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Analytical and numerical scattering models with accompanying digital representations are used

increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem moni-

toring applications. Ten such models were applied to targets with simple geometric shapes and para-

meterized (e.g., size and material properties) to represent biological organisms such as zooplankton

and fish, and their predictions of acoustic backscatter were compared to those from exact or approxi-

mate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell,

prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target

boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering.

Target strength (dB re 1 m2) was calculated as a function of insonifying frequency (f¼ 12 to 400 kHz)

and angle of incidence (h¼ 0� to 90�). In general, the numerical models (i.e., boundary- and finite-ele-

ment) matched the benchmarks over the full range of simulation parameters. While inherent errors

associated with the approximate analytical models were illustrated, so were the advantages as they are

computationally efficient and in certain cases, outperformed the numerical models under conditions

where the numerical models did not converge. [http://dx.doi.org/10.1121/1.4937607]

[APL] Pages: 3742–3764

I. INTRODUCTION

Use of analytical and numerical scattering models to

predict acoustic backscatter from aquatic organisms contin-

ues to increase in both fisheries management and ecosystem
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research. These models have been used to predict backscatter

for classification of volume backscatter and target strength

(TS; dB re 1 m2) of individual scatterers, and to corroborate

acoustic measurements with directed net samples. The effec-

tiveness of a model is generally evaluated for a specific spe-

cies or survey, which makes selecting a model or set of

models difficult for scientists who require accurate number

density and abundance estimates for a suite of aquatic organ-

isms. In this paper, models are defined as the analytical and

numerical mathematical expressions implemented using

computer algorithms to predict acoustic backscatter; predic-

tions are the resulting backscatter amplitudes; and the digital

representations of the target shape and properties (e.g., orga-

nism anatomy and morphometry, material properties, and

boundary conditions) are used as input to the models.

Early observations that echoes from aquatic organisms

can dominate other reflectors of underwater sound motivated

the need to quantify and predict acoustic backscatter from bi-

ological targets (Midttun, 1984). Backscatter can be meas-

ured from biological targets in their natural environment

(i.e., in situ) or under controlled experimental conditions

(i.e., ex situ). Relationships of these measurements to animal

lengths derived from trawl catches may be estimated empiri-

cally using statistical regressions, theoretically by compari-

sons with analytical and numerical models, or both (Medwin

and Clay, 1998). Empirical approaches can be used to inves-

tigate the magnitude and relative importance of biological

and physical factors that influence backscatter intensities,

but a complete understanding of sound scattering by aquatic

organisms requires a combination of empirical and theoreti-

cal methods (Henderson and Horne, 2007).

The use of models to predict backscatter by aquatic

organisms rapidly expanded in the 1960s (Haslett, 1965) and

numerical techniques to solve analytical models followed as

computing capabilities improved (Francis and Foote, 2003).

Applications of backscatter predictions to estimate fish and

zooplankton abundance (Holliday, 1972; Lavery et al.,
2007) have paralleled the development of anatomically and

morphologically accurate representations of targets. Such

representation of aquatic organisms has evolved from simple

geometric shapes such as spheres, cylinders, and prolate

spheroids (Anderson, 1950; Jech et al., 1995), to more accu-

rate representations of fish anatomy (Clay and Horne, 1994;

Reeder et al., 2004), zooplankton anatomy (Chu et al.,
1993), and cephalopod anatomy (Lee et al., 2012). The

availability of multifrequency acoustic data has facilitated

an increase in use of theoretical models to separate echoes

from fish with gas or oil inclusions (e.g., swimbladders)

from fish without swimbladders, and zooplankton (Kloser

and Horne, 2003). Multifrequency data continue to be used

to separate echoes from multiple species within a survey

region (Anderson et al., 2007; De Robertis et al., 2010;

Woillez et al., 2012).

Choosing from among theoretical models those that are

optimal for predicting backscatter from fish and zooplankton

is not trivial. There are a number of models available, each

with advantages and constraints. In this study, models were

chosen based on historical usage and potential application to

biological targets with high aspect ratios. The predictions of

backscatter from these models have not been systematically

compared using a common set of target shapes and

properties.

In this paper, ten analytical and numerical models were

applied to four target shapes with homogeneous composition

and their predictions compared among models and to bench-

marks (i.e., predictions of acoustic backscatter from exact or

approximate analytical models) (Table I). These shapes and

compositions were selected for comparison because they

have exact analytical solutions or the approximations are

known and accepted. In this paper, all models were imple-

mented in computer algorithms and were numerically eval-

uated to within a predetermined precision (Sec. IV C). The

shapes were a sphere, a sphere with a fluid shell, a prolate

spheroid, and a finite cylinder. For each target shape, four

target boundary conditions were modeled: fixed-rigid, pres-

sure-release, gas-filled (air-filled), and weakly scattering.

Material properties of the gas-filled target were selected to

represent a gas-filled swimbladder and the properties of the

weakly scattering target were selected to represent macro-

zooplankton (e.g., krill). The objectives of this study were to

(1) predict TS of the simple targets as a function of fre-

quency and insonification angle, (2) compare predictions

from different models using the same target, and (3) identify

advantages and constraints of each model.

II. BENCHMARK MODELS

Where possible, solutions of exact analytical models

were used as benchmarks (Table I). This includes the geome-

tries of the sphere and prolate spheroid where exact modal

series solutions (MSSs) to the wave equation were used. In

cases where an exact solution did not exist, either an approx-

imate analytical solution was used as the benchmark or no

benchmark predictions were made. The modal series–based

deformed cylinder solution was used in this former case, as

its limitations have been documented in earlier studies.

A. Exact analytical models

1. Sphere

The exact modal series model used to describe the scat-

tering by a sphere is obtained using separation of variables.

The general solution for the scattered wave by a sphere can

be expressed as

pscat ¼ p0

X1
n¼0

Anð2nþ 1ÞPnðcos hÞh1
nðkwrÞ; (1)

where r is the range (m), kw is the acoustic wavenumber

(k¼ 2p/k) in the surrounding water, subscript w denotes the

surrounding water, k is wavelength (m), po is the incident

pressure, and the value of the coefficient An depends on the

boundary conditions (Anderson, 1950). Note that our defini-

tion of An (see below) and Eq. (1) differs from Anderson

(1950). Pn is the Legendre polynomial of degree n, and h1
n is

the spherical Hankel function of the first kind, or the spheri-

cal Bessel function of the third kind, of order n. For back-

scattering, the scattering angle is h ¼ p and the Legendre
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polynomial becomes Pn(�1)¼ (�1)n. For the far field, kwr

� 1, h1
nðkwrÞ �!

kwr�1
½ð�iÞnþ1=ðkwrÞ�eikwr and the backscattered

acoustic pressure can be expressed in terms of the scattering

amplitude

pbs ¼ p0

eikwr

r
fbs; (2)

where

fbs ¼ �
i

kw

X1
n¼0

�1ð Þn 2nþ 1ð ÞAn (3)

is the backscattering form function. For these calcula-

tions, kwaþ 20 (rounded to the nearest integer) was used

as the maximum number of terms for n, which provided

the sufficient number of terms for convergence relative

to the precision of 0.1 dB required for these comparisons

(see Sec. IV C). Note that the scattering amplitude has

dimension of length and is also known as scattering

length (Medwin and Clay, 1998). TS is related to fbs

through the expression:

TS ¼ 10 log10ðjfbsj2Þ dB re 1 m2: (4)

Note that the coefficient An given in Eq. (3) differs from that

given in Anderson (1950) by a factor of �po(�i)n(2nþ 1)

due to the difference in our definition of An. However, our

results are identical to Anderson.

a. Fixed-rigid sphere. For fixed-rigid spheres, the

boundary condition requires that the normal velocity is zero

at the water/sphere interface, which leads to

An ¼ �
j0n kwað Þ
h0n kwað Þ ; (5)

where jn is the spherical Bessel function of the first kind, the

prime denotes the derivative with respect to the argument,

and a is the radius of the sphere.

b. Pressure-release sphere. For pressure-release spheres,

the boundary condition requires zero acoustic pressure at the

water/sphere interface, which leads to

An ¼ �
jn kwað Þ
hn kwað Þ (6)

(Rayleigh, 1945; Morse and Ingard, 1968).

TABLE I. Characteristics of the acoustic backscatter models used in this study for bounded objects. Cases under which they were used as a benchmark are

indicated.

Model Accuracy Range of Validity Limitations Benchmark

MSS Exact Canonical shapes (11 of them) Convergence issues

for some shapes

Sphere and prolate spheroid

(homogeneous): rigid,

pressure-release,

gas-filled, and weakly scattering

Spherical shell: pressure-release,

gas-filled, and weakly scattering

BEM High All shapes; all frequencies;

all angles

Computing demands at

high frequencies;

thin-shelled scatterers;

inhomogeneous volumes;

reduced accuracy for weak scatterers.

FEM High All shapes, all frequencies,

all angles

Computing demands at high frequencies;

thin-shelled scatterers; reduced accuracy

for weak scatterers

FMM Exact Axisymmetric; all shape profiles;

all frequencies; all angles

Non-axisymmetric; convergence

issues at high aspect ratios

KA Approximate High frequencies; near normal

incidence; homogeneous material

Off-normal incidence; low frequencies;

no circumferential waves

KRM Approximate All frequencies;

high aspect ratio

at low frequencies; near-normal

incidence; homogeneous material

Off-normal incidence; no

circumferential waves;

no longitudinal modes of vibration

near resonance

Modal

series–based DCM

Approximate Near normal incidence;

all frequencies;

circular cross-section;

all material

properties; high-aspect ratios

Off-normal incidence;

low-aspect ratios;

irregular shapes with high local slopes

Finite cylinder: Rigid,

pressure-release,

gas-filled, and weakly scattering

DWBA Approximate Weak scatterers

(� � 5%); all shapes;

all frequencies; all angles

Strong scatterers (� � 5%)

PT-DWBA Approximate Weak scatterers (� � 5%);

all shapes; all frequencies; all angles

Strong scatterers (� � 5%)

SDWBA Approximate Weak scatterers (� � 5%);

all shapes; all frequencies; all angles

Strong scatterers (� � 5%)
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c. Fluid-filled sphere. For fluid-filled spheres, the acous-

tic pressure and the normal velocity are both non-zero at the

water/sphere interface. Fluids are liquids and gases that do not

support a shear wave. The coefficient An (Anderson, 1950) is

An ¼
�1

1þ iCn
; (7)

where

Cn ¼
j0n k1að Þyn kað Þ
� �

= jn k1að Þj0n kað Þ
� �

� gh y0n kað Þ=j0n kað Þ
� �

j0n k1að Þjn kað Þ
� �

= jn k1að Þj0n kað Þ
� �

� gh
; (8)

k1 is the acoustic wavenumber inside the fluid-filled sphere,

g is the density (q, kg m3) contrast ðqt=qwÞ (subscript t
denotes the target), h is the sound speed (c, m s�1) contrast

