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The effects of sensible heat exchange on the 
dynamics of baroclinic waves 

By G. J. HALTINER, U.S. Naval Postgraduate School, Monterey, California 

(Manuscript received December 1, 1965) 

ABSTRACT 

A diabatic two-level model with variable static stability is investigated with respect 
to the dynamic stability and thermal structure of harmonic perturbations. The ex- 
change of sensible heat is assumed to be proportional to the difference in temperature 
between the air and the underlying surface. This type of diabatic heating reduces the 
instability of short and medium waves and shifts the maximum instability to a shorter 
wave length than the corresponding adiabatic model; however, the instability of long 
waves is increased. Solution of the initial value problem for various initial phase dif- 
ferences between the stream function wave, thermal wave and static stability waves 
show the importance of these parameters with respect to the growth characteristics 
which are complex. Limiting angles for a 4000-km wave length show an 85' lag of 
the thermal wave behind the stream wave and the latter lagging the vertical velocity 
and static stability waves by about 90" and 110" degrees respectively; but no significant 
differences are found between the adiabatic and diabatic cases. For an 8000-km wave 
length, the thermal wave lags the stream wave by about 30" and the stream wave, in 
turn, lags the static Stability and vertical velocity waves by 140' with adiabatic flow, 
while with heat exchange the corresponding figures are 25" and 105'. 

Introduction 
The increase in speed and storage capacity of 

electronic computers attained during the past 
decade has made possible the integration of 
complex numerical prediction models on an 
operational basis. As a result meteorologists 
have been able to add more physics to the 
models by way of consistent energetics, terrain 
conditions, friction, heat sources, as well as 
finer grids, larger areas and improved finite 
differencing. Despite numerous attempts during 
this period to develop a simple baroclinic model 
which will correctly predict the development 
of pressure systems, the results have not lived 
up to expectations. In  fact, a one parameter 
model is still quite widely used for mid- 
tropospheric prediction. Recently BENGTSSON 
(1904) carried out a series of experiments with 
several "two-level" models including various 
combinations of terms in the vorticity and 
thermodynamic equations, some of which were 
inconsistent with respect to vorticity and/or 
energy conservation. He noted that these 
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physical inconsistencies in certain models gave 
rise to significant errors. For example, the 
ordinary two-level quasi-geostrophic model 
tends to overpredict kinetic energy. Bengtsson 
concluded that a fundamental error in the two- 
level models is the tendency for the thermal 
wave to approach a limiting phase lag behind 
the pressure wave which then leads to continued 
amplification. This conclusion was based in 
part on the results of his experiments and in 
part on the results of OWRA (1957), THOMPSON 
(1959), and WIINNIELSEN (1960), who showed 
that for an adiabatic, frictionless, quasi- 
geostrophic, two-level model with constant 
static stability, an unstable wave will amplify 
when the thermal wave lags the pressure wave 
and damping occurs when thermal wave pre- 
cedes the pressure wave. Ogura and Wiin-Niel- 
sen further showed for linearized models that 
regardless of the initial lag, the phase difference 
between the thermal wave and the unstable 
pressure wave tends toward a limiting value 
with the former lagging the latter, thus eventu- 
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ally giving rise to amplification. Bengtsson's 
non-linear model yielded similar results but 
gave a somewhat larger phase lag than pre- 
dicted by linear theory. 

In  the actual atmosphere the thermal wave 
tends to lag during the developing stage of the 
wave cyclone but catches up during the mature 
stage with the atmosphere finally becoming 
quasi-barotropic. 

HALTINER & CAVERLY (1965) considered a 
quasi-geostrophic, two-level model with surface 
friction based on an Ekman layer. They found 
that the friction not only reduces the ampli- 
fication of synoptic waves, but in addition 
showed that the phase difference between an 
unstable pressure wave and its thermal wave 
decreased with increasing surface drag coeffi- 
cient, thus more nearly approximating con- 
ditions in nature than the frictionless case. 

In view of these results it also appears desir- 
able to determine the effects of diabatic heating 
on the dynamic stability and thermal structure 
of baroclinic waves, including the phase 
relationship between the pressure and tempera- 
ture waves. DOOs (1964) studied the influence 
of sensible heat exchange on planetary flow 
by means of a linearized, quasi-geostrophic 
model with constant static stability and ob- 
tained stationary analytic solutions for a par- 
ticular, but realistic, zonal wind profile. The 
exchange of sensible heat was assumed to be 
proportional to the temperature difference 
between the underlying surface and the air, 
and also a decreasing function of pressure. 
The temperature of the underlying surface was 
a prescribed periodic function while the air 
temperature depended on the motion. DOOs 
considered only long wave lengths in conso- 
nance with the ocean-continent arrangement 
a t  45" latitude which gives two maxima and 
minima in the observed east-west temperature 
distribution. He found the center of the heat 
source to be about 30" to the west of the tem- 
perature maximum of the underlying surface. 
With respect to the wind field, the heat source 
for the air was located near the maximum 
equatorward surface wind components; and 
the heat sink, near the poleward surface 
winds. 

