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Abstract 

There has been considerable interest in heuristic 
method for minimizing multiple-valued logic func- 
tions because exact methods are intractable. This 
paper describes a new heuristic, called the neigh- 
borhood decoupling (ND) algorithm. It first selects 
a minterm and then selects an implicant, a two step 
process employed in previous heuristics, e.g., Besslich 
[2] and Dueck and Miller [4]. The approach taken 
here more closely resembles the Dueck and Miller 
heuristic; however, it makes more efficient use of 
minterms truncated to the highest logic value. The 
ND-algorithm was developed in conjunction with HAM- 
LET [12], a computer software created at the Naval 
Postgraduate School for the purpose of designing 
heuristics for multiple-valued logic minimization. In 
this paper, we present the algorithm, discuss the 
implementation, show that it performs consistently 
better than others and explain the reason for its im- 
proved performance. 

1 Introduction 
The minimization of MVL programmable logic arrays 

(PLA) is an important and interesting problem. Several 
heuristics have been developed to the multiple valued logic 
minimization problems and each claims some advantage in 
specific examples but none of them is consistently better 
than the others 12, 4, 5, 8, 9, 10, 121. Heuristic methods 
are of interest because exact minimization methods are ex- 
tremely time-consuming. With the computer software de- 
veloped at Naval Postgraduate School called HAMLET [12] 
users can easily extend their own heuristics. For example, the 
neighborhood decoupling (ND) algorithm is built as one in- 
dependent option of HAMLET. This article reexamines the 
methods used in HAMLET and reports the new method, 
ND-algorithm, which on the average performs better than 
others. 

Generally speaking, the heuristic approaches in HAM- 
LET can all be classified as ad hoc or greedy algorithms. 
We can abstract these algorithms as follows. 
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/* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
input: let the M be the set of minterms of an function f; 
output: the minimized sum of product, S, of the original 
function; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * / 

s +- 4. 
While ( M  # 4) do { 

{ 

pick one minterm a from M; 
find an implicant I ,  which covers a; 

remove a from M; 
s c I ,  U s; 

1 
In essence, each algorithm differs from the others in the 

manner of picking the minterms (a) and finding the impli- 
cants (I,). The Pomper and Armstrong algorithm [8] picks 
LY randomly (as long as a is in M) and finds I ,  randomly (as 
long as I ,  covers a) and searches for the “largest” implicant, 
I,, which covers the minterm (a). This is a greedy algorithm 
in nature: by choosing the “largest” implicant it hopes that 
the chosen implicant includes the maximum number of re- 
maining minterms. Dueck and Miller algorithm picks a from 
M if the a is the most “isolated” minterm and then finds the 
I ,  which directly covers the a such that the relative break 
count is minimum [4,5]. The neighborhood decoupling algo- 
rithm is an improvement to  the Dueck and Miller algorithm 
[4, 5, 9, 111 with revised decision rules for making selections 
of minterms and implicants. 

We present the definitions that are used in this paper 
in Section 2. We then present the neighborhood decoupling 
algorithm in Section 3. Section 4 and 5 discuss the per- 
formance comparisons of the neighborhood decoupling algo- 
rithm. 

} 

2 Notations and Definitions 
We review definitions for the truncated sum operation in 

Section 2.1, most of which are defined in previous literature 
[4,5, 10, 111. We then present the definitions used in the ND- 
algorithm in Section 2.2. Certain definitions in Section 2.2 
are variations of those defined by Dueck and Miller (DM) [4]. 
The variations from DM are the sources of the improvement 
which ND-algorithm benefits. 
2.1 Truncated Sum 

Let X = { 51, x2, ...., x, } be a set of n input variables where 
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x; takes on values from R = {0,1, ...., r - 1). An n-variable 
r-valued function f is a mapping f : R” -+ R U  { r } ,  where 
r is the don’t care value [lo]. The M I N  function is defined 
as M I N ( x 1 ,  x 2 )  = x1x2 = min imum(x l ,  x2)[11]. There are 
two definitions of literal in the literature: interval (window 
or contiguous) [3, 4, 51 and set (or discrete) [4, 51. Although 
the interval version is a special case of the set version, we use 
the literal version since there is a physical realization of the 
interval literal defined [3, 61. The interval literal of a variable 
x is defined [3] as: 

r - 1  i f a s x l b  
0 otherwise. 

