
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2018-03

House Rules: Designing the Scoring Algorithm
for Cyber Grand Challenge

Price, Benjamin; Zhivich, Michael; Thompson, Michael;
Eagle, Chris
IEEE

http://hdl.handle.net/10945/57880

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

1540-7993/18/$33.00 © 2018 IEEE Copublished by the IEEE Computer and Reliability Societies March/April 2018 23

HACKING WITHOUT HUMANS

House Rules: Designing the Scoring

Algorithm for Cyber Grand Challenge

Benjamin Price and Michael Zhivich | MIT Lincoln Laboratory

Michael Thompson and Chris Eagle | Naval Postgraduate School

The key driving force behind any capture-the-flag competition is the scoring algorithm; the Cyber

Grand Challenge (CGC) was no different. In this article, we describe design considerations for the CGC

events, how these algorithms intended to incentivize competitors, and effects these decisions had on the

resulting gameplay.

S coring algorithms are at the core of any competi-
tion. They define the objective of a game and drive

competitors’ strategies, guiding investments of effort,
affecting resulting gameplay, and last (but not least)
determining who captures the glory and walks away
with the prize. As such, much consideration is given to
design of scoring algorithms by organizers of any com-
petition, and the Cyber Grand Challenge (CGC) was
no different. CGC’s lofty vision was to “engender a new
generation of autonomous cyber defense capabilities
that combine the speed and scale of automation with
reasoning abilities exceeding those of human experts.”1

In particular, CGC challenged competitors with a
highly nontrivial task of “improv[ing] and combin[ing]
semi-automated technologies into an unmanned Cyber
Reasoning System (CRS) that can autonomously rea-
son about novel program flaws, prove the existence of
flaws in networked applications, and formulate effective
defenses.”1

In practice, this meant that a CRS would be pro-
vided a bespoke, known vulnerable, challenge binary
that implemented functionality for a never-before-seen
network application or service. The CRS would then
have to produce a replacement binary that mitigated the

effects of the embedded vulnerability and a proof of vul-
nerability describing an interaction with the vulnerable
binary that would cause it to exhibit undesired behavior
(for example, crash, leak sensitive data, and so on).

The infrastructure team organizing this competi-
tion arguably had an equally daunting task of creating a
sufficiently realistic, yet distinct and protected arena in
which these CRSs would compete in the first fully auto-
mated attack–defense capture-the-flag (CTF) event.
When developing the scoring algorithms that would
guide development of the first crop of automated cyber
reasoning systems, we focused on ensuring the follow-
ing properties of scoring:

■ Fairness. Scoring should not discriminate against a
specific method the team uses to solve the problem.
Note that artifacts that appear in the solution could
be penalized (for example, using too much memory
in a replacement binary), but no specific process of
bug discovery and remediation should be prescribed
or proscribed.

■ Collusion resistance. We wanted to entice competi-
tors to focus on improvements in automated net-
work defense, not analysis and defeat of the scoring

24 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

algorithm. In particular, the scoring algorithm should
disincentivize collusion between participants.

 ■ Real-world relevance. We wanted the results of this
research to produce practical prototypes that could be
readily adopted by the industry, so the scoring algo-
rithm aimed to replicate many of the pressures the real
world places on security solutions.

 ■ Automated evaluation. Because CGC is a machine-scale
competition, it would be impossible to score the
results by hand if only due to the number of submis-
sions. Thus, scoring cannot rely on “expert judgment”
of any kind; all measures required for scoring have to
be automated.

Armed with these principles, we considered many
different options, and settled on two variants of the
same general algorithm—one used for the CGC Quali-
fying Event (CQE), and one used for the CGC Final
Event (CFE); the variant algorithms reflect differences
in the number of participants and mechanics of the
competition between CQE and CFE.

In the rest of the article, we describe the algo-
rithms themselves, the reasons these formulations were
selected, how the algorithms affected gameplay in CQE
and CFE, and general lessons learned that might be
drawn from our experience to help other CTF competi-
tion designers.

Scoring Rubrics: What to Measure?
The first question that comes to mind when creating the
scoring algorithm is: What should we measure? Given
that the CGC competition is about improving the state
of the art in automated network defense, we certainly
need some measure of security provided by the replace-
ment binaries produced by competitors’ CRSs. How-
ever, it is exceedingly easy to provide a binary that has
perfect security—one that does nothing. Therefore, we
also need to measure the availability of service provided
by the replacement binary. Finally, because CGC is a
competition focused on creating cyber reasoning sys-
tems, the scoring algorithm should reward CRSs that
can find a vulnerability in the original binary—we term
this rubric evaluation.