The present investigation considers the in- 
fluence of sensible heat transfer on the dynamic 
stability and other properties of harmonic 
perturbations superimposed on a zonal current. 

Since the heat transfer affects the temperature 
distribution and hence the static stability and 
these parameters, in turn, influence the pro- 
perties of the perturbations, it was considered 
desirable to utilize a model which permits 
variations in static stability. 

LORENZ (1960) designed a "two-layer'' model 
with a variable, self-determining static stability 
which also possesses consistent integral pro- 
perties with respect to vorticity and energy. 
GATES (1961) has studied this model in con- 
siderable detail and showed that in the adia- 
batic, frictionless case, greater baroclinic in- 
stability is found in wave lengths of 2000 to 
5000 km with a variable static stability than in 
the conventional two-parameter quasi-geo- 
strophic 1953 model of Charney and Phillips 
(see also BENGTSSON, 1964). 

Mathematical development 

The basic equations are the vorticity equa- 
tion, thermodynamic equation, continuity equa- 
tion and the linear portion of the balance equa- 
tion, namely 

V2@ - V.( fVy)  = 0. 

The atmosphere is separated into four 250-mb 
layers by five pressure levels denoted by 0, 1, 
2, 3, and 4, in order of increasing pressure. The 
sum and the difference of the vorticity equations 
at levels 1 and 3 are formed and a similar pro- 
cedure is followed with respect to the thermal 
equation. Finally, the balance equation is dif- 
ferentiated with respect to p to give a type of 
thermal wind equation. The procedure is similar 
to that of GATES (1961), except for the addi- 
tion of the heating terms in the thermal equa- 
tions. 

The results are 

av2y 
at 

__ + J ( y ,  v2y + f)  + J ( t ,  V") = 0, (1) 

~ at + J ( y ,  0) + J(t, a) - v * (aVx) = ___ 2 (3) 
a0 

2-I'+X'RVP0 - V . ( f V t )  = 0. ( 5 )  
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Here 

where y is the stream function; 0, the potential 
temperature; and x ,  the velocity potential for 
the divergent wind. &, and Q ,  are heating rates 
a t  levels 1 and 3, respectively. No friction has 
been included and the vertical velocity o has 
been assumed to be zero at levels, 0 and 4. 
The continuity equation gives 

2 0  = p ,  v=x, 

where o is the vertical motion a t  level 2. 
The equations are to be linearized assuming 

a basic zonal current with vertical shear but 
no horizontal shear. It will be further msumed 
that in the basic state no diabatic heating is 
occurring and the surface air is in thermal 
equilibrium with the underlying surface. The 
latter must therefore have a lateral temperature 
gradient consistent with the thermal wind 
relationship. 

Heating 
The exchange of sensible heat a t  the surface 

is taken to be proportional to the temperature 
difference between the air and the underlying 
surface. Further, the heating is assumed to be a 
decreasing power of pressure similar to Doos 
(1962) as follows: 

&=AV',(T,-T,)  - . i:J 
Here A and r are constants, V ,  and T, are 

the surface wind and air temperature and T ,  
is the temperature of the underlying surface. 
Since the equations are to be linearized by 
assuming a small perturbation superimposed 
on a basic flow, the variation of the surface 
wind speed above will be neglected leading to 

infinite heat source or sink so that its tempera- 
ture field remains constant while the air tem- 
perature tends to adapt to that of the surface. 
As shown by Doos (1962) and others, this 
condition is more nearly approached over the 
ocean than land; however, no distinction is 
made in this study. 

Since the surface air temperature has been 
assumed to be in thermal equilibrium with the 
underlying surface in the undisturbed state, only 
the perturbation temperatures really need be 
considered. The simplest approach is to merely 
extrapolate from the 750-mb level to obtain 
the temperature at 1000 mb, in which case the 
air-sea temperature difference is simply (0 - 2 4 ,  
if we take the lower boundary to be at 1000 mb. 
The heating functions then become 

where u and 0 are to be regarded as perturbation 
quantities. 

A more accurate estimate may be obtained 
by taking into account the deviation of the sea- 
level pressure from 1000 mb. With some minor 
approximations the additional term for the sea- 
level air temperature perturbation may be 
written 

Here y~ and t again represent perturbation 
quantities, whereas the other parameters are 
from the basic state; and rd is the dry adiabatic 
lapse rate. Multiplication by - K(p/po)'  yields 
the heating terms to be added to (7a). Substitu- 
tion of typical values into (7a) and (7b) show 
the latter to be essentially an order of magnitude 
less than the former. 

Linearization of the system (1) through ( 5 ) ,  
together with the assumption of harmonic 
solutions of the form w exp ik(x - c t ) ,  t exp ik 
(x -&), 0 exp ik(x -c t ) ,  S exp ik(x -&), and 
X exp ik(x - c t ) ,  leads to a system of homo- 
geneous linear equations 

where K is a constant. 
The earth's surface is assumed to be an 
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- u* 0 0 0 

c -  U + I / k : "  0 0 - if /k 
- 2""f u* 

- q l v i  
R R 

0 - f  

and N is a column vector made up of the coeffi- 
cients y,  t, 0, S ,  X .  

