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Abstract

Numerical models of ocean circulation often depend on parameters that must be
tuned to match either results from laboratory experiments or field observations. This
study demonstrates that an initial, suboptimal estimate of a parameter in a model
of a small bay can be improved by assimilating observations of trajectories of passive
drifters. The parameter of interest is the Manning’s n coefficient of friction in a small
inlet of the bay, which had been tuned to match velocity observations from 2011.
In 2013, the geometry of the inlet had changed, and the friction parameter was no
longer optimal. Results from synthetic experiments demonstrate that assimilation
of drifter trajectories improves the estimate of n, both when the drifters are located
in the same region as the parameter of interest and when the drifters are located in
a different region of the bay. Real drifter trajectories from field experiments in 2013
also are assimilated, and results are compared with velocity observations. When the
real drifters are located away from the region of interest, the results depend on the
time interval (with respect to the full available trajectories) over which assimilation
is performed. When the drifters are in the same region as the parameter of interest,
the value of n estimated with assimilation yields improved estimates of velocity
throughout the bay.
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1. Introduction

Bottom stress is important to circulation in shallow water, and its inclusion in
numerical models can have significant impacts on the simulation results. However, it
is difficult to measure spatially-varying bottom stress directly in the field (Trowbridge
et al., 1999; Sanford and Lien, 1999; Biron et al., 2004), and thus often stress is
approximated with a bottom drag coefficient derived from laboratory experiments
or by tuning numerical model simulations to observations, which usually involves
iterations of model results that are time-consuming and costly (Cheng et al., 1999;
Chen et al., 2015; Orescanin et al., 2016). Drag coefficients also can be estimated
from observations of the flow by assuming a balance between pressure gradients and
bottom stress (Feddersen et al., 2000; Seim et al., 2002; Apotsos et al., 2008; Kim
et al., 2000; Orescanin et al., 2014). These coefficients have been estimated in other
regions by assimilating sea-level data into numerical simulations (Mayo et al., 2014).
Here, the Manning’s n drag coefficient in a multiple tidal inlet system on Martha’s
Vineyard, MA is estimated by assimilating observed Lagrangian drifter trajectories
into a numerical model for sea level and circulation.

Martha’s Vineyard is separated from Chappaquiddick Island by Katama Bay,
which is connected to Vineyard Sound via Edgartown Channel and to the Atlantic
Ocean via the ephemeral Katama Inlet (Figure 1A). Norton Point, the sand spit
between the bay and the Atlantic, was breached by a storm in 2007 (yellow arrow,
Figure 1B), forming Katama Inlet. Over the following years, the inlet became nar-
rower, longer, and shallower as it migrated eastward (Figure 1B, C), and friction
became more important to sea level and circulation in the bay (Orescanin et al.,
2016).

Data assimilation provides a framework for combining uncertain estimates from
numerical models with noisy observations to estimate a variable that changes in time
(Kalnay, 2003). For geophysical fluid flows, velocity fields and bathymetry can be
estimated by assimilating Eulerian observations from in-situ sensors (Madsen and
Cañizares, 1999; Oke et al., 2002; Kurapov et al., 2005; Wilson et al., 2010) or La-
grangian observations from drifting sensors (Ide et al., 2002; Mariano et al., 2002;
Molcard et al., 2005, 2006; Salman et al., 2006; Apte et al., 2008). Drifters follow
(approximately) the motion of fluid parcels, and assimilation of their trajectories
leads to improved estimates of large-scale circulation patterns (Taillandier et al.,
2006; Jacobs et al., 2014) and flows in vortices (Vernieres et al., 2011). Lagrangian
observations also have been assimilated in models that estimate the topography in
a laboratory channel (Honnorat et al., 2010) and the bathymetry in a river (Landon
et al., 2014). Synthetic experiments have compared the Eulerian flow fields estimated
by assimilating velocities derived from Lagrangian data (so-called pseudo-Lagrangian
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Figure 1: A) Satellite image (Google Earth, 2012) of Katama Bay, Katama Inlet, and Edgartown
Channel, with an inset showing the location of Katama Bay (red circle on Martha’s Vineyard)
relative to Boston and Cape Cod, B) Katama Inlet in 2011 showing the location of the initial
breach of Norton Point (yellow arrow), and C) Katama Inlet in 2013 during drifter deployments.

data assimilation) and by assimilating Lagrangian trajectories directly, and the re-
sults show that the direct assimilation of trajectories outperforms pseudo-Lagrangian
data assimilation (Molcard et al., 2003).

In 2011, when Katama Inlet was open (Figure 1B), current meters were deployed
throughout the bay (Orescanin et al., 2014, 2016). A numerical model (ADCIRC,
Luettich and Westerink (1991)) of the circulation in the bay at this time was de-
veloped, using boundary conditions from pressure gauges deployed in 2011, and the
Manning’s n coefficient in the region of Katama Inlet was tuned to match the data
from the current meters in 2011. In 2013, after the inlet had begun to migrate and
narrow (Figure 1C), current meters were again deployed throughout the bay. Results
from the numerical model using boundary conditions from the gauges deployed in
2013, but with the same estimates of Manning’s n from 2011, were compared with
the 2013 observations from the current meters. Orescanin et al. (2016) found that
discrepancies between the 2013 observations and the numerical model were due to
changes in friction, and therefore, the value of Manning’s n in Katama Inlet estimated
from 2011 data was suboptimal when modeling the 2013 system.

Here, drifter tracks observed in the Katama Bay system are assimilated into a
numerical circulation model (ADCIRC) to estimate the bottom friction. The model
uses bathymetry measured throughout the system and is driven with observed tides,
and simulations with and without assimilating drifter data are compared with Eu-
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lerian observations of currents in Katama Bay. As a proof of concept, synthetic
observation experiments are performed first. Experiments assimilating real drifter
data are performed next. Results from assimilating synthetic and real drifter trajec-
tories in two distinct regions of Katama Bay are compared.

