. This situation is complicated even furt
for the case of high subsonic/transonic stall flutter due to the
mation of shock waves.

In this situation the computational fluid dynamicist has
choice but to proceed to increasingly more demanding flow m
eling and to evaluate the validity of the model against we
controlled experiments. Most investigators are agreed that
modeling has to be based on the Navier–Stokes equations. H
ever, great savings in CPU times can be achieved if the flow
decomposed into a steady nonlinear flow upon which small h
monic perturbations are superimposed. The most recent exa
for this type of approach was presented by Clark and Hall@2#
following the work of Hall and Crawley@3#, Kahl and Klose@4#,
and Montgomery and Verdon@5#. On the other hand, time linear
ization imposes limits on the oscillation amplitudes and hence
prudent to evaluate time-linearized results against solutions o
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nonlinearized unsteady Navier–Stokes equations. Furtherm
recent steady and dynamic stall computations for single airf
have yielded markedly improved agreement with measured h
teresis loops if the Baldwin and Lomax@6# algebraic turbulence
model was replaced by the one-equation Baldwin and Barth@7#
and Spalart and Allmaras@8# models and the laminar-to-turbulen
transition onset and length was incorporated into computations
shown by Ekaterinaris and Platzer@9#, Sanz and Platzer@10#, We-
ber and Platzer@11#, Weber et al.@12#, and Eulitz@13#.

The approach presented in this paper is based on the reaso
given above. Although three-dimensional flutter computations
presently being developed, for example by Bakhle@14# and Chew
et al. @15#, we believe that such an approach is still premature
the analysis of stall flutter. Therefore, the present analysis is ba
on the Quasi-3D Navier–Stokes equations without any furt
linearization assumptions. Such an approach was also adopte
He @16#, Eguchi and Wiedermann@17#, Abhari and Giles@18#,
Grüber and Carstens@19#, Weber et al.@20,21#, Kato et al.@22#,
Tuncer et al.@23#, Carstens and Schmitt@24#, Fourmaux@25#, and
Lin and Murthy @26#. The turbulence modeling still relies on th
simple algebraic Baldwin–Lomax model, but the transition on
criterion introduced by Baldwin–Lomax is incorporated. The r
sults are evaluated by comparison with the oscillating casc
measurements of Buffum et al.@27# which appear to be the mos
reliable data for such a comparison at the present time.

Mathematical Model
The present algorithm solves the nondimensinalized tim

dependent Quasi-3D Navier–Stokes equations. The equation
derived for anm, w-coordinate system withm in axial andw in
circumferential direction. It represents S1-stream surfaces of re
lution at a radiusr with a variable stream surface thicknessB to
account for three-dimensional flow effects. Following Benetsc
@28#, the Favre-averaged governing equations in strong conse
tion law-form transformed to curvilinear coordinates~j, h! can be
given in a rotating frame of reference as follows:

] tÛ1]jS Ê2
1

Re
ÊvD1]hS F̂2

1

Re
F̂vD5Q̂ (1)

45th
er-
sti-
000 by ASME OCTOBER 2000, Vol. 122 Õ 769
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in which J5](m,w)/](j,h) is the Jacobian matrix of transforma
tion, and whereÛ is the vector of conservative variables

Û5JrBH r
rvm

rrvw

u rot

J , (2)

Ê and F̂ are the Euler fluxes

Ê5JBH rWj

rvmWj1rpjm

rrvwWj1rpjw

erotW
j1pwj

J , (3)

F̂5JBH rWh

rvmWh1rphm

rrvwWh1rphw

erotW
h1pwh

J , (4)

and Êv and F̂v the viscous fluxes

Êv5JH 0
rrtmmjmm1tmwjw

r ~rrtmwjmm1twwjw!

rEevjm1Fevjw

J , (5)

F̂v5JH 0
rrtmmhmm1tmwhw

r ~rrtmwhmm1twwhw!

rEevhm1Fevhw

J , (6)

where

Eev5wmtmm1wwtmw1qm , (7)