ðct=cwÞ of the sphere to the surrounding water, and y is the

spherical Neumann function. In addition, letting gh!1 and

gh!0 for the fluid-filled sphere, Eq. (8) reduce to Eqs. (5)

and (6) corresponding to the fixed-rigid and pressure-release

cases, respectively.

d. Gas-filled sphere. For a gas-filled sphere (i.e., air-

filled bubble), the density contrast of the fluid-filled sphere is

near zero (e.g., g 	 0.0012 at the surface) and the sound

speed contrast is less than unity (e.g., h 	 0.22 at the sur-

face). Equations (7) and (8) were used with these g and h pa-

rameter values to compute the exact scattering amplitude.

e. Weakly scattering sphere. For the weakly scattering

sphere, the density and sound speed contrasts are both near

unity. Equations (7) and (8) were used to compute the exact

scattering amplitude.

f. Spherical fluid shell with fluid interior. For the spheri-

cal fluid shell with fluid interior, the acoustic pressure and

normal velocity are finite at both the water/outer-sphere and

the inner-sphere interfaces (Jones et al., 2009). In the bench-

mark case here, the 4
 4 matrices in Jones et al. (2009)

were transformed to 3
 3 matrices to simplify benchmark

computations by removing the unused coefficients for the

inner-layer pressure (i.e., eliminating the 3rd columns of the

original 4
 4 matrices). The coefficient An can be expressed

as

An ¼

b1 a12 a13

b2 a22 a23

0 a32 a33

������
������

a11 a12 a13

a21 a22 a23

a31 a32 a33

������
������
; (9)

where all elements in the two 3
 3 matrices are listed in the

Appendix.

g. Fixed-rigid spherical shell. The fixed-rigid spherical

shell is acoustically equivalent to the fixed-rigid solid sphere

and therefore a benchmark was not calculated for this case.

h. Spherical fluid shell with pressure-release

interior. For the spherical fluid shell with pressure-release in-

terior, the density contrast between the interior fluid and

shell is zero (i.e., g32¼ 0). An can be expressed as

An ¼

b1 d1

b2 d2

����
����

a11 d1

a21 d2

����
����
; (10)

where elements in the two 2
 2 matrices are listed in the

Appendix.

i. Spherical fluid shell with gas interior. For the spheri-

cal fluid shell with gas interior, the density and sound speed

contrasts of the gas relative to the shell are both much smaller

than unity. Equations (3) and (9) were used to calculate TS.

j. Spherical fluid shell with weakly scattering

interior. In this case, both the fluid shell and the inner fluid

sphere are weakly scattering. The resulting density and sound

speed contrasts—g21, g32, h21, and h32—are all near unity

(1.002). Equations (3) and (9) were used to calculate TS.

2. Prolate spheroid

The prolate spheroid modal series (PSMS) model was

used as the benchmark for the fixed-rigid, pressure-release,

and gas-filled prolate spheroid targets.

Solving the scalar wave equation in spheroidal coordi-

nates (n, g, /) and applying the boundary condition deter-

mines the scattering amplitude of the scattered wave from a

prolate spheroid with a major radius a and a minor radius b
(Flammer, 1957; Silbiger, 1963; Yeh, 1967; Skudrzyk,

1971). A spheroid surface is given by n¼ nw¼ constant and

the relationships among a, b, and n are a¼ nwq and

nw ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb=aÞ2

q
, where q is the semi-focal-length of

the spheroid.

The scattering amplitude (fsc) is expressed by the prolate-

spheroidal wave function approximated in the far field as

fsc h;/jh0;/
� �

¼ � 2i

kw

X1
m¼0

X1
n¼m

em

Nmn hwð Þ
Smn hw; cos h0
� �


 AmnSmn hw; cos hð Þcos m /� /0
� �

;

(11)
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where hw ffi kwq, 2q is the distance between focal points,

(h;/) and (h0;/0) are the spherical angle coordinates of the

scattered and incident wave, em is the Neumann factor, Smn

is the angular spheroidal wave function of the first kind of

order m and degree n, and Nmn is its normalization factor.

For backscatter, h ¼ p� h0 and / ¼ pþ /0. Values of the

unknown coefficients Amn are determined by the boundary

conditions required for both the pressure field and the normal

component of displacement across the scattering surface.

The maximum values of m and n in Eq. (11) were estimated

by Furusawa (1988) as

mmax ¼ ½2kwb�; and (12a)

nmax ¼ mmax þ ½hw=2�: (12b)

In the backscattering case, h0 ¼ p�h, /0 ¼ p, and /¼ 0 in

Eq. (11). The TS of a scatterer is defined in Eq. (4) using

fbs¼ fsc(h,0jp�h,p).

Only a small number of parameters are required for the

calculations. For example, four parameters (kw, q, nw, h) are

required for the pressure-release and rigid fixed model calcu-

lations for the backscattering case and another two parame-

ters (k1,g) are required for the fluid case.

The PSMS is correct for all values of hps and for all

angles of incidence naturally encountered. However, com-

puter precision limits the maximum value of kq to approxi-

mately 12. In the gas-spheroid model, the gas parameters

were applied to the fluid model and calculated over a fre-

quency range of f¼ 12 to 40 kHz. The pressure-release

model was calculated over a frequency range of f¼ 12 to

80 kHz. Comparisons between the model and experimental

results have shown good agreement (Sawada et al., 1997).

Comparisons between the PSMS and the deformed cylinder

model (DCM) with vacant, rigid, and fluid conditions and

between the PSMS and the boundary element method

(BEM) agreed well (Ye et al., 1997; Okumura et al., 2003).

a. Fixed-rigid prolate spheroid. Spence and Granger

(1951) and Senior (1960) showed that coefficients for the

rigid spheroids can be expressed as

Amn ¼ �

@

@n
R 1ð Þ

mn hw; nwð Þ

@

@n
R 3ð Þ

mn hw; nwð Þ
; (13)

where RðiÞmn is the radial spheroidal wave function of the ith
kind.

b. Pressure-release prolate spheroid. Senior (1960)

showed that the coefficients for the pressure-release spheroid

can be expressed as

Amn ¼ �
R 1ð Þ

mn hw; nwð Þ
R 3ð Þ

mn hw; nwð Þ
: (14)

c. Fluid-filled prolate spheroid. Coefficients for the

fluid-filled spheroid were solved using the simultaneous

equation

X1
n¼m

0K
mð3Þ
nl Amn þ

X1
n¼m

0K
mð1Þ
nl ¼ 0; (15)

where m¼ 0,1,2,…, R0 indicates a summation with respect

to the same parity of n and l, and K
mðiÞ
nl is shown as

Km ið Þ
nl ¼

in

Nmn hwð Þ
Smn hw; cos h0
� �

am
nlE

m ið Þ
nl ;

where

(16)

Em ið Þ
nl ¼ R 1ð Þ

mn hw; nwð Þ � q1

q0

R 1ð Þ
ml ht; nwð Þ

R 1ð Þ0
ml ht; nwð Þ

R ið Þ0
mn hw; nwð Þ

(17a)

and

am
nl ¼

1

Nml htð Þ

ð1

�1

Smn hw; gð Þ Sml ht; gð Þdg; (17b)

where R0mn ¼ @Rmn=@n. In the case that ht ffi hw, Amn can be

further simplified to

Amn ¼ �
Em 1ð Þ

nn

Em 3ð Þ
nn

;

which was used for calculations of the benchmark.

d. Gas-filled prolate spheroid. The PSMS model did

not converge for a gas spheroid at “high” ka values, thus no

benchmark model was used for this target.

e. Weakly scattering prolate spheroid. For the weakly

scattering spheroid, the g and h values are near unity.

Equations for the fluid-filled prolate spheroid described in

Sec. II A 2 c were used to compute scattering amplitudes.

B. Approximate analytical models

1. Finite cylinder

There is no exact analytical model for a straight finite

cylinder. For this target, the modal series–based DCM was

used as the benchmark for the homogeneous rigid, pressure-

release, gas-filled, and weakly scattering cylinders at broad-

side incidence and as the benchmark for these targets at

f¼ 38 kHz from h¼ 70� (20� off broadside) to 90� (broad-

side incidence).

The modal series–based DCM was developed in Stanton

(1988, 1989). The solution involves integrating the scattered

pressure per unit length along the length of the deformed cyl-

inder. For the case of a straight finite cylinder, the integral

reduces to the expression for the backscattering amplitude,

fbs:

fbs ¼ �
L

p
sin kL cos hð Þ

kL cos h

X1
m¼0

imþ1Bm; (18)

where L is the cylinder length, k is the wavenumber in the

surrounding water, and h is the angle between the straight
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cylinder axis and the incident plane wave [Eq. (28) in

Stanton (1988) or Eq. (12) in Stanton (1989)]. Here the coef-

ficient Bm are determined by matching interior and exterior

solutions to the wave equation at the boundary of the scat-

terer. These coefficients are specific to the type of material

property of the scatterer (pressure-release, fixed-rigid, and

fluid/gas) relative to the surrounding fluid and are given

below for each of those cases.

The modal series–based DCM solution assumes that (1)

end effects are negligible and (2) the direction of the tangent

to the cylinder axis, the cross-sectional radius, and the material

properties change slowly with respect to position along the cyl-

inder axis. The first assumption restricts this use of the DCM

to geometries where the direction of the incident sound wave

and scattering is normal or near normal to the tangent of the

cylinder axis, and the cylinder is elongated where the aspect

ratio is much greater than unity. For applications to the straight

undeformed cylinders of homogeneous properties, the second

assumption is automatically met. Note that the DCM was later

generalized for any kernel (such as modal series–based, ray-

based, DWBA-based) in Stanton (1992) and, for the DWBA-

based-DCM applications described below, the solution is not

restricted to the above assumptions.

a. Fixed-rigid finite cylinder. The backscattering ampli-

tude of a rigid and fixed straight cylinder is [Eq. (34),

Stanton, 1988]

fbs ¼
iL

p
sin kL cos hð Þ

kL cos h

X1
m¼0

�1ð Þmem
J0m Kað Þ
H0m Kað Þ

" #
; (19)

where eo¼ 1 and em¼ 2 for m¼ 1, 2, 3, 4…, Jm(x) is the cy-

lindrical Bessel functions of order m of the first kind, the

prime represents the derivative with respect to the argu-

ments, and K ¼ k sin h, Hm is the cylindrical Bessel function

of the third kind (Hankel function). TS is computed using

Eqs. (4) and (19).

b. Pressure-release finite cylinder. The backscattering

amplitude of a pressure-release finite cylinder is [text after

Eq. (17) of Stanton, (1988)]:

fbs ¼
iL

p
sin kL cos hð Þ

kL cos h

X1
m¼0

�1ð Þm em
Jm Kað Þ
Hm Kað Þ

" #
: (20)

TS values were computed using Eqs. (4) and (20).

c. Gas-filled finite cylinder. From Stanton (1988), the

coefficients Bm in Eq. (18) of this paper for this fluid-fluid

boundary condition are

Bm ¼ �emim=ð1þ iCmÞ; (21)

where

Cm ¼
J0m K0að ÞNm Kað Þ
� �

= Jm K0að ÞJ0m Kað Þ
� �

� gh N0m Kað Þ=J0m Kað Þ
� �

J0m K0að ÞJm Kað Þ
� �

= Jm K0að ÞJ0m Kað Þ
� �

� gh
; (22)

Nm is the cylindrical Bessel function of the second kind of

order m, and K0 ¼ K=h, TS values were computed using

Eqs. (4), (18), (21), and (22) and the density and sound speed

values of gas from Sec. IV B. Note that acoustically, gas is a

fluid as it does not support a shear wave.

d. Weakly scattering finite cylinder. The fluid-fluid

boundary conditions here are identical to those of the gas-

filled cylinder. TS values were computed using Eqs. (4),

(18), (21), and (22) and the material properties of the weakly

scattering target given in Sec. IV B.

