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The effects of sensible heat exchange on the
dynamics of baroclinic waves

By G. J. HALTINER, U.S. Naval Postgraduate School, Monterey, California

(Manuscript received December 1, 1965)

ABSTRACT

A diabatic two-level model with variable static stability is investigated with respect
to the dynamic stability and thermal structure of harmonic perturbations. The ex-
change of sensible heat is assumed to be proportional to the difference in temperature
between the air and the underlying surface. This type of diabatic heating reduces the
instability of short and medium waves and shifts the maximum instability to a shorter
wave length than the corresponding adiabatic model; however, the instability of long
waves is increased. Solution of the initial value problem for various initial phase dif-
ferences between the stream function wave, thermal wave and static stability waves
show the importance of these parameters with respect to the growth characteristics
which are complex. Limiting angles for a 4000-km wave length show an 85° lag of
the thermal wave behind the stream wave and the latter lagging the vertical velocity
and static stability waves by about 90° and 110° degrees respectively; but no significant
differences are found between the adiabatic and diabatic cases. For an 8000-km wave
length, the thermal wave lags the stream wave by about 30° and the stream wave, in
turn, lags the static stability and vertical velocity waves by 140° with adiabatic flow,

while with heat exchange the corresponding figures are 25° and 105°.

Introduction

The increase in speed and storage capacity of
electronic computers attained during the past
decade has made possible the integration of
complex numerical prediction models on an
operational basis. As a result meteorologists
have been able to add more physics to the
models by way of consistent energetics, terrain
conditions, friction, heat sources, as well as
finer grids, larger areas and improved finite
differencing. Despite numerous attempts during
this period to develop a simple baroclinic model
which will correctly predict the development
of pressure systems, the results have not lived
up to expectations. In fact, a one parameter
model is still quite widely used for mid-
tropospheric prediction. Recently BENGTssON
(1964) carried out a series of experiments with
several ‘‘two-level”’ models including various
combinations of terms in the vorticity and
thermodynamic equations, some of which were
inconsistent with respect to vorticity and/or
energy conservation. He noted that these
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physical inconsistencies in certain models gave
rise to significant errors. For example, the
ordinary two-level quasi-geostrophic model
tends to overpredict kinetic energy. Bengtsson
concluded that a fundamental error in the two-
level models is the tendency for the thermal
wave to approach a limiting phase lag behind
the pressure wave which then leads to continued
amplification. This conclusion was based in
part on the results of his experiments and in
part on the results of Ocura (1957), THOMPSON
(1959), and WiINNIELSEN (1960), who showed
that for an adiabatic, frictionless, quasi-
geostrophic, two-level model with constant
static stability, an unstable wave will amplify
when the thermal wave lags the pressure wave
and damping occurs when thermal wave pre-
cedes the pressure wave. Ogura and Wiin-Niel-
sen further showed for linearized models that
regardless of the initial lag, the phase difference
between the thermal wave and the unstable
pressure wave tends toward a limiting value
with the former lagging the latter, thus eventu-
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ally giving rise to amplification. Bengtsson’s
non-linear model yielded similar results but
gave a somewhat larger phase lag than pre-
dicted by linear theory.

In the actual atmosphere the thermal wave
tends to lag during the developing stage of the
wave cyclone but catches up during the mature
stage with the atmosphere finally becoming
quasi-barotropic.

HALTINER & CAVERLY (1965) considered a
quasi-geostrophic, two-level model with surface
friction based on an Ekman layer. They found
that the friction not only reduces the ampli-
fication of synoptic waves, but in addition
showed that the phase difference between an
unstable pressure wave and its thermal wave
decreased with increasing surface drag coeffi-
cient, thus more nearly approximating con-
ditions in nature than the frictionless case.

In view of these results it also appears desir-
able to determine the effects of diabatic heating
on the dynamic stability and thermal structure
of baroclinic waves, including the phase
relationship between the pressure and tempera-
ture waves. D06s (1964) studied the influence
of sensible heat exchange on planetary flow
by means of a linearized, quasi-geostrophic
model with constant static stability and ob-
tained stationary analytic solutions for a par-
ticular, but realistic, zonal wind profile. The
exchange of sensible heat was assumed to be
proportional to the temperature difference
between the underlying surface and the air,
and also a decreasing function of pressure.
The temperature of the underlying surface was
a prescribed periodic function while the air
temperature depended on the motion. Dé6s
considered only long wave lengths in conso-
nance with the ocean-continent arrangement
at 45° latitude which gives two maxima and
minima in the observed east-west temperature
distribution. He found the center of the heat
source to be about 30° to the west of the tem-
perature maximum of the underlying surface.
With respect to the wind field, the heat source
for the air was located near the maximum
equatorward surface wind components; and
the heat sink, near the poleward surface
winds.