From now on the term “literal” will mean interval literal. 
The truncated sum (TSUM) operation [3] is 

T S U M ( x 1 , x 2 )  = xi + x2 = minimum(xl  plus 1 2 ,  r - 1) 

Note that the notation ’+’ is the addition truncated to the 
highest logic value ( r  - 1) while plus denotes normal addi- 
tion. Other than the truncation the TSUM operation is the 
same as normal addition and TSUM obeys the associative 
and commutative rules. If R = {0,1,2,3} then examples of 
TSUM are TSUM(1,S) = 3 and TSUM(2, 2) = 3. The use 
of TSUM in this paper is inspired by the fact that the CCD 
implementation supports TSUM naturally [3,6]. 

Example 1: For example, ‘ x ;  is a literal and takes value of 
3 in a 4-valued function but the function 2 ‘x? takes a value 
of 2 due to the definition of M I N .  Similarily, the product 
term 2 ’x; ‘ x i  takes a value of 2. The constant or coefficient 
c, in a product term effectively scale the term. 0 

A product term p is the M I N  of one nonzero constant 
c E R, and one or more literal functions. In general, a 
product term is defined as: 

. . .  . 
p c ‘lx131 a2x232 . . , 

For each variable xi we say the window size of the literal ikx;3k 
is jk - ik + 1. w e  use the terms product term and implicant 
interchangeably in this article. A minterm cy is of the form 

alxai  az x2 az a(( x3 a3 . . .anx2  where a, E R and constant c E 

R- { 0 }. We say the coordinate of cy is < ai, u2,. . .an > . 
We denote the value of minterm cy, g(cy), as the nonzero 
constant c. Obviously, the window size of each variable of 
a minterm cy is 1. If the product term is defined as above, 
the value of product term is g(p) = c. Given two product 
terms pi ,  pz with values c1, c2 respectively we say the value of 
TSUM(p1,pz)  is equal to TSUM(c l ,  c2) .  A sum-of-products 
expression is P I  +PZ +. . . + p ~  for some integer N,  where pi is 
a product term. A product term p = c ilx,jl i z X 7 3 2  . . . rnxnjn 

MS,, , we say pl covers larger area than p2. Given a minterm 
cy generated from the original function to be minimized if 
g(cy) = r - 1 then cy is a saturated minterm. Let SAT 
be the set of all saturated minterms. We mark a saturated 
minterm with a dot in our figures. Given a function f, the 
set of minterms generated from its product terms is denoted 
by MS,. If more than one product term in f generates the 
same minterm then that minterm appears in M S f  only once. 
We can express the value of f by representing values of M S j  
as illustrated in the example below. 

Example 2: If the input function f to be minimized is 
expressed as follows, 

3 ox; t 2 ix:ox; t 3 1.; zx; $2 z X ;  z2;+1 z Z ;  3 2 ; + 1 ~ x ; 2 r ; ,  

the M S ,  can be represented as 11 minterms in Figure 1. 

Observation 1 Given a minterm cy the maximum number 
of implicants that covers cy is O(rZn). 

Proof: Consider a variable (axis) x; of a. Any implicant 
( I a )  that covers cy may have window size w such that 1 5 
w 5 r.  With a window size w we may have w implicants 
that covers cy. In the worst case, the minterm cy is at the 
middle point of an axis, i.e., rr/2]. Consider the window 
bounded by [i  ‘1 with i 5 and j 2 f for a given axis, we 
have S x 5 = possible implicants that cover cy. Over the 
entire n-dimensional space, we have ($)” = O(r”) [l] 0. 