III. NON-BENCHMARK MODELS

A. Exact numerical models

1. BEM

The acoustic BEM uses an integral form of the

Helmholtz wave equation, in which the acoustic pressure p
at any point is expressed in terms of the pressure and normal

displacement fields on the surface S of the scatterer (Chen

and Scheikert, 1963; Chertock, 1964; Copley, 1967). By

evaluating this integral equation at each node of a mesh of

elements that collectively span S, a system of simultaneous

equations for the pressures and displacements at those nodes

is produced. For the pressure-release and rigid surfaces, the

pressure and normal displacement, respectively, are known,

and the system of equations may be solved for the other

variable. Where S encloses a second fluid, the interior

form of the standard integral equation provides a second

system of equations, which can be solved simultaneously

with the first for both surface pressure and normal dis-

placement. This solution may then be used in the original

integral equation to determine the pressure at any other

point.

The particular implementation in this study used the

approach of Burton and Miller (1971) to overcome the

known problem of singularities in the exterior equation at

certain critical frequencies (Copley, 1968; Pierce, 1992), in

which the standard integral equation has a multiple of its

normal derivative at the surface added to the integral.

Further details of the method can be found in Francis (1993)

and Francis and Foote (2003).

In this formulation, integrals are evaluated numerically

by Gaussian quadrature over six-noded triangular and eight-

noded quadrilateral elements that together span S; on each
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element the acoustic and geometric variables are expressed

in terms of nodal values using quadratic interpolation

(Zienkiewicz and Taylor, 1989). For this interpolation to

closely represent the acoustic waveforms, it is recommended

that adjacent nodes should be no more than 1
6

of a wavelength

apart (Bonnet, 1995).

This condition requires finer meshes as the frequency

increases. For example, for an ellipsoid at 400 kHz, a trian-

gular mesh covering the whole surface would need to con-

sist of over 18 000 elements and 37 000 distinct nodes. To

solve the dense, complex system of equations for the sur-

face pressures at this number of nodes would present a for-

midable computing challenge. The size of the problem may

be reduced by exploiting mirror symmetry in the plane con-

taining the ellipsoid axis and the incident wave direction.

To achieve further reduction, a superposition of solutions,

with symmetry and anti-symmetry, has been implemented.

For each of the other two principal planes, the problem is

rendered symmetric by adding the mirror image of the inci-

dent wave, and then anti-symmetric by reversing the sign of

this mirrored wave. The four cases that arise are solved sep-

arately and the resulting solutions are superimposed to

solve the original problem using an incident wave of four

times the amplitude. As a result, only one octant of the

ellipsoid (or cylinder) needs to be meshed, requiring less

than 5000 nodes at 400 kHz. This procedure was verified by

comparing its results at a low frequency (12 kHz) with

those obtained using a corresponding mesh of the complete

surface, i.e., one derived by reflecting the octant mesh in

the three coordinate planes in turn. Agreement (to the

eighth significant figure) in the values of the scattered pres-

sure was confirmed.

Tests for convergence were conducted at f¼ 12, 18, 38,

70, 120, 200, and 400 kHz for the rigid, pressure-release, and

weakly scattering cases of the prolate spheroid and cylinder,

using series of meshes with decreasing nodal separation. For

the rigid and pressure-release targets, convergence was

achieved to within margins of 6 0.02 dB at all frequencies,

except at 200 kHz for the rigid cylinder, where the margins

were 6 0.2 dB. Convergence was less consistent for the

weakly scattering targets. Margins of 60.1 dB were achieved

for the spheroid at all frequencies up to and including 70

kHz; thereafter the margins were 60.3, 61.5 and 63.5 dB at

120, 200, and 400 kHz, respectively. For the cylinder, mar-

gins of 60.1 dB were achieved at all frequencies except 120

kHz (62 dB); it may be noted that this is close to a null in

the TS response, where the subtraction of two nearly equal

matrices in the BEM makes the computations more sensitive

to error.

2. Finite element method (FEM)

The FEM was used to solve the inhomogeneous

Helmholtz equation in the frequency domain to give the

steady-state acoustic pressure throughout the simulation

volume (Ihlenburg, 1998). The scattering objects were

surrounded by a homogenous layer, and then by a per-

fectly matched layer (PML), which acted as an absorb-

ing boundary (Berenger, 1996; Zampolli et al., 2007).

The far-field backscattered pressure was estimated by

evaluating the Helmholtz-Kirchhoff integral (Pierce,

1989) on the boundary between the homogenous layer

and PML. This method is able to simulate the scatter-

ing from arbitrarily complex fluid-like inhomogeneous

objects.

The fixed-rigid and pressure-release targets were mod-

eled as a void in the model domain with appropriate bound-

ary conditions. TS predictions for the gas-filled and weakly

scattering targets were obtained by varying the model mate-

rial properties to form the scattering object. The homogenous

layer surrounding the scattering object was at least one-half

wavelength thick, while the PML was one wavelength thick.

The FEM elements were Lagrangian of quadratic order. The

mesh density was set to give at least ten nodes per wave-

length so as to adequately represent the acoustic wave (e.g.,

Ihlenburg, 1998). Tests for convergence were carried out at

38 kHz for the rigid, pressure-release, and weakly scattering

cases of the sphere. Convergence of the solution occurred

with ten or fewer nodes per wavelength for all three sphere

cases. The ten-node per wavelength mesh density was main-

tained for all models. Symmetry in the model and scattered

pressure field was used to reduce the computation load

where possible.

The FEM implementation was provided by the

Acoustics Module of the commercially available COMSOL

Multiphysics software version 3.5 (COMSOL, 2008). The

methods were implemented using the “time-harmonic scat-

tered wave” option where the incident wave is used to gener-

ate an equivalent radiation condition on the boundary of the

fixed-rigid and pressure-release scattering targets. The gas-

filled and weakly scattering targets were simulated using a

two domain approach where the total pressure field inside

the target was calculated and coupled to a scattered field in

the surrounding homogenous layer and PML. The coupling

was achieved by setting the pressure on the boundary of the

object equal to the total pressure in the homogenous layer,

and ensuring the continuity of the normal derivative of ve-

locity between the two domains.

3. Fourier matching method (FMM)

The FMM uses a two-dimensional (2-D) conformal

mapping approach to describe scattering by axisymmet-

ric, irregular, finite-length bodies of revolution (Reeder

and Stanton, 2004). The model conformally maps the

coordinate variables of the original coordinate system to

a new orthogonal coordinate system using the Newton–

Raphson method, where the new radial coordinate

exactly coincides with the target surface. The solutions

to the transformed Helmholtz equation are a general so-

lution for the total pressure in the case of far-field scat-

tering by a finite body of revolution. This model has

been shown to be accurate (i.e., within 1 dB of the exact

solution) when predicting scattering by smooth, symmet-

ric bodies over a wide range of frequencies (i.e.,

Rayleigh through geometric scattering regions), angles

(monostatic and bistatic), aspect ratios, and boundary

conditions (Reeder and Stanton, 2004).
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The conformal mapping function has the form

GðqÞ ¼ c�1eq þ
X1
n¼0

cne�nq; (23)

where cn are the conformal mapping coefficients, and q is

related to the radial and polar angular variables in the new

coordinate system. The scattering amplitude in the new coor-

dinate system is

fsc ¼
X1

n¼�1

X1
m¼�1

bnmi�n�1Pm
n

g u;wð Þ
r u;wð Þ

 !
eimt; (24)

where bnm are the far-field scattering coefficients that depend

on the shape and material properties of the scatterer, Pm
n is

the associated Legendre function, r(u,w) is the new radial

coordinate, and g(u,w) is a function of the new system. The

far-field scattering coefficients, bnm, are determined after

solving the transformed Helmholtz equation and satisfying

the boundary conditions at the surface of the target. The val-

ues of m and n differed among targets, but in all cases

exceeded kaþ 3. Details and definitions of the parameters

are in Reeder and Stanton (2004).

Given the eccentricity of shape and high frequencies at

which these TS values are computed, approximations were

required at the higher frequencies to obtain a stable result.

B. Approximate analytical models

1. Kirchhoff approximation (KA)

The KA is a high-frequency model in which diffraction

is neglected. The pressure field on the scattering surface S is

assumed to be known a priori. For a pressure-release sur-

face, where the acoustic pressure is zero, the normal compo-

nent of particle velocity on S is assumed to be equal to that

of the incident field on the directly insonified part of S, and

zero on the geometrically shadowed part. Similarly, for a

rigid surface, where the normal velocity is zero, the pressure

on S is assumed to be that of the incident wave on the insoni-

fied part and zero on the shadowed part of S. The scattered

pressure at any point exterior to S can then be obtained from

the Helmholtz integral equation. The form that this integral

takes for the far-field backscattering amplitude may be found

in Foote (1985) and Foote and Francis (2002).

In the model used here, the integration is performed

numerically using the same procedure as in the BEM:

Gaussian quadrature over curvilinear surface elements,

where the position vector and the associated normal at each

Gaussian point are calculated by quadratic interpolation

from the nodal coordinates. Accuracy of the numerical inte-

gration depends on the order of the polynomial fit assumed

in the Gaussian quadrature and on the distance between adja-

cent nodes. With Gaussian quadrature of order 2 or higher, a

good representation of the waveform should be obtained for

a nodal separation up to one-sixth of a wavelength. In the

most extreme case considered here – the spheroid at 400 kHz

– this condition leads to meshes of over 18 000 triangular

elements. The KA does not need to solve for the pressure

field on the surface, and requires an evaluation of a single

integral, which significantly reduces computational require-

ments relative to the BEM.