The present investigation considers the in-
fluence of sensible heat transfer on the dynamic
stability and other properties of harmonic
perturbations superimposed on a zonal current.
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Since the heat transfer affects the temperature
distribution and hence the static stability and
these parameters, in turn, influence the pro-
perties of the perturbations, it was considered
desirable to utilize a model which permits
variations in static stability.

LoreNnz (1960) designed a ‘“‘two-layer’” model
with a variable, self-determining static stability
which also possesses consistent integral pro-
perties with respect to vorticity and energy.
GATES (1961) has studied this model in con-
siderable detail and showed that in the adia-
batic, frictionless case, greater baroclinic in-
stability is found in wave lengths of 2000 to
5000 km with a variable static stability than in
the conventional two-parameter quasi-geo-
strophic 1953 model of Charney and Phillips
(see also BENGTSSON, 1964).

Mathematical development

The basic equations are the vorticity equa-
tion, thermodynamic equation, continuity equa-
tion and the linear portion of the balance equa-
tion, namely

VD - V- (fVy) = 0.

The atmosphere is separated into four 250-mb
layers by five pressure levels denoted by 0, 1,
2, 3, and 4, in order of increasing pressure. The
sum and the difference of the vorticity equations
at levels 1 and 3 are formed and a similar pro-
cedure is followed with respect to the thermal
equation. Finally, the balance equation is dif-
ferentiated with respect to p to give a type of
thermal wind equation. The procedure is similar
to that of GaTes (1961), except for the addi-
tion of the heating terms in the thermal equa-
tions.
The results are

2

a:t‘”u(w, Vi1 Jm V-0, (1)
aVZT 2 2
ot + (@ Vy+ H+d @, V)=V (fVy) =0, (2)
B T 0)+ (5, 0) -V - (V)= 2L, (3)
at 2
aif . _Q]“Qa
at+J(r,())+J(1p,¢7)-V6 Vx——2 » (4
2-0+0 RV — V- (fVz) = 0. (5)
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Here

v =(p+v)/2, T =(v,~-vs)/2,

0 =(0,+0,)/2, o=(0,-6,)/2,

x=(s—x)/2 and x = R/cp’

where y is the stream function; 0, the potential
temperature; and y, the velocity potential for
the divergent wind. @, and @, are heating rates
at levels 1 and 3, respectively. No friction has
been included and the vertical velocity w has
been assumed to be zero at levels, 0 and 4.
The continuity equation gives

2w = pg V2,

where w is the vertical motion at level 2.

The equations are to be linearized assuming
a basic zonal current with vertical shear but
no horizontal shear. It will be further assumed
that in the basic state no diabatic heating is
occurring and the surface air is in thermal
equilibrium with the underlying surface. The
latter must therefore have a lateral temperature
gradient consistent with the thermal wind
relationship.

Heating

The exchange of sensible heat at the surface
is taken to be proportional to the temperature
difference between the air and the underlying
surface. Further, the heating is assumed to be a
decreasing power of pressure similar to D60s
(1962) as follows:

Q=AVT,-T,) (f) .
Ps

Here A and r are constants, V, and T, are
the surface wind and air temperature and T,
is the temperature of the underlying surface.
Since the equations are to be linearized by
assuming a small perturbation superimposed
on a basic flow, the variation of the surface
wind speed above will be neglected leading to

Q-K(T,-T,) (f) : (6)

where K is a constant.
The earth’s surface is assumed to be an
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infinite heat source or sink so that its tempera-
ture field remains constant while the air tem-
perature tends to adapt to that of the surface.
As shown by Do6os (1962) and others, this
condition is more nearly approached over the
ocean than land; however, no distinction is
made in this study.

Since the surface air temperature has been
assumed to be in thermal equilibrium with the
underlying surface in the undisturbed state, only
the perturbation temperatures really need be
considered. The simplest approach is to merely
extrapolate from the 750-mb level to obtain
the temperature at 1000 mb, in which case the
air-sea temperature difference is simply (6 - 20},
if we take the lower boundary to be at 1000 mb.
The heating functions then become

Q=K (20-6)(}),
Q- K(20-6)(}),

(Ta)

where o and § are to be regarded as perturbation
quantities.