Fev5wmtmw1wwtww1qw , (8)

and the source vectorQ̂ due to the coordinate transformation fo
the S1-system

Q̂v5JrB5
0

rvw
2

1

r

]r

]m
1

p

rB

]rB

]m

0

0
6 . (9)

The transformed components of the heat fluxq and the stress
tensort are given in more detail in Weber et al.@20#. In these
equationsr denotes the density andp the pressure. The absolut
and relative velocity components arevm ,vw , and wm ,ww , re-
spectively. The contravariant velocitiesWj andWh are given by:

Wj5r jm~wm2cjm!1jw~ww2cjw! (10)

and

Wh5rhm~wm2chm!1hw~ww2chw! (11)

with the components of the contravariant cell face velocitiescj,ch

which have to be introduced due to the time-dependent defor
tion of the grid. The volume specific total energyerot and the
rothalpyH rot assuming perfect gas are defined as:

erot5
p

k21
1

r

2
~vm

2 1vw
2 !2Vrrvw (12)

and

H rot5
erot1p

r
(13)
770 Õ Vol. 122, OCTOBER 2000
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with k the ratio of the specific heats, andV in case of a rotor flow
as the angular velocity. To model the turbulent stresses, a tu
lent eddy viscosity is computed following the turbulence model
Baldwin and Lomax@6#. The laminar viscosity is predicted b
Sutherland’s law. The onset of laminar/turbulent transition
found with the criterion suggested by Baldwin and Lomax@6#
using Cmutm of 14. Furthermore, an effective thermal transpo
coefficient is introduced, using a laminar and a turbulent Pran
number.

Equation~1! is nondimensionalized referring to the free-strea
total density, the free-stream total velocity of sound, the fr
stream total viscosity, and the chord length.

Numerical Method
A finite volume technique is applied for the numerical soluti

of Eq. ~1!, which is discretized in a node-centered form. Cent
and antisymmetric differences are used to compute the visc
fluxes. The inviscid fluxes are computed with an upwind FD
scheme by Roe@29#. At each volume cell face it solves for a
approximative Riemann problem by computing a numerical fl
function. For example in thej direction, the definition of the flux
function for a cell face located at (i 11/2,j ) is:

Ê~Û! i 11/2,j5
1

2
@Ê~ÛL! i 11/21Ê~ÛR! i 11/2

2~R̂juL̂juL̂ j~ÛR2ÛL!! i 11/2# (14)

with the initial state vectorsÛL at the left andÛR at the right side
of the cell face,L̂ j the left andR̂j the right matrices of the left and
the right eigenvectors, respectively andL̂j the diagonal matrix of
eigenvalues with respect toÊ. The components of the matrices a
obtained using the Roe average.

With Eq. ~14!, a characteristic wave decomposition is achiev
resulting in two acoustic waves, one shear, and one entropy w
Herein the eigenvalues describe the characteristic speed an
direction of the waves. Consistent with the characteristic comp
ibility relations, the change of the characteristic variable acr
the cell face can be computed due to the particular eigenv
formulation.

To assure a minimum amount of artificial viscosity in the who
computational domain, a method suggested by Harten@30# is
implemented, as well as a correction of the eigenvalues to o
come a nonphysical negative entropy change across expan
fans. The spatial discretization of the inviscid fluxes is extende
third-order accuracy by applying the MUSCL technique@31# to-
gether with the TVD scheme by Harten@30# and the van Albada
limiter function to avoid stability problems.

The fully implicit time-integration of Eq.~1! is performed
second-order accurate in time following the scheme of Rai
Chakravarthy@32#. Time accuracy is improved by using Newto
subiterations to minimize linearization errors at each time s
while the system of equations itself is solved iteratively by
Gauss–Seidel relaxation method. For unsteady computations
performance in terms of accuracy and convergence was foun
using three Newton subiterations at each time step.