2. Numerical model and observations

2.1. Numerical model of Katama Bay

Sea level and depth-averaged currents in Katama Bay are simulated with the
two-dimensional version of the Advanced Circulation Model (ADCIRC, Luettich
and Westerink (1991)), which solves a version of the shallow water equations via
a finite-element method. This model assumes no stratification in the domain; this
was supported by observations in Katama Bay. Casts from CTD (conductivity, tem-
perature, depth) instruments throughout the system show little to no temperature
or salinity stratification. Within the bay, the depths are very shallow, so this is
expected. Offshore in Vineyard Sound and the Atlantic, in depths less than 10m,
the same lack of vertical structure was observed. Winds were light (< 2 m/s) and
waves were small (< 1 m) during the drifter deployment periods, and are not in-
cluded here. The numerical grid consists of a finite-element triangular mesh with
spacing ranging from 10 m in the inlets and 15 m in the bay to 200 m outside the
inlets in both the Atlantic Ocean and Vineyard Sound (Figure 2A). Bathymetry (5
to 20 m horizontal and 0.05 m vertical resolution) in the bay, the inlets, and the ebb
tidal delta (Figure 2A) was measured in 2013 with GPS and an acoustic altimeter
mounted on a personal water craft, and interpolated onto the model grid (Orescanin
et al., 2016). Pressure gauges and current meters were co-located at ten locations
within Edgartown Channel, Katama Bay, and Katama Inlet (orange circles in Fig-
ure 3) (Orescanin et al., 2016). The northern boundary of the model is forced with
the sea-level observations in Edgartown Harbor (yellow circle in Figure 2A), and the
southern boundary is forced with observations from the Martha’s Vineyard Coastal
Observatory (12 m depth, 4 km west of Katama Inlet; not shown).

To estimate quadratic bottom stress, the model converts bottom roughness given
by a user-defined value of Manning’s n (units s/m1/3) at each node to an equivalent
quadratic drag coefficient given by:

Cd(t) =
gn2

(D + η(t))1/3
, (1)

where g is gravity, t is time, D is the local mean depth, and η(t) is the water
surface elevation above D (Luettich and Westerink, 1991).
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The Katama Bay domain is divided into several subregions based on bathymetry,
each with a different value of Manning’s n (see Figure 2B.) In the original 2011
simulations, the deep boundary regions (dark blue in Figure 2B) outside of the bay

were assigned the value n = 0.020 s/m1/3, which is standard for open water. The

bay (light blue) was assigned n = 0.030 s/m1/3, which was calculated by convert-
ing the bottom stress estimated from a pressure gradient balance (Orescanin et al.,
2014) into n using an average depth of the bay. However, model-data comparisons
(Orescanin et al., 2016) suggested that the friction coefficient needed to be increased

to n = 0.035 s/m1/3 in an area surrounding Katama Inlet (green area in Figure 2B)
in 2011. This spatial and temporal variation in n is due mainly to changes in bed-
forms; for example, sand waves and dunes were observed throughout the system, and
tended to migrate over time. These values of Manning’s n are typical in tidal inlets,
including multiple tidal inlet systems (Mehta and Joshi, 1998; Kraus and Militello,
1999; Friedrichs and Madsen, 1992; Friedrichs, 1995; Dias et al., 2009).

By iteratively simulating the 2011 circulation, Manning’s n was estimated as the
value that minimized the difference between observed and simulated kinetic energy
in the bay circulation (Orescanin et al., 2016). The tuning required several differ-
ent model simulations, as well as a method for determining which value is optimal,
because varying n can improve kinetic energy estimates in the inlet while degrading
estimates elsewhere in the bay. For the estimation of the 2011 circulation, the root
mean squared errors between the simulated and observed velocity kinetic energies,
tidal currents, and sea-level amplitudes and phases were minimized. In particular,
n was tuned until the errors at each of the seven observation locations were less
than 15%, while minimizing the total error throughout the domain (Orescanin et
al., 2016, especially Table 1). The Katama Inlet bathymetry changed substantially
between 2011 and 2013 (compare Figure 1C with 1B), and simulations using the
2013 bathymetry and the 2011-estimated n had decreased skill within Katama In-
let (Orescanin et al., 2016). Note also that the flow has the greatest velocities in
the inlet, and therefore changes in n here have large effects throughout the system
(Orescanin et al., 2016). Here, Lagrangian drifter data from 2013 field experiments
are assimilated into the model to improve the estimates of friction in Katama Inlet
in 2013.

2.2. Drifter observations in 2013

In August 2013, several drifter deployments were conducted with twelve drifters
released in multiple deployments over several days. On Aug 20, the drifters targeted
Edgartown Channel, and on Aug 22, they targeted Katama Inlet (Figure 3). The
surface tracking drifters used herein are a modified version of drifters deployed in the
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Figure 2: A) Google Earth image of the Katama system with seafloor and land elevation contours
(colors, scale on right), the grid mesh, and the Edgartown Harbor pressure gauge (yellow circle) and
B) the bathymetrically-defined subregions with different friction factors (n; values for the colors are

given in the legend, units s/m
1/3

).

surf zone (MacMahan et al., 2009; Fiorentino et al., 2012) and rivers (Landon et al.,
2014), both in body shape and type of handheld GPS. These drifters were deployed
together in the inner shelf and visually behaved similarly. The GPS used on the 2013
Katama drifters is a Locosys GT-31, which provides accurate relative position useful
for velocity measurements. The Locosys GPS has successfully measured surfzone
velocities and trajectories (McCarroll et al., 2014) and surface gravity wave elevations
(Herbers et al., 2012). The inlet drifters were also deployed as part of an experiment
in the inner shelf of the Gulf of Mexico. The drifter trajectories compared well
to acoustic Doppler current profiler (ADCP) surface velocity estimated trajectories
(Roth et al., submitted).

