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Error Probabilities of Fast Frequency-Hopped MFSK 
with Noise-Normalization Combining in a Fading 

Channel with Partial-Band Interference 
R. Clark Robertson, Senior Member, IEEE, and Tri T. Ha, Senior Member, IEEE 

Abstract-An error probability analysis is performed for an M- 
ary orthogonal frequency-shift keying (MFSK) communication 
system employing fast frequency-hopped (FFH) spread spectrum 
waveforms transmitted over a frequency-nonselective, slowly fad- 
ing channel with partial-band interference. Diversity is obtained 
using multiple hops per data bit. A procedure referred to as noise- 
normalization combining is employed by the system receiver to 
minimize partial-band interference effects. Each diversity recep- 
tion is assumed to fade independently according to a Rician 
process. The partial-band interference is modeled as a Gaussian 
process. Thermal noise is also included in the analysis. Forward 
error correction coding is applied using convolutional codes and 
Reed- Solomon codes. 

Diversity is found to dramatically reduce the degradation of the 
noise-normalization receiver caused by partial-band interference 
regardless of the strength of the direct signal component. In 
addition, diversity offers significant performance improvement 
when channel fading is strong. Further significant performance 
improvement is obtained for higher modulation orders (M > 2). 
Uncoded receiver performance with a diversity of four is roughly 
comparable to coded receiver performance with no diversity for 
ratios of bit energy-to-interference noise density in the range 
between roughly 12 and 22 dB. Substantial improvements in 
receiver performance are obtained by combining diversity, higher 
modulation orders, and coding. 

I. INTRODUCTION 

HIS paper presents an error probability analysis of a fast T frequency-hopped M-ary orthogonal frequency-shift key- 
ing (FFH-MFSK) system with noncoherent, noise-normalized 
detection for communications with fading and partial-band in- 
terference. The FFH-MFSK transmitter is assumed to perform 
L hops per data symbol which results in a diversity of L 
levels. At the receiver the dehopped signals are demodulated 
by a bandpass filter followed by a quadratic detector. This 
problem was initially investigated for standard noncoherent 
MFSK demodulators in [ 11. In this paper, noise-normalization 
combining (also referred to as adaptive gain control) [2]- [4] 
is used to combine the outputs of the quadratic detectors of the 
M branches of the MFSK demodulator to form the decision 
statistics. In a noise normalized receiver, the reciprocal of the 
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Fig 1 FH/MFSK square law receiver with noise-normalization. 

noise power of a noise-only channel estimator is used to nor- 
malize the output of each detector before the L hop receptions 
are combined. A block diagram of the FFH-MFSK receiver 
with noise-normalization combining is shown in Fig. 1. 

We assume that each dehopped signal fades independently; 
that is, we assume that the smallest spacing between frequency 
hop slots is larger than the coherence bandwidth of the 
channel [5]-[7]. We also model the channel for each hop as a 
frequency-nonselective, slowly fading Rician process. Hence, 
we assume that the signal bandwidth is much smaller than the 
coherence bandwidth of the channel and that the hop duration 
is much smaller than the coherence time of the channel [ 5 ] ,  
[6]. The latter assumption is equivalent to requiring the hop 
rate to be large compared to the Doppler spread of the channel. 
As a result, the dehopped signal amplitude is a Rician random 
variable, and the dehopped signal can be considered as the 
sum of two components, a nonfaded (direct) component and 
a Rayleigh-faded (diffuse) component. 

The interference that we consider in this paper is partial- 
band interference which may be due to either a partial-band 
jammer or some unintended narrowband interference. The 
interference is modeled as additive Gaussian noise and is 
assumed to be present in each branch of the MFSK de- 
modulator for any reception of the dehopped signal with 
probability y. Thus, y represents the fraction of the spread 
bandwidth being jammed, and the probability that narrowband 
interference is not present in all M detectors is 1 - y. If 
N1/2 is the average power spectral density of interference 
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over the entire spread bandwidth, then yp1N1/2 is the power 
spectral density of partial-band interference when i t  is present. 
In  addition to partial-band interference, we assume that the 
signal is also corrupted by thermal noise and other wide- 
band interferences which we model as additive white Gaussian 
noise. The power spectral density of this wideband noise is 
defined as N0/2 .  Thus, the power spectral density of the 
total noise is ? - l N ~ / 2  + No12 when interference is pre- 
sent and No12 otherwise. If the equivalent noise bandwidth 
of each bandpass filter in the noise-normalized MFSK demod- 
ulator is B Hz, then for each hop the signal is received with 
noise of power NOB with probability 1 - y when interference 
is not present and with noise of power (?- 'NI  + Y(1)B with 
probability y when interference is present. 

