

Calhoun: The NPS Institutional Archive DSpace Repository

DECISION SUPPORT TOOL FOR RETIREMENT PLANNING

Connelly, Brandon P.

Monterey, CA; Naval Postgraduate School
http://hdl.handle.net/10945/60381

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

DECISION SUPPORT TOOL FOR RETIREMENT PLANNING

by

Brandon P. Connelly

September 2018

Thesis Advisor:
Glenn R. Cook
Second Reader:
Douglas J. MacKinnon
Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 2018	3. REPORT TYPE AND DATES COVERED Master's thesis	
4. TITLE AND SUBTITLE DECISION SUPPORT TOOL FOR RETIREMENT PLANNING			5. FUNDING NUMBERS
6. AUTHOR(S) Brandon P. Connelly			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000			8. PERFORMING ORGANIZATION REPORT NUMBER
```9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A```			10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.			
12a. DISTRIBUTION / AVAILABILITY STATEMENT   Approved for public release. Distribution is unlimited.			12b. DISTRIBUTION CODE   A
13. ABSTRACT (maximum 200 words)   In this research, a Microsoft Excel retirement planning decision support tool is developed to help Marine Corps Officers visualize their own time horizon to achieve retirement. Basic and advanced features allow individuals to adjust all of the variables within the tool to represent their unique financial retirement goals. The decision support tool will also help eligible Marine Corps Officers to choose between the Legacy Retirement System and Blended Retirement System, by understanding each retirement plan and calculating which plan would provide more financial benefit.			
14. SUBJECT TERMS   retirement planning, decision support, Blended Retirement System, Legacy Retirement System			15. NUMBER OF PAGES 107
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT   Unclassified	18. SECURITY   CLASSIFICATION OF THIS   PAGE   Unclassified	19. SECURITY   CLASSIFICATION OF   ABSTRACT   Unclassified	20. LIMITATION OF ABSTRACT   UU
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89) rescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release. Distribution is unlimited.

# DECISION SUPPORT TOOL FOR RETIREMENT PLANNING 

Brandon P. Connelly<br>Captain, United States Marine Corps<br>BBA, University of Cincinnati, 2005<br>MBA, American Military University, 2010

Submitted in partial fulfillment of the requirements for the degree of

# MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT 

from the

## NAVAL POSTGRADUATE SCHOOL

September 2018

Approved by: Glenn R. Cook<br>Advisor<br>Douglas J. MacKinnon<br>Second Reader

Dan C. Boger
Chair, Department of Information Sciences

THIS PAGE INTENTIONALLY LEFT BLANK


#### Abstract

In this research, a Microsoft Excel retirement planning decision support tool is developed to help Marine Corps Officers visualize their own time horizon to achieve retirement. Basic and advanced features allow individuals to adjust all of the variables within the tool to represent their unique financial retirement goals. The decision support tool will also help eligible Marine Corps Officers to choose between the Legacy Retirement System and Blended Retirement System, by understanding each retirement plan and calculating which plan would provide more financial benefit.


THIS PAGE INTENTIONALLY LEFT BLANK

## TABLE OF CONTENTS

I. INTRODUCTION ..... 1
A. BACKGROUND ..... 1
B. PROBLEM ..... 1
C. PURPOSE ..... 2
D. RESEARCH QUESTIONS ..... 3
E. SCOPE AND LIMITATIONS .....  3
F. BENEFITS OF STUDY ..... 3
G. METHODOLOGY .....  3
II. LITERATURE REVIEW .....  5
A. NATIONAL DEFENSE AUTHORIZATION ACT ..... 5
B. RETIREMENT TRAINING ..... 5

1. Background ..... 5
2. Local Training .....  6
3. Classroom Training .....  6
C. BLENDED RETIREMENT SYSTEM .....  6
4. Eligibility ..... 6
5. Compensation ..... 7
D. LEGACY RETIREMENT SYSTEM ..... 10
6. Final Pay ..... 10
7. High-36. ..... 11
8. CSB/REDUX ..... 11
E. DISABILITY RETIREMENT ..... 12
9. Eligibility ..... 12
10. VA Rating ..... 12
F. THRIFT SAVINGS PLAN ..... 12
11. Background ..... 12
12. Funds ..... 13
13. Risks ..... 15
G. INDIVIDUAL RETIREMENT ACCOUNT ..... 15
14. Contribution Limits ..... 15
15. Deduction Eligibility ..... 16
16. Early Withdrawal Penalty ..... 16
H. SOCIAL SECURITY ..... 16
17. Compensation ..... 16
18. Potential Insolvency ..... 17
I. TAXES ..... 17
19. Gross Income Deductions ..... 17
20. States That Do Not Tax Active-Duty Military Pay ..... 18
21. States That Do Not Tax Military Retirement Pay ..... 18
J. RETIREMENT ASSUMPTIONS ..... 19
K. RETIREMENT CALCULATORS ..... 20
22. USAA Military Retirement Comparison Tool ..... 20
23. Service Calculators ..... 21
24. DoD Calculators ..... 21
L. COST OF LIVING ADJUSTMENT ..... 25
M. INFLATION ..... 26
III. PROBLEM ..... 29
A. SCENARIO OVERVIEW ..... 29
B. SCENARIOS ..... 30
25. Scenario One ..... 30
26. Scenario Two ..... 30
27. Scenario Three ..... 31
28. Scenario Four ..... 31
29. Scenarios Five through Nine ..... 32
C. DECISION SUPPORT TOOL FOR RETIREMENT PLANNING .....  34
30. Overview ..... 34
31. Description of Terms ..... 35
D. BASIC CASH FLOW ..... 37
32. Basic Cash Flow Inputs ..... 37
33. Basic Cash Flow Outputs ..... 37
E. BASIC NET WORTH ..... 39
34. Basic Net Worth Inputs ..... 39
35. Basic Net Worth Outputs ..... 39
F. ADVANCED CASH FLOW ..... 41
36. Advanced Cash Flow Inputs ..... 41
37. Advanced Cash Flow Outputs ..... 41
G. ADVANCED NET WORTH ..... 43
38. Advanced Net Worth Inputs ..... 43
39. Advanced Net Worth Outputs ..... 43
H. BLENDED RETIREMENT SYSTEM VERSUS LEGACY RETIREMENT SYSTEM. ..... 45
40. Blended Retirement System versus Legacy Retirement System Inputs ..... 45
41. Blended Retirement System versus Legacy Retirement System Outputs ..... 46
I. RETIREMENT TOOL COMPARISON ..... 48
42. Overview ..... 48
43. Case Study One ..... 48
44. Case Study Two ..... 50
IV. DATA ANALYSIS ..... 53
A. SCENARIO RESULTS ..... 53
45. Scenario One ..... 53
46. Scenario Two ..... 53
47. Scenario Three ..... 54
48. Scenario Four ..... 54
49. Scenarios Five through Nine ..... 55
B. DECISION SUPPORT TOOL FOR RETIREMENT PLANNING RESULTS ..... 56
50. Case Study One ..... 56
51. Case Study Two ..... 58
V. RESULTS ..... 61
A. SUMMARY ..... 61
B. RECOMMENDATIONS ..... 62
C. FURTHER STUDY .....  64
APPENDIX A. SCENARIO ONE DATA. ..... 65
APPENDIX B. SCENARIO TWO DATA ..... 67
APPENDIX C. SCENARIO THREE DATA ..... 69
APPENDIX D. SCENARIO FOUR DATA ..... 71
APPENDIX E. SCENARIO FIVE DATA ..... 73
APPENDIX F. SCENARIO SIX DATA ..... 75
APPENDIX G. SCENARIO SEVEN DATA ..... 77
APPENDIX H. SCENARIO EIGHT DATA ..... 79
APPENDIX I. SCENARIO NINE DATA ..... 81
LIST OF REFERENCES ..... 83
INITIAL DISTRIBUTION LIST ..... 89

## LIST OF FIGURES

Figure 1. Automatic and Matching Contribution. Source: DoD (2017e) ..... 8
Figure 2. Legacy Retirement System Summary. Source: DoD (2017a). ..... 11
Figure 3. 2017 States that Do Tax Military Retirement Pay. Source: Marine Officers Association of America (2017). ..... 19
Figure 4. COLA Rates from 1975 to 2016. Adapted from SSA (2017f). ..... 25
Figure 5. Inflation Rates from 1975 to 2016. Adapted from World Bank (2017) ..... 26
Figure 6. Basic Cash Flow Tab ..... 38
Figure 7. Basic Net Worth Tab ..... 40
Figure 8. Advanced Cash Flow Tab ..... 42
Figure 9. Advanced Net Worth Tab ..... 44
Figure 10. Blended Retirement System versus Legacy Retirement System Output Graphs ..... 47

THIS PAGE INTENTIONALLY LEFT BLANK

## LIST OF TABLES

Table 1. Summary of Individual TSP Funds. Source: TSP (2017e). ..... 14
Table 2. Scenario One Summary ..... 30
Table 3. Scenario Two Summary. ..... 31
Table $4 . \quad$ Scenario Three Summary. ..... 31
Table 5. Scenario Four Summary ..... 32
Table 6. Scenarios Five through Nine Summary ..... 33
Table 7. Blended Retirement System versus Legacy Retirement System Inputs. ..... 45
Table 8. Case Study One Input Summary ..... 49
Table 9. Case Study One Output Summary ..... 50
Table 10. Case Study Two Assumptions ..... 51
Table 11. Case Study Two Summary. ..... 51
Table 12. Results for Scenario One ..... 53
Table 13. Results for Scenario Two ..... 54
Table 14. Results for Scenario Three. ..... 54
Table 15. Results for Scenario Four. .....  .55
Table 16. Results for Scenario’s Five through Nine. ..... 56
Table 17. Case Study One Input Results. ..... 57
Table 18. Case Study One Output Results. ..... 58
Table 19. Results for Case Study Two. ..... 59

THIS PAGE INTENTIONALLY LEFT BLANK

## LIST OF ACRONYMS AND ABBREVIATIONS

AGI	adjusted gross income
BAS	basic allowance for subsistence
BAH	basic allowance for housing
CAC	common access card
COLA	cost of living adjustment
CPI	consumer price index
CSB	Department of Defense
DoD	fiscal year
FY	government discount rate
GDR	Headquarters Marine Corps
HQMC	individual retirement account
IRA	Marine Corps Community Services
IRS	Military Officers Association of America
MCCS	national defense authorization act
MOAA	Navy Personnel Command
NDAA	personal readiness seminar
NPC	regular military compensation
PRS	Social Security Administration
RMC	Thrift Savings Plan
SSA	transition readiness seminar
TSP	United Services Automobile Association
TRS	Veteran Affairs
USAA	

THIS PAGE INTENTIONALLY LEFT BLANK

## I. INTRODUCTION

## A. BACKGROUND

Department of Defense's (DoD) retirement plan for military service members has increasingly been researched for understanding of the impact that the new retirement plan, the Blended Retirement System, may have on the United States Government both from a cost and a manpower perspective. Other research has focused on how the Blended Retirement System may impact eligible service members' retirement planning, as well as their decision making process on how long to stay in the military. In an effort to assist eligible service members in choosing between the two retirement systems, DoD and companies like United Services Automobile Association (USAA) have posted a variety of financial tools online. On each financial tool some or all of the variables could not be adjusted by the service member. however. The inflexibility of such financial tools in regard to important variables like rate of return or the career continuation pay multiplier may hamper eligible service members in making an informed decision on which retirement system is best for them.

Sean Pearson, a Certified Financial Planner, stated that the best time to plan for retirement was 20 years ago and the second best time to plan for retirement is today (Robaton, 2015). Restated in military terms, it is better to develop a retirement plan as a Second Lieutenant than waiting until retirement from the Marine Corps. Due to DoD's hands-off approach toward retirement planning, service members are on their own in creating a retirement plan. DoD service members would benefit from a retirement template that would give them the ability to adjust all of the variables to understand how each variable may impact their time horizon to achieve their unique financial retirement goals.

## B. PROBLEM

The annual median savings rate for a United States working-age family is \$5,000 (Morrissey, 2016). One-third of Americans over the age of 18 do not have a retirement plan, and 58 percent of Americans over the age of 18 feel that their plan needs to be
improved (Robaton, 2015). The best time to plan for retirement was 20 years ago and the second best time to plan for retirement is today (Robaton, 2015).

The problem is that Marine Corps Officers are waiting too long to plan for retirement due to their lack of understanding on how different variables may impact their ability to reach their unique financial retirement goals. Marine Corps Officers need to research and understand how different variables may impact their time horizon to reach their unique financial retirement goals. Unfortunately, DoD's retirement calculator is not downloadable into a template that is easy for a Marine Corps Officer to understand and modify.

Through a quantitative experimentation study, this research develops a basic and an advanced decision support tool in Microsoft Excel that will serve as a template for Marine Corps Officers to use to build a retirement plan.

## C. PURPOSE

The purpose of this research is to develop a decision support tool that will serve as a template for a Marine Corps Officer to use in building a tailored retirement plan. The objective of the research is to perform analysis on the time horizon required for a Marine Corps Officer to achieve their financial retirement goals. Additionally, this study analyzes how a decision support tool for retirement planning could benefit a Marine Corps Officer’s understanding and ability to achieve their unique financial retirement goals. The intent is twofold: to build a decision support tool in Microsoft Excel because this software is familiar and accessible to Marine Corps Officers, and for the decision support tool to be updated at least annually.

A basic decision support tool for retirement planning will be valuable for a Marine Corps Officer without a financial background and the advanced version will be valuable for a Marine Corps Officer with a strong financial background. The decision support tool is intended to be a working document. Although the target population of this research is Marine Corps Officers, the tool may benefit all DoD active and reserve service members.

## D. RESEARCH QUESTIONS

How could a decision support tool for retirement planning, benefit a Marine Corps Officer in understanding and achieving their financial retirement goals?

What are the critical variables that have the greatest impact on the time horizon for retirement planning?

What is the time horizon for a Marine Corps Officer to achieve their financial retirement goals?

## E. SCOPE AND LIMITATIONS

This decision support tool for retirement planning was built for DoD Officers. With additional modifications, it could benefit all enlisted service members within DoD. The basic decision support tool will not be as accurate as the advanced decision support tool but will still be robust enough for building a retirement plan. To improve the accuracy of the basic and advanced decision support tool, it should be treated as a working document and be updated at least annually.

## F. BENEFITS OF STUDY

The potential benefits from this research may be that Marine Corps Officers use the decision support tool to build their own retirement plan after understanding how different variables will impact their time horizon to reach their financial retirement goals. Once a Marine Corps Officer develops a retirement plan, they could provide this tool to enlisted Marines on their team.

## G. METHODOLOGY

Data used to build the decision support tool will come from open sources like DoD military pay tables, DoD briefs on the Blended Retirement System, and financial studies that asked questions pertaining to retirement planning and current savings. A statistical approach will be used to analyze the time horizon for a Marine Corps Officer to achieve their retirement goals.

THIS PAGE INTENTIONALLY LEFT BLANK

## II. LITERATURE REVIEW

## A. NATIONAL DEFENSE AUTHORIZATION ACT

The National Defense Authorization Act (NDAA) for Fiscal Year (FY) 2013 formed a Military Compensation and Retirement Modernization Commission to provide the President of the United States and Congress with recommendations on how to modernize benefits for Department of Defense's (DoD) military service members (Kamarck, 2017). The commission's recommendations led Congress to modernize the military retirement system in the NDAA for FY2016 (Thornberry, 2015). The new retirement system, the Blended Retirement System, will provide an estimated 85 percent of active and reserve service members with retirement benefits whereas the Legacy Retirement System provided only 19 percent of active-duty service members and 14 percent of reserve service members who served at least 20 years, with retirement benefits (Department of Defense [DoD], 2017e).

## B. RETIREMENT TRAINING

## 1. Background

Recent changes to the military retirement system have caused Marines, regardless of their rank, to talk about retirement; a topic rarely discussed within the Marine Corps, with the exception of Marines who were getting close to retirement. The Marine Corps has not mandated annual training on any subject that would help prepare a Marine for retirement. Therefore, it is up to the individual Marine to take the initiative to develop a retirement plan while they are in the Marine Corps.