Boundary Conditions and Unsteady Grid Generation. The
numerical treatment of the far field boundary conditions follow
method of characteristics proposed by Chakravarthy@33#. For the
up- and downstream boundaries, the number of physical boun
conditions depends on the number of characteristics entering
computational domain neglecting all viscous terms. At the infl
boundary the total pressure, the total temperature, and the in
angle are imposed. At the outflow boundary only the exit press
is prescribed. For viscous flows Stokes’ nonslip condition is
plied on the surface of the blade, assuming an adiabatic wall
a vanishing normal pressure gradient. The assumption of a
normal pressure gradient for unsteady flows is still correct if
reduced frequency of the blade oscillation is small.
Transactions of the ASME

nals/jotuei/28683/ on 07/27/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



h

e

a

t
d

a

r

h

n

th

for
e of
the
by

as-

e-

of

Buf-

the
to

he
res-
s-

in-
s-

ing
The
out
as
an-
res-
oth
er

t,
n be
was

Downloaded F
At the periodic boundary use is made of the direct store met
introduced by Erdos et al.@34#. This boundary condition allows
the simulation of harmonically oscillating blades for any inte
blade phase angle with only one passage. Convergenc
achieved if the difference between the flow quantities compa
with the flow quantities of the previous cycle are below a cert
limit. To avoid large storage requirements, the flow variables
the periodic boundaries are not stored at each time step, ma
use of a technique introduced by Peitsch et al.@35#.

The simulation of the blade motion requires an unsteady reg
eration of the C- or O-type grid. Therefore, the grid is divided in
three zones. The first zone includes the blade surface and the
lines inside the boundary layer preserving the orthogonality of
grid on the surface. This zone moves as a solid body accordin
the chosen mode of oscillation. Wrapped around the first zon
the second zone, which is surrounded by a stationary nondefo
ing third zone. The second zone is deformed at each time step
the grid is regenerated by solving the Laplace equation. Exp
ence shows that it is not necessary to run the grid regeneratio
each time step. Instead, it is sufficient to use a linear interpola
between newly regenerated grids. The third zone is kept fixe
save the orthogonality of the grid at the outer boundaries.

The Navier–Stokes code has been tested extensively for a
riety of steady and unsteady subsonic and transonic test c
such as@20,21,28#.

Computational Results and Discussion
Computations were performed to investigate the flutter cha

teristics of the Buffum cascade. This cascade was develope
improve the understanding of the unsteady flow phenomena w
cause stall flutter. The measurements were taken in the wind
nel of the NASA Glenn Research Center, where this linear ni
blade cascade was installed. A series of steady and oscilla
measurements were taken for free-stream Mach numbers of
0.5, and 0.8 at low and high incidence. In the experiment
blades were executing a harmonic pitching motion around

Fig. 1 O-type 241 Ã61 point grid for the Buffum cascade
Journal of Turbomachinery
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midchord point with an amplitudeâ of 1.2 deg at an interblade
phase angleF of 180 deg. The reduced frequencyk52p f c/U`
was varied between 0.4 and 1.2. The stagger angleg of the low-
aspect-ratio fan blade tip section was 60 deg, the chord lengc
was 0.0889 m, and the solidityc/s was 1.52.

In this paper we analyze only the steady and oscillatory data
a free-stream Mach number of 0.5 and a Reynolds number R
0.93106. The corresponding experimental results as well as
details of the test facility were discussed and given in detail
Buffum et al.@27#.

All steady-state and unsteady computations for the Buffum c
cade were performed on an O-type 241361 point Navier–Stokes
grid. Several grids were tested and the initial wall spacing d
creased until the solution became independent of the grid fory1

,1.5. The grid is shown in Fig. 1, including a magnification
the leading edge~top left! and the trailing edge~bottom right!.

Steady-State Low-Incidence Flow. Before running an un-
steady computation, a steady-state solution was computed. In
fum et al. @27#, the in-flow anglea corresponding to low inci-
dence was given to be 60 deg at a pressure ratiopexit /p` of 0.93.
In order to obtain good agreement with the experimental data,
pressure ratio for the numerical simulation had to be changed
0.936, resulting in an averaged inflow angle of 61.1 deg. T
computed data were compared with the measured chordwise p
sure coefficient distributions with a definition of the steady pre
sure coefficient as follows:

CpS x

cD5

pS x

cD2p`

r`U`
2 . (15)

Two steady-state computations, one fully turbulent and one
cluding transition, were performed. In Fig. 2 the predicted pre
sures are seen to compare well with the experimental data.