We assume that the bit rate is Rb. Thus, the corresponding 
symbol rate is R,s = R,,/ log, A1 where A T  is the order of the 
MFSK modulation. The MFSK signal is assumed to perform 
L hops per symbol. Therefore, the hop rate is RI, = LR,-. 
The equivalent noise bandwidth of each bandpass filter in the 
noise-normalized MFSK demodulator must be at least as wide 
as the hop rate, and in this paper we use B = RI,.  The overall 
system bandwidth is assumed to be very large compared to 
the hop rate. Note that for a fixed symbol rate that the hop 
rate increases as the number of hops per symbol increases. As 
a result, the required minimum equivalent noise bandwidth of 
the bandpass filters in the MFSK demodulator also increases 
as the number of hops per symbol increases. Hence, as the 
number of hops increases, the assumption that the channel 
is frequency-nonselective becomes more restrictive. On the 
other hand, the assumption that the channel is slowly fading 
becomes stronger. 

11. ANALYSIS 

Our analysis concerns the derivation of the bit error prob- 
ability versus the bit energy-to-interference density ratio for 
the receiver in Fig. 1 given the description of the channel 
as Rician. The analysis requires the statistics of the sampled 
outputs r , ~ .  7 = 1 . 2 .  . . . . M of the quadratic detectors for a 
given hop k of a symbol as well as the normalized samples 
z , ~ .  I = 1.2.  . . . M that are combined to provide the decision 
samples 2,. / = 1.2.  . . . . M .  

A. Probability Density Function of the Decision Variable 2, 
Let ni represent the noise power in a given hop k: of 

a symbol. An accurate measurement of m i  is a challenging 
problem in fast frequency-hopped spread spectrum systems. In 
order to perform a complete evaluation of the noise-normalized 
receiver, CT; should be modeled as a random variable. In 
this paper, CT? is assumed to be known exactly; hence, the 
performance obtained for the noise-normalized receiver in this 
paper is in this sense ideal. 

From the noise power spectral density and the equivalent 
noise bandwidth of the bandpass filters as discussed in the 
previous section, we have of = NoB with probability 1 - y 
and crz = (y-'N1 + No)B with probability 7 .  We assume 
that the signal is present in branch 1 of the MFSK demodulator. 
Then the conditional density of the random variable Xlk. at 

the output of the quadratic detector, given a signal amplitude 
fio,k, is [SI 

where U(.) is the unit step function and lo(.) represents the 
modified Bessel function of order zero. The average received 
signal power of hop k is (LE, and the fading of hop k. is 
modeled by assuming o k  to be a Rician random variable. The 
probability density function of the Rician random variable u k  

is [SI 

where ( k 2  is the average power of the nonfaded (direct) 
component of the signal and 202 is the average power of the 
Rayleigh-faded (diffuse) component of thesignal. The total 
average received signal power of hop k is = a2 + 2 g 2  and 
i\  assumed to remain constant from hop to hop. Note that if 
( Y *  = 0 the channel model is a Rayleigh fading model, and if 
20' = 0 there is no fading. 

The conditional probability density function of the normal- 
ized random variable Z l k  = X l k / a %  is given by 

The probability density function of Zlk can be found by 
integrating (3) with respect to I lk  

Substituting (2) and (3) into (4), we obtain 

( 5 )  

where p k  = ( y 2 / c r i  is the signal-to-noise ratio of the nonfaded 
(direct) component of hop k of a symbol and <k = 202/a; 
is the signal-to-noise ratio of the Rayleigh faded (diffuse) 
component of hop k of a symbol. 