To help Marines make an informed decision, the Deputy Commandant for Manpower and Reserve Affairs has mandated that all Marines eligible to decide between the Legacy Retirement and the Blended Retirement System, complete the online Blended Retirement System training prior to a service member making a decision (Brilakis, 2016). Marine leaders also received mandatory training so they could help their Marines make an informed decision, but not make the decision for their Marines. Each service has its own unique plan on the medium that their respective eligible members will use when making a
retirement selection. The primary selection method for Marines eligible to choose between the two retirement systems will be through the Marine on Line website (Brilakis, 2016).

## 2. Local Training

In addition to a Marine's direct leadership, every Marine has access to Command Financial Specialists and Personal Financial Management Specialists. A Command Financial Specialist is a collateral-duty billet filled by a Marine and appointed by their respective commanding officer once they have completed formal training from a Personal Financial Management Specialist (Headquarters Marine Corps [HQMC], 2016). A Personal Financial Management Specialist is hired by the Marine Corps Community Services (MCCS) to provide financial advice to Marine’s and their dependents (Marine Corps Community Services [MCCS], 2017a).

## 3. Classroom Training

Before their departure from the Marine Corps, HQMC requires that all Marines, regardless of their accumulated time-in-service, attend the Personal Readiness Seminar (PRS) and the Transition Readiness Seminar (TRS); both seminars are given by MCCS. PRS is a four-hour seminar that educates transitioning Marines on debt, living expenses, financial services, investments, and banking (MCCS, 2017b). TRS is a five-day seminar that gives transitioning Marines lectures on financial planning, Veterans Affairs (VA) benefits that they may be eligible for, and more (MCCS, 2017b). The goal is to help transitioning Marines develop a plan for higher education, employment, or entrepreneurial goals (MCCS, 2017b).

## C. BLENDED RETIREMENT SYSTEM

## 1. Eligibility

Active-duty service members who joined prior to January 1, 2006, and reserve service members with more than 4,320 retirement points, will remain under the Legacy Retirement System (DoD, 2017e). Active-duty service members who joined after December 31, 2005, but before January 1, 2018, or reserve service members with less than 4,320 retirement points as of December 31, 2017, are eligible to remain with the Legacy

Retirement System or may choose to opt into the new retirement system, the Blended Retirement System (DoD, 2017e). Both the Legacy Retirement System and the Blended Retirement System are non-disability retirement plans (DoD, 2017a). Eligible service members have between January 1, 2018, and December 31, 2018, to make a decision; once a decision is made, it cannot be changed (DoD, 2017e). Service Secretaries are able to adjudicate extensions in case of hardship that prevented a service member from making a decision within the 2018 calendar year (Work, 2017). Any active-duty service member or reserve service member who joins the military after January 1, 2018, will be automatically enrolled into the Blended Retirement System (DoD, 2017e).

Marines in the reserves who retire under a non-disability retirement plan are not eligible to collect their pension until they reach 60 years old; active-duty Marines are eligible to start collecting their pension after 20 years of creditable service (DoD, 2017b). Marines serving in the reserves must accumulate at least 50 points per year. Marine reservists receive one point per day spent on active service, drilling, or performing funeral honors, and 15 points per year spent in the Marine Corps reserves (DoD, 2017b). To determine the number of years served by a reservist, take the total points accumulated by a reservist and divide by 360 (DoD, 2017b).

## 2. Compensation

The Blended Retirement System, like the Legacy Retirement System, provides a defined benefit, after 20 years of creditable service (DoD, 2017e). In addition to the annuity, only the Blended Retirement System offers automatic contributions and provides matching contributions to a service member’s Thrift Savings Plan (TSP) (Work, 2017). The Blended Retirement System pays two percent times the number of creditable years served whereas the Legacy Retirement System pays two and a half percent (DoD, 2017e). In the Blended Retirement System, a service member can achieve a maximum of five percent matching contribution by DoD if they contribute five percent of their basic pay to TSP (DoD, 2017e). If a service member does not contribute any of their basic pay to their TSP, they will still receive a one percent automatic contribution from DoD after 60 days of service until the service member reaches 26 years of creditable service (DoD, 2017e).

The other four percent match DoD offers, starts after the third year of service and is available if the service member is contributing five percent of their basic pay to TSP (DoD, 2017e).

After 26 years of service, the government's automatic and potential matching contribution will stop for all military service members. To encourage senior leaders to stay in their respective service, DoD requested to extend the automatic and matching contributions past 26 years of service. The first attempt was made during DoD’s 2016 budget request; this attempt was unsuccessful (Degrandpre, 2017). The second attempt was made during DoD’s 2017 budget request; this attempt was also unsuccessful (Degrandpre, 2017). DoD understood that subsequent attempts for the same request would likely be unsuccessful. In an effort to make some progress, DoD decided to modify their request within their 2018 budget request. DoD requested that only enlisted service member's receive automatic and potentially matching contributions past 26 years of service (Degrandpre, 2017). Figure 1 shows a summary of the automatic and matching contribution DoD offers to a service member under the Blended Retirement System.

Individual Contribution	Agency Automatic Contribution	Agency Matching Contribution	Total TSP Monthly Contribution
0\%	1\%	0\%	1\%
1\%	60 1\%	2 1\%	3\%
2\%	运 1\%	<2\% 2\%	5\%
3\%	10, $1 \%$	4年 3\%	7\%
4\%	1\%	3.5\%	8.5\%
5\%	1\%	4\%	10\%

Figure 1. Automatic and Matching Contribution. Source: DoD (2017e).

## a. Career Continuation Pay

In an effort to retain service members under the Blended Retirement System with eight to 12 years of service, a career continuation pay multiplier, between 2.5 to 13 times a service members basic monthly pay for active-duty service members and one half to six times a service members basic monthly pay for reservists will be paid out (DoD, 2017e).

Each Service Secretary is responsible for determining the eligibility, timing of payment, and procedures for the career continuation pay as well as the career continuation pay multiplier for their respective service (Work, 2017). Once the career continuation pay is accepted by a service member, the service member is obligated to serve no less than three additional years of active service (Work, 2017). In the event that a service member fails to complete all or a portion of the obligated service, they will be subject to paying back all or a pro-rated amount of the pay received back to the government (Work, 2017).

## b. Lump Sum

Only the Blended Retirement System offers a lump sum option. Service members can elect to receive a 25 or 50 percent lump sum payment at retirement in return for a smaller monthly pension which will remain only until the day the service member reaches the full retirement age as determined by the Social Security Administration (SSA) (DoD, 2017e). As of 2017, anyone born after 1959, will reach full retirement age at 67 years old (Social Security Administration [SSA], 2017a). After reaching full retirement age, the reduced pension reverts back to the full pension amount (DoD, 2017e). Any service member who retired due to a physical disability, is unable to choose the lump sum option (Work, 2017). Service members under the Blended Retirement System must make the lump sum election no later than 90 days before the service member retires (Work, 2017). The lump sum payment can be taken all at once or can be broken up into four payments, over a time period not to exceed four years (Work, 2017).

The lump sum government discount rate (GDR) is calculated by taking Department of Treasury's seven-year average high-quality-market corporate bond spot rate with a 23-year maturity and adding a personal discount rate (Philpott, 2017). The personal discount rate is being influenced by retirees preference for selecting the lump sum; a technique not used by private pension plans (Philpott, 2017). From May 1, 2010, to April 1, 2017, the seven-year average of the high-quality-market corporate bond spot rate with a 23 year maturity was 4.99 percentage points (United States Department of Treasury, 2017). The lump sum GDR for calendar year 2018 was 6.99 percent (Hebert, 2017). Every year,
the new lump sum GDR will be published. Calendar year 2019's GDR will be published in June 2018 (Hebert, 2017).

If a Marine Corps Officer retires under the Blended Retirement System after 20 years of creditable of active-duty service at the rank of Maj, the Major would receive \$3,063 per month using the 2017 military pay chart (Defense Finance and Accounting Service, 2017). Assuming the Major retired at the age of 45, they would have the option to elect no lump sum, a 25 , or a 50 percent lump sum of their pension payments starting from the date they retired until they turned 67 years old. If the GDR was 9.27 percent, the Major would receive $\$ 227,454$ if a 50 percent lump sum were elected or $\$ 113,727$ if a 25 percent lump sum were elected. If the GDR was 6.27 percent, the Major would receive $\$ 300,569$ if a 50 percent lump sum were elected or $\$ 150,285$ if a 25 percent lump sum were elected. Each lump sum payment is before federal, state, and local taxes.

## D. LEGACY RETIREMENT SYSTEM

## 1. Final Pay

Active-duty and reserve Marines under the Legacy Retirement System who accumulated 20 years or more of creditable service are eligible to receive a military pension. Active-duty and reserved Marines who entered before September 8, 1980, are eligible to retire under the Final Pay, a non-disability retirement plan. The Final Pay retirement plan is calculated by taking 2.5 percent per year of creditable service multiplied by their final basic pay (DoD, 2017a).

The Final Pay retirement plan adjust retiree's pensions annually through Cost of Living Adjustments (COLA); COLA is computed from Department of Labor’s Consumer Price Index (CPI) (DoD, 2017a). If CPI is negative, COLA will be zero percent (DoD, 2017d). Figure 2 shows a summary of the Final Pay retirement plan.

Retirement Plan	Basis	Multiplier	COLA	Readjustment	Bonus
Final Pay	Final basic pay	2.5\% per year	CPI	None	None
High-36	Average of highest 36 months of basic pay	2.5\% per year	CPI	None	None
CBS/REDUX	Average of highest 36 months of basic pay	Same as High-36 with reduction of one percentage point for each year short of 30 years of service	$\begin{gathered} \text { CPI - } \\ \text { 1\% } \end{gathered}$	At age 62,   1) retired pay made equal to High-36   2) future multiplier made equal to High-36   3) future COLA continues at CPR - 1\%	$\$ 30,000$ at 15 th year of service with obligation to serve 20 year career
Disability	Either Final Pay or High36 as appropriate	2.5\% per year of \% of disability member's choice	CPI	None	None

ie below chart provides the basic criteria to determine which retirement plan applies to you.

| Retirement <br> Plan | Criteria to Receive |
| :---: | :---: | :---: |
| Final Pay | Entry on or after September 8, 1980, but before August 1, 1986 OR Entered on or after August 1, 1986, and did not choose the Career Status Bonus |
| and REDUX retirement system |  |

Figure 2. Legacy Retirement System Summary. Source: DoD (2017a).

## 2. High-36

Active-duty and reserve Marines who entered between September 8, 1980, and July 31, 1986, or entered after August 1, 1986, and who did not elect to receive the Career Status Bonus (CSB) and REDUX retirement, qualify for the High-36, a non-disability retirement plan (DoD, 2017a). The High-36 retirement plan takes the average of the highest 36 months of basic pay, multiplied by 2.5 percent per year of creditable service (DoD, 2017a). Similar to Final Pay retirement plan, the High-36 retirement plan is adjusted annually through COLA (DoD, 2017a). Figure 2 shows a summary of the High-36 retirement plan.

## 3. CSB/REDUX

The CSB/REDUX retirement plan pays 2.5 percent per year of creditable service multiplied by the average of the highest 36 months of basic pay a Marine received (DoD, 2017a). Effective January 1, 2018, service members will no longer be permitted to choose the CSB/REDUX option (Work, 2017).

Only active-duty Marines are eligible for the CSB/REDUX (DoD, 2017b). Those who signed up for the CSB/REDUX, a non-disability retirement plan, receive $\$ 30,000$ after 15 years of creditable service and then incur an obligation to serve five additional years
(DoD, 2017a). Under the CSB/REDUX retirement plan, COLA is one percent less than CPI. If COLA is .75 percent, then COLA for the CSB/REDUX retirement plan would be zero percent since the lowest COLA will be is zero percent. Figure 2 shows a summary of the CSB/REDUX retirement plan.

## E. DISABILITY RETIREMENT

## 1. Eligibility

Marines qualify for a military pension regardless of their time served through the disability retirement plan if they receive a DoD disability rating at or above 30 percent (DoD, 2017a). Retired pay base for the disability retirement plan will be calculated under the Final Pay or High-36, depending on the date the Marine entered the Marine Corps (DoD, 2017a). The retired pay base is then multiplied by the percent; Marines must choose between the disability percent or 2.5 percent times the number of creditable years served (DoD, 2017c). The maximum percent multiplier is limited by law to 75 percent (DoD, 2017c). Figure 2 shows a summary of the disability retirement plan.

## 2. VA Rating

For a service member to be given a disability rating by the VA, the VA must be able to determine that a service member's current disability began either in the military or as a result of some incident or injury while serving in the military (Szymanski, 2016). Disability payments received from the VA are tax free. For service members with less than a 50 percent VA disability rating, can reduce their military retiree pay with the VA disability payments, thereby significantly reducing their potential tax liability (Szymanski, 2016). Any service member with a VA disability rating greater than or equal to 50 percent is authorized to receive their full military pension (disability retirement plan) on top of their full VA disability pay (Szymanski, 2016).

## F. THRIFT SAVINGS PLAN

## 1. Background

The Federal Employees’ Retirement System Act of 1986 gave federal employees a defined contribution pension plan, with the TSP 401(k) but excluded the military
(Thrift Savings Plan [TSP], 2017a). In 2001, the military was given permission to participate in the TSP after the passage of the National Defense Authorization Act for FY 2001 (DoD, 2017m).

A TSP can be set up to receive pre-tax (traditional) or after-tax (Roth) contributions (TSP, 2017b). Pre-taxed contributions are subtracted from a service member's basic pay, which may reduce a service member's tax liability (TSP, 2017b). Earnings grow tax deferred but any withdrawals from the traditional account are taxable. After-tax contributions are made from a service member's basic pay after paying taxes (TSP, 2017b). Earnings also grow tax deferred but any withdrawals from the Roth account are not taxable so long as the service member is older than 59.5 years old (TSP, 2017e).

So long as a service member has a TSP account balance greater than $\$ 199$, they will be permitted to keep their account with TSP after leaving the military (TSP, 2017c). Just like a traditional IRA, TSP will force a service member to take minimum distributions starting April 1 of the year after they turn 70.5 years old; a Roth IRA does not require a service member to take minimum distributions after reaching a certain age (Internal Revenue Service [IRS], 2016b).

## 2. Funds

TSP has a limited number of funds to invest in. TSP fund options include the G Fund, F Fund, C Fund, S Fund, I Fund, and five different Life cycle Funds that invest different percentages of the G Fund, F Fund, C Fund, S Fund, and I Fund (TSP, 2017e). Table 1 shows the summary of individual TSP funds.

Table 1. Summary of Individual TSP Funds. Source: TSP (2017e).

	G Fund	F Fund ${ }^{\text {* }}$	C Fund ${ }^{*}$	S Fund ${ }^{\text {t }}$	1 Fund ${ }^{*}$	L Funds**
Description of Investments	Government securities (specially issued to the TSP)	Government, corporate, and mortgagebacked bonds	Stocks of large and mediumsized U.S. companies	Stocks of small to mediumsized U.S. companies (not included in the C Fund)	International stocks of more than 20 developed countries	Invested in the G, F, C, S, and I Funds
Objective of Fund	Interest income without risk of loss of principal	To match the performance of the Bloomberg Barclays U.S. Aggregate Bond Index	To match the performance of the Standard \& Poor's 500 (S\&P 500) Index	To match the performance of the Dow Jones U.S. Completion TSM Index	To match the performance of the MSCI EAFE (Europe, Australasia, Far East) Index	To provide professionally diversified portfolios based on various time horizons, using the G, F, C, S, and I Funds
Risk	Inflation risk	Market risk, Credit risk, Prepayment risk, Inflation risk	Market risk, Inflation risk	Market risk, Inflation risk	Market risk, Currency risk, Inflation risk	Exposed to all of the types of risk to which the individual TSP funds are exposed but total risk is reduced through diversification among the five individual funds
Volatility	Low	Low to moderate	Moderate	Moderate to high historically more volatile than C Fund	Moderate to high historically more volatile than C Fund	Asset allocation shifts as time horizon approaches to reduce volatility

The G Fund invests in government securities, the F Fund invests in bonds, the C Fund invests in stocks of medium to large companies in the United States, the S Fund invests in stocks of small to medium companies in the United States, and the I Fund invests in stocks from over 20 international countries (TSP, 2017e).

Service members can choose to invest in one or more funds so long as the annual contribution does not exceed the IRS elective deferral limit, which as of 2017 was $\$ 18,000$ (TSP, 2017f). An additional $\$ 6,000$ catch-up contribution is authorized as of 2017 by the IRS (2016a) for those who are 50 years or older. Any contributions made to an IRA account do not count toward the TSP contribution limits (IRS, 2017a).