,4 

2.2 Definitions Used in ND-algorithm 
Let cy and /3 are minterms with coordinates < a l ,  a2,. . .a,, > 
and < bl, b2, . . . b, > respectively. If for all i we have a; = b; 
except one position j such that laj - bjl = 1 we say that 
cy and p are direct neighbors. Given a minterm cy, we use 
N ( a )  to denote the set of its direct neighbors. To emphasize 
the requirement of laj - bjl = 1 the ND-algorithm uses the 
term direct neighbor. Two minterms cy and p are directional 
neighbors in the direction xj if for one j E [l, 721, aj # bj and 
a; = b; for all other i E [ l ,n ]  ( i  # j). When bj > aj we say 
that /3 is in the positive direction of cy while when bj < aj 

we say that /3 is in the negative direction of cy. Therefore, if 
p is a direct neighbor of cy then p is a directional neighbor 
of cy in the direction of 2; for some i E [l,n]. The maximum 
number of direct neighbors of a given minterm is 2n, where 
n is the number of variables. 

The connected minterms to be defined is similar to the 
expandable adjacency in Dueck’s thesis [6, p.501. It is defined 
recursively and includes SAT and don’t cares. This defini- 
tion is important and reflects the transitive property of the 
“connected” relationship. It is interesting to note that the 
recursive definition of two connected minterms is not com- 
mutative. Given a minterm cy and a minterm p, then we say 
p is a connected minterm of cy, if 

. -  

consists of n;=,(jk - ik + 1) minterms each with value c. 
We say p generates or covers those minterms. Given a 

product term p,  the set of minterms generated from p is 
denoted by MS,. In other words, a minterm cy is “covered” 
by an iinplicant iff ak E [ i k r j k ] ,  ikjjk E R ; for all 1 5 k 5 n. 
If the number of elements in MS,, is greater than that in 

(1) p is a direct neighbor of cy and either g(p )  5 
g ( a )  or cy is don’t care. 

(2) p is a directional neighbor of cy on a direction 
xi and its direct neighbor is connected to a 
and either g ( p )  5 g(cy) or cy is don’t care. 0 
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Notice that in the condition g ( p )  5 g(cy) it is possible 
that cy E S A T .  The connected minterm count of minterm 
cy, CMC,, is the number of minterms that are connected to 
minterm cy. The expandable directional count of minterm cy, 

EDC,, is the number of directions in which cy has connected 
minterms. Because for each xi have 2 directions (positive and 
negative) we observe that 0 5 EDC,  5 2n. The EDC,  is 
similar to the idea of DM’s DEA,, the number of directions 
of expandable adjacency of cy but they are not the same, 
since, in the EDC, the positive and negative directions are 
treated as distinct. Besides, the interpretation of expandable 
and connected are not the same. Note also, the extendible 
minterm (see [5], p.122) is defined differently from connected 
minterms. 

The clustering factor relative to a minterm cy is defined 
as CF, = EDC,(r - 1) + CMC,. This is a measure of 
the weight of all connected minterms relative to cy. The 
(r - 1) factor is the range, or maximum possible number of 
minterms, in a direction 2;. The weight of ( r  - 1) on the 
EDC emphasizes the importance of the directions similar to 
DCM” [5]. Conceptually, the clustering factor is the inverse 
of the isolation factor [4, 51 but its value is not the inverse 
of the isolation factor in most cases because of the different 
interpretation of each term. 

x x o  1 2  3 

Minterm 
CF 

Minterm 
CF 

Figure 1: Map for Example 2, 3, 4; Step 1 of Table 3 
Example 3: In Figure 1 the minterm 2 ’x1’ ‘xZ2 (the minterm 
with * sign) has no connected minterms nor expandable di- 
rectional neighbors, i.e., its C M C  and EDC values are 0. 
However, in Figure 2 the minterm cy = 3 Ox: ‘xi is one of the 
eight minterms and C M C ,  = 4, EDC, = 2. The clustering 
factors of all minterms in Figure 2 is listed in Table 1. 0 