The probability density function of the noise-normalized 
random variable Z r r l k .  rn  = 2.3. .  . . ~ M of hop k of a symbol 
that corresponds to the noise-normalized sampled outputs of 
the branches 711 of the demodulator (Fig. 1) that contain no 
signal is obtained from (5) by letting PI; = & = 0 to yield 

Let Zik) and Z!:) denote the random variable Zlk when 
hop k of a symbol has interference and no interference, 
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respectively. Also let i be the number of hops of a symbol 
that have interference. Then the decision variable 21 after L 
independent hops are combined is given by 

Let f z ; ; l  ( z i ; ' ) ,  71 = 1: 2 denote the probability density 

function of the random variable n = 1 , 2  which is 
obtained from (5 )  by replacing /)k and (k with p r )  and [PI, respectively. Thus, p p )  is the signal-to-noise ratio of 
the nonfaded (direct) component of hop k of a symbol with 
interference (n  = I) and without interference (n = 2), and 

is the signal-to-noise ratio of the Rayleigh faded (diffuse) 
component of hop k of a symbol with interference (7~ = 1) 
and without interference (n  = 2). 

Now the Laplace transform of fz ; ; )  (z:;') ,  n = 1 , 2  is 
obtained from 

33 

F z ! ; ) ( S )  = Ifz:;' (.;;I) cxp[-szj;)]dz$;). 71 = 1 ,2 .  
0 

(8) 

Substituting (5 )  into (8) and using the transformation U = m, we obtain 

(9) 

where n = 1,2.  The above integral can be evaluated as [9] 

where 

Since all L hops are independent, we obtain the conditional 
probability density function for the decision variable 2 1  given 
that i hops of a bit have interference from (7) and (10) as 

where @en represents a e,-fold convolution and f,;:) . L 
( ~ i ; ) ) ] ~ ~ ~  is obtained as the inverse Laplace transform of 

pziyl (s)] "I which is given by 

where c 1  = i and c 2  = L - i .  

Laplace transform of fz1 ( z 1  12) reduces to 
For the special case of Rayleigh fading, p p )  -+ 0, and the 

which can be inverted to yield (15) below where the 
coefficients K l j i , j  = 1 , 2 , . . . , i  and K 2 k ( L - i ) , k  = 
1 , 2 ,  . . . , ( L  - i )  depend upon L and i .  Specific coefficients 
for several values of L and i are given in Table I. 

The probability density function of Z m ~ ,  m = 2 , 3 ,  . . . , M 
of hop k of a symbol is a special case of (13) with p P )  = 0 
and = 112 and is given by the chi-squared probability 
density function with 2L degrees of freedom 

B. Probability of Bit Error For Uncoded Signals 

the presence of partial-band interference is 
The symbol error probability for the receiver in Fig. 1 in 
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where Ps(,i) is the conditional symbol error probability given 
that i hops of a symbol have interference. It is well known 
that I'$(Z) can be obtained from 

to the right-hand side of (19), we obtain a computationally 
efficient expression for the conditional probability of symbol 
error given that ,i hops of a symbol have interference as 

where the integral in brackets can be evaluated to yield 

.\I - 1 I [I - PXl)( T) 2 ( L  - 1 - X)! 
L - l  ( + ) L - l - k  

dzl . (19) 

For the general case of some hops jammed and others free 
of interference, (19) must be evaluated numerically. By using 
first the binomial theorem and then the multinomial theorem, 
we can express the [o]"'-' term in (19) as a double summation 
of powers of 21. Then, for the special cases of either all 
hops jammed or all hops free of interference, (12) reduces 
to (13), and replacing the modified Bessel function in (13) 
with a series representation, we can integrate (19) analytically 
term by term [lo]. The result is in the form of a double 
summation of the product of powers of rational functions, 
exponentials, and confluent hypergeometric functions with 
arguments depending on both summation indexes. As a result, 
it is more straightforward to evaluate (19) numerically for 
all cases even though an analytic expression is available in 
two special cases. For a numerical evaluation of (19), i t  is 
preferable to use [o]"'-' rather than its expansion as a double 
summation in powers of 21. 

In many cases, the numerical evaluation of (19) can be made 
substantially easier by noting that 

Hence, by adding and subtracting 

since the ( 0 )  term in (22) approaches zero as z1 ---f x. 

to the symbol error probability by 
For orthogonal MFSK the bit error probability can be related 

and the energy per bit Etl is related to the energy per symbol 
E,  by E, = (log, M)Eb.  

C. Probability of Bit Error For Coded Signals 

The diversity combining discussed above is a form of 
repetition coding. More complex codes may be used either 
alone or in conjunction with diversity. For this paper we 
consider the effects on the noise-normalization combining 
receiver of both binary convolutional codes with hard-decision 
Viterbi decoding and Q-ary, linear block codes with hard- 
decision decoding. For each of the codes considered, the coded 
energy per bit is related to the uncoded energy per bit and the 
code rate T by E, = rEb. 