The average net expense rate for TSP funds in 2016 was 38 cents per $\$ 1,000$ invested (TSP, 2017d). Morningstar, an independent investment research company, conducted a fee study in 2015, and found that the average net expense rate was $\$ 6.4$ per
\$1,000 invested (Johnson \& Rawson, 2015). Expenses reduce an investors overall rate of return and delay the time horizon for an investor to achieve their financial retirement goals.

## 3. Risks

In general, the higher the risk, the higher the rate of return. Although diversification can reduce risk, it cannot eliminate risk. Each TSP fund may be exposed to one or more of the following risks: inflation risk, market risk, currency risk, credit risk, and prepayment risk (TSP, 2017e). Volatility in general, increases proportionally as the rate of return increases. A historical rate of return is the rate an investor can expect to receive in the longterm. In the short-term, due to volatility, a rate of return could be substantially higher or lower than the historical rate of return.

## G. INDIVIDUAL RETIREMENT ACCOUNT

## 1. Contribution Limits

The maximum traditional or Roth individual retirement account (IRA) contribution limit for 2017 is $\$ 5,500$ for Americans less than 50 years old and $\$ 6,500$ for Americans 50 years and older (IRS, 2017a). Any contribution over the authorized limit is subjected to a six percent tax each year until the money is withdrawn from the IRA (IRS, 2017a). Eligibility to make a Roth IRA contribution is based on the adjusted gross income (AGI) (IRS, 2017a). For example, a married couple filing jointly with an AGI less than \$186,000 is authorized to contribute the full contribution limit (IRS, 2017a).

If the couple's AGI is greater than $\$ 186,000$ but less than $\$ 196,000$, then the authorized contribution limit is reduced using an IRS formula, which is available on their website (IRS, 2017a). If the couple’s AGI is in excess of $\$ 196,000$, then they are unable to make any contributions into a Roth IRA (IRS, 2017a). Unlike a Roth IRA, a traditional IRA does not have any AGI restrictions that would prohibit an American from making a contribution (IRS, 2017a).

## 2. Deduction Eligibility

An American's AGI may prevent them from being able to take a full or even partial deduction from their traditional IRA contribution (IRS, 2017a). For example, in 2017, the IRS (2017a), will permit a full deduction for married couples filing jointly whose AGI is $\$ 98,000$ or less, a partial deduction if their AGI is greater than $\$ 98,000$ but less than $\$ 118,000$, and will prevent any deduction to be taken if their AGI is greater than $\$ 118,000$.

## 3. Early Withdrawal Penalty

In an effort to deter investors from making a withdrawal for any purpose other than for retirement, any unauthorized withdrawals from TSP or an IRA will lead to an early withdrawal tax of 10 percent (IRS, 2017b). The IRS publishes a list of exceptions that are exempt from the 10 percent penalty. The IRS (2017b) allows a first-time homebuyer to withdraw up to $\$ 10,000$ penalty free to use toward the cost of buying, building, rebuilding a home, or other usual closing and financing costs. Additional IRS (2017b) exceptions include unreimbursed medical expenses, medical insurance, disabled, annuity distributions, higher education expenses, and qualified reservist distributions.

## H. SOCIAL SECURITY

## 1. Compensation

The average retiree eligible to receive social security received \$1,341 as of January 2016 (SSA, 2017b). Americans born after 1959 can elect to start receiving a reduced Social Security retirement benefit at age 62, receiving 70 percent of the full retirement benefit (SSA, 2017a). Every month a retiree delays receiving payment will increase the percent of the retirement benefit, reaching 100 percent of their full retirement benefit at the full retirement age of 67 (SSA, 2017a). A retiree has the option to defer benefits past the age of 67 (SSA, 2017a). Every month past the age of 67 will yield a retiree an extra two-thirds of one-percent increase to their benefits until they reach the age of 70 (SSA, 2017g). The two-thirds of one-percent multiplied by 12 months equals an eight percent annual increase in benefits (SSA, 2017g). For example, if a retiree born after 1959 chooses to receive benefits at 67 years and six months, they would receive 104 percent of their full retirement
benefits (SSA, 2017g). If a retiree born after 1959 waits until age 70, they would receive 124 percent of their full retirement benefits.

## 2. Potential Insolvency

The SSA is paying out more than it is collecting. The SSA (2017c) estimates that it will run short of money by 2034. After year 2034, it is projected that only 79 percent of benefits will be able to be paid out and payouts will further decline to 74 percent by 2090 (SSA, 2017c). Of the 2,646 adults surveyed in the 2016 Planning and Progress Study, only 25 percent stated that they felt confident that Social Security will be there for them when they retire (Northwestern Mutual, 2016). To prevent insolvency, Congress continues to research ways to reform Social Security. Potential solutions being researched include: increasing the retirement age to 69 for Americans born after 1968, eliminate COLA for high-income retirees, reducing benefits, and by modifying the law to incentivize people to work longer than 35 years (Blggs, 2016).

## I. TAXES

## 1. Gross Income Deductions

The IRS allows service members to exclude several types of pay from being reported as gross income in their federal tax return. Exceptions include basic allowance for housing (BAH), basic allowance for subsistence (BAS), overseas housing allowance, dislocation allowance, per diem, and more. The second table within IRS (2017c) publication three lists each pay excluded in greater detail. Combat pay is excluded from federal taxes for all enlisted, warrant officer, and chief warrant officer; commissioned officers may exclude combat pay from federal taxes up to the highest enlisted basic pay plus imminent danger pay (IRS, 2017c). For 2017, the highest enlisted basic pay of $\$ 7,844.70$ plus imminent danger pay of $\$ 225$ totaled $\$ 8,069.70$ (Defense Finance and Accounting Service, 2017). Combat pay should be counted when determining IRA contribution and deduction limits (IRS, 2017c).

## 2. States That Do Not Tax Active-Duty Military Pay

Some states exempt all active-duty military pay from state income tax. Other states tax a portion or all of their pay. New Jersey is the only state that taxes active-duty military basic pay and combat pay earned from a combat zone (Sahadi, 2015). Service members are unable to change their home of record to reduce their state tax liability without a break in service of more than 24 hours (Navy Personnel Command [NPC], 2015). This causes some service members to pay no state income tax throughout their entire career in the military. Other service members are not as fortunate; service members with California as their home of record, faced the highest state income tax rate in 2016 (TurboTax, 2016).

For a single or married Marine filing separately with a taxable income between 41,629 and $\$ 52,612$, the Marine would be taxed at $\$ 1,437.79$ plus eight percent of the amount over $\$ 41,629$ (State of California, 2017). For a single or married Marine filing separately with a taxable income between $\$ 52,612$ and $\$ 268,750$, the Marine would be taxed at $\$ 2,316.43$ plus 9.30 percent of the amount over $\$ 52,612$ (State of California, 2017). Married Marines filing a joint return with a taxable income between $\$ 38,002$ and $\$ 59,978$ are taxed at $\$ 599.74$ plus four percent of the amount over $\$ 38,002$ (State of California, 2017).

## 3. States That Do Not Tax Military Retirement Pay

Tax planning is a very important part of retirement planning (Sheedy, 2014). This is the reason why Florida is so popular among retirees; they have no inheritance, estate, and state income tax (Kiplinger, 2017). The following states exempt military retirement pay from state income tax: Alabama, Alaska, Connecticut, Florida, Hawaii, Illinois, Kansas, Louisiana, Maine, Massachusetts, Michigan, Minnesota, Mississippi, Nevada, New Hampshire, New Jersey, New York, Ohio, Pennsylvania, South Dakota, Tennessee, Texas, Washington, Wisconsin, and Wyoming
(Marine Officers Association of America [MOAA], 2017). Only California, North Dakota, and Vermont do not exempt military retirement pay from state taxation (MOAA, 2017). The remaining states partially except military retirement pay (MOAA, 2017). Figure 3 shows a summary of how states tax military retirement pay.


Figure 3. 2017 States that Do Tax Military Retirement Pay. Source: Marine Officers Association of America (2017).

## J. RETIREMENT ASSUMPTIONS

Retirement planning requires one or more assumptions to be made to estimate what will occur in the future. Four assumptions that may strain a service member's retirement plan include: planning to live only up to the average life expectancy age published by the SSA, being able to work as long as planned, planning for expenses to be lower while in retirement, and relying on Social Security to cover all retirement expenses (Backman, 2017). The average life expectancy for an American is 78.8 years old (Kochanek, Murphy, Tejada-Vera, \& Xu, 2016). Many Americans live well beyond this age. Females live 4.8 years longer on average than males (Kochanek et al., 2016). The SSA (2017d) predicts that 25 percent of those 65 years old today will live beyond the age of 90 ; 10 percent will live past the age of 95 .

Physically demanding jobs only get harder to perform as a retiree ages. A service member who is used to lifting 50 or 100 lbs throughout the day at work will be unlikely to sustain this physical agility 10,20 , or even 30 years after retiring from the military. This may force a service member to change career fields or reduce their income stream by pursuing a different career. A military retiree may find themselves leaving their second career earlier than planned to care for a family member.

The Employee Benefit Research Institute reported that 46 percent of retirees actually spent more money during the first two years after retirement and 33 percent spent more during the first six years after retirement (Kochanek et al., 2016). Any service member who leaves the military without a disability or non-disability retirement plan will quickly learn how expensive health care can be in retirement. USATODAY columnist Maurie Beckman (2017) reported that a 65-year-old couple would spend on average, $\$ 377,000$ on health care expenses while in retirement.

In 2016, the average retiree collected $\$ 16,092$ annually in Social Security retirement benefits (SSA, 2017b). Even if a retiree does not have a mortgage or rent payment each month, this would still be difficult to live off of. From 2000 through 2016, inflation averaged 2.17 percent while COLA averaged 2.15 percent (SSA, 2017e; World Bank, 2017). Since Social Security COLA raises lagged inflation, a retiree's purchasing power has decreased.

## K. RETIREMENT CALCULATORS

## 1. USAA Military Retirement Comparison Tool

On March 13, 2017, United Services Automobile Association (USAA) launched a military retirement comparison tool to help eligible service members choose between the two retirement systems since DoD's Blended Retirement System comparison calculator was not available at that time (United Services Automobile Association [USAA], 2017). USAA's tool required the service member to input data on three different web pages and then provided a service member a comparison between the two retirement systems on the forth web page (USAA, 2017). The left side of the forth web page with an assumed seven percent average rate of return, displayed the TSP value under three options: first, a one
percent DoD automatic contribution without a service member contributing, second, a five percent contribution by both DoD and the service member, and third, a five percent contribution by DoD and a 10 percent contribution by the service member (USAA, 2017). The right side of the forth web page displayed the Legacy Retirement System and the Blended Retirement System monthly pension after assuming retirement at the grade of $0-5$ with 20 years of creditable service (USAA, 2017).

USAA's tool did not allow a service member to adjust the average rate of return, their contribution to TSP, their projected grade of retirement, and the number of creditable years served past 20 years. USAA's tool does not mention or provide financial numbers for a service member who elected to take a 25 or 50 percent lump sum under the Blended Retirement System.

## 2. Service Calculators

## a. Navy

Even though DoD's retirement calculator has a link to a Navy benefits calculator, the link is broken. The Navy benefits calculator can be easily found with an online search engine. The Navy benefits website links active-duty service members to DoD's retirement calculator page (NPS, 2017). The Navy benefits website links reservists to an Army website that no longer exists (NPC, 2017).

## b. Air Force

The Air Force calculator website requires a service member to answer 10 different questions. The output provided is a monthly estimate for the High-36 and the CSB/REDUX retirement plan as well as an estimate for the cost and an annuity estimate for the Survivor Benefit Plan (Air Force Personnel Center, 2017).

## 3. DoD Calculators

## a. Typical Scenarios

Before selecting a calculator, DoD provided a link for a service member to view typical retirement scenarios. For Officers, four scenarios were displayed: $0-5$ retiring at

20 years, $0-5$ retiring at 24 years, $0-6$ retiring at 30 years, and a CWO- 3 retiring at 22 years (DoD, 2017g). For enlisted service members, three scenarios were displayed: E-7 retiring at 20 years, E-8 retiring at 24 years, and an E-9 retiring at 30 years (DoD, 2017g). Each scenario displayed two charts; the first chart was the gross monthly retired pay and the second chart was the accumulated savings. Each scenario made an unchangeable assumption about the age of the service member at retirement, their life expectancy, and an eight percent rate of return (DoD, 2017g).

## b. Retirement Choice Calculator

This DoD retirement choice calculator was designed to show a service member a comparison between the High-36 and CSB/REDUX retirement plan (DoD, 2017f). DoD's retirement choice calculator directs Army service members to the My Army Benefits website and Air Force and Navy personnel to the Air Force retirement separations website. The Air Force website does not require a common access card (CAC) to access the website. The Army website requires a CAC.

## c. Regular Military Compensation Calculator

The Regular Military Compensation (RMC) calculator was designed to provide a service member with basic level of indirect and direct compensation received. The output shows a service member's total compensation, their taxable income after deductions, and that BAH and BAS are not taxable (DoD, 2017h). The RMC is used to determine the civilian salary equivalent (DoD, 2017h).

## d. Final Pay Calculator

DoD's Final Pay calculator allows a service member to adjust three career factors: projected year the service member will retire, number of years and months of creditable service, and the projected grade at retirement (DoD, 2017i). The Final Pay calculator requires a service member to select an average tax rate once retired and assumes an annual basic pay raise of 2.1 percent each year until retirement (DoD, 2017i). The output is broken into three parts: first, a summary results table showing monthly, annual, and cumulative
pay every 10 years, second, a projection of monthly pay each year for the next 40 years, and third, the cumulative pay at the end of each year for the next 40 years (DoD, 2017i).

## e. High-36 Calculator

The High-36 calculator link directly from DoD's retirement calculator website is broken. A quick search through an online search engine allows a service member to find the High-36 calculator. The High-36 calculator allows a service member to adjust the same factors and tax rate as the Final Pay calculator (DoD, 2017j). The High-36 calculator displays the data in the same output format as the Final Pay calculator (DoD, 2017j).

## f. CSB/REDUX Calculator

The CSB/REDUX calculator link directly from DoD's retirement calculator website is broken. The CSB/REDUX calculator can easily be found through an online search engine. The CSB/REDUX calculator requires a service member to following questions: what year they will reach 15 years of creditable service, the service member's age at 15 years of creditable service, the number of years and months of creditable service they are projected to have at retirement, their grade at retirement, and how much of the bonus will be invested in a retirement account after paying 25 percent tax (DoD, 2017k). The output model assumes an annual CSB/REDUX COLA increase of three-tenths of a percent and an annual return rate of five percent for the amount invested in a retirement account (DoD, 2017k). The CSB/REDUX output is formatted the same way as the High36, providing service members monthly and accumulated savings each year after retirement for the next 40 years (DoD, 2017k).

## g. Blended Retirement System Comparison Calculator

On May 9, 2018, DoD released a beta version of their Blended Retirement System Comparison Calculator (Jowers, 2017). DoD recommended that service members eligible to decide between the two retirement systems, complete their mandatory training prior to using the comparison calculator (DoD, 2017l). The calculator requires a service member to input information on the first six screens and then provides a summary between the

Legacy Retirement System and the Blended Retirement System on the seventh screen (DoD, 2017l).

The first screen requires a service member to select if they are in the active component or reserve component and if they plan to retire in the active or reserve component (DoD, 2017l). The second screen requires a service member to select when they were born, pay entry base date, current grade, estimated service length at retirement, and what month they would opt into the Blended Retirement System (DoD, 2017l). The drop down menu for the current grade does not include any of the prior-enlisted Officer grades. The third screen requires a service member to estimate their life expectancy, TSP withdrawal age, TSP contribution rate, and TSP average rate of return (DoD, 2017l). The fourth screen projects a service member's promotion until retirement; an override box allows a service member to increase the promotion timeline but not decrease it (DoD, 2017l). The fifth screen requires a service member to select the number of installments the career continuation pay bonus will be paid out over and the percent of the bonus invested into TSP (DoD, 2017l). The career continuation pay multiplier is fixed at 2.5 times a service member's basic monthly pay even though the multiplier can be between 2.5 to 13 times for active-duty service members. The highest percent the calculator will accept to be invested into TSP is 92 percent. Anything percent higher will default to 92 percent. The sixth screen requires a service member to choose what percent of a lump sum they elect to receive under the Blended Retirement System and the number of installments (DoD, 2017l). The GDR used in the lump sum calculation is not displayed.