A more accurate estimate may be obtained
by taking into account the deviation of the sea-
level pressure from 1000 mb. With some minor
approximations the additional term for the sea-
level air temperature perturbation may be

written
o op\ |f
[F"_(ap az)o]g("’ %)

Here y and r again represent perturbation
quantities, whereas the other parameters are
from the basic state; and I'; is the dry adiabatic
lapse rate. Multiplication by —K(p/p,) yields
the heating terms to be added to (7a). Substitu-
tion of typical values into (7a) and (7b) show
the latter to be essentially an order of magnitude
less than the former.

Linearization of the system (1) through (5),
together with the assumption of harmonic
solutions of the form y exp ik(x —ct), T exp ik
(x —ct), O expik(x—ct), Sexpik(x—ct), and
X exp tk(x —ct), leads to a system of homo-
geneous linear equations

(7b}

MN =0, (8)

where M is the matrix
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iU+ B/ -U*

1 -U* c-U+pJi*
Loty L 2 -x)fU* 2,
- Tr W Rk
2*(1-%) fU* . gvi -2 U 2q,%

1 R k R k

l 0 -f

and N is a column vector made up of the coeffi-
cients y, 7, 0, S, X.

A necessary and sufficient condition that the
system (8) has a non-trivial solution is that the
determinant of the coefficients vanish. The
resulting frequency equation is cubic with respect
to the phase velocity ¢ and yields the dynamic
stability characteristics of the current at a
function of wave length, thermal wind, latitude,
heating function, etc. By eliminating the dif-
ference in the stream functions v and the poten-
tial function for the divergent wind component
%, the system may be reduced to

anE +a;,,0 =0, (10)
@ B 405 ® +ag30 =0, (11}
ay, E +ay,0 +age =0, (12)
K3 +1
where E:Q'P/f’ (=" a1
c, 2
K3 -1
Q=" "oriis
2 . 927 1
ay—c~U+B/k, a,=-U*R/f2'72,)
2(x+1)fU* an*O’o
(1—%) U* iq
Ayg = T —\e-U+ ’;C'l
k’o’nR(c—U+ﬂ/k2) (13)
- f:2(1+n) ’
2iq 2X(1—) fU*
a2,=U*+7’, Uy =" p
1q 2ig,
aaz=7:, Agg = — (Cﬂ U+—k‘8)-

Corresponding to each of the roots c; of the
frequency equation there is an ‘‘eigenvector”

G. J. HALTINER

0 0 0 |
i
0 0 —if/k'l
~(C—U+il1 U*+% —tka, |
k o (9

. 9
oes s (UTQ) o |
R2~*» 0 0 |

(E;, ©;, S;). The ©; and S; may be obtained
from two of the three equations above, e.g.
(10) and (11), in terms of E, which is to be
considered arbitrary for the present. In view
of the latter condition, the general solution
to the linearized differential system may be
expressed in the form

3
E=-> E; exp tk(x - c;t),
=1

3
0= > ©,exp ik(x—c;t), (14)
j=1

3
o= S; exp tk(x —c,t).
j=1

In order to study the evolution of some partic-
ular disturbances, the following initial condi-
tions will be specified

E(t=0)=A exp ik,
6(t=0)=Ay exp i(kz + a), (15)
o(t=0) = Ag exp i(kz + 6).

From (14) and (15) it follows immediately that

3
> ©,=Ar exp ix,

=1

(16)

3
> 8,;=Ag exp 4.
§=1
The three equations above, plus the six
equations resulting from the use of (10) and
(11) with each value of ¢;, j =1, 2, 3, permit the
determination of the E; ©;, and S, in terms of
the initial amplitudes of the stream function,
thermal wave and static stability waves, A4,
Arand Ag, respectively, the phase lags « and J,
and the other parameters such as L, U*, f, B,
Oy, 1, 3, €tC.
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Though each of the quantities E, ® and S
has three wave components according to (14),
each may be written as a single wave with an
amplitude and phase angle which are functions
of time. Let the phase velocity be expressed as
the complex number