Security
The world would be a saner place if an analytic tech-
nique existed that could examine an application and
provide a complete listing of embedded exploitable vul-
nerabilities; in such a world, we would not need a Cyber
Grand Challenge, and we would not suffer from so
many cyberattacks. Instead, we have to consider secu-
rity as a relative, not absolute metric. Attacks provide a
concrete demonstration of the vulnerability on which
to base measurement.

In CGC, two different entities provided proofs of
vulnerability (PoVs), which represented attacks in our
game environment: challenge binary (CB) authors and
competitors’ cyber reasoning systems. Challenge binary
authors were required to provide a PoV that demon-
strated the exploitability of each vulnerability embedded
in a CGC challenge binary. The CRSs of course would
also discover and prove vulnerabilities in the challenge
binaries that formed the substrate of the competition.

Due to the different provenance of PoVs, two differ-
ent security scores were created: a reference security score
that measured how well a replacement binary defended
against PoVs provided by CB authors, and a consensus
security score that measured how well a replacement
binary defended against PoVs provided by CRSs.

Availability
As mentioned previously, providing a “perfectly secure”
replacement binary would be trivial, if the replacement
were not tested for functionality. Clearly, this would violate
the guideline to encourage solutions that have real-world
applicability, so we needed a way to measure the function-
ality of the replacement service. To accomplish this task, we
relied on CB authors to provide a test case generator that
could automatically create thousands of test cases for the
application they have developed. Each test case included
not only the input to the application under test but also the
logic to decide whether the application’s response was cor-
rect. In effect, the test suite created an automatically check-
able specification of the application behavior. A measure
of functionality was determined by the number of tests
passed by the replacement binary compared to the num-
ber of tests passed by the original application.

However, measuring only functionality does not
fully satisfy the real-world applicability requirement.
In practice, performance of an application or service is
also of great importance, and many security solutions
have not found wide adoption due to their performance
overhead. To measure performance impact, we con-
centrated on three typical performance factors: CPU
execution time, memory usage, and file size. The former
two metrics were computed in aggregate over the execu-
tion of the test cases used as part of the functionality
test, whereas the latter involved a simple comparison of
file sizes between original and replacement binaries.

Evaluation
Finally, because we wanted to reward creation of cyber
reasoning systems, we awarded additional points for
finding vulnerabilities. The most indisputable way to
prove that a vulnerability exists is to provide an input or
interaction with an application that causes the applica-
tion to exhibit some bad behavior (for instance, crashing
or revealing sensitive information). In CGC, this input

www.computer.org/security 25

took a form of an XML-based description (for CQE) or
a full binary that interacted with an application over a
network socket to prove vulnerability (in CFE).

Scoring Algorithm
The scoring algorithm for CQE and CFE shared the
same structure, though different considerations were pri-
oritized when defining each term. The overall algorithm
scored each challenge set individually and summed the
scores over challenge sets (for CQE) and over both
challenge sets and rounds (for CFE). A challenge set
score was defined as a product of the scoring rubrics
described, because we wanted to signal that all parts of
the competition are equally important and excelling at
just one aspect would not be sufficient to win:

Score(RB, PoV) � Avail(RB) � Sec(RB) � Eval(PoV).

The availability term was defined similarly between
CQE and CFE; however, the security and evaluation
terms differed slightly. To explain the different formu-
lations for these score components, let’s discuss each
event separately.

CGC Qualifying Event
CQE was held halfway through the program as a way to
downselect the cyber reasoning systems that would par-
ticipate in the final, completely automated, attack–defense
capture-the-flag competition. Because the event occurred
relatively early in the program, it was not conducted as a
full-scale attack–defense competition, but instead as an
approximation of a single round in the final event. During
this event, the cyber reasoning systems were provided a set
of 131 previously unseen binaries with embedded vulner-
abilities. Some binaries came with a small capture of net-
work traffic that could be used to deduce their intended
functionality. The CRS had 24 hours to analyze the bina-
ries, produce replacements that would mitigate embed-
ded vulnerabilities, and provide PoVs (in CQE, this was
an input that would cause the vulnerable binary to crash
with a segmentation violation or illegal instruction fault).
Each entry was then scored according to the above algo-
rithm (summed over all entries to produce the final CQE
score), where the terms were defined as described below.

