
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2002-08-06

A neighborhood decoupling algorithm for
truncated sum minimization

Yang, Chyan; Wang, Yao-Ming
IEEE

Yang, Chyan, and Y-M. Wang. "A neighborhood decoupling algorithm for truncated
sum minimization." Proceedings of the Twentieth International Symposium on
Multiple-Valued Logic. IEEE, 1990.
http://hdl.handle.net/10945/61409

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

A Neighborhood Decoupling Algorithm for Truncated Sum Minimization*

Chyan Yang
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, California, 93943-5004

yang (P cs.nps.navy.mil408-646-2266

Abstract

There has been considerable interest in heuristic
method for minimizing multiple-valued logic func-
tions because exact methods are intractable. This
paper describes a new heuristic, called the neigh-
borhood decoupling (ND) algorithm. It first selects
a minterm and then selects an implicant, a two step
process employed in previous heuristics, e.g., Besslich
[2] and Dueck and Miller [4]. The approach taken
here more closely resembles the Dueck and Miller
heuristic; however, it makes more efficient use of
minterms truncated to the highest logic value. The
ND-algorithm was developed in conjunction with HAM-
LET [12], a computer software created at the Naval
Postgraduate School for the purpose of designing
heuristics for multiple-valued logic minimization. In
this paper, we present the algorithm, discuss the
implementation, show that it performs consistently
better than others and explain the reason for its im-
proved performance.

1 Introduction
The minimization of MVL programmable logic arrays

(PLA) is an important and interesting problem. Several
heuristics have been developed to the multiple valued logic
minimization problems and each claims some advantage in
specific examples but none of them is consistently better
than the others 12, 4, 5, 8, 9, 10, 121. Heuristic methods
are of interest because exact minimization methods are ex-
tremely time-consuming. With the computer software de-
veloped at Naval Postgraduate School called HAMLET [12]
users can easily extend their own heuristics. For example, the
neighborhood decoupling (ND) algorithm is built as one in-
dependent option of HAMLET. This article reexamines the
methods used in HAMLET and reports the new method,
ND-algorithm, which on the average performs better than
others.

Generally speaking, the heuristic approaches in HAM-
LET can all be classified as ad hoc or greedy algorithms.
We can abstract these algorithms as follows.

‘This research is supported in part by the Naval Research
Laboratory through a Naval Postgraduate School Block Fund-
ing Grant in the fiscal year 1989-1990.

Yao-Ming Wang
Department of Electrical Engineering
Chung-Cheng Institute of Technology

Ta-Hsi, Taoyuan, Taiwan, 33509, R.O.C.

/* .
input: let the M be the set of minterms of an function f;
output: the minimized sum of product, S, of the original
function; . * /

s +- 4.
While (M # 4) do {

{

pick one minterm a from M;
find an implicant I , which covers a;

remove a from M;
s c I , U s;

1
In essence, each algorithm differs from the others in the

manner of picking the minterms (a) and finding the impli-
cants (I,). The Pomper and Armstrong algorithm [8] picks
LY randomly (as long as a is in M) and finds I , randomly (as
long as I , covers a) and searches for the “largest” implicant,
I,, which covers the minterm (a). This is a greedy algorithm
in nature: by choosing the “largest” implicant it hopes that
the chosen implicant includes the maximum number of re-
maining minterms. Dueck and Miller algorithm picks a from
M if the a is the most “isolated” minterm and then finds the
I , which directly covers the a such that the relative break
count is minimum [4,5]. The neighborhood decoupling algo-
rithm is an improvement to the Dueck and Miller algorithm
[4, 5, 9, 111 with revised decision rules for making selections
of minterms and implicants.

We present the definitions that are used in this paper
in Section 2. We then present the neighborhood decoupling
algorithm in Section 3. Section 4 and 5 discuss the per-
formance comparisons of the neighborhood decoupling algo-
rithm.