2. Kirchhoff ray mode (KRM)

The KRM calculates backscatter as a function of target

length, acoustic frequency, and angle of incidence (Clay and

Horne, 1994). Backscatter is calculated from targets using a

low-mode cylinder solution for frequencies near resonance

of the swimbladder and a Kirchhoff-ray approximation at

high frequencies from digital representations of the target

bodies and inclusions. The Kirchhoff-ray approximation

accounts for local reflection coefficients of front and back

interfaces of penetrable scatterers. Inclusions include gas- or

lipid-filled swimbladders in fish, oil droplets in zooplankton,

and skeletal elements. The digital target morphology was

used to construct cylindrical volume elements. Digital reso-

lution and element spacing in the KRM model were fixed at

1 mm for all targets and frequencies, as that is what is done

operationally. For the higher frequencies, such as 400 kHz,

this spacing is larger than 1
6

of a wavelength which may lead

to errors. Backscatter from each morphological feature, both

in the low and high frequency regions is computed as a finite

cylinder using the deformed finite cylinder model of Stanton

(1989).

For the gas-filled targets with ka values �0.2, where a is

the equivalent radius of the cylindrical elements, a low-

mode (M¼ 0) cylinder solution was used (Clay, 1991,

1992). For the gas-filled targets and ka> 0.2, a Kirchhoff-

ray approximation was used, which is modified from Clay

(1992). For the weakly scattering targets at all ka, a

Kirchhoff-ray approximation was used.

3. DCM

For angles from 0� (end-on incidence) to 69�, non-

benchmark TS was calculated for the cylinder using the

modal series–based DCM. The DCM was also used for TS

predictions of the prolate spheroid targets. Since this

involves cylinders deformed beyond the shape of the straight

cylinders described in Eq. (18), integration of the scattering

per unit length was performed along the length of the target,

using Eq. (8) of Stanton (1989).

In the method used here, the integration is performed

numerically using digitized shapes of the benchmark targets.

Digitizing includes (i) digitally slicing elongated targets

cross-wise and at closely spaced points along the major axis

to form thin disk-like volume elements and (ii) defining their

radius, position along the axis and the orientation of their

axis. The digital resolution and the element length along the

axis were approximately 0.3 mm for cylinders and 0.6 mm

for the prolate spheroids. Here, the element lengths are less

than k/6 for all frequencies.

4. Distorted wave born approximation (DWBA)

The DWBA, an approach that had long been used in

other fields such as quantum mechanics, was first applied to

the case of weakly scattering zooplankton by Chu, Stanton,

and colleagues in a series of papers beginning in 1993 (Chu
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et al., 1993; Stanton et al., 1993). In this particular applica-

tion, the “distortion” involved accounting for the change in

wavenumber of the incident field within the body due to the

material properties of the body. The DWBA is applicable

only to weakly scattering targets where the material proper-

ties of the target are to within approximately 5% of the sur-

rounding fluid and where there are no shear waves. The

distinct advantage of this approach is that it is not restricted

to scattering geometry (angle of incident acoustical wave rel-

ative to orientation of target), shape of target, heterogeneity

of target, or acoustical frequency.

Because of the general capability of the DWBA, it has

been used to study scatterer types having a wide range of

complexity, ranging from the simple smooth homogeneous

sphere, for which the DWBA has a deterministic solution, to

a rough, heterogeneous deformed cylinder whose random-

ized boundary and randomized material properties cause the

phase shifts of the acoustical waves scattered along the

length of the cylinder to vary randomly, as first presented in

Stanton et al. (1998). Stanton et al. (1998) showed that ran-

domizing the radii of the infinitesimal cylinder slices and

their material properties results in a randomization of the

local phase shifts. This statistical formulation relates the

randomized phase shifts to variability in scatterer shape,

size, and material properties, and the acoustic frequency and

angle of incidence. In this way, the parameters of a DWBA

model were adjusted to fit scattering data from a live

euphausiid over a large range of incidence angles, including

those near end-on incidence (Sec. II B of Stanton et al.,
1998). In most cases through 2000, applications of the

DWBA have involved variations of shape and material prop-

erties along the axis of a deformed cylinder. That is, it was

incorporated into the DCM (review in Stanton and Chu,

2000). In contrast to these 1-D (line integral) cases, some

later applications of the DWBA have involved three dimen-

sions to more accurately account for the scatterer properties

(3-D boundary in Lavery et al., 2002; 3-D boundary and 3-D

heterogeneities in Jones et al., 2009).

For the uses of the DWBA model in this paper, integra-

tion of either the 1-D integral (Stanton et al., 1998; DCM) or

3-D integral (general geometry) (Chu et al., 1993) was per-

formed numerically using the digitized target shapes. Digital

resolution and the element length along the axis was 0.1 mm.

The DWBA was used to calculate TS dependence on f and h
for the weakly scattering sphere, prolate spheroid, and

cylinder.

a. Phase-tracking distorted wave born approximation

(PT-DWBA). The PT-DWBA model is a numerical approach

for implementation of the DWBA for heterogeneous organ-

isms (Jones et al., 2009). The advantage of this approach is

that sound speed and density can vary arbitrarily in three

dimensions. For example, material properties can vary due

to anatomy of the organism (e.g., different internal organs)

and/or irregular external morphology where the acoustic

wave passes through part of the animal’s body, into the sur-

rounding medium, and back into the body. Thus, the model

is conducive to incorporation of high-resolution measure-

ments [e.g., spiral computerized tomography (SCT) scans]

of interior and exterior morphology of an organism, and

known material properties of the various tissues. The range

of acoustic frequencies for which valid predictions can be

made using this model is only limited at the high end by the

spatial resolution of the morphological measurements.

In the PT-DWBA model the DWBA 3-D volume inte-

gral model (Chu et al., 1993; Stanton et al., 1993) is solved

numerically for an inhomogeneous medium by integration of

the scattering amplitude from each volume element using

local material properties to calculate both phase and ampli-

tude of the backscattered signal. The PT-DWBA accounts

for the phase change of the acoustic wave by piecewise inte-

gration of the phase term along a linear path through the

scattering object and surrounding medium.

Three-dimensional, binary matrices were generated in

which each matrix element represented a discretization of

the scattering volume. Nonzero-valued elements represented

the scatterer while zero-valued elements represented the sur-

rounding seawater. The PT-DWBA numerical model was

then applied to each simple shape following the model out-

lined in Jones et al. (2009).

b. Stochastic distorted wave born approximation

(SDWBA). The SDWBA method (Demer and Conti, 2003;

Demer and Conti, 2004; Conti and Demer, 2006) is a variant

of the statistical representation of the DWBA presented in

Secs. II B and II C in Stanton et al. (1998) and summarized

above in Sec. III B 4. The two statistical approaches differ in

their calculations of random phase shifts. In contrast to the

approach in Stanton et al. (1998) where phase shifts are a

result of random perturbations in cylinder roughness, mate-

rial properties, and orientation, the SDWBA creates a ran-

dom phase shift through a single term that collectively

accounts for all sources of phase variability. Both

approaches have been shown to improve the prediction of

measured scattering levels for angles of incidence well away

from normal incidence.

The SDWBA was used to calculate TS values for the

weakly scattering sphere, prolate spheroid, and finite cylin-

der. For each target, the SDWBA results were calculated

over all incidence angles for 100 Monte Carlo realizations.

The SDWBA is characterized using parameters for standar-

dized length (L0), number of infinitesimal cylinder slices

(N0), standard deviation of phase variation (u0), and fre-

quency (f0). For this study, values of 38.35 mm, 100,
ffiffiffi
2
p

=32,

and 120 kHz were used, respectively, except for the finite

cylinder, which used N0¼ 50. To predict scattering by ideal-

ized (smooth) objects in the absence of variations in target

shape and morphology, the value of u0 was chosen arbitra-

rily small to represent negligible roughness.

To maintain a constant ratio of the number of cylinders

per wavelength, the cylinder locations for each object were

redefined for each frequency. Parameterizations of each

object were dependent on the length and the number of cyl-

inders used. The (deterministic) DWBA and SDWBA mod-

els are defined by an Nþ 1
 3 matrix, xpos, defining the x-,
y-, and z-axis coordinates for the centers of the cylinder

boundaries, and an Nþ 1 vector, a, giving the radius at each

cylinder boundary. Because the shapes are always assumed
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to be centered on the z-axis, the z-values in xpos are always

set to zero. The parameterizations for each shape are then

used to calculate and return the xpos and a arrays for use in

the SDWBA.

IV. MODEL EVALUATION

A. Targets

The physical dimensions of the targets were selected to

approximate biological targets such as adult or juvenile

stages of fish with gas-filled swimbladders [e.g., Atlantic

herring (Clupea harengus)] and zooplankton [e.g., decapod

shrimp (Palaeomonetes vulgaris)]. The sphere had a radius

of 0.01 m. The prolate spheroid had a minor-axis radius of

0.01 m and a major-axis radius of 0.07 m. The finite cylinder

had a radius of 0.01 m and a length of 0.07 m (making the

cylinder half the length of the spheroid). The spherical fluid

shell had a radius of 0.01 m with a shell thickness of

0.001 m. In addition, depth dependence is ignored (i.e., all

targets are at the surface) in these comparisons.

B. Environment and target properties

Water temperature and salinity values were chosen to

represent conditions in the Gulf of Maine during autumn.

Water temperature (6.9 �C) and salinity (34.2 parts-per-

thousand) values were representative of the environment

north of Georges Bank in 2007. Corresponding water den-

sity, qw¼ 1026.8 kg m�3, sound speed, cw¼ 1477.4 m s�1

(Table II), at a depth of 0.0 m (i.e., surface adapted), were

calculated using Chen and Millero (1977) and Fofonoff and

Millard (1983) using the web-based calculators from

Chapman (2006) and Tomczak (2000).

Material properties of the targets were selected to ap-

proximate those of marine organisms (Table II). For the

weakly scattering versions of the sphere, prolate spheroid,

and finite cylinder shapes, the density and sound speed were

chosen to give g and h values of 1.002. For the weakly scat-

tering spherical shell, the shell density and sound speed were

chosen to give g and h values of 1.002 for the shell/water

and shell/interior fluid interfaces.

C. TS computations

For each target shape and boundary condition, TS was

calculated as a function of insonifying frequency and where

appropriate, angle of incidence (h). The frequency range

extended from 12 to 400 kHz, which encompasses nearly all

bio-acoustical applications at traditional fisheries

echosounder frequencies using continuous wave (CW)

pulses. Although this frequency range may include reso-

nance scattering for larval fish and other small gas-bearing

organisms (e.g., siphonophores), resonance scattering was

not included or represented in these comparisons. The fre-

quency response of TS was calculated in 2 kHz increments,

where a narrowband CW pulse and implicit time dependence

[e(�ixt)] are assumed. For models that are computationally

intensive, TS was computed at f¼ 12, 18, 38, 70, 120, 200,

and 400 kHz. For the prolate spheroid and finite cylinder tar-

gets, TS was also computed over a range of angles in the tilt

plane from h¼ 0� to 90�, where 0� is end-on incidence and

90� is broadside incidence.

TS values were rounded to the nearest 0.1 dB re 1 m2 as

rounding errors can preclude greater levels of precision. This

level of precision is in agreement with practical calibrations

of fisheries acoustic instrumentation (Foote, 1983).

The mean, absolute deviation of each non-benchmark

TS prediction from its benchmark prediction was used as an

index of the match between prediction and the benchmark.