3. Overview of Lagrangian data assimilation

Lagrangian data can be assimilated directly or indirectly. In pseudo-Lagrangian
data assimilation (Molcard et al., 2003), sequential positions of the drifters are con-
verted to Lagrangian velocities, which are then assimilated into the model. Fully
Lagrangian data assimilation uses the positions of the drifters directly, such as in the
augmented vector approach (Kuznetsov et al., 2003), in which the positions of the
drifters are appended to the state vector at each time step. With this approach, to
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Figure 3: Trajectories of real drifters deployed Aug 20, 2013 for approximately 140 minutes (Channel
Trajectories) and Aug 22, 2013 for approximately 110 minutes (Inlet Trajectories) in Katama Bay.
Orange circles are locations of acoustic Doppler current meters (water depths < 2 m) and profilers
(depths > 2 m).
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assimilate observations of a single drifter following the flow into a two-dimensional
velocity field, the augmented vector at time t is [u, v, x, y](t), where u and v are a
representation of the velocity field at each model grid point at time t, and (x, y) is
the position of the drifter at that time.

Here, the focus is on estimating n as a parameterization of the flow field, so
the state vector is [n, x1, y1, ...xND

, yND
] for ND drifters. The velocity [u, v] is not

estimated directly from the assimilation, and thus does not appear in the state
vector, although the evolution of the drifter positions depends on the time-variable
velocity field, which depends on n.

3.1. Ensemble Kalman Filter

The data assimilation method used here is the ensemble Kalman filter (EnKF)
(Evensen, 1994), which is used both operationally (Wei et al., 2006) and in test prob-
lems, including Lagrangian data assimilation (Salman et al., 2006, 2008). The EnKF
assimilates consecutive observations serially. At each time step, the best estimate
and a quantification of its uncertainty are provided by an ensemble of possible re-
alizations. When an observation is available, the ensemble is updated to reflect the
new information. Here, the EnKF is reviewed briefly in the context of Lagrangian
data assimilation for parameter estimation.

Let the state vector be given by z(t) = [n, x1(t), y1(t), ...xND
(t), yND

(t)]. At times
t1, t2, ...tf drifters are observed at positions qobs, so that

qobs(tk) = Hz(tk) + εk (2)

where H = [0 I] is the observation operator in the augmented vector setup, and
εk ∼ N (0,R) where R is the observational error covariance. The observation errors
are assumed to be uncorrelated in time, independent, and Gaussian so that R = σ2

RI
is diagonal.

Assume that at time tk−1, there is an ensemble {zi(tk−1)} for i = 1...Ne, and
the next available observation is at time tk. The forecast ensemble is computed by
evolving each ensemble member forward under the dynamics. Although the parame-
ter being estimated could evolve under a dynamic model as well, here the parameter
remains the same between observation times, but the flow determined by that pa-
rameter evolves according to the numerical model (in this case, ADCIRC.) Each
ensemble member’s drifters simultaneously are advected passively under that veloc-
ity field, giving the forecast ensemble at time tk, {zf

i (tk)}, which will be updated to
reflect the observation. The EnKF update step, also known as the analysis step, is
applied to each ensemble member according to:
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za
i = zf

i + PfHT
(
HPfHT + R

)−1
(
Hzf

i − [qobs + ηi]
)

(3)

Pf =
1

Ne − 1

Ne∑
i=1

(
zf
i − zf

)(
zf
i − zf

)T
where Pf is the sample covariance of the forecast ensemble and ηi ∼ N (0,R)

for the perturbed observation formulation of the EnKF (Evensen, 2003). This step
takes place entirely at time tk, and thus the time dependence has been dropped. The
forecast-analysis cycle is then repeated for each available consecutive observation
time.

Here, the scalar Manning’s n in the Katama Inlet area (green region in Figure 2)
is estimated using drifter trajectories located throughout the bay. Thus, only n and
the drifter positions are updated at each analysis step; in the forecast step, the full
velocity and elevation fields of the entire domain evolve according to ADCIRC with
the latest updated value of n in Katama Inlet.

3.2. Observing system simulation experiments

The method is tested in an artificial scenario known as an observing system sim-
ulation experiment (OSSE), in which the same model used in the forecast step of the
assimilation method also is used to create a synthetic truth consisting of time series
of both the velocity field and the drifter positions. Random (Gaussian) perturbations
are then added to the true drifter trajectories to simulate noisy observations. An
initial ensemble of the flow and drifters is generated by perturbing the true initial
value of Manning’s n in Katama Inlet and the true drifter positions. This yields an
ensemble of different flow states, each consistent with a perturbed value of n, and
each with different initial drifter positions. The performance of the data assimilation
method is then judged based on its ability to recover the true value of n in the inlet
from the perturbed initial ensemble and the noisy observations.