Figure 2 also includes experimental data on the neighbor
blades to indicate the degree of periodicity in the test cascade.
difference between the development of the boundary layer with
and with transition is seen to be small. A re-laminarization w
predicted at the trailing edge while the strongest influence of tr
sition could be seen close to the leading edge. In Fig. 3 the p
sure distribution at the leading edge is given in more detail. B
computations predicted the stagnation point slightly on the low
surface, reaching aCp of 0.5. Starting from the stagnation poin
the flow was accelerated on both surfaces of the blade, as ca
seen from the two suction peaks. The higher acceleration

Fig. 2 Steady-state pressure distribution, MÄ0.5, a
Ä61.1 deg, ReÄ0.9Ã106
OCTOBER 2000, Vol. 122 Õ 771
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found on the upper surface, e.g., the fully turbulent flow pred
tion reached aCp of 21 ~Fig. 3!. The transition criterion of
Baldwin–Lomax predicted a laminar region for 11 percent cho
length on the lower surface. On the upper surface the turbu
flow started at 1 percent chord length. Furthermore, a separa
bubble was found on the upper surface. The bubble length
approximately 5.5 percent of chord length independent of tran
tion, while the bubble size was bigger for the computation, inclu
ing transition. The predicted steady-state velocity vector distri
tion including transition is given in Fig. 4. One can see that t
separation occurs on the upper surface of the blade at the p
where the curvature of the blade surface changes sign.

Flutter at Low Incidence. At low incidence oscillatory mea-
surements were taken for reduced frequencies of 0.4, 0.8, and
However, fork50.4, the measured data have not been publis

Fig. 3 Steady-state pressure distribution at leading edge, M
Ä0.5, aÄ61.1 deg, ReÄ0.9Ã106

Fig. 4 Steady-state velocity vectors at leading edge, MÄ0.5,
aÄ61.1 deg, ReÄ0.9Ã106
772 Õ Vol. 122, OCTOBER 2000
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because the passage-to-passage periodicity was too poor.
analysis of the unsteady data a first harmonic unsteady pres
coefficient is defined as follows:

Cp1stS x

cD5

p1stS x

cD
âr`U`

2 . (16)

In Figs. 5 and 6 the real or in-phase part Re( ) and the ima
nary or out-of-phase part Im( ) of the first harmonic unsteady pr
sure coefficient are compared with the experimental data fo
reduced frequency of 1.2.

The real part is seen to agree well with the measured d
Again, the fully turbulent computation differed only slightly from
the computation, including transition. The biggest difference w
found on the upper surface of the blade between the leading e
and 16 percent chord length. Although the trend of the measu
out-of-phase part of the unsteady pressure is predicted well,
quantitative agreement is worse than for the in-phase part.
influence of transition is again strongest on the upper surface
tween the leading edge and 16 percent chord length. Similar

Fig. 5 Real part of unsteady pressure distribution at low inci-
dence, kÄ1.2, FÄ180 deg, MÄ0.5, ReÄ0.9Ã106

Fig. 6 Imaginary part of unsteady pressure distribution at low
incidence, kÄ1.2, FÄ180 deg, MÄ0.5, ReÄ0.9Ã106
Transactions of the ASME
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sults were found for a reduced frequency of 0.8. Since the out
phase part of the unsteady pressure determines the dampin
excitation of the blade motion, it is convenient to define the ae
dynamic damping parameterJ52Im(Cm) with Cm as the time-
dependent moment coefficient:

Cm~ t !5

2E rW

c
3FpS x

c
,t D dx

c
eW nG

âr`U`
2 (17)

with rW the vector pointing from the pivot location to an arbitra
point on the surface andeWn the unit vector normal to the blade
surface. A positive value corresponds to a damped oscillation

Buffum et al. presented a local stability analysis by plottin
(0.52x/c)Im(Cpps2Cpss)1st . The numerically predicted local sta
bility in comparison with the experimental data is given in Figs
and 8 for reduced frequencies of 1.2 and 0.8, respectively.
both reduced frequencies the computed local stability was gre
than the measured stability between 0 and 40 percent chord le
and smaller thereafter. The incorporation of transition for a
duced frequency of 1.2 slightly increased the stability.