This index was computed by taking the mean of the absolute

value of the difference in TS between each model prediction

and the benchmark at each frequency interval or each angle

of incidence.

jDTSj ¼ 1

N

XN

i¼1

jTSi predictionð Þ � TSi benchmarkð Þj;

(25)

where N is the total number of frequency or angle values.

V. RESULTS

Table III and Figs. 1 and 2 present the comparisons

between each benchmark and the corresponding model pre-

dictions in tabular and graphical format. In addition, the

benchmark TS values are given in tabular form in

Supplementary Tables I–VI.1

A. Sphere

1. Fixed-rigid sphere

TS predictions from the BEM were equivalent to the

benchmark’s TS values from 12 to 400 kHz [Figs. 3(A) and

1(A); Table III]. TS values from the FMM and FEM models

were similar to the benchmark, and the KA TS values

TABLE II. Material properties (density q and sound speed c) of the targets and surrounding sea water.

Medium q (kg m�3) c (m s�1)

Sea water 1026.8 1477.4

Gas (all targets) 1.24 345.0

Shell (gas-filled sphere) 1070.0 1570.0

Shell (pressure-release sphere) 1028.9 1480.3

Shell (weakly scattering spherical shell) 1028.9 1480.3

Interior (weakly scattering spherical shell) 1031.0 1483.3

Weakly scattering sphere, prolate spheroid, finite cylinder 1028.9 1480.3

J. Acoust. Soc. Am. 138 (6), December 2015 Jech et al. 3751

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.128.44.104 On: Tue, 05 Jan 2016 15:18:28



TABLE III. Mean deviation (dB) [Eq. (25)] from the benchmark given in each column to the right of the “BMRK.” The value in each cell is the mean of the absolute deviations from the benchmark (i.e., overall magni-

tude of error) over all frequency intervals for each model. Ranges in parentheses correspond to those for that model. The column “BMRK” indicates which benchmark model was used, and the frequency or angle range

over which the benchmark was calculated. Backscattering models: BEM; FEM; FMM; KA; DCM; KRM; DWBA; PT-DWBA; SDWBA; and MSS. “NB” denotes no benchmark.

Target BMRK BEM FEM FMM KA DCM KRM DWBA PT-DWBA SDWBA

Sphere

Rigid f¼ 12–400 kHz MSS 12–400 kHz 0.00 0.3 (12–200 kHz) 0.05 0.76

Pressure-release f¼ 12–400 kHz MSS 12–400 kHz 0.00 0.09 (12–124 kHz) 0.04

Gas-filled f¼ 12–400 kHz MSS 12–400 kHz 0.00 0.02 (12–130 kHz) 0.10 0.53

Weakly scattering f¼ 12–400 kHz MSS 12–400 kHz 0.39 1.02 (12–184 kHz) 0.75 (12–244 kHz) 1.00 0.38 1.26 0.44

Spherical shell

Pressure-release f¼ 12–400 kHz MSS 12–400 kHz 0.00

Gas-filled f¼ 12–400 kHz MSS 12–400 kHz 0.00 0.78

Weakly scattering f¼ 12–400 kHz MSS 12–400 kHz 0.15 (12–360 kHz) 6.89 1.86

Prolate spheroid

Rigid h¼ 90� f¼ 12–400 kHz MSS 12–80 kHz 0.02 0.62 (12–60 kHz) 0.68 1.09 0.10

Rigid h¼ 0�–90� f¼ 38 kHz MSS 38 kHz 0.10 3.69 7.26 3.55 9.20

Pressure-release h¼ 90�

f¼ 12–400 kHz

MSS 12–80 kHz 0.01 0.84 (12–66 kHz) 0.65 0.22

Pressure-release h¼ 0�–90�

f¼ 38 kHz

MSS 38 kHz 0.04 2.83 2.53 6.05

Gas-filled h¼ 90� f¼ 12–400 kHz NB (12–200 kHz) (12–200 kHz) (12–400 kHz) (12–400 kHz)

Gas-filled h¼ 0�–90� f¼ 38 kHz NB 38 kHz 38 kHz 38 kHz (2�–90�)

Weakly scattering h¼ 90�

f¼ 12–400 kHz

MSS 12–400 kHz 1.56 4.28 (12–200 kHz) 0.15 0.69 0.18 2.00 (12–312 kHz) 0.19

Weakly scattering h¼ 0�–90�

f¼ 38 kHz

MSS 38 kHz 0.88 18.57 10.99 10.27 (2�–90�) 0.03 0.85 0.23

Finite cylinder

Rigid h¼ 90� f¼ 12–400 kHz DCM (MSS based) 0.08 0.20 (12–200 kHz) 0.31

Rigid h¼ 0�–90� f¼ 38 kHz DCM (MSS based)

h¼ 70�–90�
13.35 13.46 13.44

Pressure-release h¼ 90�

f¼ 12–400 kHz

DCM (MSS based) 0.06 0.27 (12–76 kHz)

Pressure-release h¼ 0�–90�

f¼ 38 kHz

DCM (MSS based)

h¼ 70�–90�
10.36 10.12

Gas-filled h¼ 90�

f¼ 12–400 kHz

DCM (MSS based) 0.11 (12–200 kHz) 0.25 (12–82 kHz) 0.39

Gas-filled h¼ 0�–90� f¼ 38 kHz DCM (MSS based)

h¼ 70�–90�
10.27 (0�–90�) 10.11 (0�–90�) 3.74 (2�–90�)

Weakly scattering h¼ 90�

f¼ 12–400 kHz

DCM (MSS based) 0.44 (12–400 kHz) 2.73 (12–200 kHz) 0.75 0.07 0.83 0.21

Weakly scattering h¼ 0�–90�

f¼ 38 kHz

DCM (MSS based)

h¼ 70�–90�
11.19 (0�–90�) 4.06 (2�–90�) 11.13 (0�–90�) 10.96 (0�–90�) 10.96 (0�–90�)
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followed the general trend and amplitude of the benchmark

curve, but the values were not equivalent. For the FEM, TS

values were nearly identical to the benchmark up to about

80 kHz, and within 0.8 dB up to 200 kHz. For the KA, TS

increased from 12 to 100 kHz and then fluctuated about a

fairly constant magnitude from 100 to 400 kHz. The BEM,

FMM, FEM, and benchmark TS values showed several

peaks and nulls across the entire frequency range.

Amplitudes of the fluctuations decreased with increasing fre-

quency where they were approximately 4 dB in amplitude at

lower frequencies and less than 1 dB at higher frequencies.

The KA followed the general trend of the target’s

backscatter response curve and matched the overall TS mag-

nitude, but had less than half of the peaks and nulls as the

benchmark over the frequency range. The KA had a higher

maximum TS (�44.0 dB) than the benchmark (�45.4 dB) at

about 60 kHz, but had the same overall magnitude from 100

to 400 kHz.

2. Pressure-release sphere

The BEM predictions were equivalent to the bench-

mark’s TS values from 12 to 400 kHz, and the FMM and

FEM were nearly equivalent to the benchmark over this

FIG. 2. Mean absolute deviation in TS

between each model and its corre-

sponding benchmark over all valid

angles of incidence [Eq. (25)]. (A) The

rigid targets; (B) the pressure release

targets; (C) the gas-filled targets; and

(D) the weakly scattering targets.

Closed symbols denote the prolate-

spheroid target and open triangles

denote the cylindrical target. Model

abbreviations are defined in Table I.

FIG. 1. Mean absolute deviation in TS

between each model and its corre-

sponding benchmark over all valid fre-

quencies [Eq. (25)]. (A) The rigid

targets; (B) the pressure release tar-

gets; (C) the gas-filled targets; and (D)

the weakly scattering targets. Note the

change in scale for (D). Closed circles

denote the spherical target, open

circles represent the spherical-shelled

target, closed diamonds denote the

prolate-spheroid target, and open trian-

gles denote the cylindrical target.

Model abbreviations are defined in

Table I.
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frequency range [Figs. 3(B) and 1(B); Table III]. The TS

maximum of �42 dB occurred at 12 kHz and decreased

monotonically to about �46 dB at 100 kHz, where the TS

leveled off at a fairly constant magnitude up to 400 kHz. The

TS response curve above 100 kHz was smooth and flat, lack-

ing the peaks and nulls of the rigid sphere.

3. Gas-filled sphere

The BEM predictions were equivalent to the bench-

mark’s TS values from 12 to 400 kHz [Fig. 3(C) and 1(C);

Table III]. TS values from the FMM and FEM were nearly

identical to that of the benchmark’s, but with deviations

occurring in the sharp nulls. The general form of the curves

was similar to the pressure-release sphere with maximum TS

at 12 kHz and a decrease to a constant amplitude from 100 to

400 kHz. There were several sharp peaks and nulls in the

backscatter response curves with amplitudes of less than

about 2 dB. The KRM TS curve followed the general trend

of the target’s response curve and matched the overall TS

magnitude, with broader peaks and nulls. In addition, the

KRM curve showed the opposite trend relative to the other

models below about 50 kHz, but did tend toward constant TS

at the higher frequencies and a decrease in the amplitudes of

the peaks and nulls at higher frequencies.

4. Weakly scattering sphere

The BEM, FEM, KRM, DWBA, PT-DWBA, SDWBA,

and FMM predictions were all similar to the benchmark’s

TS values over the 12 to 400 kHz frequency range [Figs.

3(D) and 1(D); Table III]. The curves had broad peaks with

narrow, sharp nulls that were 20 to almost 50 dB lower than

the peaks. The magnitude of the peaks was fairly constant at

�93 dB over the full frequency range. The BEM TS predic-

tions were equivalent to the benchmark up to approximately

120 kHz. At higher frequencies, the mismatch occurred at

the nulls where the deviation between the BEM and the

benchmark was greater at higher frequencies (approximately

1 dB at 165 kHz and approximately 16 dB at 390 kHz). TS

values from the other models were similar, with deviations

of usually less than 1 dB, to the benchmark at the peaks, but

deviated, sometimes considerably, at the nulls. The modal

series–based DCM deviated from the benchmark at the nulls,

with two large deviations at 240 kHz and 390 kHz. TS values

predicted by the PT-DWBA were equivalent to the bench-

mark up to about 50 kHz and then deviated at the nulls only.

The deviations from the benchmark increased with increas-

ing frequency, with deviations ranging from 1 dB at about

50 kHz to over 20 dB at frequencies over 250 kHz. The

SDWBA matched the peaks and nulls well over the entire

frequency range. TS values by the KRM generally matched

the benchmark at the peaks, with deviations of 1–2 dB, but

deviated at the nulls with deviations of 2 to 12 dB.

B. Spherical fluid shell

1. Fixed-rigid spherical fluid shell

The fixed-rigid spherical shell is acoustically equivalent

to the fixed-rigid solid sphere and therefore a benchmark

was not calculated for this case.

2. Spherical fluid shell with pressure-release interior

The BEM predicted TS values equivalent to the bench-

mark over the full frequency range of 12 to 400 kHz [Figs.