The seventh screen, the summary page, has the following five tabs: overview, present value, TSP summary, lump sum, and all payments (DoD, 2017l). The overview tab displays the value between the two retirement systems in current and future dollars with a line chart and provides the value of each option below the graph (DoD, 2017l). The present value tab calculates what the value of each option is worth today but does not disclose the GDR (DoD, 2017l). The TSP summary tab shows the total amount a service member will have contributed to their TSP and the total government match (DoD, 2017l). The lump sum tab shows the payout based on the lump sum selected on the sixth screen (DoD, 2017l).

## L. COST OF LIVING ADJUSTMENT

Prior to the 1950 amendments, Social Security payments remained unchanged year after year (SSA, 2017f). The first increase came in September 1950 and the second increase in September 1952; retiree's payments increased 89.5 percent as a result (SSA, 2017f). Any subsequent increases required Congress to enact special legislation to increase Social Security payment to retirees (SSA, 2017f). In an effort to automate and streamline future Social Security increases, Congress legislated and President Nixon signed P.L. 92-336 in 1972 (SSA, 2017f). This law authorized a one-time, 20 percent increase in Social Security payments and automated annual COLA increases based on the CPI (SSA, 2017f). COLA increases were designed to thwart the negative impact of inflation upon retirees receiving Social Security. Even if the CPI was negative, COLA would not be negative; it would remain zero percent (DoD, 2017d).

The average COLA rate between 1975 and 2016 was 3.80 percent; the average COLA rate in the last 10 years was 1.72 percent (SSA, 2017f). Figure 4 graphs the volatility in COLA rate from 1975 to 2016 on a line chart.


Figure 4. COLA Rates from 1975 to 2016. Adapted from SSA (2017f).

## M. INFLATION

Inflation is a rise in the price of services and goods within a larger economy (Harvey, 2011). In other words, assuming a service member's compensation remains the same, their purchasing power will decrease as the cost of services and goods increase. In the short-term, between 2011 and 2016, inflation averaged 1.31 percent (World Bank, 2017). In the long-term, between 1975 and 2016, inflation averaged 3.87 percent (World Bank, 2017). Since recent inflation rates have been substantially lower than the long-term historical inflation average, using a long-term historical inflation average would be more appropriate for long-term retirement planning. Figure 5 graphs the inflation rate volatility between 1975 and 2016.


Figure 5. Inflation Rates from 1975 to 2016. Adapted from World Bank (2017).

The Federal Reserve’s (2017) annual inflation target rate is two percent. This rate reduces the risk of deflation is the economy weakens and promotes maximum employment and price stability (Federal Reserve, 2017). From 2013 through 2016, the U.S. inflation rate has been below the Federal Reserve's annual inflation target rate of two percent (World Bank, 2017).

Online Blended Retirement System training is mandated to help eligible Marines choose between the Legacy Retirement System and the Blended Retirement System. Command Financial Specialists and Personal Financial Management Specialists are available to help answer any questions a Marine may have but not make the decision for them. Only the Marine can chose between the two retirement systems. The decision must be made within calendar year 2018. Once made, it cannot be changed. It is up to the individual Marine to develop a retirement plan. Scenarios presented in Chapter III will assist a Marine Corps Officer in understanding and achieving their financial retirement goals.

THIS PAGE INTENTIONALLY LEFT BLANK

## III. PROBLEM

## A. SCENARIO OVERVIEW

Nine different scenarios were created to assist a Marine Corps Officer in understanding and achieving their financial retirement goals. Each scenario ran multiple times, holding all of the variables constant, except for the one being changed, to understand the impact of the changed variable.

- $\quad$ Scenario One shows how a Marine Corps Officer’s estimated net worth can be affected should retirement occur at the time intervals within the scenario.
- Scenario Two shows how quickly an Officer’s total savings can grow under different return rates.
- Scenario Three shows the impact the percent saved each year can have on the total savings accumulated after 20 years.
- $\quad$ Scenario Four shows the impact delayed savings can have on the total savings accumulated after 20 years.
- $\quad$ Scenarios Five through Nine show how many years it can take to accumulate a $\$ 1,000,000$ net worth.

The following promotion assumptions were made: the active-duty Marine Corps Officer was not prior enlisted and was promoted to the rank of First Lieutenant after three years' time-in-service, promoted to rank of Captain after six years' time-in-service, promoted to the rank of Major after 11 years’ time-in-service, was promoted to the rank of Lieutenant Colonel after 17 years' time-in-service, promoted to the rank of Colonel after 22 years’ time-in-service (not applicable for Scenarios Two, Three, and Four), and then received no further promotions until retirement.

Inflation and basic pay raises were removed to simplify the scenario. The amounts listed in each scenario are in future dollars. The final assumption was that savings were made in a tax deferred account.

## B. SCENARIOS

## 1. Scenario One

In Scenario One, three experiments were conducted, each with a different number of years served. The first experiment was with 20 years of service, the second with 25 years of service, and the third experiment with 30 years of service before retiring. In this scenario, the assumption is that the active-duty Marine Corps Officer saved 10 percent of their basic pay each year and achieved a six percent average annual rate of return. Appendix A shows the data and formulas used to calculate the output, the estimated net worth. Table 2 shows a tabular summary for Scenario One.

Table 2. Scenario One Summary

Scenario	Return   Rate	Retire   after	Estimated Net   Worth	\% saved
1	1	20 years	See 4.A.1	$10 \%$
		25 years	See 4.A.1	
		30 years	See 4.A.1	

## 2. Scenario Two

Four different experiments were conducted by adjusting the annual return rate in each experiment. The first experiment in Scenario Two used a two percent rate of return, the second experiment used a four percent rate of return, the third experiment used a six percent rate of return, and the fourth experiment used an eight percent rate of return. In Scenario Two, the Officer consistently saved 10 percent of their basic pay starting the year they joined the Marine Corps. Appendix B shows the data and formulas used to calculate the output, the savings accumulated after serving 20 years in the Marine Corps. Table 3 shows a tabular summary for Scenario Two.

Table 3. Scenario Two Summary

Scenario	Return   Rate	\% Saved	Savings Started	Savings after 20 years in Marine Corps
2	2\%	10\%	Year 1	See 4.A. 2
	4\%			See 4.A. 2
	6\%			See 4.A. 2
	8\%			See 4.A. 2

## 3. Scenario Three

In Scenario Three, four different experiments were conducted by changing the percent the Officer consistently saved each year, starting the year they joined the Marine Corps. The first experiment in Scenario Three was with an Officer who saved five percent of their basic pay, the second experiment used a 10 percent savings rate, the third experiment used a 15 percent savings rate, and the fourth and final experiment used a 20 percent savings rate. Appendix $C$ shows the data and formulas used to calculate the output, the savings accumulated after serving 20 years in the Marine Corps. Table 4 shows a tabular summary for Scenario Three.

Table 4. Scenario Three Summary

Scenario	Return Rate	\% Saved	Savings Started	Savings after 20 years in Marine Corps
3	6\%	5\%	Year 1	See 4.A. 3
		10\%		See 4.A. 3
		15\%		See 4.A. 3
		20\%		See 4.A. 3

## 4. Scenario Four

In Scenario Four, four different experiments were conducted by adjusting the year that a Marine Corps Officer started saving after joining the Marine Corps. The first experiment was with an Officer who started to save the year they joined the Marine Corps,
the second experiment used an Officer who started to save after being in the Marine Corps for five years, the third experiment used an Officer who started to save after being in the Marine Corps for 10 years, and the final experiment in Scenario Four used an Officer who started to save after being in the Marine Corps for 15 years. Appendix D shows the data and formulas used to calculate the output, the savings accumulated. Table 5 shows a tabular summary for Scenario Four.

Table 5. Scenario Four Summary

Scenario	Return   Rate	\%   Saved	Savings   Started	Savings after   20 years in   Marine Corps
4		$6 \%$	Year 1	See 4.A.4
	$10 \%$		See 4.A.4	
		Year 10	See 4.A.4	
		Year 15	See 4.A.4	

## 5. Scenarios Five through Nine

An experiment consisting of five different scenarios was conducted to determine the time horizon for a Marine Corps Officer to achieve a hypothetical financial retirement goal, a net worth of $\$ 1,000,000$. Scenarios Five through Nine assumed that an active-duty Marine Corps Officer saved 100 percent of their savings into one specific Thrift Savings Plan (TSP) fund. Table 1 in Chapter II describes each TSP fund in greater detail.

In Scenarios Five through Nine, each scenario conducted three experiments by changing the percent of basic pay saved by the Officer throughout their career in the Marine Corps. The following percentages of basic pay saved are common amongst Scenarios Five through Nine: five percent, 10 percent, and 15 percent of an Officer’s basic pay. It is assumed that all savings started as soon as the Officer joined the Marine Corps. After 30 years time-in-service, the Marine Corps Officer retired and started working at a new job two months later. The retired Officer stayed at this job for the next 12 years. The new job's salary was equal to the Marine Corps Officer's monthly basic pay prior to retirement. In addition, the Officer received 75 percent of their basic pay under the legacy retirement
system each month. It is also assumed that when the Officer joined the Marine Corps, they had no debt or savings.

Scenario Five used a return rate of 2.63 percent, Scenario Six used a return rate of 4.59 percent, Scenario Seven used a return rate of 7.00 percent, Scenario Eight used a return rate of 8.13 percent, and Scenario Nine used a return rate of 1.02 percent. Appendix E, F, G, H, and I, respectively, show the data and formulas used to calculate the output, the time (in years) it would take to accumulate a $\$ 1,000,000$ net worth. All of the return rates reflect TSP's actual 10 year compound return rate ending in 2016 for each TSP fund (TSP, 2017g). Table 6 shows a tabular summary of Scenarios Five through Nine.

Table 6. Scenarios Five through Nine Summary

Scenario	TSP   Fund	Return   Rate	\% Saved	Time to accumulate \$1,000,000 net worth
5	G Fund	2.63\%	5\%	See 4.A. 5
			10\%	See 4.A. 5
			15\%	See 4.A. 5
6	F Fund	4.59\%	5\%	See 4.A. 5
			10\%	See 4.A. 5
			15\%	See 4.A. 5
7	C Fund	7.00\%	5\%	See 4.A. 5
			10\%	See 4.A. 5
			15\%	See 4.A. 5
8	S Fund	8.13\%	5\%	See 4.A. 5
			10\%	See 4.A. 5
			15\%	See 4.A. 5
9	I Fund	1.02\%	5\%	See 4.A. 5
			10\%	See 4.A. 5
			15\%	See 4.A. 5

## C. DECISION SUPPORT TOOL FOR RETIREMENT PLANNING

## 1. Overview

The decision support tool for retirement planning was created using the 2013 version of Microsoft Excel with a Microsoft Windows operating system. Opening the tool in a medium with a different operating system, like an iPad for example, may prevent a service member from viewing comments that were added to specific cells to prevent the tool from becoming too busy.

The decision support tool for retirement planning has six different tabs. The first and second tabs were tailored specifically for service members with a basic understanding of retirement; these tabs are titled Basic Cash Flow and Basic Net Worth. These tabs are not as detailed as the advanced tabs for net worth and cash flow but are close enough for a service member to use to make informed decisions from.

The third and fourth tabs are the advanced versions of net worth and cash flow titled Advanced Cash Flow and Advanced Net Worth. These advanced tabs were tailored specifically for service members with an advanced understanding of retirement finance. Each advanced tab includes all of the input variables used in the basic version and includes additional input variables to provide a service member with a more accurate output.

The fifth tab, titled BRS vs LRS, stands for Blended Retirement System versus the Legacy Retirement System. Only one version was created because the integrity of the output was compromised in a basic version that removed one or more input variables. To mitigate the complexity of this tab, additional comments were added to explain concepts and terms in the tab.

The sixth tab, titled Data \& Calculations, is a repository for data used by one or more of the other tabs. This tab includes the military basic pay chart for Officers with two or less years time-in-service all the way through 40 years of time-in-service. This pay chart is only applicable to active-duty Officers.

Some of the cells within each tab have a red triangle in the upper right hand corner of a cell. This is an indicator that the cell has a comment. Comments were added to provide
additional information for a service member to understand a concept or term used within the respective tab.

Each tab has is a legend in the lower right hand corner of the screen. Gray colored cells are formulated and it is highly recommend that service members do not modify any of the gray colored cells. Modifying one or more gray colored cells will likely affect other cells that reference the cell modified. This could compromise the integrity of the entire tool. Yellow colored cells are input cells, which should be changed based on a service member's unique situation.

## 2. Description of Terms

## a. Appreciating Assets

Appreciating assets are expected in the long-term to achieve a positive rate of return but in the short term, due to volatility, may yield a negative rate of return. Appreciating assets are further broken down into three different categories: tax exempt, tax deferred, and taxable. If an asset is tax exempt, investment earnings grow tax free and are not taxed upon withdrawal if the Internal Revenue Service (IRS) individual retirement account (IRA) rules are followed. Tax deferred assets allow investment earnings to grow tax free until withdrawn. Assets withdrawn from a tax exempt and tax deferred account may trigger an IRS early withdrawal penalty of 10 percent if the funds are withdrawn before the age of 59.5 years old and are not exempted under the IRS publication 590-B (IRS, 2017b). Realized investment earnings for taxable assets will require a service member to report the earnings when filing their next tax return.

## b. Depreciating Assets

Depreciating assets can lose value each year, even if they are not used. According to Forbes Magazine, a new car can lose 20 percent of its value as soon as it is driven off the dealer's lot (Elliott, 2010). The value of the vehicle continues to fall as the odometer on the vehicle rises.

## c. Debt

Any money you owe is considered debt. For example, if you own a home but have a first mortgage, then list the home as an appreciating asset and the first mortgage as a debt. If the entire credit card balance is not paid off each month, then the balance should be listed as a debt. If the credit card balance is paid off each month, then write down that there is a credit card under debt but list the balance owed as $\$ 0.00$. The interest rate charged on debt can either be a fixed rate or a variable rate. Variable rates tend to be initially lower than fixed rates but can be changed based on how the rate is indexed.

## d. Average Return Rate

The average return rate used within the tool represents the weighted average annual return rate for appreciating assets. This rate is defined after any management or administration fees incurred from the funds invested in are subtracted. The rate should not be reduced by taxes.

## e. Estimated Net Worth

The estimated net worth value listed within the decision support tool for retirement planning reflects pre-taxed values. An estimated net worth value can be further reduced if assets in a tax deferred or from a tax exempt account are withdrawn under conditions not approved by the IRS.

## f. Risk Appetite

Statistically speaking, investing in lottery tickets with the hope of winning millions of dollars is a high risk investment because of the low probability of winning. A low risk investment can include a certificate of deposit, which provides a small but consistent interest payment on a consistent basis. Some service members may be comfortable with extreme volatility in exchange for a chance at obtaining a higher rate of return. Other service members may have a medium risk appetite and decide to invest in a diversified mutual fund.

## D. BASIC CASH FLOW

## 1. Basic Cash Flow Inputs

Starting from left to right, a service member should list their incoming monthly pay, monthly expenses, any outstanding debt, balanced owed on the debt, the interest rate on the debt, the monthly payment made on the debt, federal taxes, state taxes, and any local taxes. The basic cash flow inputs only impacts a service member's current cash flow. The input cells are colored yellow.

## 2. Basic Cash Flow Outputs

The formulated cells for the Basic Cash Flow tab are: incoming subtotal, expenses subtotal, debt subtotal, taxes subtotal, and the net cash flow. All of these figures reflect monthly values. The formulated cells are colored gray. Data from the output cells was graphed using a pie chart. Figure 6 is a screenshot of the Basic Cash Flow tab.


Figure 6. Basic Cash Flow Tab

## E. BASIC NET WORTH

## 1. Basic Net Worth Inputs

Starting from left to right the following should be inputted (if applicable): the pretaxed value of each type of appreciating asset, their respective annual return rate, each depreciating asset, their value, each type of debt, the balance owed for each debt, the annual interest rate, the monthly payment, and the current year. The input cells are colored yellow.