Availability.
Avail(RB) � min(Perf(RB), Func(RB))

()

_ _ ()

_ _ _ ()

0.25 _ _ ()

=
×

⎧

⎨
⎪⎪

⎩
⎪
⎪

Perf RB max
mem use overhead RB

cpu exec time overhead RB

file size overhead RB

Func(RB) � (Number of successful tests)/(Number
of tests)

As discussed previously, availability measures the
performance and functionality of the replacement binary
and assigns an availability penalty based on whichever
degradation is worse. To combine effects of file size,
memory usage, and CPU execution time overhead, a
similar approach is taken—the maximum of the three
performance overheads is selected. In addition, both Perf
and Func scores are passed through functions that pro-
vide a “faster-than-linear” decrease in score (see Figure 1a
and Figure 1b, respectively). The idea behind these
curves was to provide better differentiation between
higher-performing teams and ensuring that a smooth
transition is made from maximum availability score
of 1 to minimum of 0. Note that the Perf graph provides a
10 percent “grace factor”—that is, if the performance of
the replacement binary is within 10 percent of the per-
formance of original binary, then no performance pen-
alty is applied. At the other end, a performance overhead
of 100 percent or more results in 0 availability score.

Security.

()

() 0 :

1
1

2
(() ())

:0

=

>

+ × +

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Sec RB

if SecRe f RB

SecRe f RB SecCon RB

otherwise

In CQE, security was evaluated both against the
PoVs provided by CB authors (SecRef for reference) and
CRS-provided PoVs (SecCon for consensus). The for-
mer provided an unbiased measure of whether the CRS
has mitigated exploitability of a bug inserted by a chal-
lenge binary author; at least one PoV in this category
had to be mitigated by the replacement binary in order
for security score to be non-zero. Because other PoVs
for the same bug might exist, the competitor-provided
PoVs were also tested against all replacement binaries
for that challenge set. If a replacement binary mitigated
all competitor PoVs, its SecCon score was set to 1; oth-
erwise, it was 0.

The reasons for this formulation of the security
score derive from the requirement that the scoring
algorithm be collusion resistant. Because CQE was
conducted online and open to a large number of
participants, we were concerned that a team might
register many “sock puppet” teams that would sub-
mit PoVs that the “master” team would know how to
defend, thus artificially inflating its security score
while providing no additional security. Therefore,
we could not give equal weighting to reference PoVs
and consensus PoVs. A detailed description of the
red-teaming exercise that led to this decision can be
found in the CGC FAQ.2

26 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

Evaluation.

Eval PoV Submitted PoV successful
otherwise

=
⎧
⎨
⎩

()
2

1

_ _

The evaluation portion of the score was straightfor-
ward: teams were awarded a 2x multiplier for providing
a successful PoV against a reference challenge binary,
thus increasing that team’s score. Note that providing a
working PoV may also decrease a competitor’s score by
removing their SecCon bonus.

Discussion. Putting all the terms together, we have the
following possible score values:

 ■ Balanced CRS. A CRS that solves the challenge com-
pletely with perfect retention of functionality and

performance (and a successful PoV) would receive a
score of 1 � 2 � 2 � 4.

 ■ Defense-only CRS. A CRS that uses a defense-only
strategy with perfect retention of functionality and
performance would receive a score of 1 � 2 � 1 � 2.

 ■ Offense-only CRS. A CRS that uses an offense-only
strategy would receive a score of 1 � 0 � 2 � 0.

 ■ Do-nothing CRS. A CRS that just returned the original
vulnerable binary would receive a score of 1 � 0 �
1 � 0.

The general idea behind the CQE scoring algorithm
is that the teams that could automatically mitigate PoVs
while maintaining functionality and performance of
an application should receive a high score. If they can
also provide a PoV against the original binary, their
score is increased and their competitors’ consensus
scores might decrease. We wanted to reward finding
vulnerabilities, but not preclude defense-only solutions.
Hence, the evaluation factor will not cause the score to
be 0; however, a purely offense-oriented solution was
deemed insufficient, so a team could not score points
by just providing a PoV, without associated nontrivial
defense in the replacement binary. Thus, we were select-
ing teams with both good defense and good offense to
advance to the finals.