4(A) and 1(B); Table III]. The BEM predicted monotonically

decreasing TS values from 12 to about 100 kHz and then a

FIG. 3. TS (dB re 1 m2) as a function

of frequency (f; kHz) for a 0.01-m-ra-

dius homogeneous sphere with (A)

rigid, (B) pressure-release, (C) gas-

filled, and (D) weakly scattering

boundary conditions as predicted by

the benchmark, BEM, FMM, FEM,

KA, KRM, DWBA, PT-DWBA, and

SDWBA models. In (A), (B), and (D),

TS predictions coincide for the bench-

mark, BEM, and FMM models. Not all

models predicted TS over the full fre-

quency range (Table III).
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fairly flat TS response from 100 kHz to 400 kHz, which is

similar in form to the pressure-release sphere [Fig. 1(B)]. TS

values varied about 4 dB over the frequency range, with the

maximum TS (�42.8 dB) at 12 kHz.

3. Spherical fluid shell with gas interior

The BEM predicted TS values equivalent to the bench-

mark for the frequency range 12 to 400 kHz [Figs. 4(B) and

1(C); Table III]. The BEM predicted monotonically decreas-

ing TS from 12 to approximately 100 kHz and then relatively

constant TS, with the exception of sharp peaks and nulls of 1

to 3 dB in amplitude from 100 to 400 kHz, which is similar

to the gas sphere [Fig. 3(C)]. The KRM predicted TS values

that followed the general trend of the benchmark TS values

above about 50 kHz but with an overall TS level that was

1–2 dB greater than the benchmark. In contrast to the bench-

mark, the KRM predicted an increase in TS from 12 to about

50 kHz rather than a decrease in TS. The KRM TS values

showed several peaks and nulls, but these were smoothly

varying as opposed to the sharp spikes in the benchmark.

4. Spherical fluid shell with weakly scattering interior

The KRM, DWBA, and BEM models predicted TS val-

ues from 12 to 400 kHz [Figs. 4(C) and 1(D); Table III].

BEM predictions were equivalent to the benchmark’s TS

values up to about 350 kHz. TS predictions from the PT-

DWBA were nearly equivalent to the benchmark from 12 to

about 350 kHz, then the DWBA predictions diverged from

the benchmark. These models predicted a general decrease

in TS over the frequency range with several peaks and nulls.

Deviations from the predictions and the benchmark were pri-

marily at the nulls. The KRM predicted similar TS values to

the benchmark, but showed an overall increase in TS above

250 kHz compared to the benchmark. In addition, the nulls

of the KRM were generally not as deep as those of the

benchmark.

C. Prolate spheroid

1. Fixed-rigid prolate spheroid

Benchmark TS values at broadside incidence for the

rigid prolate spheroid were predicted from 12 to 80 kHz

[Fig. 5(A) and 1(A); Table III]. The FEM predicted TS val-

ues from 12 to 60 kHz, and the BEM, modal series–based

DCM, FMM, and KA models predicted TS values over the

full frequency range [Fig. 6(A) and 1(A); Table III]. The

BEM and modal series–based DCM predictions were equiv-

alent to the benchmark’s TS values from 12 to 80 kHz.

These TS response curves increased by approximately 7 dB

from 12 to 50 kHz then leveled off to slowly undulating TS

values. These curves had peaks and nulls with 2–3 dB ampli-

tude at the lower frequencies and less than 1 dB at the higher

frequencies. The FMM and FEM TS values followed the

same trend and had similar magnitude as the benchmark.

The FMM and FEM were similar to each other from 12 to

20 kHz, diverged from each other between 20 and 60 kHz,

and then were nearly equivalent from 60 to 80 kHz. The KA

had similar TS magnitude as the benchmark, but had only

one major peak below 80 kHz. The maximum TS of the KA

(�24.6 dB) was greater than the benchmark (�28.6 dB).

Above 80 kHz, TS values predicted by the modal ser-

ies–based DCM and BEM were nearly identical up to

300 kHz. Above 300 kHz, TS values predicted by the modal

series–based DCM and BEM diverged from each other by

less than 1 dB. TS values predicted by the KA had similar

FIG. 4. TS (dB re 1 m2) as a function

of frequency (f; kHz) for a 0.01-m-ra-

dius spherical fluid shell target with

(A) pressure-release, (B) gas-filled,

and (C) weakly scattering interior as

predicted by the benchmark, BEM,

FEM, KRM, and PT-DWBA models.

In (A), (B), and (C), TS predictions

coincide for the benchmark and BEM

models. Not all models predicted TS

over the full frequency range (Table

III).
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magnitude to TS values predicted by the modal series–based

DCM and BEM, but with fewer peaks and nulls. Peaks and

nulls in all three models decreased in amplitude with increas-

ing frequency.

Benchmark TS was predicted from h¼ 0� (end-on) to

90� (broadside) from 12 to 80 kHz. The response curves at

38 kHz are shown in Fig. 7(A) and mean deviations in Fig.

2(A). The TS values increased from end-on to broadside

incidence with an approximately 40 dB increase and maxi-

mum TS of approximately �28 dB at broadside. Amplitudes

of the peaks to nulls decreased from nearly 20 dB at end-on

to less than 1 dB at broadside. The BEM predictions matched

the benchmark at all angles. The modal series–based DCM,

KA, FEM, and FMM predictions generally matched the

benchmark at angles close to end-on and were nearly equiva-

lent to the benchmark at angles near broadside. The

FIG. 6. TS (dB re 1 m2) as a function

of frequency (f; kHz) for a 0.01-m-ra-

dius by 0.07-m-radius (i.e., minor axis

by major axis) homogeneous prolate

spheroid with (A) rigid, (B) pressure-

release, (C) gas-filled, and (D) weakly

scattering boundary conditions at

broadside incidence (h¼ 90�) over the

frequency range of 12 to 400 kHz as

predicted by the benchmark, BEM,

FMM, FEM, KA, KRM, modal ser-

ies–based DCM, DWBA, PT-DWBA,

and SDWBA models. Not all models

predicted TS over the full frequency

range (Table III).

FIG. 5. TS (dB re 1 m2) as a function

of frequency (f; kHz) for a 0.01-m-ra-

dius by 0.07-m-radius (i.e., minor axis

by major axis) homogeneous prolate

spheroid with (A) rigid, (B) pressure-

release, (C) gas-filled, and (D) weakly

scattering boundary conditions at

broadside incidence (h¼ 90�) as pre-

dicted by the benchmark, BEM, FMM,

FEM, KA, KRM, modal series–based

DCM, DWBA, PT-DWBA, and

SDWBA models. In panel A, TS pre-

dictions coincide for the benchmark,

BEM, and DCM models. In panel B,

TS predictions coincide for the bench-

mark and BEM models. Not all models

predicted TS over the full frequency

range (Table III).
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deviation in TS between the DCM and the benchmark

increased at angles of incidence near end-on, with the great-

est difference of approximately 50 dB at end-on incidence.

The FMM had higher TS values than the other models at

end-on incidence. The KA followed the pattern of peaks in

the benchmark response curve, with general agreement

between the peaks of the benchmark and the KA. While KA

TS values increased from end-on to broadside incidence, it

was generally flat with slight, <1 dB, amplitude fluctuations.

2. Pressure-release prolate spheroid

Benchmark TS values from the pressure-release prolate

spheroid were predicted from 12 to 80 kHz at broadside inci-

dence [Fig. 5(B) and 1(B); Table III]. FEM predictions

ranged from 12 to 60 kHz, and the BEM, FMM, and modal

series–based DCM predictions were predicted for the full

frequency range [Fig. 6(B) and 1(B); Table III]. The TS

response curves were fairly flat with a range in TS values of

less than 4 dB from 12 to 80 kHz. BEM predictions were

equivalent to the benchmark over 12 to 80 kHz. TS values

predicted by the modal series–based DCM were equivalent

to the benchmark from 60 to 80 kHz, and only deviated from

the benchmark by less than 1 dB from 12 to 60 kHz. TS val-

ues from the FMM were less than the benchmark, but only

deviated by less than 2 dB of the benchmark’s TS values. TS

values from the FEM showed two peaks between 12 and

60 kHz, with the FEM predicting the highest TS values.

At frequencies greater than 80 kHz, the BEM and modal

series–based DCM models predicted fairly constant TS with

a magnitude of about �29 dB. The BEM curve was flat,

while the modal series–based DCM curve had several peaks

and nulls with amplitudes of about 0.25 dB.

Benchmark TS values for the pressure-release prolate sphe-

roid were predicted from h¼ 0� to 90� from 12 to 80 kHz. The

response curves at 38 kHz are shown in Fig. 7(B) and mean

deviations in Fig. 2(B). BEM predictions were equivalent to the

benchmark at all angles of incidence. The benchmark and BEM

TS values showed a monotonic increase in TS of nearly 25 dB

from end-on to broadside to a maximum of approximately

�29 dB. Over the range of angles, TS values from the FMM

were greater than the benchmark. The form of the FMM

response curve was similar to that of the benchmark, but with

greatest deviation from the benchmark at end-on incidence. The

FMM matched the benchmark within a few degrees of broad-

side incidence. The FEM predicted a sharp null at about

h¼ 10�, but then followed the trend of the other models. In con-

trast to the other models, the modal series–based DCM had sev-

eral peaks and nulls. Amplitudes of the fluctuations decreased

from end-on to broadside incidence. The modal series–based

DCM TS values matched the benchmark at h> 80�, with the

deviation greatest by almost 20 dB at end-on incidence.

3. Gas-filled prolate spheroid

No benchmark TS values from the gas-filled prolate

spheroid were predicted [Figs. 5(C) and 1(C); Table III]. TS

values for the BEM and FEM were predicted to 200 kHz,

and the full frequency range for the modal series–based

DCM and KRM [Fig. 6(C) and 1(C); Table III]. At frequen-

cies greater than 40 kHz, the BEM, modal series–based

DCM, and KRM showed a relatively flat TS response curve,

with an overall magnitude of about �29 dB. The KRM

response curve had four peaks and nulls of less than approxi-

mately 0.5 dB, whereas the DCM response curve had many

sharp peaks and nulls of the equivalent magnitude.

FIG. 7. TS (dB re 1 m2) as a function

of angle of incidence (h) for a 0.01-m-

radius by 0.07-m-radius (i.e., minor

axis by major axis) homogeneous pro-

late spheroid with (A) rigid, (B)

pressure-release, (C) gas-filled, and

(D) weakly scattering boundary condi-

tions at f¼ 38 kHz as predicted by the

benchmark, BEM, FMM, FEM, KA,

KRM, modal series–based DCM,

DWBA, PT-DWBA, and SDWBA

models. h¼ 0� is “end-on” and h¼ 90�

is broadside incidence. In (A) and (B)

the TS predictions coincide for the

benchmark and BEM models.
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TS values predicted from h¼ 0� to 90� at 38 kHz are

shown in Fig. 7(C) and mean deviations in Fig. 2(C). The

KRM and modal series–based DCM predictions were similar

to each other with each curve having peaks and nulls in the

same angular locations and TS increasing from end-on to

broadside incidence. TS values from the modal series–based

DCM were consistently less than the KRM, but the differ-

ence decreased near broadside to within 2–3 dB at end-on

and less than 1 dB at broadside. BEM predictions showed a

fairly flat response from h¼ 0� to 30�, then a fairly mono-

tonic increase in TS toward broadside incidence. FEM pre-

dictions had similar magnitude to the BEM, but with

shallower peaks and nulls at angles near end-on.