3 O z l 0  ‘zz’ 1 ‘zll ‘z2’ 1 2x12 ‘zz1 3 3z13 lzzl 
10 14 9 6 

1 Ozl0 ‘z2’ 1 lzll ’ ~ 2 ~  1 lzl l  3z23 1 2z12 3z23 
4 12 9 4 

I I I 1 

1 1 3.+ 1. ++ 1. t+ 3. I 

Table 1: C F s  for all minterms in Figure 2 

3 The ND-Algorithm 
As stated in Section 1, the neighborhood decoupling algo- 

rithm is an improvement to the Dueck and Miller’s method. 
First, the most isolated minterm is chosen using the algo- 
rithm M described below. The most isolated minterms in 
general are different from Dueck and Miller’s (DM) method 
due to different decision rules. In the DM-algorithm, an 
“isolated” minterm is selected as follows: starting from the 
minimum value, for each minterm search for expandable ad- 
jacency minterms and isolation factors (see [6], p.54, step 1, 
2, 3.) The minterm with the maximum isolation factor is se- 
lected. In the ND-algorithm, however, it does not start from 
the minterm with minimum value. Instead, for each minterm 
it looks for its “connected minterms” (differs from adjacency 
as described in Section 2) and clustering factor (differs from 
the inverse of isolation factor, see Section 2.) The minterm 
with the smallest clustering factor is selected. If there is a 
tie, the ND-algorithm will select the minterm that is evalu- 
ated last (the ND-algorithm varies the Xi before X j  when 
i < j . )  In the DM-algorithm, ties are broken arbitrarily 
(see [GI, p.54.) For example, in Figure 3, the ND-algorithm 
selects 2 3x132z22 as most isolated minterm. However, the 
DM-algorithm will not select this since it starts from the 
minterm with the smallest value (1). 

Second, from all implicants which cover the most isolated 
minterm we choose the one that is not strongly “coupled” 
with its neighbors. This decoupling process is based on ob- 
servations that if we choose that specific implicant then we 
may minimize the negative impact for future minterm selec- 
tions as well as implicant selections. We will explain this idea 
further in Section 3.2. In the algorithm below, f denotes the 
function to be minimized. 
{ /** The ND-Algorithm; SS = Solution Set **/ 
ss +- 4; 
W S  = M S f  = {ala is generated by the function f; 

While W S  # 4 do { 
1. Use algorithm M (see Section 3.1) to select a minterm 
cy from the W S .  
2. Use algorithm N (see Section 3.2) to select an 
implicant I ,  that covers cy; SS t SS U Io. 

if cy E SAT then mark its coordinate }. 

3. Vp E I ,  do { 
compute s(P)  + d P )  - s(a). 
if ,6’ is originally marked and g ( p )  = 0 then 

4. Update W S .  } /* end While */ 
s(P) + 7.. 1 

} 

Figure 2: Map for Example 3, 4; Step 2 of Table 3 
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x 1  
x 2  0 1 2 3  

I I 

Figure 3: 2 3 ~ 1 3 2 ~ 2 2  is the most isolated minterm in ND 

3.1 Algorithm M: Minterm Selection 
We first compute the clustering factors for all minterms and 
the clustering factor is computed in the order of coordinates 
(xi). For example, the minterm 2 ‘x: ‘xi is evaluated earlier 
than the minterm 2 ‘x:’x;. The algorithm M is simply 
described as follows. 

1. Vak E W S  compute the corresponding CF,, 
2. select the minterm a that has the smallest 

clustering factor. If there is a tie, the last one 
gets evaluated is chosen. 