Fig. 7 Local stability analysis at low incidence, kÄ1.2, F
Ä180 deg, MÄ0.5, ReÄ0.9Ã106

Fig. 8 Local stability analysis at low incidence, kÄ0.8, F
Ä180 deg, MÄ0.5, ReÄ0.9Ã106
Journal of Turbomachinery
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Figure 9 shows a counterclockwise variation of the pitchi
moment during one oscillation cycle thus indicating positi
damping. As expected, the aerodynamic damping increased
increased reduced frequency. In this figure the time-depen
development of the moment coefficient is plotted versus the n
dimensional pitching anglea85@a(t)2g#/â. As already seen
from Fig. 7, including transition slightly increased the damping

It is of special interest to study the behavior of the separat
bubble as a function of the oscillation frequency. Therefore, co
putations for a reduced frequency ofk50.2 were also performed
The bubble length during the blade oscillation was almost 22 p
cent of chord length, independent of the reduced frequency. F
reduced frequency of 0.2, the largest bubble size occurred sh
after reaching the highest pitching angle. For the reduced frequ
cies of 0.8 and 1.2 the maximum was reached almost a qua
cycle later. Furthermore, a separation bubble of a maximum
of 3 percent chord length was predicted on the lower surface.
bubble occurred shortly before reaching the lowest pitching an
and vanished completely a quarter cycle later. As expecte
further decrease of the reduced frequency decreased the dam
parameter even more. It is also interesting to note that the blad
subjected to a pitching moment fluctuating between positive
negative values for all reduced frequencies.

At low-incidence convergence of the unsteady computati
was reached after 6 to 8 cycles using 1000 time steps per c
and three Newton subiterations for each time step.

Steady-State High-Incidence Flow. Contrary to the experi-
mentally determined inflow angle of 70 deg at a pressure ratio
1.03, the best agreement between the measured and com
pressure distribution was obtained for a pressure ratio of 0
resulting in an inflow angle of 67.2 deg; see Fig. 10.

At this angle, the predicted pressure distribution on the low
surface agreed well with the measured data up to 70 percent c
length and was slightly too high thereafter. On the upper surf
good agreement was found between the leading edge and 20
cent chord length. Starting at 20 percent chord length the p
dicted pressure was slightly higher until 45 percent chord len
and again between 75 percent chord length and the trailing e

A study of the influence of three-dimensional effects due to
formation of corner vortices was performed by varying t
S1-stream surface thickness of the grid shown in Fig. 1. T
two-dimensional numerical results with and without transiti
shown in Fig. 10 could not be improved by this Quasi-3D co
putation. Transition onset was found at 0.6 percent chord len
on the upper surface while laminar flow to 13 percent cho

Fig. 9 Predicted pitching moment coefficient at low incidence,
FÄ180 deg, MÄ0.5, ReÄ0.9Ã106
OCTOBER 2000, Vol. 122 Õ 773
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length was predicted on the lower surface. The turbulent bound
layer was re-laminarized at the trailing edge. Including transit
improved the predicted pressure distribution on the upper sur
between the leading edge and 20 percent chord length. In Fig
the steady-state Mach number contours show the separated
region on the upper surface. A bubble of almost 50 percent ch
length was found that was 10 percent longer than the meas
bubble.

Flutter at High Incidence. Measurements for reduced fre
quencies of 0.4, 0.8, and 1.2 were taken at high incidence. In F
12 and 13 the computed real and imaginary parts of the first h
monic unsteady pressure coefficient at a reduced frequency o
are compared with the experimental results. Although the m
sured trend of the real part, especially on the upper surface,
predicted by the computation, the agreement is less accurate
for the low incidence case; see Fig. 5. However, in contrast to

Fig. 10 Steady-state pressure distribution, MÄ0.5, a
Ä67.2 deg, ReÄ0.9Ã106

Fig. 11 Steady-state Mach number contours, MÄ0.5, a
Ä67.2 deg, ReÄ0.9Ã106
774 Õ Vol. 122, OCTOBER 2000
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unsteady low incidence computations, the predicted imagin
part at high incidence is in better agreement with the experime
results than the real part. A similar behavior was found for t
reduced frequencies of 0.4 and 0.8. The overall agreement bec
slightly worse with decreasing reduced frequency. The oppo
behavior was found for the low-incidence computations.