Two OSSEs are run. One assimilates drifter trajectories from Katama Inlet (thick
white curves in Figure 4), and the other assimilates trajectories from Edgartown
Channel, located north of the inlet subdomain (thin white curves in Figure 4). The
drifter release times and locations are designed to mimic the real data available
from August 2013. In both experiments, the synthetic truth is a 6-hour time series
of the velocity field generated with Manning’s n = 0.035 s/m1/3 in the inlet and
the trajectories from 13 drifters. The initial ensemble of drag coefficients {ni} for

i = 1...Ne = 30 is drawn from a normal distribution with mean 0.025 s/m1/3 and

standard deviation 0.005 s/m1/3. This is a common ensemble size for this size problem
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(Houtekamer and Mitchell, 2001; Mitchell et al., 2002; Evensen, 2003). Decreasing
the ensemble size to Ne = 10 degrades the performance, but Ne = 20 yields similar
results as Ne = 30. In practice, some a priori knowledge of the feasible range of
values is necessary in order to choose the initial ensemble mean and spread. For
the synthetic experiments here, the initial ensemble is defined relatively far from the
truth (the mean is two standard deviations less than the true value of n) to determine
whether the assimilation can recover the truth even under these conditions.

The observation error of the drifters has mean 0 and standard deviation σR =
25m. This is larger than the value of approximately 2m given by MacMahan et al.
(2009) as the error of the real drifter positions, to prevent the assimilation ensemble
from collapsing onto the observations too quickly and resulting in filter divergence.
Here, “filter divergence” refers to the collapse of the ensemble onto the incorrect
estimate of n, but it could also result in an estimate of the uncertainty surrounding
n that is not large enough (due to an ensemble spread that is too small). Filter
divergence is often a result of applying an approximately linear method (that is, the
EnKF) to a nonlinear problem (such as drifter trajectories in a nonlinear flow) and
has been demonstrated in the Lagrangian data assimilation setup (Apte et al., 2008;
Slivinski et al., 2015). In a system that has only weakly nonlinear characteristics,
the EnKF can avoid divergence if larger errors are included (Mitchell et al., 2002).
Although overestimating observation error can potentially have detrimental effects,
such as increasing the time it takes for the ensemble estimate to converge and pro-
viding an artificial lower bound on the errors in the estimates, the results in the
following section suggest that the assimilation worked well with the chosen values:
the ensemble does not collapse too early nor does it diverge. The time between sub-
sequent observations ∆t is tested for ∆t = 1, 5, and 10 min. The velocity fields for
both the synthetic truth and the initial ensemble are spun up with their respective
values of n for several days, so that all the simulations have reached equilibrium
before assimilation begins.

4. Results from synthetic experiments

4.1. Drifters within the subdomain of interest

OSSEs are run with drifters released just outside Katama Inlet when the flow
is from south to north into the inlet, through the bay, and out through Edgartown
Channel to Vineyard Sound. The drifter deployment times and locations are chosen
to mimic the real observations, so ND = 13 synthetic drifters are released (in the
numerical model) just outside the inlet starting at 8:30 am (EDT) Aug 22, 2013. To
study the convergence of the estimates of n, the data are assimilated over a period of
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Figure 4: Synthetic drifter trajectories in Katama Bay. Thin white trajectories are from the drifters
released on model date Aug 20 in Edgartown Channel, and thick white trajectories are from drifters
released on model date Aug 22 just outside Katama Inlet.

6 hours, significantly longer than the 1-2 hour-long time windows of the real drifter
observations.

For each of the ∆t, the assimilation estimates n fairly well, converging after about
60 minutes (Figure 5). However, for ∆t = 10 min, the assimilation initially over-
estimates n slightly, and gradually decreases to the truth over the six hour window
(Figure 5C).

The estimates of kinetic energy, defined as 0.5 times the sum of squared velocity
over all grid points i: 1

2

∑
i(u

2
i + v2i ) for the three data assimilation experiments, also

converge within 60 min to the synthetic true values (Figure 6 (A-C)). A “free run”, in
which the initial ensemble members are each integrated forward without assimilation
for 6 hours with the initial value of n remaining constant, has poorer performance
than the assimilation runs (compare Figure 6D with A-C). These results demonstrate
that changing the friction (via assimilation) on these time scales has near-immediate
effects on the total kinetic energy in the model, and thus, the assimilated ensemble
predicts the correct kinetic energy as quickly as it estimates the correct value of the
drag coefficient.
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Figure 5: Ensemble (thin light red curves) and mean (thick red curves) estimates for Manning’s n
versus assimilation time on Aug 22, when drifters were released in Katama Inlet, for ∆t= (A) 1,

(B) 5, and (C) 10 min. The black line is n = 0.035 s/m
1/3

.
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Figure 6: Ensemble (thin light red curves) and mean (thick red curves) estimates of kinetic energy
versus assimilation time on Aug 22, when drifters were released in Katama Inlet, for ∆t= (A) 1,
(B) 5, and (C) 10 min, as well as the case with no data assimilation (D). The black curves are the

synthetic “truth” from the simulation with n = 0.035 s/m
1/3

.
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4.2. Drifters in Edgartown Channel

Three additional experiments are run with the same setup as above, but with the
drifters released in Edgartown Channel. Again, the deployment time (10:40 am Aug
20, 2013) and initial locations of the 13 drifters are chosen to match the real data, and
observations are assimilated for six hours for ∆t = 1, 5, and 10 min. Although the
drifters never approach the inlet subdomain in which the drag coefficient is estimated,
the assimilation converges to the correct “true” value of n (Figure 7). However,
assimilating drifters in Edgartown Channel results in a longer time to convergence
than assimilating drifters in the inlet. For ∆t = 1 min, the ensemble takes about
90 minutes to converge onto the truth (Figure 7A), and for ∆t = 10 min, it takes
about 2 hours (Figure 7C). For ∆t = 5 min, the ensemble initially diverges from the
truth, and takes approximately 6 hrs to converge (Figure 7B). This is likely due to
a combination of nonlinearity and random noise that has a stronger effect on the
assimilation when the observations are farther away from the region of interest, and
is discussed below in more detail. Similar to the releases in Katama Inlet (Figure 6),
assimilation estimates of the kinetic energy converge to the true values at the same
rate as n converges (Figure 8).