3.2 Algorithm N: ImDlicant Selection 
The purpose of algorithm N is to choose the most “isolated” 
implicant (I,) and update the working set WS.  It computes 
the neighborhood relative count ( N R C )  for all implicants 
that cover the minterm a. The implicant with the small- 
est N R C  is chosen. The N R C  is a measure of the cou- 
pling strength of an implicant with its neighbors. To select 
an implicant is equivalent to breaking the coupling between 
that implicant with its neighbors. The candidate implicant 
should have the smallest coupling strength with its neigh- 
bors. Therefore, we choose the most “isolated” implicant, 
i.e., lowest NRC. If there is a tie in selecting the I,, we choose 
the one which covers the largest area. If a tie still exist, i.e., 
two or more implicants of same size cover the a then we 
select the last one get examined (evaluated) in HAMLET 
[12]. Note that, the NRC defined here is similar to RBC 
(relative break count) [4] or BCR (break count reduction) 
[5] but is different in three ways: (1) in addition to +1 and 
-1 counting, the ND-algorithm uses $2 and -2 weightings 
for penalty ($2) or incentive (-2), i.e., an idea of Besslich 
[2] is incorporated; (2) in DCM” the order of BCR evalu- 
ation is based on the index of a variable (XI varies before 
X,) but the ND-algorithm evaluates the NRC in the order 
of the implicant sizes, (3) instead of choosing the minimum 
RBC [4] or maximum BRC [5] ( the DCM” often has ties [5, 
p.1341 and the ties are broken by choosing the last implicant 
that is evaluated) the ND-algorithm selects the implicant 
with the smallest NRC that covers the largest area. With a 

refined weighting scheme there are fewer ties with the ND- 
algorithm. Our experiences indicate that the performance of 
the ND-algorithm is very sensitive to the weighting factors. 

We now explain how we compute the N R C  for a given im- 
plicant. We first initialize the N R C  to zero. We then check 
all neighboring minterms of the implicant and increment or 
decrement its N R C  by the following rules: if the coupling 
strength between covered and uncovered area is weak (good 
for further decoupling) we decrement N R C ,  otherwise incre- 
ment N R C .  

/* Algorithm N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

a: the chosen minterm from algorithm M; 
M: the set of minterms which was covered (gen- 

N ( P ) :  the set of direct neighbors of minterm P. 
erated) by the chosen implicant (Ia). 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * 
{ N R C  t 0;  
VP E M and /3 # a do { 

VP E M and Vy E N ( P )  do { 
if(g(P) - g(a) I 0 )  then N R C  e N R C  - 1; } 

if (y e M and y # 0 and (y 
then { 

SAT or ,B S A T ) )  

if (s(P) - s(a) > s(7) then { 

if ( d P )  - 9(Q) < d.7) ) then { 

if (y E SAT ) then N R C  t N R C  - 1; 
else N R C  t N R C  + 2;) 

if (g (P )  = g(y) ) then N R C  + N R C  + 2; 
if (y E SAT and g(y) - g ( P )  < 0 ) then 

N R C  t N R C  + 2; 
else { 
if ( d P )  > g ( a )  and g(P)  # d y )  ) then 

if( p E S A T )  then N R C  t N R C  - 1; 
else N R C  t N R C t 2 ;  

} /* end else */ 
} /* end if */ 

if ( g ( P )  - g ( a )  = g(y) and y SAT ) then 
N R C  t N R C  - 1; 

} /* end then */ 
} /* end do */ 

If (M = { a } and N R C  = 0 )  then N R C  +- 1; 
} 

Example 4: It is instructive to consider an example of the 
steps of the ND-algorithm by using the function f shown 
in Example 2 (two-variable four-valued). The working set, 
W S ,  is initialized to M S f  and is represented in Figure 1. The 
clustering factors of all minterms in W S  are calculated (see 
example 3 for computation). The smallest C F  comes from 
minterm 2 ’x; *x; and therefore algorithm M will select a = 
2 ’x: ‘x;. We compute the NRCr for each implicant I which 
covers a using algorithm N. Since implicant 2 ‘z: ‘xi has the 
smallest N R C  (-3) we select it as the first implicant to be in 
the solution set (SS). Table 3, together with Figures 2,  4, 5 
show the steps of choosing successive implicants. The * sign 
in each Figure indicates the most isolated mintetm while a 
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circled implicant is the most isolated implicant. Suppose we 
have chosen two implicants and the working set arrives at the 
configuration of Figure 4. The minterm 1 Oxlo 2x22 is selected 
since it has the smallest CF. There are four implicants cover 
the minterm 1 ox102x22 and their N R C  values are listed in 
Table 2. The implicant 1 Oxl' '22' is chosen since it has the 
smallest N R C .  Having updated the working set and having 
added 1 Oxll 'xZ2 to the solution set we have the new map 
in Figure 5. 