A necessary and sufficient condition that the 
system (8) has a non-trivial solution is that the 
determinant of the coefficients vanish. The 
resulting frequency equation is cubic with respect 
to tho phase velocity c and yields the dynamic 
stability characteristics of the current at a 
function of wave length, thermal wind, latitude, 
heating function, etc. By eliminating the dif- 
ference in the stream functions t and the poten- 
tial function for the divergent wind component 
x ,  the system may be reduced to 

a,,E +a,,@ = 0, 

a,, E +a,,@ +aZau = 0, 

a,, E +a,, 0 +a,,a = 0, 

K 3 '+ l  
where E = qyj f ,  q1 = ; ,,,,, 

P 

K 3'-1 
92=; 21"' 

P 

a, ,=c-  U + / l j k 2 ,  a,,= - U*Rjf2('ta' 

0, +- apl = - ~ 

2(Xi1'fU* k'U* 

f '  R 

a , , = T - ( c - U t % )  (I-x) u* 

k'a, R(c - U + @/kz) 
- 

f ' 2 ( 1 + X )  , 

2ig 2%(1- x )  f u* a,,=U*+-', a =---- 

k R '  

Corresponding to each of the roots c, of the 
frequency equation there is an "eigenvector" 

(9) 

(E,,  0,, Sj) .  The 0, and S, may be obtained 
from two of the three equations above, e.g. 
(10) and ( l l ) ,  in terms of E,, which is to be 
considered arbitrary for the present. In  view 
of the latter condition, the general solution 
to the linearized differential system may be 
expressed in the form 

? 

1 E = 2 E, exp ik(x - cjt), 
j = l  

7 

7 

8 = j = l  2 0, exp ik(x - c j t ) ,  

u =  j=1 2 s,expik(x-c,t). 

In  order to study the evolution of some partic- 
ular disturbances, the following initial condi- 
tions will be specified 

E(t = 0) = A  exp ikx, 

8( t  = 0) = A ,  exp i(kx + a), 
a(t = 0) = A s  exp i ( k z  + S). 

From (14) and (15) it follows immediately that 

? 2 8, = As exp id. 
j = l  

The three equations above, plus the six 
equations resulting from the use of (10) and 
(11) with each value of c,, j = 1, 2, 3, permit the 
determination of the E,, a,, and 8, in terms of 
the initial amplitudes of the stream function, 
thermal wave and static stability wavea, A ,  
A ,  and A,, respectively, the phase lags a and 6, 
and the other parameters such as L, U*, f ,  /I, 
0 0 1  919 qxt etc. 
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Though each of the quantities E ,  0 and S 
has three wave components according to (14), 
each may be written as a single wave with an 
amplitude and phase angle which are functions 
of time. Let the phase velocity be expressed as 
the complex number 

cj = C j r  +ic,,. 

Then from ( 1 4 )  
3 

E =  2 (Ejr + iEj,)  ekc i i te~ikcIr t&kr  
j = l  

where EjM=ekCjtt(E;r + E;*)*, 

E,! 
Ejr 

Ej = arctan - - kc,,t. 

Next, the amplitude EM and phase angle Ep of 
the wave solution E,  which are functions of 
time as well as other parameters, may be ex- 
pressed as 

9 8 

E n a = [ ( 1 E j , ~ 0 8 & j ) * + ( ~ E j , c o s & j ) ~ l ~ ,  ( 2 1 )  
I-1 j - 1  

In  a similar fashion the potential temperature 
perturbation may be expressed in terms of a 
magnitude and phase angle which will be 
denoted by the symbols 8, and O,, respectively; 
the static stability magnitude by a, and its 
phase angle by up; and the vertical velocity 
magnitude by co, and its phase angle by w,. 

Numerical results 
A. DYNAMIC STABILITY 

The dynamic stability characteristics of the 
model were first determined by setting the 
determinant of the matrix (9) to zero and 
finding the roots of the frequency equation for 
a variety of values of wave length, thermal 
wind and heating functions. Since the effect of 
latitude variations on the stability of baroclinic 
waves is well known the latitude was fixed at 

45" in all cases. Figures 1 a, 1 b, 1 c and 1 d show 
the three values of c in m/s, both the real and 
imaginary parts, as functions of wave length 
for thermal winds of 0, 5 ,  10 and 15 m/s under 
adiabatic conditions. The barotropic case 
(U* = 0) gives three real roots, as is well known. 
The diagrams show the familiar increase in 
instability with increasing thermal wind and 
are included only for comparison to the diabatic 
cases. Over the band of unstable wave lengths 
there is one neutral, one amplified, and one 
damped wave, the latter two having the same 
propagation rates. The two dashed curves are 
diabatic examples which will be discussed 
presently. 

Figures 2a, 2 b ,  2c  and 2d are similar to 
Figure 1 except that heating is included. The 
heating constants for this case have been chosen 
as follows: 

K = 100 ergs g-' 'K-l sec-l, r = 2, 

which is similar to values used by DOOS (1962) 
in his study of stationary perturbations. Then 
for each 1°C of temperature difference between 
the air and surface, there is a heat transfer of 
100 ergs g-1 sec-1. For r =2,  this corresponds 
to a total heat transfer of 63 cal per square 
centimer per day in the entire column of air for 
each degree of temperature difference. 