}

2 Notations and Definitions
We review definitions for the truncated sum operation in

Section 2.1, most of which are defined in previous literature
[4,5, 10, 111. We then present the definitions used in the ND-
algorithm in Section 2.2. Certain definitions in Section 2.2
are variations of those defined by Dueck and Miller (DM) [4].
The variations from DM are the sources of the improvement
which ND-algorithm benefits.
2.1 Truncated Sum

Let X = { 51, x2,, x, } be a set of n input variables where

153

x; takes on values from R = {0,1,, r - 1). An n-variable
r-valued function f is a mapping f : R” -+ R U { r } , where
r is the don’t care value [lo]. The M I N function is defined
as M I N (x 1 , x 2) = x1x2 = min imum(x l , x2)[11]. There are
two definitions of literal in the literature: interval (window
or contiguous) [3, 4, 51 and set (or discrete) [4, 51. Although
the interval version is a special case of the set version, we use
the literal version since there is a physical realization of the
interval literal defined [3, 61. The interval literal of a variable
x is defined [3] as:

r - 1 i f a s x l b
0 otherwise.

From now on the term “literal” will mean interval literal.
The truncated sum (TSUM) operation [3] is

T S U M (x 1 , x 2) = xi + x2 = minimum(xl plus 1 2 , r - 1)

Note that the notation ’+’ is the addition truncated to the
highest logic value (r - 1) while plus denotes normal addi-
tion. Other than the truncation the TSUM operation is the
same as normal addition and TSUM obeys the associative
and commutative rules. If R = {0,1,2,3} then examples of
TSUM are TSUM(1,S) = 3 and TSUM(2, 2) = 3. The use
of TSUM in this paper is inspired by the fact that the CCD
implementation supports TSUM naturally [3,6].

Example 1: For example, ‘ x ; is a literal and takes value of
3 in a 4-valued function but the function 2 ‘x? takes a value
of 2 due to the definition of M I N . Similarily, the product
term 2 ’x; ‘ x i takes a value of 2. The constant or coefficient
c, in a product term effectively scale the term. 0

A product term p is the M I N of one nonzero constant
c E R, and one or more literal functions. In general, a
product term is defined as:

. . . .
p c ‘lx131 a2x232 . . ,

For each variable xi we say the window size of the literal ikx;3k
is jk - ik + 1. w e use the terms product term and implicant
interchangeably in this article. A minterm cy is of the form

alxai az x2 az a((x3 a3 . . .anx2 where a, E R and constant c E

R- { 0 }. We say the coordinate of cy is < ai, u2,. . .an > .
We denote the value of minterm cy, g(cy), as the nonzero
constant c. Obviously, the window size of each variable of
a minterm cy is 1. If the product term is defined as above,
the value of product term is g(p) = c. Given two product
terms pi , pz with values c1, c2 respectively we say the value of
TSUM(p1,pz) is equal to TSUM(c l , c2) . A sum-of-products
expression is P I +PZ +. . . + p ~ for some integer N, where pi is
a product term. A product term p = c ilx,jl i z X 7 3 2 . . . rnxnjn

MS,, , we say pl covers larger area than p2. Given a minterm
cy generated from the original function to be minimized if
g(cy) = r - 1 then cy is a saturated minterm. Let SAT
be the set of all saturated minterms. We mark a saturated
minterm with a dot in our figures. Given a function f, the
set of minterms generated from its product terms is denoted
by MS,. If more than one product term in f generates the
same minterm then that minterm appears in M S f only once.
We can express the value of f by representing values of M S j
as illustrated in the example below.

Example 2: If the input function f to be minimized is
expressed as follows,

3 ox; t 2 ix:ox; t 3 1.; zx; $2 z X ; z2;+1 z Z ; 3 2 ; + 1 ~ x ; 2 r ; ,

the M S , can be represented as 11 minterms in Figure 1.

Observation 1 Given a minterm cy the maximum number
of implicants that covers cy is O(rZn).

Proof: Consider a variable (axis) x; of a. Any implicant
(I a) that covers cy may have window size w such that 1 5
w 5 r. With a window size w we may have w implicants
that covers cy. In the worst case, the minterm cy is at the
middle point of an axis, i.e., rr/2]. Consider the window
bounded by [i ‘1 with i 5 and j 2 f for a given axis, we
have S x 5 = possible implicants that cover cy. Over the
entire n-dimensional space, we have ($)” = O(r”) [l] 0.