The final minimized result, g, is expressed as: 

g = 2 lxI2 OxZ3 + 1 lx12 3 ~ 2 3  + 1 Ozl1 lxZ2 -t- 3 Ox13 lxZ1 

x x o  1 2  3 

0 

1 mi 
2 

3 4. 4. 

Figure 4: Map for Example 4; Step 3 of Table 3 

Table 2: The N R C  values for Q = 1 Oxlo '22' 

xxo 1 2  3 

I I 1 

Figure 5: Map for Example 4; Step 4 of Table 3 

I Step ] Minimum ] Minterm Q I Minimum I Candidate I 

Table 3: Steps of ND algorithm 

4 Performance Results 
We have run sample functions against three algorithms 

using VAX 11/785 and IS1 workstations. We randomly gen- 
erated a large set of functions (37,000) and applied each al- 

gorithm to minimize the functions similar to Tirumalai and 
Butler [lo], and Yurchak and Butler [12]. We investigated 
three algorithms: (1) Pomper and Armstrong [8], (2) Dueck 
and Miller [4, 5, 121, and (3) Neighborhood Decoupling un- 
der various settings. The three settings are (1) 2-variable 
4-valued with 3 to 16 input product terms, (2) 2-variable 5- 
valued with 3 to 25 input product terms, and (3) 3-variable 
4-valued with 3 to 30 input product terms. In Table 4, we 
ran 1000 functions for each given number of input product 
terms, i.e., Table 4 is produced by running 14,000 testing 
functions. In Table 5 and 6 we ran 500 for each given num- 
ber of input product terms, i.e., each Table takes 11,500 and 
14,000 functions respectively to run. 
4.1 Output Product Terms 
For each setting, we compute the average number of output 
product terms (see Table 4, 5, 6). For example, in Table 4, 
we can see that for functions with 7 input product terms, 
on the average of 1000, these algorithms will minimize it 
to 4.203, 4.0, and 3.957 product terms (implicants) respec- 
tively. For all the cases, Neighborhood Decoupling algorithm 
outperforms the other two algorithms. 

We plot the testing results in Tables 4, 5, and 6 in Fig- 
ures 6, 7, and 8. In these bell-shaped figures we can see two 
important features: the neighborhood decoupling algorithm 
outperforms the other two algorithms and when the num- 
ber of the input product terms reaches a certain point the 
number of output implicants decreases. This is due to the 
fact that the more the input product terms in a function the 
higher the tendency of generating truncated minterms. In 
most cases, a single implicant can cover a cluster of trun- 
cated minterms. 

Number of 
Input Terms 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Pomper and 
Armstrong 

2.838 
3.483 
3.916 
4.178 
4.203 
4.201 
4.072 
3.913 
3.71 7 
3.573 
3.362 
3.178 
2.991 
2.759 

Dueck and 
Miller 
2.715 
3.280 
3.690 
3.952 
4.000 
3.982 
3.915 
3.749 
3.563 
3.432 
3.249 
3.077 
2.903 
2.691 

Neighborhood 1 
Decoupling 

2.692 
3.262 
3.665 
3.925 
3.957 
3.949 
3.875 
3.711 
3.526 
3.396 
3.213 
3.044 
2.881 
2.666 