The choice of r determines the rate at which 
the heating decreases with height. Observations 
indicate that the major part of the heating 
takes place in the lower ten thousand feet but 
extends in significant amounts up to 500 mb. 

In  these first examples, the correction to the 
sea-air temperature difference for the deviation 
of the surface perturbation pressure from 
1000 mb (7b) was omitted. The barotropic 
case, U* = 0, gave two essentially neutral wavea 
and one damped wave. The diagrams in Figure 2 ,  
when compared to the adiabatic examples in 
Figure 1 ,  show that this form of diabatic heating 
tends to reduce the growth rates in the inter- 
mediate wave lengths but extends the region 
of amplified waves to longer wave lengths. 
Bearing in mind that the actual growth rate 
is proportional to cJL, and not just c , ,  it may 
be seen that the heat exchange also tends to 
shift the wave length of maximum growth rate 
toward a shorter wave length, by about loo0 
km for the cases shown. The cutoff of instability 
a t  short wave lengths, however, is quite similar 

Tellus XIX (1967), 2 
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\ c r 3  

-25' " ' I '  ' ' ' ' ' 
1 2 3 4 5 6 7 8 9 1 0  

~(IO'krn) 

a 

*30r  

I 2 3 4 5 6 7 8 9 10 
L(IO*km) 

b 

+25 +'I LCr1 

I 2 3 4 5 6 7 8 9 1 0  
L(I0'km) 

d 

similar to Figure 1. 
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E m  

w 
m 

TIME (HOURS) 

Fig. 3a. Amplitudes (ordinate), E+, (meters), 0, (degrees), aM (degrees) and w, mb sec-I), of the 
stream, potential temperature ,static stability and vertical velocity waves as functions of time (abscissa) 
for L = 4000 km, U *  = 15 m/s, a = go", 6 =go", K = 100 ergs g-l "C-l sec-l, T = 2. 

-400 

-300- 

1 ; ; ,: Ib ,'5 h :9 d I ;5 :: ;9 ;I A ;5 ;7 ;9 A 43 a5 47 69 
TIME IHOURS) 

Fig. 36. Phase angles (ordinate, in degrees) Ep, Op, a,, and wp as functions of time (abscissa) in hours 
for the case shown in Figure 3a. 

in the adiabatic and diabatic cases. For easier 
comparison, the curve of c, for the amplified 
waves with heating and a thermal wind of 10 
m/s is included in Figure lc ,  labeled as Q .  The 
curve labeled 2Q in Figure l c  corresponds to a 
doubling of the heating rate per degree of 
temperature difference between the surface and 
the air. Here a further reduction in the ampli- 
fication rate may be noted for the intermediate 
wave lengths, however at wave lengths over 

7000 km the instability has been increased 
slightly with the greater rate of heat exchange. 
This is consistent with the increased instability 
a t  long wave lengths when heating occurs. 

Some other features of the cases with heating 
are noteworthy. For all thermal wind values, 
there is one wave with only very slight damping, 
thus being essentially neutral. Its propagation 
rate which is roughly 25 m/s corresponds 
closely to the neutral wave in the adiabatic 

Tellus XIX (1967), 2 
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-200- 

100- 

2 o d .  3 * ' 0 ' ' ' ' 8 ' ' ' ' ' 3 ' ' ' ' ' * 
I 3 5 7 9 I I  I3 15 I7 IS 21 23 25 27 29 34 33 35 37 39 41 43 45 47 4 9 4  

TIME (HOURS) 

b 
Fig. 4. Similar to Figure 3 except that 6 =  -90'. 

case. The damped wave in each diabatic case 
corresponds somewhat to the damped adiabatic 
wave; however the damping is much stronger 
at long wave lengths and has a slightly different 
point of cutoff on the short side. Here again the 
propagation rates of the waves with and 
without heating differ somewhat, especially near 
the cutoff of instability on the long wave side 
with adiabatic flow. 

Finally, it  should be observed that the east- 
ward propagation rates of the amplified waves 

Tellus XIX (1967), 2 

correspond closely to those of Rossby-type and 
show the characteristic retrogression of the 
long waves. The waves move somewhat slower 
when heating is present than under adiabatic 
conditions, differences of five knots are common 
with the stronger thermal winds. 

The essential differences between the diabatic 
and adiabatic cases are brought out adequately 
in the diagrams shown, though many other 
computations were made. For example, when 
the vertical distribution of heating was changed 
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b 
Pig. 5. Similar to Figure 3 except that cc =6 = - 90". 

to a linear function of pressure, the results 
differed only slightly from the quadratic case. 
Similarly, a series of computations which in- 
cluded the corrections to the surface tempera- 
tures stemming from the perturbations in the 
sea-level pressure field (see Eq. 7b) differed 
negligibly from those utilizing only the heating 
functions 7a. 