,4

2.2 Definitions Used in ND-algorithm
Let cy and /3 are minterms with coordinates < a l , a2,. . .a,, >
and < bl, b2, . . . b, > respectively. If for all i we have a; = b;
except one position j such that laj - bjl = 1 we say that
cy and p are direct neighbors. Given a minterm cy, we use
N (a) to denote the set of its direct neighbors. To emphasize
the requirement of laj - bjl = 1 the ND-algorithm uses the
term direct neighbor. Two minterms cy and p are directional
neighbors in the direction xj if for one j E [l, 721, aj # bj and
a; = b; for all other i E [l ,n] (i # j). When bj > aj we say
that /3 is in the positive direction of cy while when bj < aj

we say that /3 is in the negative direction of cy. Therefore, if
p is a direct neighbor of cy then p is a directional neighbor
of cy in the direction of 2; for some i E [l,n]. The maximum
number of direct neighbors of a given minterm is 2n, where
n is the number of variables.

The connected minterms to be defined is similar to the
expandable adjacency in Dueck’s thesis [6, p.501. It is defined
recursively and includes SAT and don’t cares. This defini-
tion is important and reflects the transitive property of the
“connected” relationship. It is interesting to note that the
recursive definition of two connected minterms is not com-
mutative. Given a minterm cy and a minterm p, then we say
p is a connected minterm of cy, if

. -

consists of n;=,(jk - ik + 1) minterms each with value c.
We say p generates or covers those minterms. Given a

product term p, the set of minterms generated from p is
denoted by MS,. In other words, a minterm cy is “covered”
by an iinplicant iff ak E [i k r j k] , ikjjk E R ; for all 1 5 k 5 n.
If the number of elements in MS,, is greater than that in

(1) p is a direct neighbor of cy and either g(p) 5
g (a) or cy is don’t care.

(2) p is a directional neighbor of cy on a direction
xi and its direct neighbor is connected to a
and either g (p) 5 g(cy) or cy is don’t care. 0

154

Notice that in the condition g (p) 5 g(cy) it is possible
that cy E S A T . The connected minterm count of minterm
cy, CMC,, is the number of minterms that are connected to
minterm cy. The expandable directional count of minterm cy,

EDC,, is the number of directions in which cy has connected
minterms. Because for each xi have 2 directions (positive and
negative) we observe that 0 5 EDC, 5 2n. The EDC, is
similar to the idea of DM’s DEA,, the number of directions
of expandable adjacency of cy but they are not the same,
since, in the EDC, the positive and negative directions are
treated as distinct. Besides, the interpretation of expandable
and connected are not the same. Note also, the extendible
minterm (see [5], p.122) is defined differently from connected
minterms.

The clustering factor relative to a minterm cy is defined
as CF, = EDC,(r - 1) + CMC,. This is a measure of
the weight of all connected minterms relative to cy. The
(r - 1) factor is the range, or maximum possible number of
minterms, in a direction 2;. The weight of (r - 1) on the
EDC emphasizes the importance of the directions similar to
DCM” [5]. Conceptually, the clustering factor is the inverse
of the isolation factor [4, 51 but its value is not the inverse
of the isolation factor in most cases because of the different
interpretation of each term.

x x o 1 2 3

Minterm
CF

Minterm
CF

Figure 1: Map for Example 2, 3, 4; Step 1 of Table 3
Example 3: In Figure 1 the minterm 2 ’x1’ ‘xZ2 (the minterm
with * sign) has no connected minterms nor expandable di-
rectional neighbors, i.e., its C M C and EDC values are 0.
However, in Figure 2 the minterm cy = 3 Ox: ‘xi is one of the
eight minterms and C M C , = 4, EDC, = 2. The clustering
factors of all minterms in Figure 2 is listed in Table 1. 0