4. Weakly scattering prolate spheroid

Benchmark TS values from the weakly scattering prolate

spheroid were predicted from 12 to 300 kHz [Fig. 5(D) and

1(D); Table III], and 12 to 400 kHz [Fig. 6(D) and 1(D); Table

III]. The benchmark TS values had several peaks and nulls

with peak TS values occurring consistently at about �77 dB

over the full frequency range. The nulls were narrow and sharp

whereas the peaks were broad. In general, the BEM, FEM,

modal series–based DCM, KRM, PT-DWBA, DWBA, and

SDWBA predictions were similar to the benchmark at the

peaks, but deviated, sometimes considerably, at the nulls. TS

values by the modal series–based DCM were nearly equivalent

to the benchmark over the full frequency range, with only

slight deviations of 1 to 3 dB at the nulls. TS values from the

BEM were similar to the benchmark, but deviated from the

benchmark at the nulls. TS values from the FEM were similar

to the benchmark, but also deviated from the benchmark at the

peaks as well as the nulls. TS values from the KRM closely

matched the benchmark but with deviations of 3 to 20 dB at

the nulls. TS values from the PT-DWBA were predicted from

12 to 300 kHz. The TS response curves of the PT-DWBA and

DWBA were similar to the benchmark at the peaks, but devi-

ated at the null where deviations generally increased with

increasing frequency. In contrast, TS values from the SDWBA

matched the benchmark well at the peaks and nulls.

Benchmark TS values were predicted from h¼ 0� to

90�. The TS response curves at 38 kHz are shown in Fig.

7(D) and mean deviations in Fig. 2(D). Benchmark TS val-

ues increased from end-on to broadside by almost 30 dB to a

maximum of approximately �77 dB, and had several peaks

and nulls in the response curve. The peaks were broad,

whereas the nulls were narrow and sharp. TS values pre-

dicted by the PT-DWBA, DWBA, and SDWBA models

were very similar to the benchmark TS values over the full

angle range, with deviations observed at the nulls. TS values

predicted by the BEM were also very similar to the bench-

mark, with deviations at the nulls. TS values from the modal

series–based DCM matched benchmark TS values at angles

greater than about 60� and deviated by almost 60 dB at end-

on incidence. TS values from the KRM matched benchmark

TS values at h> 60� and deviated from it at end-on by

almost 40 dB. Nulls predicted by the KRM did not match the

benchmark at h< 50�.

D. Finite cylinder

1. Fixed-rigid finite cylinder

The benchmark (modal series–based DCM), BEM, and

FEM TS response curves for the fixed-rigid finite cylinder

were nearly equivalent at frequencies less than about 100

kHz, and equivalent at frequencies greater than approxi-

mately 100 kHz [Fig. 8(A) and 1(A)]. TS generally increased

from about �37 dB at 12 kHz to �20 dB at 400 kHz. Peaks

and nulls in the BEM, FEM, and modal series–based DCM

TS response curves had greater amplitudes at lower frequen-

cies. The KA matched the magnitude of the other two mod-

els with a monotonic increase in TS over the full frequency

range.

TS values at 38 kHz were predicted from h¼ 70� to 90�

to compare to the benchmark [Fig. 9(A)] and from h¼ 0� to

90� [Fig. 10(A)], and mean deviations are shown in Fig.

2(A). TS values from the BEM, FEM, and KA were similar

to the benchmark from broadside to about h¼ 75�. Between

h¼ 70� and 75� the angular location of the null differed

among the models. Over the full angular range, the predic-

tions were similar to each other, with a slight decrease in TS

from h¼ 90� to 80�, then a substantial increase in TS

approaching broadside. The modal series–based DCM

matched the others at h> 70�, but predicted lower TS values

(up to 60 dB lower at end-on incidence) at angles close to

end-on incidence. The modal series–based DCM showed a

general increase in TS from end-on to broadside incidence.

The nulls in the modal series–based DCM response curve

were deeper than in the others, especially at h< 60�.

2. Pressure-release finite cylinder

TS values from the benchmark (modal series–based

DCM) and BEM were equivalent for the pressure-release fi-

nite cylinder at frequencies above approximately 50 kHz

[Fig. 8(B) and 1(B)]. Below 50 kHz, benchmark and BEM

TS response curves were within 1 dB of the FEM response

curve. All three models predicted monotonically increasing

TS over the frequency range, with an increase of about

12 dB to a maximum of approximately �22 dB. The FEM

TS response curve showed a similar trend to the BEM and

benchmark, but had small, on the order of 1 dB amplitude,

undulations.

TS was predicted from h¼ 70� to 90� for the benchmark

[Fig. 9(B)] and h¼ 0� to 90� at 38 kHz [Fig. 10(B)], and

mean deviations are shown in Fig. 2(B). TS values were

nearly equivalent for the benchmark, BEM, and FEM from

about h¼ 76� to 90�. The null at approximately 74� was pre-

dicted deeper by the benchmark than for the BEM and FEM.

Similar to the rigid cylinder, TS values predicted by the

BEM and FEM were nearly equivalent over the range of

angles. TS values from the BEM and FEM had a slightly

decreasing trend from 0� to about 80� with a sharp increase

in TS near and at broadside incidence. The modal series–

based DCM predicted an increasing trend in TS from end-on

to broadside with several deep nulls. The modal series–based

DCM predicted lower TS values (up to 40 dB lower) at

h< 60�. At h> 80� (near broadside) all three models
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predicted equivalent TS values to a maximum of approxi-

mately �31 dB.

3. Gas-filled finite cylinder

The BEM predicted TS values from 12 to 200 kHz, the

FEM from 12 to 82 kHz, and the KRM and the benchmark

(modal series–based DCM) predicted TS over the full

frequency range [Figs. 8(C) and 1(C); Table III]. The bench-

mark and BEM were equivalent for frequencies greater than

about 80 kHz. Below 80 kHz, TS values predicted by the

BEM and FEM were slightly greater (less than 1 dB) than

the benchmark. The KRM predicted TS values a few deci-

bels greater than the other two models. At frequencies

greater than 120 kHz, the KRM and benchmark TS values

were within 1 dB of each other. All four models predicted a

FIG. 9. TS (dB re 1 m2) as a function

of angle of incidence (h) for a 0.01-m

radius by 0.07-m-length homogeneous

finite cylinder with (A) rigid, (B)

pressure-release, (C) gas-filled, and

(D) weakly scattering boundary condi-

tions at f¼ 38 kHz as predicted by the

benchmark (modal series–based

DCM), BEM, FEM, KA, KRM,

DWBA, PT-DWBA, and SDWBA

models. The benchmark is valid from

approximately h¼ 70� to 90� (broad-

side incidence) (Table III).

FIG. 8. TS (dB re 1 m2) as a function

of frequency (f; kHz) for a 0.01-m ra-

dius by 0.07-m-length homogeneous fi-

nite cylinder with (A) rigid, (B)

pressure-release, (C) gas-filled, and

(D) weakly scattering boundary condi-

tions at broadside incidence (h¼ 90�)
as predicted by the benchmark (modal

series–based DCM), BEM, FEM, KA,

KRM, DWBA, PT-DWBA, and

SDWBA models. Not all models pre-

dicted TS over the full frequency range

(Table III).
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monotonic increase in TS over the frequency range. The

KRM predicted a monotonic increase over the full frequency

range, whereas the benchmark TS response curve contained

sharp peaks and nulls, of amplitude about 2 dB, at higher

frequencies.

TS at 38 kHz was predicted from h¼ 70� to 90� for the

benchmark [Fig. 9(C)] and from h¼ 0� to 90� [Fig. 10(C)],

and mean deviations are shown in Fig. 2(C). The BEM,

FEM, and KRM were similar to the benchmark from about

h¼ 75� to 90�. Between h¼ 70� to 75� the benchmark pre-

dicted a deeper null than for the KRM, BEM, and FEM mod-

els. The KRM and modal series–based DCM predicted

similar TS values from h¼ 30� to 90�. At angles near end-

on, the KRM predicted greater TS values than the modal ser-

ies–based DCM, but both were 10 to 15 dB lower than the

BEM and FEM predicted TS values. The KRM and modal

series–based DCM predicted generally increasing TS, with

several deep (greater than 20 dB) nulls, to a maximum of

approximately �31 dB at broadside incidence. The BEM

and FEM predicted nearly equivalent TS over the range of

angles. The two models predicted slightly decreasing TS

from h¼ 90� to about 80�, then a sharp increase in TS at

broadside incidence. They had shallow (about 5 dB) nulls,

which approximately matched the locations of the nulls of

the other two models. All four models had nearly equivalent

TS values at angles within about 10� of broadside.

4. Weakly scattering finite cylinder

The TS values of the weakly scattering finite cylinder

were predicted for 12 to 400 kHz by the BEM, 12 to 200 kHz

for the FEM, and 12 to 400 kHz for the KRM, PT-DWBA,

and benchmark (modal series–based DCM) [Fig. 8(D) and

1(D); Table III]. The BEM, FEM, KRM, benchmark,

DWBA, PT-DWBA, and SDWBA models all predicted sim-

ilar TS values over the frequency range. The TS response

curves had several peaks and deep nulls with the nulls being

sharp and the peaks broad. The apex of the peaks increased

in TS as the frequency increased to a maximum TS of

approximately �70 dB. The TS values were similar at the

peaks with the greatest deviations at the nulls.

TS values at 38 kHz were predicted from h¼ 70� to 90�

[Fig. 9(D)] and from h¼ 0� to 90� [Fig. 10(D)], and mean

deviations are shown in Fig. 2(D). The BEM, FEM, KRM,

PT-DWBA, and SDWBA models predicted TS values simi-

lar to the benchmark from h¼ 70� to 90�. The BEM, FEM,

PT-DWBA, and SDWBA models predicted nearly equiva-

lent TS values over the range of angles. TS response curves

showed a decreasing trend in TS from end-on to near broad-

side, and then a sharp increase in TS at broadside. The KRM

and modal series–based DCM predictions were similar to the

other models from h¼ 40� to broadside incidence. The KRM

and modal series–based DCM predicted lower TS values,

nearly 60 dB, near end-on, but were similar at h> 40�. All

models showed the same deep nulls and broad peaks with

similar TS values at h> 60�.