Table 4: Two-Variable Four-Valued Average Output Prod- 
uct Terms 

4.2 Performance Ratios 
We can take another measure, the performance ratio, to 
demonstrate the performance of each algorithm. First, for 
each algorithm, we count the number of functions for which 
that specific algorithm is the "best" of the three, i.e., the 
number of instances where that specific algorithm uses the 
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Number of 
Input Terms 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

best 

Pomper and 
Armst rong 

3.098 
3.966 
4.652 
5.298 
5.580 
5.774 
5.820 
5.788 
5.772 
5.602 
5.488 
5.264 
5.088 
4.784 
4.660 
4.328 
4.174 
4.022 
3.648 
3.430 
3.204 
3.148 
3.080 

62 I 133 1 327 

Dueck and 
Miller 
2.840 
3.626 
4.278 
4.900 
5.200 
5.378 
5.454 
5.450 
5.448 
5.256 
5.186 
4.978 
4.904 
4.558 
4.500 
4.200 
4.048 
3.924 
3.562 
3.394 
3.178 
3.132 
3.048 

Neighborhood 
Decoupling 

2.810 
3.600 
4.234 
4.830 
5.106 
5.256 
5.378 
5.282 
5.298 
5.102 
5.016 
4.844 
4.736 
4.414 
4.332 
4.042 
3.876 
3.760 
3.404 
3.288 
3.054 
3.002 
2.920 

Table 5: Two-Variable Five-Valued Average Output Product 
Terms 

4.4, 1 

g 4 -  

E 3.8 - 
5 3.6 - 
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Figure 6: Two-variable Four-valued average product term 

Number of 
Input Terms 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Pomper and 
Armstrong 

3.026 
4.110 
5.164 
6.124 
7.082 
7.918 
8.646 
9.240 
9.670 
10.028 
10.342 
10.534 
10.844 
10.796 
11.044 
11.002 
10.854 
10.602 
10.478 
10.356 
10.162 
9.978 
9.600 
9.478 
9.210 
9.042 
8.738 
8.538 

Dueck and 
Miller 
2.934 
3.892 
4.822 
5.658 
6.468 
7.178 
7.744 
8.394 
8.822 
9.228 
9.626 
9.906 
10.218 
10.234 
10.442 
10.488 
10.300 
10.122 
10.034 
9.898 
9.822 
9.514 
9.260 
9.122 
8.882 
8.690 
8.490 
8.306 

Neighborhood 
Decoupling 

2.928 
3.916 
4.810 
5.622 
6.456 
7.220 
7.802 
8.332 
8.762 
9.130 
9.524 
9.774 
10.044 
10.032 
10.206 
10.244 
10.000 
9.842 
9.672 
9.558 
9.390 
9.210 
8.934 
8.738 
8.526 
8.350 
8.120 
7.874 

Table 6: Three-Variable Four-Valued Average Output Prod- 
uct Terms 
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Figure 7: Two-variable Five-valued average product term 

1 better equal I 332 1 2059 I 2251 1 
11157 11 157 11157 

total 11551 13349 13735 
ratio 0.8251 0.9535 0.9811 

Table 7: Testing Results of 14000 2-Variable 4-Valued Sam- 
ple Functions 
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Performance Pomper and 
Armstrong 

best 124 
better 657 
equal 7275 
total 8056 
ratio 0.7005 

Table 8: Testing Results of 11500 2-Variable 5-Valued Sam- 
ple Functions 

Dueck and Neighborhood 
Miller Decoupling 

310 1097 
2156 2575 
7275 7275 
9741 10947 

0.8470 0.9519 

better 1414 4173 
equal 4614 4614 4614 
total 6650 9854 11400 
ratio 0.4750 0.7039 0.8143 

Table 9: Testing Results of 14000 3-Variable 4-Valued Sam- 
ple Functions 

minimum number of implicants (output product terms). If 
two algorithms use an equal number of implicants and less 
than the other one, we say they are “better” than the third 
one. When all three algorithms use equal number of impli- 
cants to minimize a function we say they are “equal”. The 
performance ratio is defined as 