3 O z l 0 ‘zz’ 1 ‘zll ‘z2’ 1 2x12 ‘zz1 3 3z13 lzzl
10 14 9 6

1 Ozl0 ‘z2’ 1 lzll ’ ~ 2 ~ 1 lzl l 3z23 1 2z12 3z23
4 12 9 4

I I I 1

1 1 3.+ 1. ++ 1. t+ 3. I

Table 1: C F s for all minterms in Figure 2

3 The ND-Algorithm
As stated in Section 1, the neighborhood decoupling algo-

rithm is an improvement to the Dueck and Miller’s method.
First, the most isolated minterm is chosen using the algo-
rithm M described below. The most isolated minterms in
general are different from Dueck and Miller’s (DM) method
due to different decision rules. In the DM-algorithm, an
“isolated” minterm is selected as follows: starting from the
minimum value, for each minterm search for expandable ad-
jacency minterms and isolation factors (see [6], p.54, step 1,
2, 3.) The minterm with the maximum isolation factor is se-
lected. In the ND-algorithm, however, it does not start from
the minterm with minimum value. Instead, for each minterm
it looks for its “connected minterms” (differs from adjacency
as described in Section 2) and clustering factor (differs from
the inverse of isolation factor, see Section 2.) The minterm
with the smallest clustering factor is selected. If there is a
tie, the ND-algorithm will select the minterm that is evalu-
ated last (the ND-algorithm varies the Xi before X j when
i < j .) In the DM-algorithm, ties are broken arbitrarily
(see [GI, p.54.) For example, in Figure 3, the ND-algorithm
selects 2 3x132z22 as most isolated minterm. However, the
DM-algorithm will not select this since it starts from the
minterm with the smallest value (1).

Second, from all implicants which cover the most isolated
minterm we choose the one that is not strongly “coupled”
with its neighbors. This decoupling process is based on ob-
servations that if we choose that specific implicant then we
may minimize the negative impact for future minterm selec-
tions as well as implicant selections. We will explain this idea
further in Section 3.2. In the algorithm below, f denotes the
function to be minimized.
{ /** The ND-Algorithm; SS = Solution Set **/
ss +- 4;
W S = M S f = {ala is generated by the function f;

While W S # 4 do {
1. Use algorithm M (see Section 3.1) to select a minterm
cy from the W S .
2. Use algorithm N (see Section 3.2) to select an
implicant I , that covers cy; SS t SS U Io.

if cy E SAT then mark its coordinate }.

3. Vp E I , do {
compute s(P) + d P) - s(a).
if ,6’ is originally marked and g (p) = 0 then

4. Update W S . } /* end While */
s(P) + 7.. 1

}

Figure 2: Map for Example 3, 4; Step 2 of Table 3

155

x 1
x 2 0 1 2 3

I I

Figure 3: 2 3 ~ 1 3 2 ~ 2 2 is the most isolated minterm in ND

3.1 Algorithm M: Minterm Selection
We first compute the clustering factors for all minterms and
the clustering factor is computed in the order of coordinates
(xi). For example, the minterm 2 ‘x: ‘xi is evaluated earlier
than the minterm 2 ‘x:’x;. The algorithm M is simply
described as follows.

1. Vak E W S compute the corresponding CF,,
2. select the minterm a that has the smallest

clustering factor. If there is a tie, the last one
gets evaluated is chosen.

3.2 Algorithm N: ImDlicant Selection
The purpose of algorithm N is to choose the most “isolated”
implicant (I,) and update the working set WS. It computes
the neighborhood relative count (N R C) for all implicants
that cover the minterm a. The implicant with the small-
est N R C is chosen. The N R C is a measure of the cou-
pling strength of an implicant with its neighbors. To select
an implicant is equivalent to breaking the coupling between
that implicant with its neighbors. The candidate implicant
should have the smallest coupling strength with its neigh-
bors. Therefore, we choose the most “isolated” implicant,
i.e., lowest NRC. If there is a tie in selecting the I,, we choose
the one which covers the largest area. If a tie still exist, i.e.,
two or more implicants of same size cover the a then we
select the last one get examined (evaluated) in HAMLET
[12]. Note that, the NRC defined here is similar to RBC
(relative break count) [4] or BCR (break count reduction)
[5] but is different in three ways: (1) in addition to +1 and
-1 counting, the ND-algorithm uses $2 and -2 weightings
for penalty ($2) or incentive (-2), i.e., an idea of Besslich
[2] is incorporated; (2) in DCM” the order of BCR evalu-
ation is based on the index of a variable (XI varies before
X,) but the ND-algorithm evaluates the NRC in the order
of the implicant sizes, (3) instead of choosing the minimum
RBC [4] or maximum BRC [5] (the DCM” often has ties [5,
p.1341 and the ties are broken by choosing the last implicant
that is evaluated) the ND-algorithm selects the implicant
with the smallest NRC that covers the largest area. With a

refined weighting scheme there are fewer ties with the ND-
algorithm. Our experiences indicate that the performance of
the ND-algorithm is very sensitive to the weighting factors.