CGC Final Event
CGC Final Event was a completely autonomous
attack–defense CTF among the seven finalist CRSs
determined by total CQE scores. The structure of
CFE differed significantly from CQE—it consisted of
96 rounds during which new challenge binaries could
be introduced into the game or old ones retired. Each
challenge binary fielded by a CRS was evaluated for
functionality and performance, with feedback provided
to the CRS. Each CRS had an opportunity to down-
load replacement binary and network filter submissions
made by other competitors during the previous round
and evaluate them to find any new or remaining vul-
nerabilities. Each CRS could also submit a PoV to be
launched against a specific competitor and receive feed-
back of its success or failure.

There were two different kinds of PoVs in CFE:
Type 1 (controlled crash) and Type 2 (memory dis-
closure), which modeled different attack types. Type 1
PoV required that the vulnerable binary would crash
with specific values of instruction pointer and a
general-purpose register that were prenegotiated with
the game infrastructure—this was a proxy for remote
code execution attack. Type 2 PoV required that an
interaction with the vulnerable binary result in
leaking 4 consecutive bytes from the so-called magic
page that was mapped at a fixed address and contained

Figure 1. Curves illustrating conversions for (a) performance and (b) functionality.

Max (% memory overhead, % exec time overhead)

1009080706050403020100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fu
nc

ti
on

al
it

y
sc

or
e

% tests passed

1101009080706050403020100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C
Q

E
pe

rf
or

m
an

ce
 sc

or
e

(a)

(b)

www.computer.org/security 27

specially crafted pseudorandom data that changed each
time the binary started—this was a proxy for a secret steal-
ing attack. A more detailed description of CFE PoVs can
be found in “Proof of Vulnerability Markup Language.”3

The overall structure of the scoring algorithm
remained the same as in CQE (the scores were now
summed over both challenge sets and rounds to
arrive at the final score); however, several of the terms
required adjustments to capture the new complications
of rounds, consensus evaluation of security, and intro-
duction of network-based defenses.

Availability.

Perf RB

mem use overhead RB
cpu exec time overhead RB

wall time overhead RB
file size overhead RB

=

×

⎧

⎨

⎪
⎪

⎩

⎪
⎪

() max

_ _ ()

_ _ _ ()

_ _ ()

0.25 _ _ ()

The performance portion of the availability term was
slightly adjusted to include a new component of wall-clock
time in addition to existing CPU execution time. This
new component reflected the measurement of slow-
down incurred by using a network-based filter to detect or
respond to attacks; the wall time was measured at the host
performing the functionality test. In addition, the grace
factor was lowered from 10 percent to 5 percent to cor-
respond more directly to existing industry requirements
for readily adoptable security solutions.4

Furthermore, to enable consensus evaluation of
replacement binaries, CFE infrastructure imposed a
one-round delay on running the replacement binary
or associated network filters. This meant that a team
replacing a binary would get an availability score of 0
for the service being replaced in that round, while the
other competitors would get an opportunity to analyze
the binary for new or remaining vulnerabilities. This
dynamic was intended to emulate real-world practices
where downtime is very costly and rarely tolerated.

Security.

()
1

2

_ _ _=
⎧
⎨
⎪

⎩⎪
Sec PoV any competitor PoV successful

otherwise

The security term changed as well. Because we
expected the replacement binaries to change in
response to attacks from other competitors, it no lon-
ger made sense to evaluate security using reference PoVs
provided by CB authors as they were unlikely to work
against the replacement binaries after the first round.
Therefore, this score component reflected a more empir-
ical notion of security: if any competitor successfully

proved vulnerability in the replacement binary, the score
was set to 1; otherwise, it was set to 2.

Evaluation.
Eval(PoV) � 1 � (Number of successful PoVs)/
(Number of competitors – 1)

The evaluation term was modified as well, because
now a CRS could score against up to six competitors in
a single round. Note that a CRS could submit a different
PoV against each competitor to target that competitor’s
replacement binary.