4.3. Discussion

As expected, the assimilation of drifters in the same spatial location (Katama
Inlet) as the estimated n leads to quicker convergence to the true n than the as-
similation of drifters in Edgartown Channel. This is consistent with the results of
Salman et al. (2008), who showed that local structures within a flow field are well-
approximated when the drifters stay close to those structures (eg, when the drifters
are trapped in a vortex), whereas global flow properties are estimated best when the
drifters cover most of the domain (eg, when the drifters are spread out and some
follow a jet stream in the flow). Therefore, the performance of the Lagrangian data
assimilation algorithm will depend on the spatial location of the drifters and their
trajectories.

Although the performance degrades slightly when the time between observations
of drifters in Katama Inlet is increased, the assimilation estimates the correct value
of n within about an hour for each ∆t. Conversely, when drifters in Edgartown
Channel are assimilated, the performance of the assimilation depends more strongly
on the time between observations, and does not improve monotonically as the time
between observations decreases.

To determine why assimilating trajectories from Katama Inlet results in signif-
icantly faster convergence than assimilating Edgartown Channel trajectories, espe-
cially for intermediate ∆t = 5 min, consider the time it takes the kinetic energy in
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Figure 7: Ensemble (thin light red curves) and mean (thick red curves) estimates of Manning’s n
versus assimilation time on Aug 20, when drifters were released in Edgartown Channel, for ∆t=

(A) 1, (B) 5, and (C) 10 min. The black line is n = 0.035 s/m
1/3

.
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Figure 8: Ensemble (thin light red curves) and mean (thick red curves) estimates of kinetic energy
versus assimilation time on Aug 20, when drifters were released in Edgartown Channel, for ∆t=
(A) 1, (B) 5, and (C) 10 min, as well as the case with no data assimilation (D). The black curves

are the synthetic “truth” from the simulation with n = 0.035 s/m
1/3

.
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the bay to adjust and equalize after an abrupt change in the drag coefficient in the
inlet. A crude approximation of the adjustment time is the time required for a long
gravity wave to propagate over the largest dimension of the bay lmax in water depth
d, and for a reflected wave to return to the source over the same path:

Tadjustment ≈ 2

(
lmax√
gd

)
(4)

≈ 2

(
2× 103m

(9.8 ∗ 4)1/2m/s

)
≈ 600s.

Thus, the intrinsic time for Katama Bay to adjust to changes in n in the inlet is
approximately 10 min.

To determine how long it takes the velocity field and the drifters to adjust to
the new value of Manning’s n, the system was run for 4 days with n = 0.035 s/m1/3

in the inlet and constant north-to-south tidal forcing, similar to the case when the
drifters are released in Edgartown Channel. At the beginning of the fifth day, simu-
lations with n = 0.01, 0.02, 0.03, 0.035, 0.04, 0.05, and 0.06 s/m1/3 were run. In each
experiment, drifters are released in Edgartown Channel at the same locations as the
synthetic experiment above. Each situation is simulated for 1 hr, with no assimila-
tion.

For a range of initial values of n, the kinetic energy averaged over the entire
domain converges about 25 minutes after n is changed, although for the simulations
with the largest and smallest values of n, the kinetic energy oscillates slowly (Fig-

ure 9). A change of 0.005 s/m1/3 in n from the true values results in convergence

after about 10 min. Changing n by 0.025 s/m1/3 results in about a 50% change in
kinetic energy (e.g., compare the blue (n = 0.010) with the purple (n = 0.035) curve
and compare the purple (n = 0.035) with the red (n = 0.060) curve in Figure 9).

For the first 10 min after the change, the average speed of the drifters released in
Edgartown Channel does not depend on the initial value of n (Figure 10). The model
simulates drifter advection with a 4th order Runge-Kutta scheme with a 1-min time
step, and the simulations suggest that changes in the friction in Katama Inlet do not
have an effect on the drifters in Edgartown Channel for at least 10 min, consistent
with Eq. 4.

It is unsurprising, then, that the assimilation takes longer to converge when
the drifter observations are located in the channel than when they are in the inlet:
information takes longer to travel between Katama Inlet and Edgartown Channel
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Figure 9: Kinetic energy spatially averaged over the entire domain versus time for different initial

values of n (colors in the legend; units s/m
1/3

) in the inlet.

Figure 10: Average speed of 13 drifters released in Edgartown Channel versus time for different
initial values of n (colors in the legend) in the inlet.
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than it does within the inlet. Due to the nature of the data assimilation method,
which combines uncertain forecasts with the noisy observations, the increment made
to n at each analysis step is generally no more than 0.005 s/m1/3. In this regime,
there is very little effect on the average drifter speed before fifteen minutes, so the
assimilated drifter trajectories will likely not reflect the changes in n within one
assimilation step of any size studied here. Therefore, small differences in realizations
of noise (in the drifter observations) could affect the timescale of convergence of n
fairly strongly when the drifters are in the channel.

To this end, experiments identical to the ones earlier in this section are run (results
not shown), but with different realizations of observation noise, sampled from the
same Gaussian distribution as the previous experiment. The second experiment with
drifters in Katama Inlet performs almost identically to the inlet experiment shown
above: the ensemble has converged onto the true value within an hour, with the
best performance for ∆t = 1 minute. However, the experiment that assimilates
drifters in Edgartown Channel produces fairly different results from the experiment
above. For ∆t = 1 min and ∆t = 5 min, the ensembles each take about 4 hours to
converge, more than twice the time for the experiment with ∆t = 1 min above, but
significantly less time than the experiment with ∆t = 5 min above. The experiment
with ∆t = 10 min results in about a 2.5 hour convergence time for the second
realization of noise, as compared to the convergence time of 90 min for the original
experiment in Section 4.2 (see Figure 7.) This suggests that the performance of the
Edgartown Channel experiments depends strongly on the realizations of observation
noise. Ultimately, these results are likely due to subtle interactions between the
effects described here; this is typical in data assimilation experiments with nonlinear
systems, which often arise in Lagrangian data assimilation.