## 2. Basic Net Worth Outputs

The formulated cells for the Basic Net Worth are: appreciating assets subtotal, depreciating assets subtotal, debt subtotal, monthly savings, and average return rate. Formulated cells are colored gray. The monthly savings comes from the net cash flow value calculated in the Basic Cash Flow tab.

A line chart graphed the future value of the estimated net worth output data for the current and following 39 years. The estimated net worth calculation assumed that depreciating assets did not lose their value over time and that the interest rates on each debt were fixed. Figure 7 is a screenshot of the Basic Net Worth tab.


Figure 7. Basic Net Worth Tab

## F. ADVANCED CASH FLOW

## 1. Advanced Cash Flow Inputs

From the left to right the following should be inputted (if applicable): age, current year, any incoming income (listed as a monthly figure), outgoing debt and expenses (listed as a monthly figure), pension cost of living adjustment (COLA), Social Security COLA, and the year the Officer plans to retire from the military. Input cells are colored yellow.

## 2. Advanced Cash Flow Outputs

The output for the advanced cash flow is the monthly net cash flow for the current year as well as for the next 39 years. A line chart graphed the output data. Future net cash flows can significantly change based on the retirement system pension a service member retires under, if they plan on working after retiring from the military, and at what age they elect to start receiving Social Security retirement benefits. In the event of a cash flow shortfall, the assumption was that the shortfall would be subtracted from their net worth instead of reducing expenditures to return to a positive or break-even cash flow. In the event of a cash flow surplus, the assumption was that the surplus would be invested, instead of being spent. The formulated cells are colored gray. Figure 8 is a screenshot of the Advanced Cash Flow tab.


Figure 8. Advanced Cash Flow Tab

## G. ADVANCED NET WORTH

## 1. Advanced Net Worth Inputs

Starting from left to right the following should be inputted (if applicable): the pretaxed value of each type of appreciating asset, their respective annual return rate, depreciating assets, their value, the percent it is expected to depreciate each year, each type of debt, the balance owed for each debt, the annual interest rate on each debt owed, monthly payment paid on each debt, monthly basic pay, percent of basic pay saved to TSP, percent of basic pay raise saved, the government match (applies only to service members under the Blended Retirement System), the year the Officer expects to retire from the military, the current year, estimated return rate, and inflation rate. The input cells are colored yellow.

## 2. Advanced Net Worth Outputs

The output for the advanced net worth is the present and future value of the estimated net worth for the current year as well as for the next 39 years. A line chart graphed the output data. The present value was calculated by discounting the future value with the number inputted in cell M17. Formulated cells include appreciating assets subtotal, total assets, weighted average return rate for appreciating assets, depreciating assets subtotal, total debt, and weighted average interest rate for debt. The formulated cells are colored gray. Figure 9 is a screenshot of the Advanced Net Worth tab.


Figure 9. Advanced Net Worth Tab

## H. BLENDED RETIREMENT SYSTEM VERSUS LEGACY RETIREMENT SYSTEM

## 1. Blended Retirement System versus Legacy Retirement System Inputs

A list of inputs for the Blended Retirement System and the Legacy Retirement System were consolidated in Table 7. These values should be changed based on an Officer's unique situation. Yellow colored cells are input cells.

Table 7. Blended Retirement System versus Legacy Retirement System Inputs

Inputs: Blended Retirement System vs. Legacy Retirement System	
	Example
Monthly Budget (invest the rest)	\$3,829
Annual return rate	4.50\%
Retire at ___years	20
High -36 average	\$7,658
Current year	2017
Year retired from military	2026
Year Marine turns 67	2051
Average annual COLA raise	2.65\%
Average annual inflation	2.80\%
\% invested in TSP	16.00\%
Career continuation pay (CCP)	
Multiplier	2.5
Monthly pay	\$6,124
\% of CCP invested in TSP	100\%
CCP tax rate	15\%
Lump Sum	
Government discount rate	6.27\%
$\%$ of lump sum invested	100\%
$\begin{array}{llll} \hline \begin{array}{c} \text { Lump } \\ (\text { fed }+ \text { state }+ \text { local }) \end{array} & \text { tax } & \text { rate } \\ \hline \end{array}$	20\%
\% Gov't auto contribute + match	5.00\%

## 2. Blended Retirement System versus Legacy Retirement System Outputs

The Blended Retirement System versus Legacy Retirement System output is the monthly pension and the total retirement value, starting the year the Officer retires from the military and for the next 39 years. A line chart graphed the output from the total retirement value and a separate line chart graphed the monthly pension. Each graph has four lines depicting the four different retirement options.

- Option 1: The Legacy Retirement System.
- Option 2a: The Blended Retirement System with 0 percent lump sum
- Option 2b: The Blended Retirement System with a 50 percent lump sum
- Option 2c: The Blended Retirement System with a 25 percent lump sum Formulated cells are colored gray. The formulated cells from the left to the right are: Career Continuation Pay (after tax), net present value of the Blended Retirement System's 50 percent lump sum (after tax), and the net present value of the Blended Retirement System's 25 percent lump sum (after tax), current year, the next 39 years, and years until retirement. Figure 10 is a screenshot of the two output graphs in the Blended Retirement System versus Legacy Retirement System tab.


Figure 10. Blended Retirement System versus Legacy Retirement System Output Graphs

## I. RETIREMENT TOOL COMPARISON

## 1. Overview

The Blended Retirement System versus Legacy Retirement System tab within the decision support tool for retirement planning was compared to a commercial and a government tool that was specifically designed to help eligible service members choose between the Blended Retirement System and the Legacy Retirement System. A comparison was conducted through two case studies. The first case study conducted a comparison between the inputs variables and the outputs available within each tool. The second case study fed the same input variables through each tool to compare the output data in future dollars for three different Marine Corps Officers.

## 2. Case Study One

The left column in Table 8 shows the inputs being compared amongst the following tools in the right hand columns: commercial, government, and thesis. A " $\checkmark$ " in a green colored cell was placed in the respective commercial, government, or thesis column that answered yes to the input listed. An " $X$ " in a red colored cell was placed in the respective commercial, government, or thesis column that answered no to the input listed. Table 9 did the same thing for outputs.

Table 8. Case Study One Input Summary

INPUTS	Commercial	Government	Thesis
Supports active-duty service members	See 4.B.1.a	See 4.B.1.a	See 4.B.1.a
Supports reserve service members			
Able to select between all ranks			
Able to select or input years served			
Able to fully adjust average retum rate			
Able to select or input retire at ___ years			
Able to select or input age turn 67			
Able to fully adjust average COLA raises			
Able to fully adjust amnual inflation			
Able to fully adjust service member percent invested in TSP			
Able to select or input a retirement budget			
Able to fully adjust the Career Continuation Pay (CCP) multiplier			
Able to fully adjust the percent of the CCP invested into TSP			
Able to fully adjust when the CCP will be received			
Able to adjust the tax rate on the CCP			
Able to adjust CCP over 1-4 installments			
Able to fully adjust the Blended Retirement System (25 or $50 \%$ lump sum discount rate (referred to as Government Discount Rate)			
Able to fully adjust the \% of the lump sum invested			
Able to fully adjust the tax rate on the lump sum			
Able to fully adjust the govemment auto contribution and match			
Able to adjust lump sum being received over 1-4 installments			
Able to adjust life expectancy			
Able to adjust TSP withdrawal age			

Table 9. Case Study One Output Summary

OUTPUTS	Commercial	Government	Thesis
Calculates monthly pension for legacy retirement   system	See 4.B.1.b	See 4.B.1.b	See 4.B.1.b
Calculates monthly pension for Blended   Retirement System with 0\% lump sum			
Calculates monthly pension for Blended   Retirement System with 25\% lump sum			
Calculates monthly pension for Blended   Retirement System with 50\% lump sum			
Calculates present value of both retirement   systems			
Calculates future value of both retirement systems			
Calculates Career Continuation Pay			
Calculates TSP savings (based on service   member's contribution and government auto   contribution and match)			

## 3. Case Study Two

The second case study was conducted with an active-duty Second Lieutenant Officer with one year time-in-service, an active-duty Captain with six years’ time-inservice and an active-duty Major with 11 years’ time-in-service as of December 31, 2017. The Second Lieutenant started saving after one year time-in-service, the Captain started to save after six years' time-in-service, and the Major started to save after 11 years' time-inservice. The commercial, government, and thesis' tool will compare the value of the four different retirement options in future dollars.

- Option 1: The Legacy Retirement System.
- Option 2a: The Blended Retirement System with 0 percent lump sum
- Option 2b: The Blended Retirement System with a 50 percent lump sum
- Option 2c: The Blended Retirement System with a 25 percent lump sum

Table 10 lists the assumptions for an active-duty Marine Corps Officer without prior enlisted time.

Table 11 is a summary of the comparison being conducted within case study two.

Table 10．Case Study Two Assumptions

	First   Lieutenant	Captain	Major	Lieutenant   Colonel
Promotion（time－in－service）	3 years	5 years	10 years	17 years
Retire	After 20 years time－in－service at age 42			
Life expectancy	87 years			
Career Continuation Pay	$2.5 \times$ basic monthly pay at 12 years time－in－service			
Average tax rate	$25 \%$			
Contribute to TSP	$10 \%$			
Lump Sum Discount Rate	$6.99 \%$			
Average return rate	$7 \%$			
Cost of Living Adjustment	$1.90 \%$			
Inflation	$1.90 \%$			

Table 11．Case Study Two Summary

Lifetime Retirement Benefit（Future Dollars）	Commercial	Government	Thesis
号．Blended Retirement System 0\％Lump Sum			
䛔 Blended Retirement System 25\％Lump Sum			
出 $=$ Blended Retirement System 50\％Lump Sum			


	Legacy Retirement System			
	Blended Retirement System 0\％Lump Sum			
	Blended Retirement System 25\％Lump Sum			
c	Blended Retirement System 50\％Lump Sum			


	Legacy Retirement System			
	Blended Retirement System 0\％Lump Sum			
	Blended Retirement System 25\％Lump Sum			
	Blended Retirement System 50\％Lump Sum			

THIS PAGE INTENTIONALLY LEFT BLANK

## IV. DATA ANALYSIS

## A. SCENARIO RESULTS

## 1. Scenario One

In Scenario One, assuming a six percent average annual rate of return and an activeduty Marine Corps Officer saving 10 percent of their basic pay each year, an Officer could expect to accumulate an estimated net worth of \$270,021 after 20 years of time-in-service, \$433,600 after 25 years of time-in-service, and \$659,889 after 30 years of time-in-service in the Marine Corps. Table 12 shows Scenario One’s results in tabular form.

Table 12. Results for Scenario One

Scenario	Return   Rate	Retire   after	Estimated   Net Worth	\% saved
1	$6.00 \%$	20 years	$\$ 270,021$	$10 \%$
		25 years	$\$ 433,600$	
		30 years	$\$ 659,889$	

## 2. Scenario Two

The largest savings, \$331,766, accumulated after 20 years' time-in-service in the Marine Corps, occurred with an eight percent annual return rate when savings were started the same year the Officer joined the Marine Corps. The second largest savings, \$270,021, were achieved with an annual return rate of six percent. The third largest savings, $\$ 221,335$, were achieved with an annual return rate of four percent. The smallest savings, $\$ 182,817$, were achieved with a two percent annual return rate. Table 13 shows Scenario Two’s results in tabular form.

Table 13. Results for Scenario Two

Scenario	Return   Rate	$\%$   Saved	Savings   Started	Savings after 20   years in Marine   Corps
2	$2 \%$			$\$ 182,817$
	$4 \%$		$\$ 221,335$	
	$6 \%$	$0 \%$	Year 1	$\$ 270,021$
				$\$ 331,766$

## 3. Scenario Three

In Scenario Three, assuming a six percent average annual rate of return and an active-duty Marine Corps Officer who started saving the year they joined the Marine Corps, could expect to accumulate $\$ 135,010$ if they saved five percent of their basic pay, $\$ 270,021$ if they saved 10 percent of their basic pay, $\$ 405,031$ if they saved 15 percent of their basic pay, and $\$ 540,042$ if they saved 20 percent of their basic pay. Table 14 shows Scenario Three's results in tabular form.

Table 14. Results for Scenario Three

Scenario	Return Rate	\% Saved	Savings Started	Savings after 20 years in Marine Corps
3	6\%	5\%	Year 1	\$135,010
		10\%		\$270,021
		15\%		\$405,031
		20\%		\$540,042

## 4. Scenario Four

Scenario Four assumed a six percent annual rate of return and that the Officer saved 10 percent of their basic pay. If savings were started the year the Officer joined the Marine Corps, then they could expect to accumulate $\$ 270,021$. If savings were started after being in the Marine Corps for five years, the Officer could expect to accumulate $\$ 218,864$. If
savings were started 10 years after joining the Marine Corps, an Officer could expect to accumulate $\$ 143,242$ after serving 20 years. If savings were started 15 years after joining the Marine Corps, an Officer could expect to accumulate \$72,529 after serving 20 years in the Marine Corps. Table 15 shows the results from Scenario Four in tabular form.

Table 15. Results for Scenario Four

Scenario	Return   Rate	\%   Saved	Savings   Started	Savings   after 20   years in   Marine   Corps
4	$6 \%$	$10 \%$	Year 1	$\$ 270,021$
			$\$ 218,864$	
		Year 10	$\$ 143,242$	
		Year 15	$\$ 72,529$	

## 5. Scenarios Five through Nine

Scenario Nine, with an assumed five percent savings rate generated the longest time period to accumulate a net worth of $\$ 1,000,000$ requiring 98 years. Scenario Five, with an assumed five percent savings rate, generated the second longest time period by taking 67 years. Scenario Nine, with an assumed savings rate of 10 percent, generated the third longest time period by requiring 61 years. Scenario Six with an assumed savings rate of five percent, generated the fourth longest time period by taking 51 years. Scenario Eight had the shortest time period to accumulate a net worth of $\$ 1,000,000$ with an assumed savings rate of 15 percent by taking 27 years. Table 16 shows a summary of the number of years required to accumulate a net worth of $\$ 1,000,000$.

Table 16. Results for Scenario’s Five through Nine

Scenario	TSP   Fund	Return Rate	$\begin{gathered} \% \\ \text { Saved } \end{gathered}$	Time to accumulate $\$ 1,000,000$ net worth
5	G Fund	2.63\%	5\%	67 years
			10\%	46 years
			15\%	37 years
6	F Fund	4.59\%	5\%	51 years
			10\%	38 years
			15\%	33 years
7	C Fund	7.00\%	5\%	41 years
			10\%	33 years
			15\%	29 years
8	S Fund	8.13\%	5\%	38 years
			10\%	31 years
			15\%	27 years
9	I Fund	1.02\%	5\%	98 years
			10\%	61 years
			15\%	43 years

## B. DECISION SUPPORT TOOL FOR RETIREMENT PLANNING RESULTS

Each Officer's output for the Basic Cash Flow, Basic Net Worth, Advanced Cash Flow, and Advanced Net Worth will be different based on input variables reflecting their unique situation. Line and pie charts were added to help Officers absorb the large amount of output data.

## 1. Case Study One

## a. Input Results

Table 17 shows whether the commercial, government, and thesis tool answered yes or no to the 23 inputs listed. The commercial tool had four yes's and 19 no's, the government tool had 15 yes's and eight no's, and the thesis tool had 18 yes's and five no's.

Table 17. Case Study One Input Results.