¢y = ¢y 0y (17)
Then from (14)
3
E=I§l (E;,-F?:Eﬂ) ekcﬂte—ikc,,teikx
3
_ ZEjMeiejeikz, (18)
=1
where E =" 1B}, + B}, (19)
Ey
gj=arctan —= —kc,t. (20)

Ir

Next, the amplitude E,, and phase angle £, of
the wave solution E, which are functions of
time as well as other parameters, may be ex-
pressed as

3 3
Ey= [(’Z Epgcose) + (jZlE,,,, cos &)1, (21)
=1 =

j=1

3
2 EjM sin &
3

E,=arctan (22)

> Ey cos g

=1

In a similar fashion the potential temperature
perturbation may be expressed in terms of a
magnitude and phase angle which will be
denoted by the symbols 8,, and 0,,, respectively;
the static stability magnitude by o, and its
phase angle by o, and the vertical velocity
magnitude by w,, and its phase angle by w,,.

Numerical results

A. DYNAMIC STABILITY

The dynamic stability characteristics of the
model were first determined by setting the
determinant of the matrix (9) to zero and
finding the roots of the frequency equation for
a variety of values of wave length, thermal
wind and heating functions. Since the effect of
latitude variations on the stability of baroclinic
waves i8 well known the latitude was fixed at

Tellus XIX (1967), 2
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45° in all cases. Figures la, 1b, 1¢ and 1d show
the three values of ¢ in m/s, both the real and
imaginary parts, as functions of wave length
for thermal winds of 0, 5, 10 and 15 m/s under
adiabatic conditions. The barotropic case
(U* =0) gives three real roots, as is well known.
The diagrams show the familiar increase in
instability with increasing thermal wind and
are included only for comparison to the diabatic
cases. Over the band of unstable wave lengths
there is one neutral, one amplified, and one
damped wave, the latter two having the same
propagation rates. The two dashed curves are
diabatic examples which will be discussed
presently.

Figures 2a, 2b, 2¢ and 2d are similar to
Figure 1 except that heating is included. The
heating constants for this case have been chosen
as follows:

K =100 ergs g~! °’K-1sec, r =2,

which is similar to values used by D66s (1962)
in his study of stationary perturbations. Then
for each 1°C of temperature difference between
the air and surface, there is a heat transfer of
100 ergs g-* sec~. For r =2, this corresponds
to a total heat transfer of 63 cal per square
centimer per day in the entire column of air for
each degree of temperature difference.

The choice of r determines the rate at which
the heating decreases with height. Observations
indicate that the major part of the heating
takes place in the lower ten thousand feet but
extends in significant amounts up to 500 mb.

In these first examples, the correction to the
sea-air temperature difference for the deviation
of the surface perturbation pressure from
1000 mb (7b) was omitted. The barotropic
case, U* =0, gave two essentially neutral waves
and one damped wave. The diagrams in Figure 2,
when compared to the adiabatic examples in
Figure 1, show that this form of diabatic heating
tends to reduce the growth rates in the inter-
mediate wave lengths but extends the region
of amplified waves to longer wave lengths.
Bearing in mind that the actual growth rate
is proportional to ¢,/L, and not just ¢;, it may
be seen that the heat exchange also tends to
shift the wave length of maximum growth rate
toward a shorter wave length, by about 1000
km for the cases shown. The cutoff of instability
at short wave lengths, however, is quite similar
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FPig. 1. Phase velocities {ordinate) in meters per second for the adiabatic case for thermal wind values
of (a) 0, (b) 5 m/s, (c) 10 m/s, and (d) 15 m/s as a function of wave length (abscissa) in units of 10® km.
¢, is the real part and c;, the imaginary part. The dashed curve in 1¢ gives ¢, for the diabatic case of
Figure 2¢. The dash-dot curve labeled 2@ corresponds to a doubling of the heating rate.
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Fig. 2. Diabatic case similar to Figure 1.
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Fig. 3a. Amplitudes (ordinate), E,, (meters), 8,, (degrees), o, (degrees) and w,, (10-¢ mb sec?), of the
stream, potential temperature ,static stability and vertical velocity waves as functions of time (abscissa)
for L =4000 km, U* =15 m/fs, & =90° § =90°, K =100 ergs g~! °C~! sec!, r =2,
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Fig. 3b. Phase angles (ordinate, in degrees) E,, 0,

for the case shown in Figure 3a.