VI. DISCUSSION

Few studies have collectively compared predictions

from analytical and numerical backscatter models using

standard data sets, with exceptions including McClatchie

et al. (1996), Foote and Francis (2002), Zampolli et al.
(2009), and Macaulay et al. (2013). Most published back-

scatter model predictions are evaluated by comparison to

empirical TS measures (e.g., McClatchie et al., 1996, and

FIG. 10. TS (dB re 1 m2) as a function

of angle of incidence (h) for a 0.01-m

radius by 0.07-m-length homogeneous

finite cylinder with (A) rigid, (B)

pressure-release, (C) gas-filled, and

(D) weakly scattering boundary condi-

tions at f¼ 38 kHz as predicted by the

BEM, FEM, KA, KRM, modal-series

based DCM, DWBA, PT-DWBA, and

SDWBA models. h¼ 0� is “end-on”

and h¼ 90� is broadside incidence.
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references therein), but anatomical differences among ani-

mals may increase variability within and among data sets,

which may confound results. To illustrate by example, initial

comparisons of model predictions by the authors in the cur-

rent study used anatomical representations of Atlantic cod

(Gadus morhua), Atlantic herring, and decapod shrimp as

representative gas-filled (i.e., physoclist and physostome)

swimbladder-bearing fish and zooplankton. When predicted

TS values differed between models, we could not decouple

contributions of anatomical scattering structures or model

effects from differences in analytical or numerical model

structure or their algorithmic implementations. Because of

these ambiguities and uncertainties, comparisons based on

simple targets were needed to eliminate, or at least mini-

mize, effects of anatomical features on models and predic-

tions. Differences in model predictions could then be

attributed solely to the models and their implementation.

While TS values predicted by the BEM matched bench-

marks better than the other models, the numerical models

(BEM, FEM, and FMM) did not consistently out-perform

the approximate analytic models for all target types. For the

rigid, pressure release, and gas spheres, and the rigid and

pressure release prolate spheroid targets, the BEM was

within 0.1 dB average deviation of the benchmarks across

the modeled frequency and angle of incidence ranges.

Predictions from analytic approximations, such as the KA,

modal series–based DCM, and KRM compared favorably

with those of the benchmark for spherical targets (KA only)

and broadside incidences of the prolate spheroid, where

most were within 1 dB average deviation over the 12 to

400 kHz frequency range. Even though overall trends and

magnitudes of the approximations matched the benchmarks,

TS was not well predicted at the sharp peaks and nulls that

are a feature of many of the benchmark backscatter response

curves. The “exact” or “highly” accurate models (Table I)

had more structure (i.e., sharp peaks and nulls), where each

feature ranged over a few kHz, and TS amplitude variations

did not follow the overall TS trend. In contrast, the KA-

based models predicted gradually undulating variations

where the frequency of the variation ranged 10 kHz or more,

and amplitudes of the variations tended to decrease with

increasing frequency.

In general, predicted TS values closely matched those of

the benchmarks at angles near broadside incidence, but did

not match well at off-broadside incidences. For the prolate

spheroid, average deviations ranged from 1 to over 9 dB

when off-broadside angles were included. TS predictions

from the modal series–based DCM and KRM models devi-

ated by 20 dB or more at end-on incidence, but were nearly

equivalent to the benchmark values at or near broadside inci-

dence. This is expected for those two models as they are

inherently inaccurate at angles well off normal incidence.

For the cylindrical targets, the modal series–based DCM was

used as the benchmark for broadside incidence and for

angles from 20� off-broadside to broadside incidence. The

choice of 20� was based on investigations of rigid cylinders

by Partridge and Smith (1995) for ka ranges of 10 to 40 and

aspect ratios between 2.5 and 24.0. Ye (1997) demonstrated

that end effects become noticeable when the angle of

incidence was greater than 40� at ka¼ 40 and an aspect ratio

of 2.55. From results presented here, it appears that the

modal series–based DCM is a valid benchmark for angles up

to approximately 15� for rigid, pressure-release, and gas-

filled finite cylinders, and up to approximately 20� (from

broadside) for a weakly scattering finite cylinder.

Maximum TS values and overall trends of the weakly

scattering targets matched those of the benchmark, but loca-

tions and amplitudes of the predicted nulls were often offset

from and did not match the benchmark. Both of these effects

caused large, often greater than 10 dB, differences between

predicted and benchmark TS values. The locations of the

nulls are dependent on the material properties and orienta-

tions of the targets (Stanton and Chu, 2000). These results

also show that null locations are dependent on the numerical

or analytical models used to predict TS values. The DWBA,

PT-DWBA, and SDWBA models predicted similar TS val-

ues over all frequency and angular ranges, although the TS

values were not equivalent. Differences in predicted TS val-

ues suggest differences in the implementation of the algo-

rithms since they are mathematically equivalent when

parameterized for these particular targets. That is, the targets

used in this exercise do not incorporate any additional ana-

tomical complexities of the marine organisms that the three

models were developed to address, such as boundary rough-

ness and heterogeneities. Differences between predictions

for the more complex scatterers would be expected due to

the different approximations made in each of the models, as

discussed above.

Most of the models included in the comparisons

required a digital representation of target shape, but the

level of detail (i.e., resolution) required to predict TS dif-

fered among the models. The numerical models are sensi-

tive to the resolution of the digital representation,

especially for convergence. The BEM, FEM, and FMM

models require discretization of the model domain into ele-

ments that must be sufficiently small relative to the acoustic

wavelength (�k/10) to obtain an accurate or even an

adequate solution (Stanton and Chu, 2000; Foote and

Francis, 2002). As frequency increases, wavelength

decreases, and element size is reduced, computational and

computer memory requirements increase, especially for

3-D representations used in this exercise. Predictions from

the FEM and FMM models were within 1 dB average devia-

tion over the 12 to 400 kHz frequency range of the bench-

mark for spherical targets and broadside incidences of the

prolate spheroid. For the prolate spheroid and fluid shell

targets in FEM modeling and for most targets at the higher

frequencies it was not possible to maintain the necessary

target discretization resolution, and model accuracy was

correspondingly degraded, and/or the maximum frequency

was restricted to lower values.

A trade-off exists between computational requirements

and prediction accuracy. The BEM is a superior model for

predicting TS values for these benchmark shapes, but is

computationally intensive. Approximations such as the KA

and KRM models do not require extensive computational

resources, but accuracy can be reduced, especially with

increasing off-broadside incident angles (Macaulay et al.,
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2013). It should also be noted that the resolution of the digi-

tal representation of the target can affect the amplitude and

variability of predicted TS (Jech and Horne, 1998; Stanton

and Chu, 2000). This was especially an issue with use of the

KRM that had a fixed resolution (as per its operational use)

which was too coarse at the higher frequencies. Although the

trends of predicted TS from the approximations were fre-

quently within 1 dB of the benchmarks, they did not always

match the fine-scale structure present in benchmark back-

scattering response curves.

TS predictions by analytical and numerical models and

digital representations of organism anatomy are becoming

essential tools in fisheries acoustics research. They are used

to predict TS values over a range of conditions that cannot

be practically sampled in the field (Reeder et al., 2004), to

estimate TS variability across life history stages (Horne,

2008), for aggregations of animals, and to determine the rel-

ative importance of physical and biological factors influenc-

ing TS. Selection of a single model for all types of

organisms and environmental conditions is unrealistic given

the limitations of each model for scattering types, computa-

tional intensity, and required resolution of the digital repre-

sentation. For the targets presented here, the numerical

models worked well at the lower ka ranges (e.g.,< 5), but as

the ka range increased and the target shape became more

complex, the computational load increased such that predic-

tions required hours to days to compute. Analytical models

and approximations were accurate within the limitations of

specific target types, target orientations, and ka ranges in this

study, but these ranges can be restrictive when applied to

animals.

VII. CONCLUSIONS

At present, a suite of models is required to predict

acoustic backscatter from aquatic organisms with complex

shapes, morphologies, and behaviors. In this exercise, tar-

gets were idealized using simple shapes and morphologies;

such as weakly scattering targets representing zooplankton

and the gas-filled targets representing gas-filled bubbles

such as swimbladders. All of the numerical and analytical

models for weakly scattering spheres generally matched the

benchmarks, which was also the case for weakly scattering

spheroidal and cylindrical targets at or near broadside inci-

dence. This suggests that approximate analytical models

may be preferred over numerical models for these targets

as they are computationally less intensive and provide

accurate TS predictions for, at least, these idealized objects.

For TS predictions at incident angles well off broadside,

numerical models may be preferred even though they can

be computationally intensive. For weakly scattering targets,

the (analytical) DWBA-based models performed well for

these targets. For gas-filled targets, numerical models were

superior to approximate analytical models for exact match-

ing of TS values over the range of frequencies and angles

examined. In most cases, with the exception of off-

broadside incidence, approximate analytical models pre-

dicted overall TS trends, and may be sufficiently accurate

for density and abundance estimates, especially when these

estimates are for groups of idealized objects with varying

shapes, sizes, and material properties. Approximate analyti-

cal models for density and abundance estimates can be

computed quickly, do not require specialized software, and

often do not require the high morphometric resolution

needed by numerical models. Operationally this means that

approximate analytical models can be quickly generated in

response to changing biological or environmental condi-

tions during, for example, a research survey. But with suffi-

cient time, numerical models provide accurate and precise

TS predictions, at least for these idealized objects, that can

be applied after data have been collected. The next logical

step in the evaluation of predicted backscatter accuracy and

precision is to compare TS predictions of real fish and zoo-

plankton using a common set of morphological data and

ambient noise conditions, including measures of anatomical

variability.
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APPENDIX

The coefficients in Eqs. (8) and (9) are expressed in

terms of the Spherical Bessel functions of the first [jn(x)],

second [yn(x)], and third [h1
nðxÞ, or Hankel function].

Notations are a and b are radii of the outer and inner

spheres, respectively, and gij ¼ qi=qj and hij ¼ ci=cj, where

qk and ck are density of and sound speed in the kth medium.

Subscripts 1, 2, and 3 represent the surrounding water, outer

sphere, and inner sphere, respectively.

(1) Coefficients in Eq. (9):

b1 ¼ jnðk1aÞ;

b2 ¼ g21h21j0nðk1aÞ;

a11 ¼ �hnðk1aÞ;

a21 ¼ �g21h21h0nðk1aÞ;

a31 ¼ 0;

a12 ¼ jnðk2aÞ;

a22 ¼ j0nðk2aÞ;

a32 ¼ jnðk2bÞj0nðk3bÞ � g32h32j0nðk2bÞjnðk3bÞ;

a13 ¼ ynðk2aÞ;
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a23 ¼ y0nðk2aÞ;

a33 ¼ ynðk2bÞj0nðk3bÞ � g32h32y0nðk2bÞjnðk3bÞ:

(2) Coefficients in Eq. (10): Coefficients b1, b2, a11, and a21

are given above.

d1 ¼ jnðksaÞynðk2bÞ � jnðk2bÞynðk2aÞ;

d2 ¼ j0nðksaÞynðk2bÞ � jnðk2bÞy0nðk2aÞ:

1See supplementary material at http://dx.doi.org/10.1121/1.4937607 for the

benchmark TS values in tabular form.
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