We now explain how we compute the N R C for a given im-
plicant. We first initialize the N R C to zero. We then check
all neighboring minterms of the implicant and increment or
decrement its N R C by the following rules: if the coupling
strength between covered and uncovered area is weak (good
for further decoupling) we decrement N R C , otherwise incre-
ment N R C .

/* Algorithm N .

a: the chosen minterm from algorithm M;
M: the set of minterms which was covered (gen-

N (P) : the set of direct neighbors of minterm P.
erated) by the chosen implicant (Ia).

/ . *
{ N R C t 0;
VP E M and /3 # a do {

VP E M and Vy E N (P) do {
if(g(P) - g(a) I 0) then N R C e N R C - 1; }

if (y e M and y # 0 and (y
then {

SAT or ,B S A T))

if (s(P) - s(a) > s(7) then {

if (d P) - 9(Q) < d.7)) then {

if (y E SAT) then N R C t N R C - 1;
else N R C t N R C + 2;)

if (g (P) = g(y)) then N R C + N R C + 2;
if (y E SAT and g(y) - g (P) < 0) then

N R C t N R C + 2;
else {
if (d P) > g (a) and g(P) # d y)) then

if(p E S A T) then N R C t N R C - 1;
else N R C t N R C t 2 ;

} /* end else */
} /* end if */

if (g (P) - g (a) = g(y) and y SAT) then
N R C t N R C - 1;

} /* end then */
} /* end do */

If (M = { a } and N R C = 0) then N R C +- 1;
}

Example 4: It is instructive to consider an example of the
steps of the ND-algorithm by using the function f shown
in Example 2 (two-variable four-valued). The working set,
W S , is initialized to M S f and is represented in Figure 1. The
clustering factors of all minterms in W S are calculated (see
example 3 for computation). The smallest C F comes from
minterm 2 ’x; *x; and therefore algorithm M will select a =
2 ’x: ‘x;. We compute the NRCr for each implicant I which
covers a using algorithm N. Since implicant 2 ‘z: ‘xi has the
smallest N R C (-3) we select it as the first implicant to be in
the solution set (SS). Table 3, together with Figures 2, 4, 5
show the steps of choosing successive implicants. The * sign
in each Figure indicates the most isolated mintetm while a

156

circled implicant is the most isolated implicant. Suppose we
have chosen two implicants and the working set arrives at the
configuration of Figure 4. The minterm 1 Oxlo 2x22 is selected
since it has the smallest CF. There are four implicants cover
the minterm 1 ox102x22 and their N R C values are listed in
Table 2. The implicant 1 Oxl' '22' is chosen since it has the
smallest N R C . Having updated the working set and having
added 1 Oxll 'xZ2 to the solution set we have the new map
in Figure 5.

The final minimized result, g, is expressed as:

g = 2 lxI2 OxZ3 + 1 lx12 3 ~ 2 3 + 1 Ozl1 lxZ2 -t- 3 Ox13 lxZ1

x x o 1 2 3

0

1 mi
2

3 4. 4.

Figure 4: Map for Example 4; Step 3 of Table 3

Table 2: The N R C values for Q = 1 Oxlo '22'

xxo 1 2 3

I I 1

Figure 5: Map for Example 4; Step 4 of Table 3

I Step] Minimum] Minterm Q I Minimum I Candidate I

Table 3: Steps of ND algorithm

4 Performance Results
We have run sample functions against three algorithms

using VAX 11/785 and IS1 workstations. We randomly gen-
erated a large set of functions (37,000) and applied each al-