5. Results from a field experiment

5.1. Setup

The trajectories of surface drifters released in Katama Inlet on Aug 22 (Inlet
Trajectories in Figure 3) and in Edgartown Channel Aug 20 (Channel Trajectories in
Figure 3) are assimilated to estimate the friction in Katama Inlet. Prior to reviewing
the results of the assimilation, the performance of the model is tested with the
original value n = 0.035 s/m1/3. The simulated kinetic energy from that experiment
in the inlet is compared with the kinetic energy observed at 10 locations in the
system (Figure 11). The model kinetic energy at each sensor location is calculated
by interpolating the simulated velocity between nearby grid points. The observed
kinetic energy is calculated from currents measured about 0.8 m above the seafloor
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Figure 11: Observed (solid black curves) and simulated (dashed blue curves, n = 0.035) kinetic
energy versus time for 3 days in 2013. The shaded boxes are times during which drifters were
deployed. The location of each comparison is given by the mooring number at the top of each
panel, which corresponds to a sensor on the map in Figure 3. Note differences in scales of y-axes.

in water depths < 2 m and from a depth average of the nearly uniform-in-the-vertical
profiles in depths > 2 m (Orescanin et al., 2014).

The largest discrepancies between simulations with n = 0.035 and observations
are at locations 05 and 46, both close to Katama Inlet (Figure 3). The value

n = 0.035 s/m1/3 was based on observations in 2011, but the inlet lengthened, nar-
rowed, and shoaled by 2013, resulting in a significant change in n (Orescanin et al.,
2016). Instead of re-tuning n with the 2013 in-situ observations, n is estimated by
assimilating drifter trajectories into the model.

Two experiments are performed – the first assimilates drifter observations in
Katama Inlet, and the second assimilates drifter observations in Edgartown Channel.
The model ensemble is initialized with a mean of n = 0.035 s/m1/3 and a standard

deviation of 0.005 s/m1/3. The observation error is set at σR = 25m, as in the
synthetic experiments.

Drifter data are available every second, but results from the synthetic runs (Sec-
tion 4) suggest that this is more frequent than necessary since assimilating data every
1 min was sufficient for successful estimation in those experiments. Additionally, the
EnKF assumes that observation errors are uncorrelated in time; if drifter positions
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are sampled every 1 sec, it is not clear that this assumption will hold. Thus, ∆t = 1.0
min for the channel drifter data on Aug 20, and ∆t = 0.5 min for the inlet drifter
data on Aug 22 due to the shorter trajectories (Figure 3). Synthetic experiments
with ∆t = 0.5 min for the inlet drifters (not shown) demonstrate very similar results
to those with ∆t = 1.0 min.

On Aug 20, ten drifters were deployed in the channel at 10:50 am and recovered
at 1:10 pm. On Aug 22, the drifters were deployed in several relatively short releases
in the inlet. Twelve drifters are assimilated from 8:31 until 8:48 am (Assimilation
Round 1), at which point each ensemble member is evolved forward until 9:12 am
with the final estimate of friction from Round 1. At 9:12 am, the next wave of
ten drifters are assimilated for 10 minutes (Round 2). In Round 3, nine drifters are
assimilated from 9:42 until 9:47am, and in Round 4, nine drifters are assimilated from
9:59 until 10:20 am. Note that the number of drifters assimilated in each round is not
constant, because not every drifter was released at the exact same time nor did they
all provide meaningful trajectories. Thus, only drifters that provided trajectories
during overlapping time windows are assimilated.

5.2. Results and discussion

Manning’s n estimated by assimilating the Inlet Trajectories converges to n =
0.045 s/m1/3 (Figure 12), higher than the 2011 estimated value of 0.035 s/m1/3 (Ores-
canin et al., 2016). Without assimilation and with n = 0.035, the model over-predicts
the kinetic energy at almost every in-situ sensor location (Figure 13). By assimilat-
ing drifter data, the model is closer to the in-situ observations at most locations,
especially at sensors 05 and 47, located close to Katama Inlet (Figure 3). Specifi-
cally, since the observed drifters are traveling more slowly than the simulated drifters
within the assimilation, the EnKF analysis increases the drag coefficient to diminish
the mismatch between the observed drifters and the simulated drifters.

Figures 12 and 13 show how the estimate of n and the associated kinetic energy
change during assimilation, as n is updated. In addition, another simulation is
restarted on Aug 20 and run for three full days with the final estimated value of
n = 0.045 s/m1/3. Model skill is quantified by the root mean square error (RMSE,
averaged over Aug 20-22) in kinetic energy relative to that observed with the in-situ
sensors. At each sensor location, the observed kinetic energy at time t is calculated as
KEobs(t) = 1/2 (uobs(t)

2 + vobs(t)
2) for uobs, vobs observed latitudinal and meridional

current velocities, respectively. Similarly, the modeled kinetic energy KEsim(t) =
1/2 (usim(t)2 + vsim(t)2) is calculated by interpolating the simulated velocity to the
sensor locations. The RMSE is defined as
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Figure 12: Ensemble (thin light red curves) and mean (thick red curves) estimates of Manning’s
n from assimilating drifters within Katama Inlet versus time, with the initial estimate of n =

0.035 s/m
1/3

(black horizontal line, the value found for the 2011 data (Orescanin et al., 2016)).
Blue shaded regions are assimilation windows and unshaded regions are time periods in which the
ensemble estimates of n were kept constant.