B. INITIAL VALUE PROBLEM 

Calculations were next carried out to deter- 
mine the amplitudes and phase angles of the 

stream function, potential temperature, static 
stability and vertical velocity waves as func- 
tions of time for varying initial conditions as 
well as for various values of other pertinent 
parameters governing the flow. The computa- 
tions were extended to 61 hours in each case, 
which is beyond the period reasonably valid for 
the linearized problem, in order to ascertain, if 
possible, limiting phase angles between the 
stream function, potential temperature, static 
stability and vertical velocity waves. Graphical 
displays of some typical examples will be shown; 

Tellus XIX (1967), 2 
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however these cases represent only a small 
fraction of the many for which calculations 
were completed. In  all of the cases shown 
certain parameters were held constant as 
follows: 

U = 20 m sec-I; U* = 15 m sec-I; f = 45"; 

K = 100 ergs g-l, 'C-I sec-' or K = 0; r = 2; 

A = 100 m; A, = 10°C; A, = 3°C or 0. 

The first set of cases to be discussed, which 
are shown in Figures 3, 4, and 5, are for a wave 
length of 4000 km. While this wave length 
is not the most unstable wave, it certainly is 
typical in behavior. 

(a) L = 4000 km 
Figure 3a shows the amplitudes EM, OM, uM 

and oM as functions of time (abscissa) for initial 
phase lags of a = 90" and 6 = 90" for the thermal 
and static stability waves, respectively. Diabatic 
heating is included. Except for an initial 
decrease in the amplitude of the static stability 
wave, all waves grow rapidly in amplitude. 
Figure 3a shows the corresponding phase angles 
E,, a,, and oD in degrees (ordinate). Here a 
slope upward to the right represents a progres- 
sion eastward and a downward slope, retrogres- 
sion. Also when the curve of a particular para- 
meter lies below that of another, the former lags 
the latter. Note that the phase relationship 
between the pressure and thermal waves re- 
mains essentially constant, whereas the static 
stability wave moves rapidly eastward as it 
decreases in amplitude and catches up to the 
stream function wave in about 9 hours. By 15 
hours the static stability wave is well ahead 
of the stream wave, after which it forges slowly 
ahead. The vertical velocity wave, which is 
computed from a diagnostic equation, is found 
initially to be about 120" ahead of the stream 
wave but gradually decreases to about 90" where 
it remains, implying downward velocities be- 
tween the ridge and the downwind trough. 

The adiabatic case corresponding to Figure 3 
is qualitatively similar to the diabetic case 
except that the growth of all waves is greater. 
Table 1 gives the amplitudes for this case and 
others a t  31 hours and also the phase differences 
in degrees between the stream wave and each 
of the other waves at 61 hours. A negative phase 
difference indicates that the stream wave 

Tellus XIX (1967), 2 

13 - 682898 

precedes the other wave, whereas a positive 
value indicates a lag of the stream wave. 

Figure 4 is similar to 3 except that 6 = -90". 
All waves grow slightly more rapidly in this 
case. Also the static stability wave does not 
show the initial decrease in amplitude found in 
the first case, nor does the phase relationship 
between the static stability wave and stream 
wave change significantly with time. In  this 
example the vertical velocity and static stability 
waves are essentially in phase at the onset and 
amplification of the latter begins immediately. 
This also evidently favors somewhat greater 
growth of the stream wave, about 5 % more than 
the first case. 

Figure 5 represents the case when the thermal 
wave initially precedes the stream wave, i.e., 
LY = -90"; also 6 = -90". As expected, the 
stream wave begins to decrease in amplitude, 
and the thermal wave also decreases slightly. 
On the other hand, the thermal wave progresses 
steadily eastward while the stream wave moves 
only slightly forward and then retrogresses 
until about 14 hours. At the time of minimum 
amplitude of the stream wave, namely, 9 hours, 
the stream and thermal waves are 180" out 
of phase. Thereafter the thermal wave wumes 
a lagging position with respect to the stream 
wave and the latter begins to amplify. The 
static stability wave progresses eastward for 
the 20 hours, then remains stationary for about 
5 hours, retrogresses for another 6 to 8 hours, 
and finally becomes essentially in phase with 
the o-wave beyond about 36 hours some 100 
degrees or so ahead of the stream wave. The 
perturbation static stability reaches its mini- 
mum amplitude of 2°C during its period of 
retrogression. 

The adiabatic case corresponding to Figure 5 
behaved in a qualitatively similar fashion; only 
the magnitudes were different as shown in 
Table 1. 

Computations were carried out for many 
other initial values of a and 6. When the two 
waves are initially in phase, the stream wave 
moves steadily ahead of the thermal wave giving 
rise to amplification immediately; however the 
growth rate is less than in the first case discussed 
(Figure 3). The amplitude of the thermal wave 
is almost constant for about 35 hours, and then 
gradually increases; whereas the amplitude of 
the static stability wave increases from the 
beginning. 
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TABLE 1. Amplitudes EM (meters), OM ("C), aM ("C), u ( ~ O - ~  mb sec-l) at 31 hours and plume 
differences (E, -OD), ( E ,  -a,), and (E, -0,) in degrees at 61 hours for L = 4000 km and for 

various a and 6 (degrees) and heating conditions. 
A = 100 meters, A, = 10°C, A, = 3°C or A, = 0 when S denoted with an asterisk. 