INPUTS	Commercial	Government	Thesis
Supports active-duty service members	$\checkmark$	$\checkmark$	$\checkmark$
Supports reserve service members	$\checkmark$	$\checkmark$	x
Able to select between all ranks	x	x	$\checkmark$
Able to select or input years served	x	$\checkmark$	$\checkmark$
Able to fully adjust average retum rate	$\checkmark$	$\checkmark$	$\checkmark$
Able to select or input retire at _ years	x	$\checkmark$	$\checkmark$
Able to select or input age turn 67	x	x	$\checkmark$
Able to fully adjust average COLA raises	x	x	$\checkmark$
Able to fully adjust annual inflation	x	$\checkmark$	$\checkmark$
Able to fully adjust service member percent invested in   TSP	x	x	$\checkmark$
Able to select or input a retirement budget	x	$\checkmark$	$\checkmark$
Able to fully adjust the Career Continuation Pay (CCP)   multiplier	x	$\checkmark$	$\checkmark$
Able to fully adjust the percent of the CCP invested into   TSP	x	$\checkmark$	$\checkmark$
Able to fully adjust when the CCP will be received	x	x	$\checkmark$
Able to adjust the tax rate on the CCP	x	$\checkmark$	x
Able to adjust CCP over l - 4 installments	x	x	$\checkmark$
Able to fully adjust the Blended Retirement System (25   or 50\% lump sum discount rate (referred to as   Government Discount Rate)	x	$\mathrm{\checkmark}$	
Able to fully adjust the \% of the lump sum invested	x	x	$\checkmark$
Able to fully adjust the tax rate on the lump sum	x	x	$\checkmark$
Able to fully adjust the govermment auto contribution   and match	x	$\checkmark$	$\checkmark$
Able to adjust lump sum being received over 1 - 4   installments	x	$\checkmark$	x
Able to adjust life expectancy	x	$\checkmark$	x
Able to adjust TSP withdrawal age	x	$\checkmark$	x

Adapted from DoD (2017l); USAA (2017).

## b. Output Results

The commercial tool had two yes's and six no's. The government and thesis tool both had eight yes's. Table 18 shows whether the commercial, government, and thesis tool answered yes or no to the eight different outputs listed.

Table 18. Case Study One Output Results.

OUTPUTS	Commercial	Government	Thesis
Calculates monthly pension for legacy retirement   system	$\checkmark$	$\checkmark$	$\checkmark$
Calculates monthly pension for Blended   Retirement System with 0\% lump sum	$\checkmark$	$\checkmark$	$\checkmark$
Calculates monthly pension for   Retirement System with 25\% lump sum	Xlended	$\checkmark$	$\checkmark$
Calculates monthly pension for Blended   Retirement System with 50\% lump sum	X	$\checkmark$	$\checkmark$
Calculates present value of both retirement   systems	X	$\checkmark$	$\checkmark$
Calculates future value of both retirement systems	X	$\checkmark$	$\checkmark$
Calculates Career Continuation Pay	X	$\checkmark$	$\checkmark$
Calculates TSP savings (based on service   member's contribution and government auto   contribution and match)	X	$\checkmark$	$\checkmark$

Adapted from DoD (2017l); USAA (2017).

## 2. Case Study Two

The commercial tool only calculated the Legacy Retirement System and the Blended Retirement System with a zero percent lump sum. For the Second Lieutenant with one year time-in-service, the thesis tool calculated the highest lifetime retirement benefit under the Blended Retirement System with a zero percent lump sum. For the Captain with six years' time-in-service, the thesis tool calculated the highest lifetime retirement benefit under the Legacy Retirement System. For the Major with 11 years’ time-in-service, the government tool calculated the highest lifetime retirement benefit under the Legacy Retirement System. Table 19 shows the lifetime retirement benefits in future dollars as calculated by the commercial, government, and thesis tool.

Table 19. Results for Case Study Two.

Lifetime Retirement Benefit (Future Dollars)		Commercial	Government	Thesis
	Legacy Retirement System	\$ 5,365,595	\$ 7,524,393	\$ 8,434,030
	Blended Retirement System 0\% Lump Sum	\$ 7,829,604	\$8,035,112	\$8,827,132
	Blended Retirement System 25\% Lump Sum	Does not calculate	\$7,632,366	\$8,747,510
	Blended Retirement System 50\% Lump Sum	Does not calculate	\$7,229,620	\$8,787,321



	Legacy Retirement System	\$	4,445,530	\$ 5,292,744	\$ 5,173,441
	Blended Retirement System 0\% Lump Sum	\$	5,138,311	\$4,851,494	\$3,344,124
	Blended Retirement System 25\% Lump Sum		Does not calculate	\$4,568,198	\$ 2,459,164
	Blended Retirement System 50\% Lump Sum		Does not calculate	\$4,284,902	\$2,901,644

Adapted from DoD (2017); USAA (2017).

THIS PAGE INTENTIONALLY LEFT BLANK

## V. RESULTS

## A. SUMMARY

Marines who are saving 5,10 , or even 15 percent of their basic pay, should not expect to achieve a net worth of over $\$ 500,000$ unless their average rate of return is well above the 10 year compounded average return rate achieved within any of the Thrift Savings Plan (TSP) funds. Scenario One showed that an estimated net worth can increase exponentially over time, assuming that the return rate and percent save remain constant. A resulting conclusion is that an Officer may need to delay retirement to achieve their retirement goals by either staying in the Marine Corps longer or by starting a second career after retiring from the Marine Corps.

Scenario Two showed how the return rate impacted the accumulated savings after 20 years. An Officer who invests only in low risk, low return funds should expect in the long-term, to have a smaller net worth than an Officer who takes a more aggressive investing approach and achieves a higher average rate of return. Usually, the higher the rate of return, the greater the volatility and risk associated with that investment. An Officer may decide to scale back their retirement goals to align with the level of risk they are comfortable with taking, increase their risk appetite to achieve their retirement goals, or pursue a hybrid approach and adjust both their risk appetite and their retirement goals.

Scenario Three was similar to Scenario One but used different percents of basic pay saved. For every additional five percent of basic pay saved, an Officer's savings after 20 years would increase by $\$ 135,010$. The resulting conclusion is that the greater the percent of their basic pay that an Officer saves, the greater their accumulated savings can likely be when they retire from the Marine Corps.

Scenario Four showed the impact of an Officer's accumulated savings at 20 years for each five year increment that savings were delayed. Making catch-up contributions later in an Officers career may not be enough to close the difference required to achieve an Officer's retirement goals. The resulting conclusion is to save as much as an Officer can, as early as they can.

Scenario Five through Nine showed the time (in years) it would take to accumulate a net worth of $\$ 1,000,000$ if a Marine Corps Officer invested all of their savings in one specific TSP fund. A higher average return rate reduced the time it took to accumulate a $\$ 1,000,000$ net worth. As the percent of basic pay saved increases, it further reduced the time it took to accumulate a $\$ 1,000,000$ net worth. The resulting conclusion is for an Officer to manage their expectations with how many years it will take them to accumulate a net worth of $\$ 1,000,000$.

Case Study One showed the input and output differences between the commercial, government, and thesis tool. The commercial tool had the lowest overall flexibility, followed by the government tool, and then the thesis tool. The resulting conclusion is that for an Officer to select the best tool for them, they will need to understand each tools’ input and output limitations.

Case Study Two showed the lifetime retirement benefits in future dollars as calculated by the commercial, government, and thesis tool. If the same inputs were put into each tool, an Officer at first may believe that one or more of the tools' calculations are wrong. An Officer who looks back at Case Study One may discover the link between the different results and whether the tool included each input variable into their calculation.

## B. RECOMMENDATIONS

Use the decision support tool for retirement planning instead of using Department of Defense's (DoD) Blended Retirement System Comparison Calculator or the United Services Automobile Association's (USAA) Retirement Comparison Tool because these tools prevent a service member from adjusting one or more of the variables. For example, DoD's Blended Retirement System Comparison Calculator does not allow a service member to adjust the Government Discount Rate (GDR) used in calculating the lump sum, decrease the projected promotion rate, and pick from any of the prior enlisted, Officer grades.

Use the Decision Support Tool for retirement planning, electronically attached to this thesis, as a template to determine where an Officer is, financially, right now. The next step would be to review what the net worth is projected to be if the same financial habits
are maintained. If the results are satisfying, no further action is required. For everyone else, adjust the variables within the tool to understand what it would take to reach for unique financial retirement goals to be reached.

Treat the decision support tool for retirement planning as a working document. Review the working document at least once a year but not more than once a quarter to ensure that the working document aligns with the financial retirement goals and risk appetite. Reviewing the working document more often may increase irrational and impulsive decisions caused by short-term volatility in the financial market. It is better to maintain a long-term strategy.

Saving for retirement is a balancing act. It will require a lot of reflection to determine the appropriate amount to save for the future. One extreme is to save every penny possible to have a bountiful and lavish retirement. The other extreme is to take on debt to fuel a life style of living beyond a Marine's means. Almost all service members will be somewhere in between. If applicable, include a spouse when creating and reviewing the retirement plan to agree on the best way forward.

For Officers eligible to choose between the two military retirement systems, choose one and "do not look back." Due to the infancy of the Blended Retirement System, further changes may occur. One such change could be extending automatic and potential matching contributions past 26 years of service. Another change could be the formula used for calculating the lump sum GDR under the Blended Retirement System. Even a small change to the GDR could affect a lump sum payout by thousands of dollars. Make a decision based on the facts known at the present day.

For Officers eligible to decide between the two retirement systems, it is recommended that Officers focus at present on whether the Legacy Retirement System or the Blended Retirement System with a zero percent lump sum provides the highest total value over their expected life span. Since future lump sum GDRs are unknown and are subject to change every calendar year, Officers should not focus present day on which lump sum option to select within the Blended Retirement System. One year before retirement, Officers should review the GDR to determine if taking a lump sum makes sense for their
unique situation. A retirement choice that looks valuable in the short run (at or near retirement) may not necessarily be the most valuable choice in the long run.

Retirement finance is like a foreign language. It will take time to learn. For those who do not have the time or desire to manage their retirement assets, they should seek the professional advice of a financial expert. For Officers who want to take an active role in managing their retirement assets, working with a financial expert may help prevent an Officer from making one or more expensive mistakes. Stay engaged, and ask as many questions as necessary to ensure that the retirement plan aligns with the risk appetite and retirement goals of each officer and their situation.

## C. FURTHER STUDY

If minor modifications to the tool are made, this tool could be beneficial to DoD enlisted service members. This tool could also be beneficial to DoD civilians with further modifications.

Turning the tool into an application may increase the tool's popularity among millennials and "Generation Z" Americans. Making videos might assist users who learn better by seeing or listening than by reading.

## APPENDIX A. SCENARIO ONE DATA



THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX B. SCENARIO TWO DATA



Cumulated savings calculation:
$=($ (Monthly Basic Pay x $12 \times \%$ Saved $)+$ Prior year's cumulated savings) $\mathrm{x}(1+$ Return Rate $)$

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX C. SCENARIO THREE DATA

Time ln Service (Vrs)	Rank	Morthly Basio Pay		Cumulated savings with each percent saved									
					5\%		10\%		15\%		20\%	Vatiables	
1	0-1	4	3,035	5	1950	\%	3,850	5	5,790	4	7,721		
2	0-1	5	3,035	5	3,976	5	7,952	5	11928	+	15,904	6.0\%	Retuin Rate
3	0-2	4	3,982	5	6,747	\%	13,495	5	20,242	\%	26,989		
4	0-2	4	4,586	5	10.069	\$	20,138	5	30.207	\$	40.276		
5	0-2	4	4,741	5	13,688	\$	27,377	5	41.065	\$	54,754		
6	0-3	5	5,657	5	18,108	\$	36,215	5	54,323	\%	72,431		
7	O-3	5	5,657	5	22,792	5	45,584	5	68,376	\%	91,168		
8	O-3	4	5,941	5	27,938	\%	55,876	5	83,814	+	111,752		
9	O-3	+	5,941	5	33,393	*	66,796	5	100,178	5	133,571		
10	0-3	4	6,124	5	39,291	*	78,582	5	117.874	\%	157, 165		
11	0-4	5	6.887	5	46.029	*	92,058	5	138.087	\%	184, 115		
12	0-4	5	7.230	5	53,389	*	106,778	5	160,167	\%	213.555		