The channel-bit error probability p of the system with 
convolutional coding and hard-decision Viterbi decoding is 
given by (23); that is, p = h fp , /2 (M - 1) where ph is the 
channel A4-ary symbol error probability. Using the best rate 
1/2, constraint length 7 convolutional code in [ 111, we obtain 
the upper bound for the decoded bit error probability as 

and for the best rate 1/3, constraint length 7 convolutional 
code [ 111, we have the upper bound for the decoded bit error 
probability as 

1 
2 

I', 5 - (Dl'l + 200" + + 1X4D2" + . . .) (25) 
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where 

D = 2 d m  

The magnitude of the error term in (30) is controlled by the 
choice of the maximum relative error E'. 

To obtain worst case partial-band jamming, the jamming 
fraction y which maximizes the probability of bit error is 

(26) 

The decoded error probability for a block decoder which 
accepts an n-tuple of Q-ary coded symbols and outputs a 
k-tuple of Q-ary information symbols is [ 121 

d d  n 

i=d+l  
n 

. pi(1 - p , y  

where Q = 2q, d is the minimum distance between codewords, 
t = [ (d  - l ) /2 ]  is the maximum number of correctable symbol 
errors in a code word ([.I = integer part of o), and p ,  is 
the channel Q-ary symbol error probability. The channel Q- 
ary symbol error probability is related to the channel M-ary 
symbol error probability p s  by [4] 

P, = 1 - (1 - P S I  q"0g2 when q /  log, M = integer 

(28) 

01 

M 
p - - (1 - 2-,)p, when log, M / q  = integer. ,- M - 1  

(29) 

The decoded bit error probability is pb = QPq/2(Q - 1). The 
linear block codes used in this paper are (n ,  k) Reed-Solomon 
codes, for which the minimum distance between code words 
is d = n - IC + 1 and the code rate is r = k / n .  

111. NUMERICAL RESULTS 

Computation of the probability of bit error involves a 
numerical evaluation of (22) for each of the possible combina- 
tions of jammed and unjammed hops given L hops per symbol. 
In addition, except for the special cases of either all hops 
jammed or all hops free of interference or for Rayleigh fading, 
the probability density function of 21 given that i hops of a 
bit have interference f z ,  (z1 l i )  must be evaluated numerically. 
Using (IO) and (12), we can easily obtain an analytic expres- 
sion for Fz,(s l i ) ,  the Laplace transform of f i , ( z l l i ) .  Hence, 
the most efficient way to evaluate f z , ( z l l i )  numerically is 
to invert Fz,(s l i )  numerically. This is accomplished using a 
variation of the method detailed in [13] where 

cc 

+ 2 c  (-l)k Re{FZ,(a + j k r / z l J i ) }  I 
k = l  

+ Error. 
J 

(30) 

The variable a in (30) is related to the exponential order p of 
Fz,(sli) and the upper bound of the relative error E' by 

found for various values of diversity, fading conditions, signal- 
to-noise power density ratios, and order of modulation. Both 
the coded and the uncoded cases are investigated. All results 
presented in this paper are obtained by assuming that the ratio 
of direct-to-diffuse signal energy a2 /202  is the same for each 
hop IC of a symbol. 

A.  Uncoded Performance 

Receiver performance for specific fractions of partial-band 
interference are compared to worst case performance for a 
relatively strong direct signal ( a2 /2a2  = 10) in Figs. 2-5 for 
M = 4 and diversities of L = 1, 2, 3, and 4, respectively. In 
each of these figures, the ratio of bit energy-to-thermal noise 
density is Eb/No = 13.35 dB. This value of &/No corre- 
sponds to Pb = when there is no fading or interference, 
M = 2, and L = 1. This corresponds to the signal-to- 
thermal noise density ratio used in [ 2 ]  and allows our results 
to be compared directly to the nonfaded results presented 
in [2]. As can be seen in Fig. 2, partial-band interference 
results in a significant degradation in performance over a 
broad range of bit energy-to-interference noise density ratios as 
compared with uniform interference when no diversity is used. 
As a general rule, as the ratio of bit energy-to-interference 
noise density increases, the degradation due to partial-band 
interference increases as the fraction of the spread bandwidth 
being jammed y decreases; although, for both very large and 
very small bit energy-to-interference noise density ratios, there 
is very little degradation due to partial-band interference. As 
can be seen in Figs. 3-5, the degradation due to partial-band 
interference is progressively reduced as diversity increases. 
At this value of &/No, a diversity of four is sufficient 
to virtually eliminate any degradation due to partial-band 
interference. As can be seen in Fig. 5, for M = 4 and 
L = 4 worst case performance is obtained for all bit energy- 
to-interference noise density ratios when the interference is 
uniform. Hence, for the case of a strong direct component, 
diversity is capable of completely eliminating the degradation 
introduced by partial-band interference when no diversity is 
used. It is also interesting to note that for bit energy-to- 
interference noise density ratios less than about 15 dB, receiver 
performance improves dramatically when the interference is 
partial-band rather than uniform. This is particularly true for 
L > 2. Another interesting result is that for bit energy-to- 
interference noise density ratios greater than roughly 12 dB 
there is a distinct improvement when diversity is used. This 
can be contrasted with the nonfaded results [2], where diversity 
offers an improvement only for bit energy-to-,interference noise 
density ratios greater than roughly 15 dB and less than roughly 
30-35 dB, depending on the order of diversity. Analogous 
results are obtained when M = 2 except overall performance 
is poorer and there is very little change in performance for 
L > 1. 