Heating a 6 E M  OM OM oM E,-8, E,-a, E,-% 

0 90 
0 90 
0 180 
0 180 
0 90 
0 180 
0 90 
0 180 
0 0 
0 0 
0 - 90 
0 0 
0 - 90 
0 0 

Q 180 

Q 180 

Q 90 

Q 90 

Q 90 
Q 90 

Q 0 
Q - 90 
Q 0 
Q - 90 
Q - 90 

Q 180 
Q 180 

Q - 90 

2Q 90 
2Q 90 
2Q 90 
2Q 0 

180 
- 90 
- 90 

180 
90 
0 
0 

90 
180 
90 
0 

- 90 
- 90 

0 
180 

- 90 
- 90 

180 
O* 

90 
O* 

90 
O* 

- 90 
0 
O* 

180 
90 

180 
90 

- 90 
0 

80 1 
757 
752 
677 
67 1 
642 
618 
552 
462 
446 
351 
325 
315 
302 

686 
644 
625 
609 
606 
597 
570 
498 
309 
295 
268 
232 
184 
184 

607 
546 
537 
246 

45.4 
43.3 
45.6 
38.9 
34.9 
38.2 
32.2 
29.8 
25.5 
23.8 
24.2 
15.7 
21.3 
12.7 

33.2 
34.3 
30.0 
31.0 
27.8 
26.7 
28.8 
28.8 
12.1 
18.5 
9.8 

14.3 
10.8 
11.3 

25.8 
21.6 
22.0 

8.7 

26.9 
29.0 
24.2 
19.6 
22.5 
23.4 
25.0 
18.6 
18.5 
14.5 
8.5 

16.8 
5.2 

12.2 

16.2 
14.4 
17.7 
12.5 
16.4 
15.0 
13.3 
13.3 
10.0 
2.7 
8.8 
2.6 
1.2 
3.1 

11.0 
10.5 
11.4 
6.8 

327 
318 
314 
273 
265 
272 
255 
223 
190 
170 
143 
137 
125 
107 

250 
242 
235 
222 
221 
211 
212 
212 
105 
108 
82 
84 
65 
67 

204 
178 
185 
68 

- 84 117 
- 84 118 
- 84 115 
- 84 115 
- 85 117 
- 84 117 
- 85 118 
- 85 117 
- 85 117 
- 86 116 
- 83 113 
- 85 121 
- 92 112 
- 88 118 

- 85 112 
- 84 111 
- 85 113 
- 84 111 
- 85 114 
- 86 113 
- 84 112 
- 84 112 
- 88 116 
- 81 105 
- 92 115 
- 82 106 
- 83 104 
- 83 107 

- 84 106 
- 86 107 
- 85 108 
- 94 110 

94 
94 
93 
94 
94 
94 
94 
94 
94 
93 
94 
95 
93 
93 

92 
92 
93 
92 
93 
86 
93 
93 
92 
92 
91 
92 
91 
92 

91 
91 
92 
89 

When the thermal and stream waves are 
180" out of phase initially, the latter is station- 
ary for the 8 hours or so while the former 
moves steadily eastward so that a favorable 
condition for growth is present immediately, 
similar to in-phase case. The vertical velocity 
wave remains about 90" ahead of the stream 
wave the entire period, whereas the static 
stability wave is nearly stationary for about one 
day when it becomes nearly in phase with the 
vertical velocity wave. The phase relationships 
between the various waves change little after 
24 hours. 

Table 1 summarizes results for the wave 
lengths of 4000 km. The examples are tabulated 
in order of decreasing amplitude of the stream 
function but separately for the adiabatic and 

the diabatic cases (denoted by Q and 2Q), the 
latter showing significantly smaller amplitudes. 
Note that initial phase of the static stability 
wave plays an important role with respect to 
amplification as well as that of the thermal 
wave. It should be recalled here that the mean 
static stability, ao, is the same for all cases. 
By and large, 8, and oy decrease with decreas- 
ing EM, but a, shows a few significant reversals. 
The 8th, 9th and 10th columns give the phase 
differences between the E-wave and each of 
the 8, a, o-waves. Here a negative value implies 
a lag of one of latter three with respect to the 
E-wave. The average lag of the thermal wave 
is 85", while the vertical velocity wave precedes 
the E-wave by an average of 92". There is no 
difference between the adiabatic and diabatic 
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Pig. 6. Similar to Figure 3 except that L = 8000 km, a =6  = 90". 

cases here. On the other hand, the static 
stability wave precedes the stream wave by an 
average of 116" in the adiabatic case and 108" 
in the diabatic case, a rather small difference. 

(b) L = 8000 km 

Next, some results are presented for a wave 
length of 8000 km which has some characteristic 
differences from the 4000 km length. As shown 
in the Figure 2, the dynamic instability is much 
less than for the 4000 km wave. 