13	0-4	5	7.230	5	61.190	+	122,381	5	183.571	\$	244,762		
14	0-4	5	7,469	5	69,612	*	139,224	5	208,837	5	278,449		
15	0-4	5	7,469	5	78,539	+	157.078	5	235,618	\%	314,157		
15	0-4	5	7,606	5	88,069	*	176,178	5	284,267	\%	352,356		
17	0-5	4	8,330	5	98,672	+	197,344	5	296,017	+	394,689		
18	0-5	4	8,565	5	110,040		220,000	5	330,120	\%	440,159		
19	0-5	5	8.565	5	122,090	\$	244,179	5	366.269	\$	488.358		
20	0-5	4	8,798	$\pm$	135,010		270,021		405,031	\%	540,042		
	$\square$												
Cumulated savings calculation:   $=(($ Monthly Basic Pay x $12 \times \%$ Saved $)+$ Prior year's cumulated savings) $x$ ( $1+$ Return Rate )													

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX D. SCENARIO FOUR DATA

Time In Service	Rank	MonthlyBasic Pay	Cumulated savings started in year						
			1	5	10		15		
1	0-1	\$ 3,035	\$ 3,860					Variables	
2	0-1	\$ 3,035	\$ 7,952					6.0\%	Return Rate
3	0-2	\$ 3,982	\$ 13,495					10.0\%	\% Saved
4	0-2	\$ 4,586	\$ 20,138						
5	0-2	\$ 4,741	\$ 27,377	\$ 6,031					
6	O-3	\$ 5,657	\$ 36,215	\$ 13,588					
7	O-3	\$ 5,657	\$ 45,584	\$ 21,600					
8	0-3	\$ 5,941	\$ 55,876	\$ 30,453					
9	0-3	\$ 5,941	\$ 66,786	\$ 39,837					
10	0-3	\$ 6,124	\$ 78,582	\$ 50,017	\$ 7,790				
11	0-4	\$ 6,887	\$ 92,058	\$ 61,778	\$ 17,017				
12	0-4	\$ 7,230	\$106,778	\$ 74,681	\$ 27,235				
13	0-4	\$ 7,230	\$122,381	\$ 88,359	\$ 38,066				
14	0-4	\$ 7,469	\$139,224	\$103,161	\$ 49,850				
15	0-4	\$ 7,469	\$157,078	\$118,851	\$ 62,342	\$	9,501		
16	0-4	\$ 7,606	\$176,178	\$135,657	\$ 75,757	\$	19,745		
17	0-5	\$ 8,330	\$ 197,344	\$154,392	\$ 90,898	\$	31,526		
18	0-5	\$ 8,565	\$220,080	\$174,550	\$ 107,247	\$	44,312		
19	0-5	\$ 8,565	\$244,179	\$195,918	\$ 124,576	\$	57,866		
20	0-5	\$ 8,798	\$270,021	\$218,864	\$ 143,242	\$	72,529		
		$\begin{aligned} & \text { Cur } \\ & =(C \\ & \text { yea } \end{aligned}$	mulated sa Monthly r's cumul	vings calc Basic Pay ated savin	ulation: $\text { x } 12 \times \%$   gs) $x(1+$	Sav   Ret	ed) + urn Ra	Prior   e)	

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX E. SCENARIO FIVE DATA

Time in Service	Rank	$\left\|\begin{array}{c}\text { Montitly } \\ \text { Basio Pay }\end{array}\right\|$	Cumudated savings wath each peroent saved							
				5\%		10\%		15\%		
1	0-1	* 3.035	t	1869	\%	3.738	$\ddagger$	5,606	Variables	
2	0-1	+ 3.035	$t$	3,787	+	7.573	1	11,360	2.63\%	RetumRate
3	O-2	+ 3.982	\%	6.338	+	12,677	$\ddagger$	19.015		
4	O-2	4.4.586	$t$	9.329	\%	18,658	$t$	27,987		
5	O-2	\% 4,741	$\ddagger$	12.494	$\ddagger$	24,588	1	37,482		
6	O-3	+ 5.657	5	16.306	4	32.612	4	48.919		
7	O-3	+ 5.657	5	20,219	5	40,437	$t$	60.656		
8	O-3	t 5,941	\$	24,409	5	48.817	$t$	73,226		
9	0-3	\% 5,941	4	28,709	4	57.418	4	86,127		
10	O-3	\% 6,124	4	33.235	4	66,470	4	99,705		
11	O-4	\$ 6.887	5	38.350	5	76,700	$t$	115.050		
12	0-4	+ 7.230	1	43.811	4	87.621	4	131432		
13	O-4	+ 7.230	1	49.415	4	98,850	1	148.245		
34	O-4	$\pm 7.469$	1	55,314	4	110.628	1	155.942		
15	O-4	47.469	5	61388	4	122,736	1	184,04	Cumu	ated
35	O-4	$\pm 7.606$	$t$	67.665	4	135.331	4	202.996	savin	
17	O-5	\% 8.330	$t$	74.575	5	149.149	1	223,724	calcu	lation:
18	O-5	+ 8.565	1	81.810	$t$	\%33,620	1	245,430		
${ }^{19}$	O-5	+ 8.565	1	89.236	$t$	178.472	$t$	267,707	$=(\mathrm{M}$	nthly Basic
20	O-5	+ 8.798	$t$	97.000	+	194,001	$t$	291001	Pay	$12 \times \%$
21	O-5	t 8.798	$t$	104,969	$t$	209,938	$t$	314,907	Saved)	d) + Prior
22	O-6	\% 10.319	$t$	14,084	\%	228.168	1	$342,252$	year'	$s$ cumulated
23	0-6	+10.379	$t$	123.439	+	246,877	+	370,316	savin	5) $\times 1+$
24	O-6	+ 10.587	4	133.204	$t$	266,409	+	399.613	savin?	g5) x (1 +
25	O-6	+ 10.587	$t$	143.227	$t$	286,454	4	429.681	Retu	m Rate)
26	O-6	\% 11,106	5	153.833	5	307,665	4	461,498		
27	0-6	\% 11.106	$t$	364,717	$t$	329.434	4	494,52		
28	0-6	\% 11.106	$t$	175.888	5	351,776	+	527,684		
29	O-6	${ }^{2} \mathrm{~T}$ 1,106	1	187.353	4	374,706	4	562,058		
30	Now Job	\$ 17.585	5	203,108	4	406.217	4	609.325		
31	Now Job	+ 19,436	4	220.418	4	440.836	4	661.254		
32	Nowe Job	\$ 19,436	5	238,183	1	476,366	5	714.549		
33	Noes Job	1 19,436	$t$	256.45	$t$	512.831	1	$769,246$		
34	Nere Job	479.436	1	275,127	1	550.254	1	825.391		
35	New Job	419.436	1	294.331	1	500.862	1	882.939		
36	New Job	$\pm 19.436$	$t$	314,040	1	628.060	1	$342,113$		
37	New Job	+19,436	1	334.267	t	668.534	$t$	1,002,801		
38	Nowe Job	\$ 19,436	1	355,006	1	70.052	1	1065,079		
39	Now Job	1 19,436	5	376,331	1	752,863	4	1.128,394		
40	Nowe Job	\$ 19.436	5	398,297	1	796.394	1	1234.591		
41	Ners Jeb	419.438	1	420.637	1	841275	1	1261912		
42	Precere	48.330	1	436.829	1	873.859	1	$1310.488$		
43		48.330	1	453.447	1	306.694	1	1360,341		
44		18.330	1	470,502	1	341004	1	1411506		
45		$t 8.330$	1	488,005	,	976.011	1	1,464,015		
46		188330	1	505,969		1,011,938	1	1577,907		
47		58.330	1	524,405	5	1040,810	1	1573.215		
48		48.390	$t$	543.326	$t$	1006.652	1	1629.970		
49		48.330	$t$	562.745	1	125,469	1	1680.234		
50		$t 8.330$	$t$	582.674	$t$	1165,348	1	1748,022		


51	\$	8,330	\$	603,127	\$	1,206,255	\$	1,809,382
52	$\pm$	8,330	*	624,119	+	1,248,238	\$	1,872,357
53	\$	8,330	+	645,662	+	1,291,325	+	1,936,987
54	\$	8,330	\$	667,772	+	1,335,545	\$	2,003,317
55	$\pm$	8,330	*	690,464	+	1,380,928	*	2,071,392
56	\$	8,330	+	713,752	+	1,427,505	\$	2,141,257
57	\$	8,330	\$	737,653	+	1,475,306	\$	2,212,959
58	\$	8,330	*	762,183	+	1,524,365	*	2,286,548
59	\$	8,330	*	787,357	+	1,574,714	\$	2,362,071
60	$\pm$	8,330	*	813,194	\$	1,626,387	*	2,439,581
61	$\pm$	8,330	*	839,710	+	1,679,420	+	2,519,130
62	\$	8,330	*	866,923	+	1,733,847	\$	2,600,770
63	\$	8,330	+	894,853	+	1,789,705	+	2,684,558
64	\$	8,330	+	923,516	+	1,847,033	\$	2,770,549
65	\$	8,330	*	952,934	+	1,905,868	*	2,858,802
66	\$	8,330	+	983,125	+	1,966,251	+	2,949,376
67	$\pm$	8,330	*	1,014,111	+	2,028,221	\$	3,042,332
68	\$	8,330	\$	1,045,911	+	2,091,822	+	3,137,733
69	\$	8,330	\$	1,078,547	+	2,157,095	+	3,235,642

APPENDIX F. SCENARIO SIX DATA

Time in Survice	Rank	Monkhy	Cumulated savings with exch petcent saved							
				5\%		10\%		15x		
1	0.1	+ 3,035	5	1904	+	3.809	+	6.713	Vexiables	
2	0.1	+ 3,035	4	3.896	+	7.739	+	11689	4.5989	Return Rate
3	0.2	+ 3.982	4	6.574	5	13,148	5	18.722		
4	0.2	\$ 4.586	4	9.754	4	19.508	$t$	29262		
5	0.2	\$ 4.741	5	18.177	+	25.354	1	39,531		
6	0.3	+5.657	5	17,332	4	34,683	+	51895		
7	0.3	+ 5 , 657	5	21,677	4	43,385	5	65.038		
8	$0 \cdot 3$	+ 5341	5	26.401	5	52,801	t	79.202		
3	0.3	+ 5.541	1	31,341	$t$	62,681	5	94,022		
10	0.3	46.124	$t$	\$6,622	4	73.244	+	t09866		
11	0.4	4,6,887	5	42,825	5	85.250	$\frac{1}{4}$	127.875		
12	0.4	+ 77230	1	49,119	5	\$8.297	+	147,356	Cumu	ted
13	0.4	\$ 7 7230	$t$	55,910	\%	1trex	5	167,731		
14	0.4	477469	5	62,184	\$	126,327	\%	109,491	saving	
15	0.4	177469		70,750	\$	142500	\%	212,250	calcula	ation:
${ }_{18}$	0.4	+ 7.606	$t$	78.770	4	157,541	1	236,3t1	$=($ Mon	nthly Basic
17	0.5	+ 8,330	$t$	87.613	\$	175.227	\$	262,040	Pay	$\times 12 \times \%$
18	0.5	48,565	5	97.010	*	194,099	\%	291029		
19	0.5	1 8,565	1	906837	\$	205.675	$t$	320,512	Save	+ Prior
20	0.5	+ 8.798	4	177,262	\$	234,524	1	351797	year's	cumulated
21	0.5	4.8,798	4	128.158	\$	256,391	\$	304,497	saving	5) $\mathrm{x}(1+$
22	0.6	4 20313	$\frac{1}{4}$	140,524	+	281048	\%	421572		
23	0.6	\$ 00.319	4	53,450	\$	306.899	$t$	460.249		ate)
24	0.6	\$10,587	+	157.137	+	394.274	1	501,410		
25	0.6	\$ 10,587	4	801452	5	362,904	\$	544,35\%		
26	0.6	\$ 11106	$\ddagger$	196,750	\%	338.500	8	590,251		
27	0.6	\$ 11.106	4	212,751	\$	425,501	\$	638252		
28	0.6	\$ 11.106	4	229.485	+	459.970	\$	689,456		
29	0.6	\$ 11.108	4	245.988	\$	489.976	$\$$	740.964		
30	New Job	\$17,585	$\ddagger$	289,360	5	598.720	8	808.079		
31	New Job	\$13,436	5	293.320	\$	587.840	\$	881760		
32	New Job	\$19,436	4	319.807	\$	639.275	+	958.822		
33	New Job	\$19,436	4	346,474	\%	692.348	*	1,039.422		
34	New Job	\$19,436	5	374,574	5	749,47	5	123,721		
35	New Job	\$19,436	4	403.963	\$	807,926	5	1214830		
36	New Job	\$19,436	+	434.702	\$	868.403	+	1,304,305		
37	New Job	\$19,436	5	466,851	5	993702	+	1400553		
38	New Job	\$19,438	\$	500.476		,000,952	5	(501,428		
39	New Job	\$ 19,436	\%	575.644	5	1,071,269	\$	1,606,933		
40	New Job	\$ 18,436	\$	572.427	\$	1,44,854	5	1,717,281		
41	New Job	\$ 18.435	5	610.898	\$	1,221,796	\$	1,832,694		
42	Petire	\$ 8,290	\$	644,155	\$	1,288,331	\$	1,932,496		
43		\$ 8,300	\$	678.980	\$	1,357,919	\$	2,036,879		
44		\$ 8,390	\$	715,351	\$	1430.702	4	2,146,053		
45		\$ 8,390	\$	753,413	5	1506.825	\$	2,260,238		
46		\$ 8,390	\%	793,221	\$	4506,443	5	2,379,664		
47		\$ 8,300	\$	834.857	\$	1,66s,715	\$	2,504,572		
48		\% 8, 330	+	878.404	4	1785.809	4	2,635.213		
49		+ 8,330	$\frac{5}{}$	923.550	5	1,847,901	4	2,771851		
50		\$ 8,390	5	971587	5	1,943,773	5	2,914,760		
51		\% 8.350	*	1,021,410	5	2,042,819	4	3.064,229		

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX G．SCENARIO SEVEN DATA

Timelh Sorvice	Rank	$\left.\begin{array}{\|c\|} \hline \text { Monchiy } \\ \text { Basic Pzy } \end{array} \right\rvert\,$	Curmulated swings wìh each peroent swod							
				5\％		10\％		15\％		
1	0.1	\＄ 3.005	\％	1,948	8	3，897	\％	5，845	Vaiables	
2	0.1	\＆3，005	\＄	4，033	8	8，066	＋	12，099	7．00\％	Retum Rate
3	0.2	\＄3，882	\＄	6.872	\％	13，744	\＄	20，516		
4	0.2	\＄4，586	＊	20．297	5	20.595	＊	30.892		
5	0.2	\％ 4.741	\％	14，062	\＄	28.24	＋	42，106		
6	0－3	\＄5，657	\＄	＊1，678	\＄	37，356	\＄	56，034		
7	0．3	\＆5，857	\＄	23，677	\＄	47.215	4	70.852		
8	0.3	\＄ 5,941	5	29.085	5	58.770	\＄	87.254		
9	0.3	\％ 5.941	5	34.935	5	69.870	\％	104.805		
10	0．3	\＄ 6.124	5	41.312	\％	82，624	\％	123，936		
11	0－4	\＆ 8,887	\＄	43，625	\％	97，250	\％	145，876		
12	0.4	\＆7，290	5	66，671	\＄	113，341	5	170，012		
13	0.4	\＆7，230	\＄	65.279	5	130,588	5	155.838		
14	0.4	\＄ 7.489	5	74，844	5	149，288	\％	223.932		ulated
15	0.4	\＄ 7.469	8	84，684	8	169,328	\％	250,992	savin	
18	0.4	\＆7，006	\＄	95，474	8	190，847	5	286，421		lation：
17	0.5	\＆ 8,300	\＄	107，805	\＄	215，009	\＄	322,514		
18	0.5	\％8，565	\＄	20.5829	\＄	241057	\＄	364586		
19	0．5	\＄ 8.565	＊	124，464	5	268.929	5	400.393	Pay	x $12 \times \%$
20	0．5	\＄ 8,798	\％	149，525	\＄	299，060	\＄	443,575	Saved）	d）+ Prior
21	0.5	\＆ 8,758	\＄	185，640	\＄	331,280	5	496，8221	year＇s	s cumulated
22	0.6	\％ 10,319	\＄	183，850	\＄	367.720	\＄	581,580		
23	0．6	＋ 10.319	\％	200,355	5	408.70	\％	60.065		
24	0－6	\＄ 10.587	\％	224，387	\＄	448，773	\％	673，160	Retur	m Rate）
25	0－6	\＄ 10.5897	\＄	246，890	\％	499，781	5	740，571		
28	0．6	\％ 11.005	\＄	271，303	\＄	542，806	\＄	813，908		
27	0.6	＋ 11006	\＄	297.424	5	594.848	\＄	832.272		
28	0－6	\％ 1406	\％	325，374	5	650,748	5	976，271		
29	0－8	5 17008	\＄	755，200	\＄	710，560	＊	1，065，840		
30	Nev Job	\＄17，505	\＄	391，439	\＄	782，878	\＄	1，174，317		
31	New Job	\＄19，436	\＄	431317	5	862，634	＋	1，233，952		
32	New Job	\＄ 19,436	\＄	473.987	5	947.374	＊	1，421．361		
33	New Job	\％ 19.438	\＄	5＊9，644	＊	1，039，287	\＄	1558．831		
34	Nev Job	\＄ 19.436	\％	568，496	\％	1，106，860	＋	1，705，489		
35	New Job	） 818.438	1	620．769	5	1241597	5	1062．306		
5	Nues dob	\％ 18.435	）	676.700	5	1353,400	5	2．030．000		
37	New Job	） 18.438	\％	736547	5	1473.085	5	2.209840		
38	New Jot	＋ 1 栓438	\％	6005 ${ }^{\text {c }}$	$\ddagger$	t60tes	5	2.404747		
39	Nredob	） 1 场438	$t$	689， 01	5	1738200	5	2，607，200		
40	Nru．Job	\％ 1 城438	$t$	942，48	5	L04．031	5	2，127，247		
41	Newadob	\％120）438	$t$	1，020．862	$t$	2.041724	$t$	2，062，507		

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX H. SCENARIO EIGHT DATA



THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX I. SCENARIO NINE DATA

Time in Service	Rank	Monthly Basic	Cumulated sayings with each percent sywed							
				$5 \%$		$10 \%$		15\%		
1	O-1	+ 3.035	5	1839	+	3,679	5	5,518	Variables	
2	0.1	* 3.035	5	3.698	4	7.395	4	11093	10¢\%	Retum Rate
3	0.2	+ 3.982	\$	6,149	4	12,298	4	18.447		
4	0.2	\$ 4.586	\$	8.992	\$	17,983	4	26.975		
5	0.2	\$ 4.741	\$	11,967	4	23.814	4	35.871		
6	0.3	+ 5,557	\$	15,508	4	31.016	4	46,523		
7	O.3	* 5,657	+	19,095	4	38,190	4	57,285		
8	O.3	* 5.941	\$	22,891	4	45,781	4	68,672	Cumu	ted
9	0.3	* 5.941	\%	26,725	4	53,450	4	80,175		
10	0.3	* 6,124	\%	30,710	4	61,419	4	92,129	saving	
11	O-4	* 6,887	\%	35,197	4	70,394	5	105,591	calcula	tion:
12	0-4	* 7,230	\%	39,938	4	79,877	5	119,815	$=($ Mon	nthly Basic
13	0-4	+ 7,230	\$	44,728	4	89,456	5	134,134	Pay	$12 \times \%$
14	0-4	+ 7.469	\$	49.711	4	99,423	5	149,134		
15	0-4	+ 7.469	\%	54.745	+	109,491	5	184.236	Saved)	$+ \text { Prior }$
15	0.4	* 7,806	\%	59,914	+	119,828	5	179.742	year's	cumulated
17	0.5	* 8.330	\$	65,574	+	131.148	5	196.722	saving:	$\mathrm{x}(1+$
18	0.5	+8.565	\$	71.434	\$	142,869	5	214.303		
19	0.5	\$8,565	\$	77.354	+	154,709	5	232.063	Return	Rate)
20	0.5	\$ 8.798	+	83,476	\$	166,952	\%	250.428		
21	0.5	* 8,798	\$	89,660	\$	179,320	\$	268,981		
22	0.6	* 10,319	\$	36,829	+	193,659	\$	290,488		
23	0.6	* 10,319	\$	104,072	+	2008,143	5	312,215		
24	0.6	\& 10,507	4	11,550	+	223,100	5	334,550		
25	0.6	\& 10,587	5	119,105	+	2388.210	5	357,315		
26	0-6	* 11.106	5	127,051	+	254,103	5	381,54		
27	0.6	* 11.106	5	135,079	+	270,158	5	405.236		
28	0.6	* 11.106	5	143,108	+	286,376	5	429.564		
29	0-6	* 11.106	5	151380	+	302,760	5	454,141		
30	New Job	\$17.585	5	163,583	+	327.165	5	490.748		
31	Neu Job	\$19,436	5	177,031	+	354,063	5	531094		
32	Neu Job	\$19,436	5	190,617	\$	381,235	\$	571852		
33	Neu Job	\$19,436	\$	204,342	+	408,684	\$	613.026		
34	New Job	\$19,436	\$	218,206	+	436,413	\%	654,619		
35	New Job	\$19,436	\$	232,212	+	464,425	\%	696,637		
35	Neu Job	\$19,436	\$	246,361	\$	492,722	\%	739,084		
37	New Job	\$ 19,436	\%	260,654	+	521,309	\%	781853		
38	New Job	\$ 19.435	\$	275.093	\$	550,137	\$	825.280		
39	New Job	\$ 19.436	\$	289,673	\%	579.393	\$	869.033		
40	New Job	\$ 13.435	\$	304,414	5	603.829	5	913.243		
41	New Job	\$13.435	5	319,300	\$	638.593	\$	957.839		
42	Petine	+8330	5	327.605	\$	655.211	\$	\$82,815		