Discussion. It is more difficult to describe possible
scoring values in an adversarial environment because
security and evaluation scores now depend heavily on
the actions of the competitors. For the sake of exam-
ple, let’s suppose there are only two teams in CFE,
where Team A plays a specific strategy and Team B
does nothing. In that case, we have the following pos-
sible score values:

 ■ Balanced CRS. If Team A’s CRS solves the challenge
completely with perfect retention of functionality and
performance (and a successful PoV), it would receive
a score of 1 � 2 � 2 � 4, while Team B would receive
a score of 1 � 1 � 1 � 1.

 ■ Defense-only CRS. If Team A’s CRS uses a defense-only
strategy with perfect retention of functionality and
performance, it would receive a score of 1 � 2 � 1�
2, while Team B would receive a score of 1 � 2 �
1� 2.

 ■ Offense-only CRS. If Team A’s CRS uses an offense-only
strategy, it would receive a score of 1 � 2 � 2 � 4,
while Team B would receive a score of 1 � 1 � 1 � 1.

 ■ Do-nothing CRS. If Team A’s CRS did nothing, it
would receive a score of 1 � 2 � 1 � 2, while Team B
would also receive the same score.

The effect of these changes made CFE scores rather
different from CQE: the security score would no longer
cause a competitor to receive a 0 for a round; in fact,
doing nothing (that is, neither replacing a binary nor
providing PoVs against competitors) guaranteed a score
of 1 if a service was successfully attacked and a score of
2 if no attacks against it were successful. Note that the
dynamics between CRSs become much more impor-
tant in this game—an offense-only strategy works only
if the competitor is not expected to find the PoV in the
network traffic and turn it around to attack its creator,
thus leveling the score.

Competitor Strategies
Given that the intention of the scoring algorithm design
was to encourage finding and understanding bugs (by

28 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

generating PoVs) and automatically patching vulner-
abilities without excessive performance or functionality
degradation, what strategies did they select? Were there
unintended consequences? In this section, we tackle
some of these questions and discuss competitors’ strat-
egies in CQE and CFE.

Wall-Time Effects on Competitor Choices
The use of wall time to assess the performance impact
of a network filter seemed to affect competitor behavior
in at least two ways. First, most competitors avoided the
use of network filters entirely; the few filters that were
deployed were very simple—they terminated sessions
that contained data resembling references to the magic
page in attempts to foil Type 2 PoVs. Post-event inter-
views suggested some teams lacked confidence that
they could estimate the performance impact of fielding
network filters, and chose to forgo this capability in fear
of heavy performance penalties. This finding ran coun-
ter to our expectation of teams trying to offload com-
putation into the network appliance, which motivated
measuring its performance impact in the first place.

The second behavior that was likely prompted by
the use of wall time in the scoring algorithm was the
inclusion of infinite loops by one of the teams in their
PoVs to degrade the performance of their competitors’
services. This team would create PoVs that used remote
code execution to enter a tight infinite loop (equivalent
of while (1) ;) subsequent to scoring (for exam-
ple, by leaking values of the memory page). This con-
sumes defended host CPU resources and increases the
response time of other services on the defended host.
We did not perform analysis to determine if the use
of this “Type 3 PoV” had a measurable impact on the
scores of their competitors. But the fact that at least
two teams managed to significantly degrade the perfor-
mance of their own services by fielding flawed replace-
ment binaries suggests that this strategy has merit.

In CGC, we specifically worked to remove the
ability of competitors to cause denials of service by
flooding hosted services with traffic. Each CRS could
only launch a limited number of PoVs against each
service on each competitor’s defended host. The
Type 3 PoV turned out to be a clever hack to bring
down a competitor’s score in addition to improving
your own; the one downside to this phenomenon
was that availability scores for services unrelated to
the one being exploited could suffer, which made
the process of identifying the culprit for poor perfor-
mance difficult.

Always Be Throwing
The scoring algorithm imposes no penalties on a team
for deploying PoVs against their competitors. Teams

could throw PoVs up to 10 times per round against each
of their competitors’ services; a few teams elected to
throw generic PoVs whenever they lacked a working,
targeted PoV. One team’s generic PoVs simply guessed
at a magic page value at random (on one occasion the
guess was correct!). However, this team’s logic for field-
ing generic PoVs may have been flawed, because on at
least two occasions, their CRS replaced successful tar-
geted PoVs with generic PoVs, which failed to score in
subsequent rounds.

From a game-theoretic perspective, there was no
disincentive to throw PoVs, and launching attacks (even
nonworking ones) provided teams with ability to create
additional traffic that would have to be filtered by the
network appliance and analyzed by the target team. In
addition to using up limited resources, this traffic could
be used as a cover for real PoV throws, making them
harder to identify.