Figure 6 shows the diabatic case with 
a = 6 = 90". Amplification begins immediately as 
expected, but the rate decreases with time con- 
trary to the case, L =4000 km, where the rate 
of amplification steadily increased during the 
period of integration. The thermal wave ampli- 
fies at first and then decreases in amplitude 
after about 28 hours, whereas the static stability 
wave is damped slightly for about one-half 
day and then amplifies during the remainder 
of the period. The vertical velocities are much 
smaller than for the 4000-km wave. The final 
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phase difference between the stream and ther- 
mal waves again shows a lag of the latter, but 
only about 25". The static stability and vertical 
velocity waves again precede the stream wave, 
by about 120" and 80" respectively. With regard 
to other propagation characteristics shown in 
Figure 6b, the stream wave is seen to be very 
slightly progressive, averaging less than five 
knots. The thermal wave progresses eastward 
at about 40 knob during the first 20 hours 
eventually slowing to about the same speed 
as the stream wave. The adiabatic case cor- 
responding to Figure 6 is qualitatively similar, 
but differences in magnitudes occur as illus- 
trated in Table 2. 

Computations for the diabatic case a = 6  = 

-90" show damping and marked retrogression 
in the early stages but in about 11 hours the 
thermal wave is in a lagging position and ampli- 
fication begins. By 27 hours retrogression had 
ceased and slight progression follows. Both the 
thermal and static stability waves progress 
rapidly eastward; however the former first  
decreases in amplitude and then increases, 
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while the latter increases slightly and then 
decreases to about 1" by about 41 hours. The 
final phase differences between the waves are 
quite similar to the preceding case. 

Of the diabatic examples computed, the warm 
trough-cold ridge combination (a = 180) showed 
the greatest amplification for the wave length 
of 8000 km as shown in Figure 7 and Table 2. 
Here the initial retrogression of the stream wave 
and the progression of the thermal wave gives 
rise immediately to a lagging thermal wave 
favorable for amplification which persists 
throughout the period. The thermal wave also 
amplifies the maximum, reaching a peak a t  
about 45 hours. 

Table 2 summarizes the calculations for the 
8000 km wave. The 61-hour period was not 
quite adequate to establish truly limiting phase 
differences, however the results are consistent 
except for the damped cases. Again the adiabatic 
examples generally showed greater amplifica- 
tion, but only by about 10 % here. The average 
lag of the thermal wave is about 30" for the 
adiabatic case and 25" for the diabatic examples. 
On the other hand, the static stability and 

vertical velocity waves precede the stream 
wave by about 140" under adiabatic conditions 
and only about 105" when heating is included, 
a substantial difference. 

Calculations were also made for wave lengths 
of 2000, 6000 and 10,000 km. The shortest of 
these waves showed a periodic character to 
the amplitude and phase but also marked 
growth. The behavior of the 6000 km wave was 
more or less midway between the 4000 and 
8000-km waves which have been discussed in 
detail. The period of 61 hours was too short 
to allow the full character of the long 10,000-km 
waves to unfold; however it was similar to the 
8000-km wave, though with smaller growth and 
greater retrogression. 

Summary and conclusions 

The results of this investigation show that 
the exchange of sensible heat as simulated here 
tends to reduce the dynamic instability of 
short and medium length perturbations and also 
shifts the wave length of maximum instability 
toward a shorter value than for the correspond- 
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Table 2. Similar to Table 1 except that L =8000 km. 

Heating a 6 EM 6, ,-bM oM EU-6,, Eu-,-bt, EU-wu 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 

180 - 90 
180 0 
90 - 90 

180 180 
90 180 

180 90 
90 0 
90 90 

- 90 - 90 
- 90 0 
- 90 90 
- 90 180 

0 180 
0 - 90 
0 90 
0 0 

180 - 90 
180 180 
180 O* 
90 180 
90 - 90 

180 90 
90 O* 
90 90 

- 90 - 90 
- 90 O* - 90 180 
- 90 90 

0 O* 
0 0 

325 
301 
300 
298 
297 
272 
263 
2 60 
163 
163 
125 
125 
128 
104 
97 
7 1  

290 
280 
269 
269 
258 
249 
248 
241 
156 
134 
131 
112 
84 
62 

27.9 
24.0 
23.6 
24.1 
24.5 
19.5 
17.7 
18.9 
15.9 
17.2 
11.9 
10.0 
11.0 
5.6 

11.0 
5.5 

21.2 
20.0 
18.3 
18.3 
15.8 
15.6 
15.1 
15.1 
14.2 
11.4 
10.1 
8.8 
4.8 
5.5 

6.6 18 
8.7 16 
8.8 13 

30.4 13 
4.9 11 
6.4 12 
9.1 9 
5.3 7 
3.0 13 
4.7 14 
3.8 10 
1.1 8 
4.0 2 
6.5 4 
1.3 3 
5.3 5 

1.7 12 
1.4 10 
2.2 
2.2 
4.0 
3.5 
3.9 
4.4 
2.5 
1.1 
1.1 
1.2 

0 
6 
7 
8 
9 
3 
1 
9 
8 
8 

3.4 4 
4.9 6 

- 31 143 
- 35 150 
- 32 153 
- 29 134 
- 29 140 
- 36 143 
- 38 154 - 27 145 
- 28 125 
- 33 145 
- 39 145 
- 32 119 
- 25 157 
- 39 183 