in the adiabatic and diabatic cases. For easier
comparison, the curve of ¢; for the amplified
waves with heating and a thermal wind of 10
m/s is included in Figure l¢, labeled as Q. The
curve labeled 2Q in Figure lc¢ corresponds to a
doubling of the heating rate per degree of
temperature difference between the surface and
the air. Here a further reduction in the ampli-
fication rate may be noted for the intermediate
wave lengths, however at wave lengths over

gy, and w, as functions of time (abscissa) in hours

7000 km the instability has been increased
slightly with the greater rate of heat exchange.
This is consistent with the increased instability
at long wave lengths when heating occurs.
Some other features of the cases with heating
are noteworthy. For all thermal wind values,
there is one wave with only very slight damping,
thus being essentially neutral. Its propagation
rate which is roughly 25 m/s corresponds
closely to the neutral wave in the adiabatic

Tellus XIX (1967), 2
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b

Fig. 4. Similar to Figure 3 except that §= —90°.

case. The damped wave in each diabatic case
corresponds somewhat to the damped adiabatic
wave; however the damping is much stronger
at long wave lengths and has a slightly different
point of cutoff on the short side. Here again the
propagation rates of the waves with and
without heating differ somewhat, especially near
the cutoff of instability on the long wave side
with adiabatic flow.

Finally, it should be observed that the east-
ward propagation rates of the amplified waves

Tellus XIX (1987), 2

correspond closely to those of Rossby-type and
show the characteristic retrogression of the
long waves. The waves move somewhat slower
when heating is present than under adiabatic
conditions, differences of five knots are common
with the stronger thermal winds.

The essential differences between the diabatic
and adiabatic cases are brought out adequately
in the diagrams shown, though many other
computations were made. For example, when
the vertical distribution of heating was changed
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Fig. 5. Similar to Figure 3 except that a = = —90°.

to a linear function of pressure, the results
differed only slightly from the quadratic case.
Similarly, a series of computations which in-
cluded the corrections to the surface tempera-
tures stemming from the perturbations in the
sea-level pressure field (see Eq. 7b) differed
negligibly from those utilizing only the heating
functions 7a.

B. INITIAL VALUE PROBLEM

Calculations were next carried out to deter-
mine the amplitudes and phase angles of the

stream function, potential temperature, static
stability and vertical velocity waves as func-
tions of time for varying initial conditions as
well as for various values of other pertinent
parameters governing the flow. The computa-
tions were extended to 61 hours in each case,
which is beyond the period reasonably valid for
the linearized problem, in order to ascertain, if
possible, limiting phase angles between the
stream function, potential temperature, static
stability and vertical velocity waves. Graphical
displays of some typical examples will be shown;

Tellus XIX (1967), 2



HEAT EXCHANGE AND DYNAMICS OF BAROCLINIC WAVES

however these cases represent only a small
fraction of the many for which calculations
were completed. In all of the cases shown
certain parameters were held constant as
follows:

U=20msec™; U* =15 m sec™?; f = 45°
K =100 ergs g-1, °C-tsec-lor K =0; r = 2;
A =100m; Ay =10°C; Ag =3°Cor 0.

The first set of cases to be discussed, which
are shown in Figures 3, 4, and 5, are for a wave
length of 4000 km. While this wave length
is not the most unstable wave, it certainly is
typical in behavior.

(a) L=4000 km

Figure 3a shows the amplitudes E,, 0, o,
and w,, as functions of time (abscissa) for initial
phase lags of « =90° and ¢ =90° for the thermal
and static stability waves, respectively. Diabatic
heating is included. Except for an initial
decrease in the amplitude of the static stability
wave, all waves grow rapidly in amplitude.
Figure 3a shows the corresponding phase angles
E, o, and w, in degrees (ordinate). Here a
slope upward to the right represents a progres-
sion eastward and a downward slope, retrogres-
sion. Also when the curve of a particular para-
meter lies below that of another, the former lags
the latter. Note that the phase relationship
between the pressure and thermal waves re-
mains essentially constant, whereas the static
stability wave moves rapidly eastward as it
decreases in amplitude and catches up to the
stream function wave in about 9 hours. By 15
hours the static stability wave is well ahead
of the stream wave, after which it forges slowly
ahead. The vertical velocity wave, which is
computed from a diagnostic equation, is found
initially to be about 120° ahead of the stream
wave but gradually decreases to about 90° where
it remains, implying downward velocities be-
tween the ridge and the downwind trough.