Zero Score for Consensus Round
The cost of replacing a service in CFE was intended to
dissuade teams from relying on frequent replacement
as a defensive strategy. Post-event interviews with the
teams suggested that this cost led some teams to post-
pone the submission of replacement binaries and to
avoid replacing a binary more than once.

At one extreme, Team A generally only replaced a
binary following indication that the associated service
was compromised. Their CRS would then not replace
that same service again, despite feedback indicating the
replacement had zero availability due to performance or
functionality degradation. This seemed to be a bug—a
post-event interview with Team A indicated that they
removed logic that responded to poor availability at the
last minute.

Team B employed a different strategy to avoid
multiple replacements; their CRS replaced all but
three of the services, seemingly independent of
whether or not a successful PoV was launched against
their services. Team B would never replace that ser-
vice again, unless the CRS received feedback that the
replacement binary had poor availability, in which
case the CRS would revert to the original binary. In
some instances, Team B’s CRS incorrectly reverted
services with perfect availability due to a self-inflicted
denial-of-service problem caused by heavy CPU
usage by an unrelated service running on the shared
defended host.

Team C followed this general strategy as well,
though they only replaced half of their services, regard-
less of whether the services had been compromised.
Whenever Team C’s CRS received feedback that a ser-
vice had poor availability, it generally uploaded a new
replacement binary in response.

www.computer.org/security 29

From a game-theoretic perspective, the strategies
chosen by these teams seem suboptimal. Ideally, a CRS
should have enough situational awareness to determine
when a successful PoV against their service has been
launched and replace the binary with a patched ver-
sion at that point. Preemptive replacement of services
unnecessarily cost several teams points due to the con-
sensus round downtime, even though no successful
PoVs were fielded against these services in CFE.

Defenses in CQE versus CFE
During CQE, teams knew that a working PoV would
be deployed against each of their replacement binaries,
which motivated the deployment of defenses—in fact, if
no reference PoVs were mitigated, a team would receive
a score of 0 on that submission. In CFE, reference PoVs
were not deployed against the services, and any success-
ful attacks would have to come from competitors. Thus,
a team’s decision to deploy a defense might depend on
whether they believed a given service could be compro-
mised by one of their competitors.

In a PoV-rich environment, where many services are
proven vulnerable, a good strategy (one achieving the
highest score) might be to focus on patching and patch
preemptively, as it might prevent a round of reduced
score when the service is proven vulnerable. However,
in a PoV-limited environment, where many services
are not proven vulnerable, a good strategy would be
to patch only in response to a successful attack, as dis-
cussed earlier. In CFE, only 20 challenge sets out of 82
were proven vulnerable by competitors, so a strategy of
patching in response to an attack would have produced
higher scores. The use of reference PoVs in CFE might
have provided additional motivation to field defenses
and enabled better demonstration of CRS patching
capabilities observed in CQE.

Point Patches versus Generic Patches
While the design of the competition was not intended
to preclude the use of any given defensive strategy, we
did strive to encourage correcting the program flaws
rather than providing generic mitigations that simply
masked the presence of those flaws. We did not feel that
liberal application of control flow integrity techniques
would advance the state of the art of network defense.
The availability element of the scoring algorithm was
designed in part to reward targeted patches by penal-
izing increased memory use and CPU execution time.

However, as can been seen in Figure 2, many replace-
ment binaries were fielded that consumed significantly
fewer resources than the associated reference services.
Figure 2 shows ratios of resources consumed by replace-
ment binaries divided by resources consumed by refer-
ence binaries, averaged over each round. Each color in

the figure represents a different team, and the different
services are arrayed along the x-axis.

The ability of a replacement binary to consume
fewer resources than the reference service is an unin-
tended effect resulting from the unforgiving perfor-
mance scoring function combined with the fact that
CGC challenge binaries were simple services and thus
much smaller than most real-world network services.
Some utilized a very small number of pages of memory,
and thus increased memory usage of even a single page
might drive the availability score to zero. CPU execu-
tion times of very short-running services presented a
similar problem because any modest increase in pro-
cessing time resulted in large proportional increases in
the measurement of CPU cycles.