3 110 
- 73 200 

- 23 103 
- 20 103 
- 25 110 
- 20 112 
- 30 123 
- 30 118 
- 30 124 
- 28 123 
- 21 75 
- 25 87 
- 21 89 
- 32 105 
- 85 184 
-72 -121 

145 
143 
143 
133 
134 
132 
135 
126 
155 
157 
146 
128 
142 
146 
19 

137 

101 
86 
98 
85 

102 
96 
93 
83 

122 
121 
100 
124 
115 
155 

ing adiabatic case. However, the instability 
of the longer “planetary” waves is increased 
by the diabatic processes. It should be noted 
that the average gain of heat energy over one 
wave length is zero by virtue of the periodic 
character of the heating function. 

The numerical solutions to the initial value 
problem bear out the dynamic inatability 
results by showing a reduction in the ampli- 
fication of the stream wave when diabatic 
heating is included. Calculations for the wave 
length of 4000 km clearly show limiting phase 
differences between the stream function, tem- 
perature, static stability and vertical velocity 
waves; however the differences between the 
adiabatic and diabatic cases are slight, a t  least 
for the rates of heating ctssumed here. The 
thermal wave lags the stream wave as shown 
in earlier studies while the vertical velocity 
and static stability waves precede the stream 
wave. The last result differs somewhat from 
Bengtsson’s calculations with a non-linear model 
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which showed the static stability maximum 
lagging the stream function, in fact, almost 
coinciding with the trough. 

The 61-hour period of integration was not 
adequate to give truly limiting phase differences 
for the 8000-km wave in every case; however 
the essential characteristics were apperent. 
Here amplitudes were again reduced but el80 
substantial changes were noted between the 
final phase differences of the E-wave end the a 
and o-waves when the heat exchange was 
included. 

The limiting lag of the thermal wave behind 
the stream function wave and the concomitant 
amplification has been described as a funda- 
mental shortcoming of the two-level model. 
However, in view of the differences in the be- 
havior of short and long waves it might be 
conjectured that an initial disturbance, often 
of short weve length as evidenced by synoptic 
charts, lengthens as the system intensifies. As 
a result the limiting phase difference between 
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the pressure and thermal waves would then 
tend toward a smaller value in three or four days, 
particularly if friction reduces the lag still more. 
Thus predictions from a two-level model may 
not differ radically from observations in this 
respect. 

There is a well known tendency for pressure 
systems to develop off the east coasts of conti- 
nents in winter which is generally ascribed to 
the addition of energy through sensible and 
latent heat from the warm ocean. Although 
much more complex, this situation bears a rela- 
tion to the present investigation. On the basis 
of the results obtained here it is evident that 
mere warming of air behind the trough and 
cooling ahead would not bring about intensi- 

fication. However if the air ahead of the trough 
comes off a cold land mass and heat energy is 
added from the relatively warm ocean, intensi- 
fication can take place. Some unpublished 
computations by the author demonstrate that  
a stationary heat source ahead of the trough 
will produce intensification. 
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BJIMHHME TEnJIOBOI'O OEMEHA HA AMHAMkIKY EAPOtCJIMHHbIX BOJIH 

pocTa ~ o a ~ y q e ~ ~ f i ,  npMseM BTM xapawepn- 
CTMKA RBJIHIOTCR KOMIIJIeKCHbIMM. npeneJIbHbIe 
YrJIbI AJIR ~ O O O - K M  BOJIHbI ABIOT 85O nJIR OT- 
CTaBaHMH TePMM'IeCKOfi BOJIHbI IIO OTHOIIIeHWIO K 
BOJIHe 4YHKqBM TOKa, a nOCJIeHHRR OTCTaeT OT 
BOJIH BepTMKaJIbHOfi CKOPOCTU M CTaTMqeCKOft 
yCTOfiqABOCTM Ha 90" M 110" COOTBeTCTBeHHO; 
CyqeCTBeHHOfi pa3HMqbI MeXAy a p a 6 a ~ m e -  
CKMM M HeaAMa6aTMqeCKMM CJIyqaRMM He 06- 
HapyXeHO. A J I R  ~ O O O - K M  BOJIHbI, TePMUqeCKaH 
BOJIHa OTCTaeT OT BOJIHbI I$lYHKqMM TOKa nPM- 
6JIM3MTeJIbHO Ha 30°, a BOJIHa 4YHKqHII TOKB, B 
CBOIO Osepenb, OTCTaeT OT BOJIH CTaTMqeCKOfi 
YCTOfiqMBOCTH El BepTMKaJIbHOfi CKOPOCTM Ha 
140" AJIR aAMa6aTMqeCKOrO IIOTOKa, TOraa K a K  C 
YVeTOM ~ e n n o o 6 ~ e ~ a  COOTBeTCTByIOqMe qM4PbI 
COCTaBJIRIOT 25" M 105". 
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