The adiabatic case corresponding to Figure 3
is qualitatively similar to the diabatic case
except that the growth of all waves is greater.
Table 1 gives the amplitudes for this case and
others at 31 hours and also the phase differences
in degrees between the stream wave and each
of the other waves at 61 hours. A negative phase
difference indicates that the stream wave

Tellus XIX (1967), 2
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precedes the other wave, whereas a positive
value indicates a lag of the stream wave.

Figure 4 is similar to 3 except that 6 = ~90°.
All waves grow slightly more rapidly in this
case. Also the static stability wave does not
show the initial decrease in amplitude found in
the first case, nor does the phase relationship
between the static stability wave and stream
wave change significantly with time. In this
example the vertical velocity and static stability
waves are essentially in phase at the onset and
amplification of the latter begins immediately.
This also evidently favors somewhat greater
growth of the stream wave, about 5 % more than
the first case.

Figure 5 represents the case when the thermal
wave initially precedes the stream wave, i.e.,
o= —90°% also 6= -90°. As expected, the
stream wave begins to decrease in amplitude,
and the thermal wave also decreases slightly.
On the other hand, the thermal wave progresses
steadily eastward while the stream wave moves
only slightly forward and then retrogresses
until about 14 hours. At the time of minimum
amplitude of the stream wave, namely, 9 hours,
the stream and thermal waves are 180° out
of phase. Thereafter the thermal wave assumes
a lagging position with respect to the stream
wave and the latter begins to amplify. The
static stability wave progresses eastward for
the 20 hours, then remains stationary for about
5 hours, retrogresses for another 6 to 8 hours,
and finally becomes essentially in phase with
the w-wave beyond about 36 hours some 100
degrees or so ahead of the stream wave. The
perturbation static stability reaches its mini-
mum amplitude of 2°C during its period of
retrogression.

The adiabatic case corresponding to Figure 5
behaved in a qualitatively similar fashion; only
the magnitudes were different as shown in
Table 1.

Computations were carried out for many
other initial values of « and 4. When the two
waves are initially in phase, the stream wave
moves steadily ahead of the thermal wave giving
rise to amplification immediately; however the
growth rate is less than in the first case discussed
(Figure 3). The amplitude of the thermal wave
is almost constant for about 35 hours, and then
gradually increases; whereas the amplitude of
the static stability wave increases from the
beginning.
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TaBLE 1. Amplitudes E, (meters), 0, (°C), o4 (°C), o(10™* mb sec-!) at 31 hours and phase
differences (E,-0,), (E,-o0,), and (E,-w,) in degrees at 61 hours for L =4000 km and for
various o and & (degrees) and heating conditions.

4 =100 meters, 4;=10°C, A5=3°C or A;~=0 when § denoted with an asterisk.

Heating o é Ey, 0, Gy W,y E,-6, E,0, E,o,
0 90 180 801 45.4 26.9 327 -84 117 94
0 90 - 90 757 43.3 29.0 318 —84 118 94
0 180 - 90 752 45.6 24.2 314 —84 116 93
0 180 180 677 38.9 19.6 273 —~84 115 94
0 90 90 671 34.9 22.5 265 -85 117 94
0 180 0 642 38.2 23.4 272 -84 117 94
0 90 0 618 32.2 25.0 255 -85 118 94
0 180 90 552 29.8 18.6 223 —85 117 94
0 0 180 462 25.5 18.5 190 —85 117 94
0 0 90 446 23.8 14.5 170 —86 116 93
0 - 90 0 351 24.2 8.5 143 —83 113 94
0 0 - 90 325 15.7 16.8 137 -85 121 95
0 - 90 - 90 315 21.3 5.2 125 -92 112 93
0 0 0 302 12.7 12.2 107 —88 118 93
Q 90 180 686 33.2 16.2 250 — 85 112 92
Q 180 - 90 644 343 14.4 242 —84 111 92
(4] 90 - 90 625 30.0 17.7 235 ~ 86 113 93
Q 180 180 609 31.0 12.5 222 —84 111 92
Q 90 0* 606 27.8 16.4 221 -85 114 93
Q 90 90 597 26.7 15.0 211 —86 113 86
Q 180 0* 570 28.8 13.3 212 —84 112 93
Q 180 90 498 28.8 13.3 212 — 84 112 93
Q 0 o* 309 12.1 10.0 105 —88 116 92
Q - 90 - 90 295 18.5 2.7 108 —81 105 92
Q 0 0 268 9.8 8.8 82 —-92 115 91
Q - 90 0* 232 14.3 2.6 84 —82 106 92
Q - 90 180 184 10.8 1.2 65 —83 104 91
Q - 90 90 184 11.3 3.1 67 — 83 107 92