RMSE =

(∑tf
t=t0 (KEobs(t)−KEsim(t))2∑tf

t=t0 (KEobs(t))
2

)1/2

(5)

over the time period from t0 to tf . Relative to the simulation with n = 0.035 s/m1/3,

the simulation with the assimilated parameter n = 0.045 s/m1/3 yields improved
kinetic energy estimates at nearly every mooring, with the most significant improve-
ment at Mooring 05, in Katama Inlet (Table 1).

In contrast, the estimate of n in Katama Inlet from assimilating drifter trajec-
tories in Edgartown Channel does not converge, and at the end of the time window
n = 0.018 s/m1/3 (Figure 14), significantly lower than the value estimated by assim-

ilating drifters in the inlet, and lower than the initial estimate of n = 0.035 s/m1/3.
Unlike at the time of the Katama Inlet drifters’ release, at the time of the drifters’
release in Edgartown Channel the model simulation underestimates the observed ki-
netic energy at 7 of the 10 in-situ sensors (Figure 15). In particular, the original
model underestimates the kinetic energy at sensors 03, 04, and 41 in Edgartown
Channel (see Figure 3 for locations), where the drifters were released, although the
kinetic energy at sensor 42 (also near the channel) is overestimated. The assimilation
seeks to diminish this initial mismatch between the observed and simulated drifter
trajectories by increasing the kinetic energy via decreasing the drag coefficient. As a
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Figure 13: Kinetic energy versus time for observations (black curves), the model with no assimilation

and n = 0.035 s/m
1/3

(dashed blue curves), and ensemble (thin light red curves) and mean (thick
red curve) estimates of n from assimilating drifters within Katama Inlet on Aug 22 versus time at
each sensor location (numbers on top of each panel refer to sensor locations in the map in Figure 10).
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Sensor n = 0.035 n = 0.018 n = 0.045
03 0.007 0.013 0.007
04 0.006 0.012 0.005
05 0.371 0.888 0.234
41 0.003 0.003 0.004
42 0.005 0.013 0.004
43 0.014 0.042 0.007
44 0.007 0.014 0.006
45 0.035 0.105 0.025
46 0.100 0.096 0.095
47 0.067 0.179 0.045

Table 1: Normalized root mean squared error of kinetic energy between model simulations with

given n (units s/m
1/3

) and the in-situ observations between Aug 20 and 22.

result, towards the end of the assimilation period, both the original simulation with
n = 0.035 s/m1/3 and the assimilated simulations overestimate the observed kinetic
energy (Figure 15).

The model run with the final value of n = 0.018 s/m1/3 has higher RMSE relative
to the observed kinetic energy than the model using n estimated by assimilating
drifters in the inlet (Table 1), with the biggest errors at sensor 05 in the inlet. To
test if the initial discrepancy in kinetic energy is indeed a driving factor in the results
of the assimilation, channel drifters are assimilated beginning at 12:00 pm (rather
than at 10:50 am), when the model changes from underestimating the observed
kinetic energy to either overestimating or accurately estimating the observed energy
(Figure 15). The model is initialized with n = 0.035 s/m1/3, and run over the window
from 12:00 to 1:10 pm (Figure 16).

In this case, the estimate of n oscillates and decreases initially, and after 1 hr
returns to the initial value of n = 0.035 s/m1/3 (although the ensemble may not
have converged; Figure 16). This is because the model is not consistently over- or
under-estimating the observed kinetic energy at the start of the window, and thus
the assimilated ensemble does not increase or decrease the estimate of n by the end
of the assimilation.

These results suggest that the assimilation outcome can depend on the time and
location of drifter deployment. Because the parameter of interest is the friction in a
specific part of the domain (Katama Inlet), when drifters are deployed near or in that
region, the assimilation performs better. For the experiments with drifters deployed
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Figure 14: Ensemble (thin light red curves) and mean (thick red curve) estimates of Manning’s n
in Katama Inlet from assimilating drifters in Edgartown Channel on Aug 20 as a function of time.

The black line is the initial estimate n = 0.035 s/m
1/3

.

Figure 15: Kinetic energy versus time for observations (black curves), the model with no assimilation

and n = 0.035 s/m
1/3

(dashed blue curves), and ensemble (thin light red curves) and mean (thick
red curve) estimates of n in the inlet from assimilating drifters within Edgartown Channel on Aug
20 versus time at each sensor location (numbers on top of each panel refer to sensor locations in
the map in Figure 3).
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Figure 16: Ensemble (thin light red curves) and mean (thick red curve) estimates of Manning’s n
in Katama Inlet from assimilating drifters in Edgartown Channel beginning at 12:00 pm on Aug

20 versus time. The black line is the initial estimate n = 0.035 s/m
1/3

.

in Edgartown Channel, the results depend on when the assimilation begins. This
is linked to whether the model over- or under-estimates the kinetic energy at the
beginning of the assimilation window. Further experiments would help determine
the relative importance of drifter deployment location and the difference in observed
and simulated kinetic energy at the beginning of the assimilation window.

Note that these experiments do not include any covariance localization, a com-
mon method for reducing artificial correlations between spatially-distant regions of
the domain, since the parameter of interest covers an entire subregion that may or
may not include the drifter trajectories. Thus, these results demonstrate how the
assimilation behaves when drifter observations in Edgartown Channel are allowed
to update n in Katama Inlet without any constraints. Imposing localization in the
Edgartown Channel experiments would likely slow the time to convergence without
changing the overall behavior of the ensemble estimate of n.