Q,= - p -  3 - 1nE' (31) Receiver performance for specific fractions of partial-band 
interference are compared to worst case performance for a 2 221 
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Ol re r t - t o -D i f f use  S i g n a l  Power R a t i o  = 10 hb, ibiNB*13.35 dB L = 4 H = 4 
, L  

f ,  

I +lamming Rdtioil 
--Jamming Ratio=E. 25 

. u J a m m i n g  -*- lamming R d t i o = E . I  Ratio=0.01 

Fig. 2. Performance of the noise-normalization receiver for partial-band 
jamming fractions of y = 1.0, 0.25, 0.1, and 0.01 compared to worst case 
performance for a strong direct signal with &/No = 13.35 dB, M = 4, 
and L = 1. 

Fig. 5.  Performance of the noise-normalization receiver for partial-band 
jamming fractions of y = 1.0, 0.25, 0.1, and 0.01 compared to worst Case 
performance for a strong direct signal with Eb/No = 13.35 dB, M = 4, 
and L = 4. 
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Fig. 3. Performance of the noise-normalization receiver for partial-band 
jamming fractions of y = 1.0, 0.25, 0.1, and 0.01 compared to worst case 
performance for a strong direct signal with Eb/n'O = 13.35 dB, M = 4, 
and L = 2.  

Fig. 6. Performance of the noise-normalization receiver for partial-band 
jamming fractions of y = 1.0, 0.25, 0.1, and 0.01 compared to worst case 
performance for a strong direct signal with &/No = 13.35 dB, L = 4, 
and M = 2.  

: 1 - + - -  ' "' 1 Solid L i n e  Worst Case 

0 5 IS 15 20 25 30 35 40 
1 0 "  ~ " " - ' " ' " ' ' ' " ' ' ' " ' ' ~ ' ~ ' " ~ ~ ~  

B i t  Energy- to-Jamming No ise  U e n s ~ t y  R a t l o  I d E l  

Fig. 4. Performance of the noise-normalization receiver for partial-band 
jamming fractions of y = 1.0, 0.25, 0.1, and 0.01 compared to worst case 
performance for a strong direct signal with Eb/No = 13.35 dB, M = 4, 
and L = 3. 

B i t  Energy - to  Jamming Noise Uenslty R a t l o  idB1 

Fig. 7. Performance of the noise-normalization receiver for partial-band 
jamming fractions of y = 1.0, 0.25, 0.1, and 0.01 compared to worst case 
performance for a strong direct signal with &/No = 13.35 dB, L = 4, 
and M = 8. 

outweighs any degradation that is introduced by partial-band 
interference. 

When there is not a strong direct component to the signal, 
partial-band interference results in virtually no degradation 
of receiver performance. In this instance, the worst case 
performance of the noise-normalization combining receiver is 
virtually identical to the performance when the interference is 
uniform. As in the case of a strong direct signal, performance 

relatively strong direct signal (a2/2a2 = 10) in Fig. 6, Fig. 5, 
and Figs. 7-8 for L = 4 and modulation orders of A4 = 2, 4, 
8, and 16, respectively. The ratio of bit energy-to-thermal noise 
density is again taken to be Eb/No = 13.35 dB. As the order 
of modulation increases partial-band interference becomes 
more effective in degrading relative receiver performance; 
however, for each increase in modulation order there is 
a significant improvement in receiver performance that far 
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Fig. 8. Performance of the noise-normalization receiver for partial-band 
jamming fractions of -! = 1.0, 0.25, 0.1, and 0.01 compared to worst case 
performance for a strong direct signal with E~/IY,J = 13.35 dB, L = 4, 
and .If = 16. 