2Q 90 180 607 25.8 11.0 204 — 84 106 91
2Q 90 90 546 21.6 10.5 178 — 86 107 91
2Q 90 - 90 637 22.0 11.4 185 —-85 108 92
2Q 0 0 246 8.7 6.8 68 —94 110 89

When the thermal and stream waves are
180° out of phase initially, the latter is station-
ary for the 8 hours or so while the former
moves steadily eastward so that a favorable
condition for growth is present immediately,
similar to in-phase case. The vertical velocity
wave remains about 90° ahead of the stream
wave the entire period, whereas the static
stability wave is nearly stationary for about one
day when it becomes nearly in phase with the
vertical velocity wave. The phase relationships
between the various waves change little after
24 hours.

Table 1 summarizes results for the wave
lengths of 4000 km. The examples are tabulated
in order of decreasing amplitude of the stream
function but separately for the adiabatic and

the diabatic cases (denoted by @ and 2Q), the
latter showing significantly smaller amplitudes.
Note that initial phase of the static stability
wave plays an important role with respect to
amplification as well as that of the thermal
wave. It should be recalled here that the mean
static stability, o, is the same for all cases.
By and large, 0,, and w,; decrease with decreas-
ing E,;, but o, shows a few significant reversals.
The 8th, 9th and 10th columns give the phase
differences between the E-wave and each of
the 0, o, w-waves. Here a negative value implies
a lag of one of latter three with respect to the
E-wave. The average lag of the thermal wave
is 85°, while the vertical velocity wave precedes
the E-wave by an average of 92°. There is no
difference between the adiabatic and diabatic

Tellus XIX (1967), 2
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Fig. 6. Similar to Figure 3 except that L = 8000 km, o =4 =90°.

cases here. On the other hand, the static
stability wave precedes the stream wave by an
average of 116° in the adiabatic case and 108°
in the diabatic case, a rather small difference.

(b) L=8000 km

Next, some results are presented for a wave
length of 8000 km which has some characteristic
differences from the 4000 km length. As shown
in the Figure 2, the dynamic instability is much
less than for the 4000 km wave.

Figure 6 shows the diabatic case with
o =0 =90°, Amplification begins immediately as
expected, but the rate decreases with time con-
trary to the case, L =4000 km, where the rate
of amplification steadily increased during the
period of integration. The thermal wave ampli-
fies at first and then decreases in amplitude
after about 28 hours, whereas the static stability
wave is damped slightly for about one-half
day and then amplifies during the remainder
of the period. The vertical velocities are much
smaller than for the 4000-km wave. The final

Tellus XIX (1987), 2

phase difference between the stream and ther-
mal waves again shows a lag of the latter, but
only about 25°. The static stability and vertical
velocity waves again precede the stream wave,
by about 120° and 80° respectively. With regard
to other propagation characteristics shown in
Figure 8b, the stream wave is seen to be very
slightly progressive, averaging less than five
knots. The thermal wave progresses eastward
at about 40 knots during the first 20 hours
eventually slowing to about the same speed
as the stream wave. The adiabatic case cor-
responding to Figure 6 is qualitatively similar,
but differences in magnitudes occur as illus-
trated in Table 2.

Computations for the diabatic case a =6 =
—90° show damping and marked retrogression
in the early stages but in about 11 hours the
thermal wave is in a lagging position and ampli-
fication begins. By 27 hours retrogression had
ceased and slight progression follows. Both the
thermal and static stability waves progress
rapidly eastward; however the former first
decreases in amplitude and then increases,
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while the latter increases slightly and then
decreases to about 1° by about 41 hours. The
final phase differences between the waves are
quite similar to the preceding case.

Of the diabatic examples computed, the warm
trough-cold ridge combination (& = 180) showed
the greatest amplification for the wave length
of 8000 km as shown in Figure 7 and Table 2.
Here the initial retrogression of the stream wave
and the progression of the thermal wave gives
rise immediately to a lagging thermal wave
favorable for amplification which persists
throughout the period. The thermal wave also
amplifies the maximum, reaching a peak at
about 45 hours.