II = (Nbes t  + Nbetter + Nequal) f Ntotal 

where Nbest, Nbetter, and Nequal are the number of instances 
that specific algorithm performs “best”, “better”, and “equal” 
respectively. This is the fraction of times when that algo- 
rithm gets as good or better solutions than the other two. 
The total number of functions tested, Ntotal in our case is 
either 11,500 or 14,000. Table 7, 8, and 9 show the perfor- 
mance ratios for each setting. For example, in Table 7, with 
14,000 functions tested, we counted the cases which Neigh- 
borhood Decoupling algorithm performs no worse than the 
others as 13,735. That is, Q N D  = 13735/14000 = 0.9811. 
Table 7, 8, 9 show that the performance is degraded when 
n or r is increased. However, the neighborhood decoupling 
algorithm consistently outperforms the others. 

5 Analvsis and Discussion 

Notice that in the comparisons did not include Bessilich’s 
algorithm and the absolute minimum solutions. We now jus- 
tify the reasons. The current HAMLET does not include the 
Bessilich’s algorithm. In addition, we know that the Dueck 
and Miller is a satisfactory [lo, 121 heuristic that approxi- 
mates well to the absolute minimum solutions. 

One interesting question is: why is the Pomper and Arm- 
strong algorithm a good choice in some cases? We explain 
our observations as follows. Let the 20 indicates the minterm 
optimal solution will pick. Since the optimal solution is not 

unique [lo] the exact 20 may not be unique. We define the hit 
ratio as the probability that the cy is the same as xo. When 
there are only a few sparse minterms the hit ratio is higher 
so that the Pomper and Armstrong algorithm performs well. 

We now explain why the neighborhood decoupling algo- 
rithm is superior both in using less implicants and in run- 
ning faster than other algorithms. Like other algorithms, the 
theoretical computation complexity of the ND-algorithm is 
O ( T ~ ~ )  since the most expensive computation is the algo- 
rithm N (see Section 3.2). This complexity is a direct conse- 
quence of Lemma 4. It may appear that the ND-algorithm 
has complex decision rules and may take longer time to do 
the selection. Neverthless, in numerous testings we found 
that the ND-algorithm, on the average, stops earlier than 
others, i.e., uses less implicants. In other words, the depth 
of the ND-algorithm in the HAMLET recursive computa- 
tions is smaller than others. Therefore, in reality the ND- 
algorithm runs faster than the other two algorithms. This 
time efficiency is because the decision rules employed in the 
ND-algorithm take advantage of the special property of trun- 
cated sum operations. In other words, the input product 
terms have a tendency to produce saturated minterms. In 
the decoupling process (algorithm N), a minterm in SAT 
will always qualify to combine with its neighbors to form an 
implicant. Although the ND-algorithm conceptually is sim- 
ilar to the Dueck and Miller’s algorithm, it uses saturated 
minterms in an effective way and the decoupling computa- 
tion (NRC) is more finely tuned. For example, when we 

update (deduct) saturated minterm from the expression, the 
minterm will be updated to a “don’t care minterm” (see 
Section 3). As in binary logic minimization, a “don’t care 
minterm” [7] can simplify the minimization process. 

Recall that, in the algorithm N, we compute the NRC 
values for a given minterm cy by examing the relationships of 
I ,  and its immediate neighbors, i.e., one step look-ahead. It 
is natural to believe that with more steps of look-ahead we 
might make a better choice of the implicant and therefore 
provide a better solution. The exponential growth of the 
number of possible implicants restricts the practical use of 
k-lookahead for IC # 1. 

6 Conclusion 
The truncated sum MVL logic minimization can be done 

by the neighborhood decoupling algorithm which selects the 
most isolated minterms as well as implicants. Truncated 
sum operations may produce saturated minterms by its def- 
inition. In the development of the ND-algorithm we reduce 
a saturated minterm to a don’t care minterm in the mini- 
mization process and use the don’t care as much as we can. 
The ND-algorithm outperforms most heuristic methods and 
does not lose its run time efficiency because the algorithm 
finds the solution and stops earlier than others. 
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