Fig. 10. Performance of the noise-normalization receiver for modulation or- 
ders of LU = 2, 4, 8, and 16 for a weak direct signal with Eb/iLro = 20.0 dB 
and L = 4. 

L L  

i I  

? /  * e -  

- e 5  n, r t 1- r  t j ~ 

Fig 1 1  
and 

Performance of the noise-normalization receiver with no diversity 
= 8 for various coded signals for a weak direct signal with Eb/ 

= 20 0 dB 

18 , ,  - - 
a i J  

- 1  i ~ d-r,-7 .1 c 

Fig 9. Performance of the noise-normalization receiver for diversities of 
L = 1, 2, 3, and 4 for a weak direct signal with Eb/Avo = 20 0 dB and 
Alf = 8 

the uncoded receiver performance when a diversity of L = 
4 is used. As can be seen, for bit energy-to-interference 
noise density ratios in the 10-20 dB range, the uncoded 
receiver with diversity performs substantially better than all 
coded receivers except for the best rate 1/3, constraint length 
7 convolutional code. The best rate 1/3, constraint length 
7 convolutional code performs significantly better than the 
uncoded receiver with diversity for bit energy-to-interference 
noise density ratios above about 12 dB. Above bit energy- 
to-interference noise density ratios of about 21 dB, the best 
rate 1/2, constraint length 7 convolutional code also performs 
better than the uncoded receiver with diversity. The coded 
receiver performance plotted in Fig. 11 can also be compared 
to the uncoded performance illustrated in Fig. 9. As can 
be seen, for bit energy-to-interference noise density ratios 
above about 14 dB the coded performance is significantly 
better than the uncoded performance with no diversity. For 
bit energy-to-interference noise density ratios in the 10 to 
24 dB range, the (15,7) Reed-Solomon code with Q = 16 
is roughly comparable to the uncoded receiver performance 
with a diversity of L = 3. Of course, as the bit energy-to- 
interference noise density ratio increases, the coded receiver 
performance becomes extremely good. 

Extremely good results can be obtained by combining diver- 
sity and coding. Coded receiver performance for a relatively 
weak direct signal (a2/2c2 = 1) when a diversity of L = 4 

is dramatically improved for bit energy-to-interference noise 
density ratios less than about 10 dB when the interference 
is partial-band in nature. Receiver performance for various 
values of diversity with modulation order fixed and for various 
values of modulation order with the level of diversity fixed 
for a relatively weak direct signal (a2/2c2 = 1) is shown in 
Figs. 9- 10, respectively. The ratio of bit energy-to-thermal 
noise density is taken to be &/No = 20.0 dB. As can be 
seen, when the direct signal is weak, significant improvements 
in performance can be obtained by increasing either the order 
of diversity or the modulation order. 

B. Coded Performance 

Coded receiver performance for the case of no diversity 
with A4 = 8 for a relatively weak direct signal (a2/2a2 = 1) 
is shown in Fig. 11. Since partial-band interference does not 
significantly affect performance when there is not a strong 
direct signal component, the interference is taken to be broad- 
band. The ratio of bit energy-to-thermal noise density is taken 
to be &/No = 20.0 dB. The performance obtained with 
the best rate 1/2, constraint length 7 convolutional code, 
the best rate 1/3, constraint length 7 convolutional code, 
a (7 ,3)  Reed-Solomon code with Q = 8, and a (15,7) 
Reed-Solomon code with Q = 16 are all compared with 
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B i t  Energy t o  lamm n q  No 5c 1 ’ -  1 B 1 t  Energy-to Jamming N o l i e  Density R d t l O  ( d 8 i  

Fig. 12. Performance of the noise-normalization receiver with L = 4 and 
modulation orders M = 2 and M = 4 for various coded signals for a weak 
direct signal with Et,/& = 20.0 dB. 