gorithm to minimize the functions similar to Tirumalai and
Butler [lo], and Yurchak and Butler [12]. We investigated
three algorithms: (1) Pomper and Armstrong [8], (2) Dueck
and Miller [4, 5, 121, and (3) Neighborhood Decoupling un-
der various settings. The three settings are (1) 2-variable
4-valued with 3 to 16 input product terms, (2) 2-variable 5-
valued with 3 to 25 input product terms, and (3) 3-variable
4-valued with 3 to 30 input product terms. In Table 4, we
ran 1000 functions for each given number of input product
terms, i.e., Table 4 is produced by running 14,000 testing
functions. In Table 5 and 6 we ran 500 for each given num-
ber of input product terms, i.e., each Table takes 11,500 and
14,000 functions respectively to run.
4.1 Output Product Terms
For each setting, we compute the average number of output
product terms (see Table 4, 5, 6). For example, in Table 4,
we can see that for functions with 7 input product terms,
on the average of 1000, these algorithms will minimize it
to 4.203, 4.0, and 3.957 product terms (implicants) respec-
tively. For all the cases, Neighborhood Decoupling algorithm
outperforms the other two algorithms.

We plot the testing results in Tables 4, 5, and 6 in Fig-
ures 6, 7, and 8. In these bell-shaped figures we can see two
important features: the neighborhood decoupling algorithm
outperforms the other two algorithms and when the num-
ber of the input product terms reaches a certain point the
number of output implicants decreases. This is due to the
fact that the more the input product terms in a function the
higher the tendency of generating truncated minterms. In
most cases, a single implicant can cover a cluster of trun-
cated minterms.

Number of
Input Terms

3
4
5
6
7
8
9
10
11
12
13
14
15
16

Pomper and
Armstrong

2.838
3.483
3.916
4.178
4.203
4.201
4.072
3.913
3.71 7
3.573
3.362
3.178
2.991
2.759

Dueck and
Miller
2.715
3.280
3.690
3.952
4.000
3.982
3.915
3.749
3.563
3.432
3.249
3.077
2.903
2.691

Neighborhood 1
Decoupling

2.692
3.262
3.665
3.925
3.957
3.949
3.875
3.711
3.526
3.396
3.213
3.044
2.881
2.666

Table 4: Two-Variable Four-Valued Average Output Prod-
uct Terms

4.2 Performance Ratios
We can take another measure, the performance ratio, to
demonstrate the performance of each algorithm. First, for
each algorithm, we count the number of functions for which
that specific algorithm is the "best" of the three, i.e., the
number of instances where that specific algorithm uses the

157

Number of
Input Terms

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

best

Pomper and
Armst rong

3.098
3.966
4.652
5.298
5.580
5.774
5.820
5.788
5.772
5.602
5.488
5.264
5.088
4.784
4.660
4.328
4.174
4.022
3.648
3.430
3.204
3.148
3.080

62 I 133 1 327

Dueck and
Miller
2.840
3.626
4.278
4.900
5.200
5.378
5.454
5.450
5.448
5.256
5.186
4.978
4.904
4.558
4.500
4.200
4.048
3.924
3.562
3.394
3.178
3.132
3.048

Neighborhood
Decoupling

2.810
3.600
4.234
4.830
5.106
5.256
5.378
5.282
5.298
5.102
5.016
4.844
4.736
4.414
4.332
4.042
3.876
3.760
3.404
3.288
3.054
3.002
2.920

Table 5: Two-Variable Five-Valued Average Output Product
Terms

4.4, 1

g 4 -

E 3.8 -
5 3.6 -

3.4 -
8 3.2 -
U 3 -
P
hp $ 2 8 -

Pompcr & Armstrong _..._.._
Due& & Miller -
Neighborhood LkwupLng - i

264 4 6 8 10 12 14 16

Number of Input Product Terms

Figure 6: Two-variable Four-valued average product term

Number of
Input Terms

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Pomper and
Armstrong

3.026
4.110
5.164
6.124
7.082
7.918
8.646
9.240
9.670
10.028
10.342
10.534
10.844
10.796
11.044
11.002
10.854
10.602
10.478
10.356
10.162
9.978
9.600
9.478
9.210
9.042
8.738
8.538

Dueck and
Miller
2.934
3.892
4.822
5.658
6.468
7.178
7.744
8.394
8.822
9.228
9.626
9.906
10.218
10.234
10.442
10.488
10.300
10.122
10.034
9.898
9.822
9.514
9.260
9.122
8.882
8.690
8.490
8.306