To mitigate this problem of very small challenge
binaries, the CGC build process deliberately included
extra data (in the form of an embedded PDF) and
processing (in the form of a CRC computation across
the PDF). Neither extra data nor extra computation
was necessary for correct service functionality; there-
fore, both could be safely removed from each binary.
During the testing phase before CFE, it was possible
for teams to learn that space and time cushions could
be obtained by removing the CRC-related code and
the PDF data. As a result, teams were able to deploy
generic defenses without incurring significant avail-
ability costs. This experience indicates that availability
constraints alone cannot effectively mandate the use
“point patches” rather than generic defenses on small
programs.

Effect of Consensus Evaluation
One of the motivations for consensus evaluation was
to afford teams the opportunity to find bugs inadver-
tently introduced by competitors’ patches. We found
no evidence of any team successfully exploiting a
vulnerability unintentionally introduced by another
team. We did note two instances of intended inser-
tions of vulnerabilities, motivated by the knowledge
that competitors could analyze patched binaries. The
first insertion was a honeypot that one team included
in most of their replacement binaries. This honeypot
was a simple buffer overflow that was easy to find and
exploit, but could not be reached when the service was
executing on CGC Final Event hardware as a result
of an execution divergence between CGC hardware
and common analysis environments due to handling
of cpuid instruction. This honeypot caused several
opposing teams to field PoVs designed to exploit the
unreachable flaw, thus providing an effective security
countermeasure.

The second type of deliberate flaw was a back door
embedded in a replacement binary, intended to be

30 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

exploited if another team elected to utilize this binary
as their own replacement for the backdoored service.
Post-event interviews indicated that multiple teams
inserted back doors into their replacement binaries;
however, no backdoored service was redeployed during
CFE. This behavior was anticipated by CGC organizers;
earlier in the project, some teams expressed concerns
that their replacement binaries might get reused by the
competitors who would be effectively “free-riding”;

adding a back door accessible only to the team that cre-
ated the patch dissuades such behavior.

Lessons Learned
Designing and running any capture-the-flag event is a
nontrivial undertaking; organizing a high-profile com-
pletely automated capture-the-flag event is doubly so.
Despite best efforts on the part of the game designers,
some things do not go according to plan, and unin-
tended consequences of scoring or measurement deci-
sions can drive competitors to nonoptimal strategies. In
this section, we review several lessons learned as part of
organizing and running the CGC Qualifying and Final
Events.

Red-Team Scoring Algorithm
When designing the scoring algorithms for CQE and
CFE, we spent much time considering competitor strat-
egies that would achieve good scores but not advance
the state of the art in automated network defense. In
several cases, we had to revise the scoring algorithm to
provide disincentives for such strategies (for example,
requiring that at least one reference PoV is mitigated
in CQE or assigning a significant penalty for service
replacement). Much of this effort also focused on dis-
couraging collusion between teams. When performing
such analyses, it is useful to consider teams that might
“do nothing,” teams that might play defense only, offense
only, or some sort of balanced or randomized strategy.
Each team persona might illuminate a different corner
of the scoring space and provide ideas for improving the
scoring and redirecting competitors away from undesir-
able strategies.

Make Measurements Reproducible
Any scoring algorithm is closely tied to the measure-
ments that support it; in case of CGC, the measure-
ments included functionality, wall time, CPU execution
time, memory usage, and whether a PoV thrown against
a challenge binary successfully proved vulnerability.
When designing the measurement framework and
scoring algorithm, we focused on ensuring reproduc-
ibility of scores; that is, running the same round mul-
tiple times with the same inputs should produce the
same scores for the competing teams. This meant that
the game infrastructure had to go through great pains
to control the use of randomness in the game (all ran-
domness available to the challenge binaries and PoVs
was an output of a pseudorandom number generator
with a known seed) and limit effects of other nondeter-
minism sources: process scheduling, networking issues,
and so on. When a particular measurement could not be
contained to an acceptable level of variance due to these
sources of nondeterminism, the scoring algorithm had

Figure 2. Average (a) memory use and (b) execution time factors for CFE
replacement binaries. Each point represents average memory use or CPU
execution time factor for replacement binaries by a particular CRS for a
particular service.

807065 755045 55 604030 352015 251050

CGC service

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

RC
B/

re
f c

yc
le

s

Team (RCB memory/reference) per service

Team (RCB cycles/reference) per service

CGC service
807050 60403020100

1.4

1.3

1.2

1.1

1.0

1.9

0.8

0.7

RC
B/

re
f m

em
or

y

(a)

(b)

www.computer.org/security 31

to be adjusted to contain the effects from such measure-
ments on the resulting score.