In Fig. 14 snapshots of the unsteady Mach number contour
a reduced frequency of 1.2 are shown. The snapshots were t
at four different times during one cycleT. Here the development
of the separation bubble from a small bubble to a bubble exte
ing to 64 percent chord length can be seen.

A comparison of the low- and high-incidence measurements
the local stability, Figs. 7, 8, 15, 16, 17, shows that the lead
edge region makes a decisive contribution to the total stability
the low-incidence case the leading edge contributes posi
damping, whereas in the high-incidence case the flow separa
near the leading edge on the upper surface causes a destabi
pitching moment. As seen in Figs. 15, 16, 17, the computatio
fail to capture this destabilizing leading edge moment, but
local moment contribution from about 15 percent chord to t

Fig. 12 Real part of unsteady pressure distribution at high in-
cidence, kÄ1.2, FÄ180 deg, MÄ0.5, ReÄ0.9Ã106

Fig. 13 Imaginary part of unsteady pressure distribution at
high incidence, kÄ1.2, FÄ180 deg, MÄ0.5, ReÄ0.9Ã106
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trailing edge are predicted quite well fork51.2, while significant
differences are apparent up to midchord for thek50.8 andk
50.4 cases. A separation bubble is found to exist on the up
surface during the complete oscillation cycle. Att50.14T the
bubble reaches its smallest length of 34 percent chord len
which is 16 percent less than in the steady-state solution.
largest bubble is seen att50.9T, where it reaches a length of 6
percent chord. On the lower surface the flow remained attac
during the complete oscillation cycle.

The pitching moment hysteresis loops and the damping par
eter in dependency of the reduced frequency are given in Fig.

Fig. 14 Predicted unsteady Mach number contours at high in-
cidence, kÄ1.2, FÄ180 deg, MÄ0.5, ReÄ0.9Ã106

Fig. 15 Local stability analysis at high incidence, kÄ1.2, F
Ä180 deg, MÄ0.5, ReÄ0.9Ã106
Journal of Turbomachinery
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Fig. 16 Local stability analysis at high incidence, kÄ0.8, F
Ä180 deg, MÄ0.5, ReÄ0.9Ã106

Fig. 17 Local stability analysis at high incidence, kÄ0.4, F
Ä180 deg, MÄ0.5, ReÄ0.9Ã106

Fig. 18 Predicted unsteady aerodynamic moment coefficient
at high incidence, FÄ180 deg, MÄ0.5, ReÄ0.9Ã106
OCTOBER 2000, Vol. 122 Õ 775
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The almost elliptical shape of the hysteresis loops indicate a lin
response of the flow field to the prescribed motion. Furtherm
in contrast to the low-incidence case, the pitching moment is s
to be positive for all reduced frequencies.

Convergence of the computations for the different hig
incidence cases was obtained after 8 to 12 cycles. As for
low-incidence case, 1000 time steps per cycle in combination w
three Newton subiterations for each time step were used. All c
putations were performed on SGI Octane 250 MHz, R100
workstations, and Pentium II-400 Linux PCs.

Concluding Remarks
At low incidence the steady and oscillatory flow cases show

encouraging agreement with the experiment. As expected,
computed aerodynamic damping increased with increasing o
lation frequency. These results are consistent with the tim
linearized Navier–Stokes computations of Clark and Hall@2#.

On the other hand, at high incidence the numerical model fa
to predict the negative damping close to the leading edge altho
the steady-state solution was in good agreement with the m
sured data.

This failure suggests to explore the use of more sophistica
transition and turbulence modeling. Such models were alre
incorporated for the prediction of dynamic stall on single airfo
and led to significantly improved agreement with the availa
experimental data, as summarized by Ekaterinaris and Platze@9#.
Therefore, it is planned to apply these models in the next serie
computations for the Buffum cascade.
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