Neighborhood
Decoupling

2.928
3.916
4.810
5.622
6.456
7.220
7.802
8.332
8.762
9.130
9.524
9.774
10.044
10.032
10.206
10.244
10.000
9.842
9.672
9.558
9.390
9.210
8.934
8.738
8.526
8.350
8.120
7.874

Table 6: Three-Variable Four-Valued Average Output Prod-
uct Terms

11

Due& & h4iUcr -
Neighborhod Lkcoupling -

2o i l o li io ;s io 35 i o 45

Numkr of Input Product T c m

Figure 8: Three-variable Four-valued average product term

I Performance 1 Pomper and I Dueck and I Neighborhood I

Pompcr & Armstrong __
Dueck & Miller __

Neighborhood Dewuphg -
I

5 10 15 20 25

Number of Input Product Terms

Figure 7: Two-variable Five-valued average product term

1 better equal I 332 1 2059 I 2251 1
11157 11 157 11157

total 11551 13349 13735
ratio 0.8251 0.9535 0.9811

Table 7: Testing Results of 14000 2-Variable 4-Valued Sam-
ple Functions

158

Performance Pomper and
Armstrong

best 124
better 657
equal 7275
total 8056
ratio 0.7005

Table 8: Testing Results of 11500 2-Variable 5-Valued Sam-
ple Functions

Dueck and Neighborhood
Miller Decoupling

310 1097
2156 2575
7275 7275
9741 10947

0.8470 0.9519

better 1414 4173
equal 4614 4614 4614
total 6650 9854 11400
ratio 0.4750 0.7039 0.8143

Table 9: Testing Results of 14000 3-Variable 4-Valued Sam-
ple Functions

minimum number of implicants (output product terms). If
two algorithms use an equal number of implicants and less
than the other one, we say they are “better” than the third
one. When all three algorithms use equal number of impli-
cants to minimize a function we say they are “equal”. The
performance ratio is defined as

II = (Nbes t + Nbetter + Nequal) f Ntotal

where Nbest, Nbetter, and Nequal are the number of instances
that specific algorithm performs “best”, “better”, and “equal”
respectively. This is the fraction of times when that algo-
rithm gets as good or better solutions than the other two.
The total number of functions tested, Ntotal in our case is
either 11,500 or 14,000. Table 7, 8, and 9 show the perfor-
mance ratios for each setting. For example, in Table 7, with
14,000 functions tested, we counted the cases which Neigh-
borhood Decoupling algorithm performs no worse than the
others as 13,735. That is, Q N D = 13735/14000 = 0.9811.
Table 7, 8, 9 show that the performance is degraded when
n or r is increased. However, the neighborhood decoupling
algorithm consistently outperforms the others.

5 Analvsis and Discussion

Notice that in the comparisons did not include Bessilich’s
algorithm and the absolute minimum solutions. We now jus-
tify the reasons. The current HAMLET does not include the
Bessilich’s algorithm. In addition, we know that the Dueck
and Miller is a satisfactory [lo, 121 heuristic that approxi-
mates well to the absolute minimum solutions.

One interesting question is: why is the Pomper and Arm-
strong algorithm a good choice in some cases? We explain
our observations as follows. Let the 20 indicates the minterm
optimal solution will pick. Since the optimal solution is not

unique [lo] the exact 20 may not be unique. We define the hit
ratio as the probability that the cy is the same as xo. When
there are only a few sparse minterms the hit ratio is higher
so that the Pomper and Armstrong algorithm performs well.

We now explain why the neighborhood decoupling algo-
rithm is superior both in using less implicants and in run-
ning faster than other algorithms. Like other algorithms, the
theoretical computation complexity of the ND-algorithm is
O (T ~ ~) since the most expensive computation is the algo-
rithm N (see Section 3.2). This complexity is a direct conse-
quence of Lemma 4. It may appear that the ND-algorithm
has complex decision rules and may take longer time to do
the selection. Neverthless, in numerous testings we found
that the ND-algorithm, on the average, stops earlier than
others, i.e., uses less implicants. In other words, the depth
of the ND-algorithm in the HAMLET recursive computa-
tions is smaller than others. Therefore, in reality the ND-
algorithm runs faster than the other two algorithms. This
time efficiency is because the decision rules employed in the
ND-algorithm take advantage of the special property of trun-
cated sum operations. In other words, the input product
terms have a tendency to produce saturated minterms. In
the decoupling process (algorithm N), a minterm in SAT
will always qualify to combine with its neighbors to form an
implicant. Although the ND-algorithm conceptually is sim-
ilar to the Dueck and Miller’s algorithm, it uses saturated
minterms in an effective way and the decoupling computa-
tion (NRC) is more finely tuned. For example, when we

update (deduct) saturated minterm from the expression, the
minterm will be updated to a “don’t care minterm” (see
Section 3). As in binary logic minimization, a “don’t care
minterm” [7] can simplify the minimization process.