43		+ 8.330	5	335,996	\$	671991	+	1,007.987		
44		+ 8.330	\$	344,471	\%	683.943	5	1,033,414		
45		\$ 8.330	5	353,034	\%	706.067	5	1059,101		
48		\$ 8.330	5	361683	\%	723,366	5	1085,050		
47		\$ 8.330	5	370,421	5	740.842	5	111263		
48		+ 8.330	5	379,248	\%	758.496	5	$1,137.744$		
49		+ 8.330	5	368,155	\%	776,330	5	1,164,495		
50		\$ 8.330	5	397,173	\%	794,346	\$	1131519		
51		58330	5	406.273	8	812546	5	1218.819		


64	483	4	415,466	4	830,931	4	1,446,397
53	48330	4	424,162	4	849,504	4	1,274,256
54	4 \& 3	4	434.133	4	668.266	4	1,302,393
55	4 8, 枹	4	44360	4	887.200	4	1330,634
56	48370	4	453.163	4	906,367	4	1,359,560
57	48330	4	462.655	4	926,709	4	1358,564
58	48530	4	472,624	4	945,249	4	147.673
59	38360	+	482,494	+	964,988	4	1447.481
60	48380	4	492,464	4	984,926	4	1477.392
61	48370	4	502.536	+	1.005.071	4	1507,607
6	48330	4	512.71	4	1025,421	4	1,53\$131
6	48370	4	522.989	4	4045,977	4	1,568,966
64	48370	4	533,372	4	1066.74	4	1604015
65	182300	4	543861	4	1,687,722	4	1634582
68	48235	4	554.457	4	1108,34	4	1683,371
67	48230	4	565,161	4	1120.322	4	1,695,483
68	18280	4	575,974	4	1151949	4	1727.923
6	18200	4	506,099	4	1173786	7	1,760,694
70	411.005	4	59985	4	1189232	4	1,788,848
71	4 4tios	4	612,464	4	$1,224.827$	4	1837,391
72	41145	4	525,442	4	1,250,804	4	1,476,327
7	411405	4	808,553	4	1277,107	4	1815,660
74	- 14105	4	651789	4	1203598	4	1555,394
75	3 14105	4	655172	4	1300356	4	1,985,504
76	411,106	+	676,694	4	1,257,399	$\ddagger$	2,096,093
77	411,106	4	692,349	+	1,384,897	4	2,077,048
78	411,106	\$	705,142	4	1,412,284	4	2,10,427
75	4 tiom	4	720,076	4	1440,159	$\ddagger$	2,160,229
80	411,106	+	734,153	4	1,468,305	$\ddagger$	2,202,450
61	411,106	4	748,373	4	1,498,745	4	2,245,119
82	411,00	4	762,738	+	1,525,475	$\ddagger$	2282210
85	411,106	4	777,249	4	1,554,493	$\ddagger$	2,501,747
8	411,106	+	731,909	4	1509,217	$\ddagger$	2,375,726
85	4 11,106	1	508,719	4	1513,435	+	2,420,153
88	4 11,006	1	821,675	4	1,643,355	$\ddagger$	2,465,003
47	411,106	$\stackrel{1}{ }$	805,790	4	1873501	$\ddagger$	2,540371
48	411,106	4	4052,057	4	1,704,115	4	25EC172
89	411,106	1	867,480	4	1,734,960	+	2,002,440
40	414,006	1	400,060	4	1785,19	4	2549179
31	411,00	1	4999,798	4	1,797,597	$\ddagger$	2,896,395
32	\& 11,106	+	514,694	4	1,428,998	$\ddagger$	2,744,093
95	411,106	1	990,759	4	1,851518	4	2,792,278
94	4 11, 107	1	946,905	4	1,890,970	4	2,840,956
95	411,00	4	961,377	+	1,926,754	$\ddagger$	$2 \cos 102$
40	411,109	+	979,907	4	1,959,974	4	2,909,811
97	4 11,10	1	986,665	4	1,993,933	4	2,909,999
38	4 4 1111	$\pm$	1.013 .567	4	2007,134	$\dagger$	3040704

## LIST OF REFERENCES

Backman, M. (2017, March 30). Four assumptions that could destroy your retirement. Retrieved from http://www.usatoday.com/story/money/personalfinance/retirement/2017/03/30/4-assumptions-that-could-destroy-yourretirement/99685484/

Blggs, A. (2016, December 8). At last: A new Social Security reform plan. Retrieved from https://www.forbes.com/sites/andrewbiggs/2016/12/08/at-last-a-new-social-security-reform-plan/\#6e57c1957192

Brilakis, M. A. (2016, December 9). Blended Retirement System opt-in eligible population notification (MARADMIN 644/16). Washington, DC: Manpower and Reserve Affairs.

Defense Finance and Accounting Services. (2017). Military pay charts 1949 - 2017. Retrieved from https://www.dfas.mil/dam/jcr:0066b0ac-2d02-47a6-8b781cdc91b56ef7/2017MilitaryPayChart.pdf

Degrandpre, A. (2017). The Pentagon wants to sweeten retirement benefits for senior enlisted troops. Retrieved from http://www.militarytimes.com/articles/military-retirement-thrift-savings-plan-matching-contributions

Department of Defense. (2017a). Military compensation: Retirement. Retrieved from http://militarypay.defense.gov/Pay/Retirement/

Department of Defense. (2017b). Military compensation: Reserve retirement. Retrieved from http://militarypay.defense.gov/Pay/Retirement/Reserve.aspx

Department of Defense. (2017c). Military compensation: Disability retirement. Retrieved from http://militarypay.defense.gov/Pay/Retirement/Disability.aspx

Department of Defense. (2017d). Military compensation: Retirement cost of living adjustments. Retrieved from http://militarypay.defense.gov/Pay/Retirement/Cola.aspx

Department of Defense. (2017e). Introduction to the Blended Retirement System. Retrieved from http://militarypay.defense.gov/BlendedRetirement/

Department of Defense. (2017f). Military compensation: Calculators. Retrieved from http://militarypay.defense.gov/Calculators/

Department of Defense. (2017g). Military compensation: Typical situations. Retrieved from http://militarypay.defense.gov/Pay/Retirement/TypicalSituations.aspx

Department of Defense. (2017h). Military compensation: Retirement Military Compensation (RMC) calculator. Retrieved from http://militarypay.defense.gov/Calculators/RMC-Calculator/

Department of Defense. (2017i). Military compensation: Final pay calculator. Retrieved from http://militarypay.defense.gov/Calculators/Active-Duty-Retirement/FinalPay-Calculator/

Department of Defense. (2017j). Military compensation: High-36 calculator. Retrieved from http://militarypay.defense.gov/Calculators/Active-Duty-Retirement/High36Calculator/

Department of Defense. (2017k). Military compensation: CSB/REDUX calculator. Retrieved from http://militarypay.defense.gov/Calculators/Active-Duty Retirement/CSB-REDUX-Calculator/

Department of Defense. (2017l). Blended Retirement System comparison calculator. Retrieved from http://militarypay.defense.gov/Calculators/BRS/

Department of Defense. (2017m). Benefits: Thrift Savings Plan. Retrieved from http://militarypay.defense.gov/Benefits/Thrift-Savings-Plan/

Elliott, H. (2010). Cars that lose their value fastest. Retrieved from https://www.forbes.com/2010/10/27/cars-resale-value-lifestyle-vehicles-depreciation-residual-used.html

Federal Reserve. (2017). FAQs: Why does the Federal Reserve aim for 2 percent inflation over time? Retrieved from https://www.federalreserve.gov/faqs/economy_14400.htm

Harvey, J. T. (2011, May 30). What actually causes inflation and who gains from it? Retrieved from https://www.forbes.com/sites/johntharvey/2011/05/30/what-actually-causes-inflation/\#1e675625f9a9

Headquarters Marine Corps (2016, February. 23). Inspectors General checklist: Personal Financial Management Program (FAI 1700.37). Washington, DC: Marine and Family Programs Division.

Hebert, L, J. (2017). Blended Retirement System Lump-sum Government Discount Rate for 2018 [Memorandum]. Washington, DC: Department of Defense. Retrieved from
https://militarypay.defense.gov/Portals/3/Documents/BlendedRetirementDocume nts/BRS\%20Lump\%20Sum\%20Government\%20Discount\%20Rate\%20Memo\%2 0(2018).pdf?ver=2017-06-13-121230-790

Internal Revenue Service, Publication 590-A (2017a). Retrieved from https://www.irs.gov/pub/irs-pdf/p590a.pdf

Internal Revenue Service, Publication 590-B (2017b). Retrieved from https://www.irs.gov/pub/irs-pdf/p590b.pdf

Internal Revenue Service, Publication 3 (2017c). Retrieved from https://www.irs.gov/pub/irs-pdf/p3.pdf

Johnson, B. \& Rawson, M. (2015). 2015 Fee Study: Investors are driving expense ratios down. Retrieved from https://news.morningstar.com/pdfs/2015_fee_study.pdf

Jowers, K. (2017). DoD’s retirement calculator debuts, lets troops compare traditional and blended options. Retrieved from
http://www.militarytimes.com/articles/DODs-retirement-calculator-debuts-lets-troops-compare-traditional-and-blended-options

Kamarck, K. N. (2017). Military Retirement: Background and recent developments (CRS Report No. RL34751). Retrieved from Congressional Research Service website: https://fas.org/sgp/crs/misc/RL34751.pdf

Kiplinger. (2017). State-by-state guide to taxes on retirees. Retrieved from http://www.kiplinger.com/tool/retirement/T055-S001-state-by-state-guide-to-taxes-on-retirees/index.php?map=\&state_id=10\&state=Florida

Kochanek, K. D., Murphy, S. L., Tejada-Vera, B., \& Xu, J. (2016). National Vital Statistics Reports. Retrieved from https://www.cdc.gov/nchs/data/nvsr/nvsr65/nvsr65_04.pdf

Marine Corps Community Services. (2017a). Personal financial management. Retrieved from http://www.usmc-mccs.org/services/career/personal-financial-management/

Marine Corps Community Services. (2017b). Transition readiness. Retrieved from http://www.usmc-mccs.org/services/career/transition-readiness/

Military Officers Association of America. (2017). MOAA’s 2017 Military state report card and tax guide. Retrieved from http://www.moaa.org/statereport/

Morrissey, M. (2016). The state of American retirement: How 401(k)s have failed most Americans. Retrieved from http://www.epi.org/publication/retirement-inamerica/\#charts

Navy Personnel Command (2015). MILPERSMAN 1000-100: Home of record and place from which ordered to active duty. Retrieved from http://www.public.navy.mil/bupers-npc/reference/milpersman/1000/1000General/Documents/1000-100.pdf

Navy Personnel Command (2017). PERS 835 division. Retrieved from http://www.public.navy.mil/bupersnpc/career/retirement/OfficerRetirements/Page s/default.aspx

Philpott, T. (2017). Is the blended retirement's lump-sum feature fair? Retrieved from https://www.usatoday.com/story/news/military/2017/04/15/blended-retirements-lump-sum-feature-fair/100469726/

Robaton, A. (2015). Study: 33\% of Americans have no financial plan. Retrieved from http://www.cnbc.com/2015/04/29/one-third-of-americans-lack-a-future-financial-plan-study.html

Sahadi, J. (2015). In the military? Don't miss out on these tax benefits. Retrieved from http://money.cnn.com/2015/04/02/pf/taxes/military-tax-benefits/

Sheedy, R. L. (2014). Retirees, watch out for the state tax bite. Retrieved from http://www.kiplinger.com/article/retirement/T055-C000-S004-retirees-watch-out-for-the-state-tax-bite.html

Social Security Administration. (2017a). Full retirement age: if you were born in 1960 or later. Retrieved from https://www.ssa.gov/planners/retire/1960.html

Social Security Administration. (2017b). General payment questions. Retrieved from https://faq.ssa.gov/link/portal/34011/34019/Article/3736/What-is-the-average-monthly-benefit-for-a-retired-worker

Social Security Administration. (2017c). The Social Security Administration’s agency financial report for FY2016: Highlights of financial position. Retrieved from https://www.ssa.gov/finance/2016/Financial\ Position.pdf

Social Security Administration. (2017d). Calculators: Life expectancy. Retrieved from https://www.ssa.gov/planners/lifeexpectancy.html

Social Security Administration. (2017e). Cost of living adjustments. Retrieved from https://www.ssa.gov/oact/cola/colaseries.html

Social Security Administration. (2017f). Historical background and development of Social Security. Retrieved from https://www.ssa.gov/history/briefhistory3.html\#colas\#\&sb=0

Social Security Administration. (2017g). Retirement planner: Delayed retirement credits. Retrieved from https://www.ssa.gov/planners/retire/delayret.html

State of California. (2017). 2016 California tax rate schedules. Retrieved from https://www.ftb.ca.gov/forms/2016-california-tax-rates-and-exemptions.shtml\#itr

Szymanski, A. (2016). Transition guide 2016: Navigating VA disability claims. Retrieved from https://www.moaa.org/uploadedFiles/Content/Publications_and_Media/MOAA_P ublications/Publication_Downloads/TransitionGuide_webcertified.pdf

Thornberry, M. (2015). National Defense Authorization Act for Fiscal Year 2016 H.R. 1735. Retrieved from https://www.congress.gov/bill/114th-congress/house-bill/1735/text\#toc-H12353E8FA7C3456782F149BA14BDF85E

Thrift Savings Plan. (2017a). Purpose and history. Retrieved from https://www.tsp.gov/PlanParticipation/AboutTheTSP/index.html

Thrift Savings Plan. (2017b). Benefits of participation: summary. Retrieved from https://www.tsp.gov/PlanParticipation/AboutTheTSP/benefits/index.html

Thrift Savings Plan. (2017c). Withdrawals after leaving Federal service. Retrieved from https://www.tsp.gov/PlanParticipation/LoansAndWithdrawals/withdrawals/index. html

Thrift Savings Plan. (2017d). Expense ratio. Retrieved from https://www.tsp.gov/InvestmentFunds/FundsOverview/expenseRatio.html

Thrift Savings Plan. (2017e). Fund comparison matrix. Retrieved from https://www.tsp.gov/InvestmentFunds/FundsOverview/comparisonMatrix.html

Thrift Savings Plan. (2017f). Entering retirement. Retrieved from https://www.tsp.gov/LifeEvents/career/enteringRetirement.html

Thrift Savings Plan. (2017g). Annual returns. Retrieved from https://www.tsp.gov/InvestmentFunds/FundPerformance/annualReturns.html

TurboTax. (2016). States with the highest and lowest taxes. Retrieved from https://turbotax.intuit.com/tax-tools/tax-tips/Taxes-101/States-with-the-Highest-and-Lowest-Taxes/INF23232.html

United Services Automobile Association. (2017). Military retirement comparison tool. Retrieved from https://www.usaa.com/inet/ent_eap_brs/EntEapBrs/HomePage?0\&wa_ref=brs_to p_mrct\&flowExecutionKey=e1s1

United States Department of Treasury. (2017). 23-Year High Quality Market Corporate Bond Spot Rate. Retrieved from https://fred.stlouisfed.org/series/HQMCB23YR

Work, R. O. (2017). Implementation of the Blended Retirement System [Memorandum]. Washington, DC: Department of Defense. Retrieved from https://militarypay.defense.gov/BlendedRetirement/

World Bank. (2017). Inflation, consumer prices. Retrieved from http://data.worldbank.org/indicator/FP.CPI.TOTL.ZG?locations=US

THIS PAGE INTENTIONALLY LEFT BLANK

## INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center Ft. Belvoir, Virginia
2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