Fig. 13. Performance of the noise-normalization receiver with no diversity 
and M = 4 for various coded signals for a strong direct signal with Et,/ 
No = 13.35 dB. 

is used is shown in Fig. 12. As in the previous example, 
the interference is taken to be broadband since there is no 
strong direct signal component. The ratio of bit energy-to- 
thermal noise density is again taken to be &/No = 20.0 dB. 
Coded receiver performance is obtained for modulation orders 
of M = 2 and M = 4 for the best rate 1/2, constraint length 
7 convolutional code, the best rate 1/3, constraint length 7 
convolutional code, and a (15,7) Reed-Solomon code. As 
can be seen, as the bit energy-to-interference noise density 
ratio increases only a few dB, receiver performance improves 
dramatically for all codes considered. These results can be 
compared with those in Fig. 10, where the uncoded receiver 
performance for a modulation order of M = 16 is substantially 
poorer than any of the M = 2 coded receiver performances 
considered for E ~ / N I  greater than about 18 dB. 

Coded performance for the case of no diversity with M = 4 
for a relatively strong direct signal (a2/2a2 = 10) is shown 
in Fig. 13. The ratio of bit energy-to-thermal noise density 
is taken to be J!$,/No = 13.35 dB so that the results can be 
compared to Figs. 2-8. A constant partial-band interference 
ratio of y = 0.1 is used since this yields near worst case 
results in the 10 to 20 dB range of bit energy-to-thermal noise 
density ratio. The performance obtained with the best rate 
1/2, constraint length 7 convolutional code, the best rate 1/3, 
constraint length 7 convolutional code, a (7,3) Reed-Solomon 
code with Q = 8, and a (15,7) Reed-Solomon code with 
Q = 16 are all compared to the uncoded receiver per- 
formance when a diversity of L = 4 is used. As can be 
seen, for bit energy-to-interference noise density ratios below 
about 15 dB, the uncoded receiver with diversity performs 
better than all coded receivers with no diversity except for 
the best rate 1/3, constraint length 7 convolutional code. 
Above bit energy-to-interference noise density ratios of about 
18 dB, except for the (7,3) Reed-Solomon code, the coded 
performance becomes significantly better than the uncoded 
performance with diversity. As can be seen by comparings 
Figs. 8 and 13, in the 14 to 24 dB range of bit energy- 
to-interference noise density ratio the performance obtained 
with no diversity and the best rate 1/2, constraint length 7 
convolutional code is roughly comparable to the performance 
obtained with a diversity of four and a modulation order of 
16, while the performance obtained with no diversity and the 

(15,7) Reed-Solomon code is between 2 and 3 dB poorer. 
The performance with no diversity and the best rate 1/3, 
constraint length 7 convolutional code provides consistently 
superior performance for the case of a strong direct signal. 

IV. CONCLUSION 

The noise-normalized receiver with diversity is seen to offer 
dramatic improvement in probabilities of bit error over the 
noise-normalization receiver with no diversity when fading is 
present provided the signal-to-interference noise density ratio 
is 12 dB or more. This is particularly true when the signal 
does not contain a strong direct component. Even a diversity 
of only two provides a significant advantage. In addition, 
diversity is seen to dramatically reduce degradation in receiver 
performance due to partial-band interference even when the 
signal contains a strong direct component. For signal-to- 
interference noise density ratios of less than 10 dB, a superior 
receiver is obtained when diversity is not used; however, the 
degradation due to diversity at lower signal-to-interference 
noise density ratios is slight. For a given diversity, increasing 
the modulation order to M > 2 results in further significant 
performance improvements regardless of how strong channel 
fading is. 

The use of forward error correction coding significantly 
improves the performance of the noise-normalization receiver 
for ratios of bit energy-to-interference noise density above 
about 12 dB. Below a bit energy-to-interference noise density 
ratio of about 16 dB, coded receiver performance with no 
diversity is outperformed by the uncoded receiver performance 
with a diversity of four. When channel fading is slight, 
coded receiver performance with no diversity outperforms 
uncoded receiver performance with a diversity of four for 
bit energy-to-interference noise density ratios above about 
16 dB. The exception to the above generalizations is the coded 
performance obtained with the best rate 1/3, constraint length 
7 convolutional code when no diversity is used. The best rate 
1/3, constraint length 7 convolutional code provides dramati- 
cally superior performance for bit energy-to-interference noise 
density ratios above about 11 dB when fading is significant 
and for all bit energy-to-interference noise density ratios when 
fading is weak. 
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Significant improvements in receiver performance are ob- 
tained by combining coding, diversity, and modulation orders 
M :  
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