Recall that, in the algorithm N, we compute the NRC
values for a given minterm cy by examing the relationships of
I , and its immediate neighbors, i.e., one step look-ahead. It
is natural to believe that with more steps of look-ahead we
might make a better choice of the implicant and therefore
provide a better solution. The exponential growth of the
number of possible implicants restricts the practical use of
k-lookahead for IC # 1.

6 Conclusion
The truncated sum MVL logic minimization can be done

by the neighborhood decoupling algorithm which selects the
most isolated minterms as well as implicants. Truncated
sum operations may produce saturated minterms by its def-
inition. In the development of the ND-algorithm we reduce
a saturated minterm to a don’t care minterm in the mini-
mization process and use the don’t care as much as we can.
The ND-algorithm outperforms most heuristic methods and
does not lose its run time efficiency because the algorithm
finds the solution and stops earlier than others.

159

Acknowledgment 12. J. Yurchak and J. T. Butler, “HAMLET - An EX-
pression Compiler/Optimizer for the Implementation
of Heuristics to Minimize Multiple-valued Programmable

HAMLET 1121 by Yurchak and Butler. Jon Butler intro- Logic Arrays”, Proc. of 20th Intl. Symp. on MVL
1990.

helped the authors in revising the paper. Our program de-
velopment is based on HAMLET’S C program and we add
our algorithm as one independent option of the HAMLET’S
program. The program structure is discussed in [12]. Con-
structive suggestions of all referees are incorporated and au-
thors are indebted to these referees for their efforts in making
the paper more readable.

This work has benefited immensely from the work of

duced the authors to the challenging world of the MVL and

References
1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The De-

sign and Analysis of Computer Algorithms, Reading,
Mass., Addison-Wesley, 1974.

2. P. W. Besslich, “Heuristic minimization of MVL func-
tions: a direct cover approach,” IEEE Trans. Comp.,
Vol C-35, Feb. 1986, pp.134-144.

3. J. Butler and H. G. Kerkhoff, “Multiple-Valued CCD
Circuits”, IEEE Computer, April, 1988, pp. 58-69.

4. G. W. Dueck and D. M. Miller, “A direct cover MVL
minimization using the truncated sum” Proc. of 17th
Intl. Symp. on MVL 1987.

5. G. W. Dueck, “Algorithms for The Minimization of
Binary and Multiple-valued Logic Functions”, Ph. D.
Dissertation, Department of Computer Science, Uni-
versity of Manitoba, Winnipeg, MB, 1988.

6. H. G. Kerkhoff, “Theory and design of multiple-valued
logic CCD’s,” in Computer Science and Multiple-valued
Logic (ed. D. C. Rine), North Holland, New York,
1984, pp. 502-537.

7. E. J. McCluskey, Logic Design Principles, Englewood
Cliffs, NJ, Prentice-Hall, 1986.

8. G. Pomper and J. A. Armstrong, “Representation of
multivalued functions using the direct cover method,”
IEEE Trans. Comp. Sept. 1981, pp. 674-679

9. V. T. Rhyne, P. S. Noe, M. H. Mckinney, and U. W.
Pooch, “A new technique for the fast minimization
of switching functions”, IEEE Trans. Comp., August
1977, pp. 757 - 764.

10. P. Tirumalai and J. T. Butler, “Analysis of Minimiza-
tion Algorithms for Multiple-valued PLA”, Proc. of
18th Intl. Symp. on MVL 1988, pp. 226-236.

11. P. Tirumalai and J. T. Butler, “Prime and Non-Prime
Implicants in the Minimization of Multiple-valued Logic
Functions”, Proc. of 19th Intl. Symp. on MVL 1989,
pp, 272-279.

160