6. Conclusions

Trajectories of drifters are assimilated into a numerical model (ADCIRC) to esti-
mate the friction (Manning’s n) in Katama Inlet, which affects circulation in tidally-
dominated Katama Bay. Synthetic observation experiments demonstrate the ability
of the assimilation method to estimate Manning’s n using only trajectories of passive
Lagrangian drifters. The performance of the assimilation is greatest when the drifters
are located near the region for which n is estimated. When the synthetic drifters
are located in a different region (Edgartown Channel), away from the Katama Inlet
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region for which n is estimated, the assimilation performance decreases, likely owing
to interactions between the intrinsic adjustment time of the bay, sensitivity to ob-
servational noise, and nonlinear effects within the data assimilation method. This is
supported by the investigations with identical setups but different realizations of ob-
servational noise (Section 4.3): the two realizations of the Katama Inlet experiment
were qualitatively indistinguishable, while the two Edgartown Channel experiments
differed significantly.

There are larger differences in the outcomes when real drifter data are assimi-
lated, depending on whether drifters from Katama Inlet or Edgartown Channel are
assimilated. Assimilation of trajectories observed from drifters released near Katama
Inlet converges to a larger inlet drag coefficient than the 2011 value. Throughout
the system, the corresponding simulated kinetic energy with the assimilated n is
often closer to the observed kinetic energy than simulations with the 2011 value. In
contrast, when trajectories observed from drifters released in Edgartown Channel in
2013 are assimilated, n is reduced and the kinetic energy estimates are not as accu-
rate. This is partially due to the mismatch between the simulated (initialized with
the 2011 value of n) and observed kinetic energy at the beginning of the assimilation
window, and partially due to the larger spatial distance between the observations
and the region for which n is estimated. These results are also sensitive to the time
the drifters are released in the channel.

Differences in assimilation performance between the synthetic and real experi-
ments are likely due to unmodeled processes in the real experiment that may have
a larger effect on the assimilation when the observations are far from the region of
interest, owing to higher sensitivity to noise. Thus, an OSSE’s ability to provide
guidance decreases with increasing distance between observations and the region of
interest.

The initial numerical circulation model used bathymetry measured in 2013 and a
parameter tuned for kinetic energy measurements in 2011. The Katama Bay domain
changed significantly in the area of Katama Inlet between 2011 and 2013 (recall
Figures 1B and C), and the goal was to improve the parameter estimate n from
2011 to represent the 2013 situation. Results depend on both when and where
drifters are observed: if one wishes to estimate a local parameter in a model, then
it is best to deploy drifters in that region. Ultimately, assimilation of real drifter
trajectory data in Katama Inlet provides an improved estimate of n in the inlet,
based on comparisons between observed kinetic energy in 2013 and kinetic energy
from the model simulations with the 2011 and 2013 estimates of the parameter.
While Eulerian data are used to judge the performance of the assimilation, they are
not necessary for the actual computation of the parameter.
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Roth, M., MacMahan, J., Reniers, A., Özgökmen, T., Woodall, K., Haus, B., sub-
mitted. Natural coastal barriers to surface material transport in the northern Gulf
of Mexico. Continental Shelf Research.

Salman, H., Ide, K., Jones, C., 2008. Using flow geometry for drifter deployment in
Lagrangian data assimilation. Tellus 60A, 321–355.

31



Salman, H., Kuznetsov, L., Jones, C., Ide, K., April 2006. A method for assimilating
Lagrangian data into a shallow-water-equation ocean model. Mon. Wea. Rev. 134,
1081–1100.

Sanford, T. B., Lien, R.-C., 1999. Turbulent properties in a homogeneous tidal bot-
tom boundary layer. Journal of Geophysical Research: Oceans 104 (C1), 1245–
1257.
URL http://dx.doi.org/10.1029/1998JC900068

Seim, H. E., Blanton, J. O., Gross, T., 2002. Direct stress measurements in a
shallow, sinuous estuary. Continental Shelf Research 22 (11–13), 1565 – 1578,
proceedings from the Tenth Biennial Conference on the Physics of Estuaries and
Coastal Seas.
URL http://www.sciencedirect.com/science/article/pii/S0278434302000298

Slivinski, L., Spiller, E., Apte, A., Sandstede, B., 2015. A hybrid particle–ensemble
Kalman filter for Lagrangian data assimilation. Monthly Weather Review 143 (1),
195–211.

Taillandier, V., Griffa, A., Poulain, P.-M., Béranger, K., 2006. Assimilation of Argo
float positions in the north western Mediterranean Sea and impact on ocean cir-
culation simulations. Geophysical Research Letters 33 (11), n/a–n/a, l11604.
URL http://dx.doi.org/10.1029/2005GL025552

Trowbridge, J. H., Geyer, W. R., Bowen, M. M., III, A. J. W., 1999. Near-bottom
turbulence measurements in a partially mixed estuary: Turbulent energy balance,
velocity structure, and along-channel momentum balance. Journal of Physical
Oceanography 29 (12), 3056–3072.
URL http://dx.doi.org/10.1175/1520-0485(1999)029<3056:NBTMIA>2.0.CO;2

Vernieres, G., Jones, C. K., Ide, K., 2011. Capturing eddy shedding in the Gulf of
Mexico from Lagrangian observations. Physica D: Nonlinear Phenomena 240 (2),
166–179.

Wei, M., Toth, Z., Wobus, R., Zhu, Y., Bishop, C. H., Wang, X., 2006. Ensemble
Transform Kalman Filter-based ensemble perturbations in an operational global
prediction system at NCEP. Tellus A 58 (1), 28–44.
URL http://dx.doi.org/10.1111/j.1600-0870.2006.00159.x
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