Make Metrics Transparent
Much of the scoring algorithm design for CGC was
driven by the maxim that “you get what you measure.”
By measuring additional memory usage and additional
CPU cycles, we hoped to get patches that focused on the
flaw rather than general program-hardening techniques.
However, this strategy really only works if the competi-
tors understand what exactly is being measured. Instead
of providing a clear statement that we would measure
CPU cycles consumed while the process executed in
user space, we provided a series of oracles that the teams
could interact with to divine the effects of techniques
embedded in their replacement binaries on availability.
Prior to CQE, this was a sequence of “scored events,”
and for CFE, this was the “sparring partner.” Part of the
reasoning for this choice was to prevent the competi-
tors from gaming the scoring mechanism; however, it
resulted in too much ambiguity and caused some com-
petitors to model the performance metrics incorrectly.

Avoid Wall Time as a Metric
Our choice to use wall time as a metric to measure avail-
ability costs of network filters substantially complicated
implementation and testing of the CGC game infra-
structure. One problem is that services that complete
relatively quickly become very sensitive to small varia-
tions in wall time. Thus, differences in kernel schedul-
ing or TCP networking effects could result in significant
variations between otherwise identical sessions. This
complicated our ability to achieve repeatable results,
which are necessary when establishing a baseline against
which to measure the performance of replacement bina-
ries and network filters.

We investigated an alternative to wall time by mea-
suring aggregate CPU cycles on the network appliance
component for all polls of a given service. However,
when first attempted, the network appliance was hosted
on Linux, and the CPU cycle measurements had very
high variations. We were finally able to achieve repeat-
able wall-time measurements after converting all of the
infrastructure components to FreeBSD and carefully
tuning the kernel configurations.

I n this article, we presented our experience and lessons
learned in designing and implementing the scoring

algorithms for the CGC Qualifying and Final Events.
These algorithms succeeded in incentivizing competi-
tors to develop systems that could automatically patch
previously unseen binaries to mitigate vulnerabilities
as well as provide proofs of vulnerabilities for these

binaries. The scoring algorithms in CGC were designed
for automated evaluation and strived to achieve fairness,
collusion resistance, and real-world relevance, and in
many aspects we believe that they succeeded. We hope
that knowledge of our experience proves useful to other
capture-the-flag competition designers and helps them
avoid some of the pitfalls we faced.

Acknowledgments

This research was developed with funding from the Defense

Advanced Research Projects Agency (DARPA). The views,

opinions, and/or findings expressed are those of the authors

and should not be interpreted as representing the official

views or policies of the Department of Defense or the US

government.

References

 1. “Cyber Grand Challenge: Rules,” Version 3, DARPA;

http://archive.darpa.mil/CyberGrandChallenge

_CompetitorSite/Files/CGC_Rules_18_Nov_14_Version

_3.pdf.

 2. “Cyber Grand Challenge: Frequently Asked Questions

(FAQ),” DARPA; http://archive.darpa.mil/CyberGrand

Challenge_CompetitorSite/Files/CGC_FAQ.pdf.

 3. “Proof of Vulnerability Markup Language,” DARPA;

https://github.com/CyberGrandChallenge/cgc-release-

documentation/blob/master/cfe-pov-markup-spec.txt.

 4. “The BlueHat Prize Contest Official Rules,” Microsoft;

https://web.archive.org/web/20111120054734/http:

//www.microsoft.com:80/security/bluehatprize/rules

.aspx.

Benjamin Price is a member of the Cyber Analytics and
Decision Systems Group at MIT Lincoln Laboratory.
Email at ben.price@ll.mit.edu.

Michael Zhivich joined MIT Lincoln Laboratory in
2005 as a member of the Secure Resilient Systems and
Technology Group. Email at mzhivich@gmail.com.

Michael Thompson is a research associate at the Naval
Postgraduate School in Monterey, California. Email at
mfthomps@nps.edu.

Chris Eagle is a senior lecturer of computer science at the
Naval Postgraduate School in Monterey, California.
Email at cseagle@nps.edu.

Read your subscriptions through
the myCS publications portal at

http://mycs.computer.org