Table 2 summarizes the calculations for the
8000 km wave. The 61-hour period was not
quite adequate to establish truly limiting phase
differences, however the results are consistent
except for the damped cases. Again the adiabatic
examples generally showed greater amplifica-
tion, but only by about 10 % here. The average
lag of the thermal wave is about 30° for the
adiabatic case and 25° for the diabatic examples.
On the other hand, the static stability and

13 15 7 19 21 23 2527 29 3 33 35 37 39 41 43 45 47 49-6|
TIME {HOURS)

b
Fig. 7. Similar to Figure 6 except that a =J =180°.

vertical velocity waves precede the stream
wave by about 140° under adiabatic conditions
and only about 105° when heating is included,
a substantial difference.

Calculations were also made for wave lengths
of 2000, 6000 and 10,000 km. The shortest of
these waves showed a periodic character to
the amplitude and phase but also marked
growth. The behavior of the 6000 km wave was
more or less midway between the 4000 and
8000-km waves which have been discussed in
detail. The period of 61 hours was too short
to allow the full character of the long 10,000-km
waves to unfold; however it was similar to the
8000-km wave, though with smaller growth and
greater retrogression.

Summary and conclusions

The results of this investigation show that
the exchange of sensible heat as simulated here
tends to reduce the dynamic instability of
short and medium length perturbations and also
shifts the wave length of maximum instability
toward a shorter value than for the correspond-
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Table 2. Similar to Table 1 except that L =8000 km.

Heating a 6 E, 0, Oy Wy E 9, B0, E,w
0 180 - 90 325 27.9 6.6 18 -31 143 145
0 180 0 301 24.0 8.7 16 -35 150 143
0 90 - 90 300 23.6 8.8 13 - 32 153 143
0 180 180 298 24.1 30.4 13 -29 134 133
0 90 180 297 24.5 4.9 11 -29 140 134
0 180 90 272 19.5 6.4 12 - 36 143 132
0 90 0 263 17.7 9.1 9 —38 154 135
0 90 90 260 18.9 5.3 7 - 27 145 125
0 - 90 - 90 163 15.9 3.0 13 —28 125 1556
0 - 90 0 163 17.2 4.7 14 —-33 145 157
0 - 90 90 125 11.9 3.8 10 -39 145 146
0 - 90 180 125 10.0 1.1 8 -32 119 128
0 0 180 128 11.0 4.0 2 - 25 157 142
0 0 - 9 104 5.6 6.5 4 -39 183 145
0 0 90 97 11.0 1.3 3 3 110 19
0 0 0 71 5.6 5.3 5 —-73 200 137
Q 180 - 90 290 21.2 1.7 12 -23 103 101
Q 180 180 280 20.0 1.4 10 —-20 103 86
Q 180 0* 269 18.3 2.2 10 - 25 110 98
Q 90 180 269 18.3 2.2 6 - 20 112 85
Q 90 - 90 258 15.8 4.0 7 -30 123 102
Q 180 90 249 15.6 3.5 8 —-30 118 96
Q 90 0* 248 15.1 3.9 9 - 30 124 93
Q 90 90 241 15.1 4.4 3 —28 123 83
Q - 90 - 90 156 14.2 2.5 11 -21 75 122
Q - 90 0* 134 11.4 1.1 9 —25 87 121
Q -~ 90 180 131 10.1 1.1 8 -21 89 100
Q - 90 90 112 8.8 1.2 8 -32 105 124
Q 0 o* 84 4.8 3.4 4 -85 184 1156
Q 0 0 62 5.5 4.9 6 -72 —121 155

ing adiabatic case. However, the instability
of the longer ‘planetary” waves is increased
by the diabatic processes. It should be noted
that the average gain of heat energy over one
wave length is zero by virtue of the periodic
character of the heating function.

The numerical solutions to the initial value
problem bear out the dynamic instability
results by showing a reduction in the ampli-
fication of the stream wave when diabatic
heating is included. Calculations for the wave
length of 4000 km clearly show limiting phase
differences between the stream function, tem-
perature, static stability and vertical velocity
waves; however the differences between the
adiabatic and diabatic cases are slight, at least
for the rates of heating assumed here. The
thermal wave lags the stream wave as shown
in earlier studies while the vertical velocity
and static stability waves precede the stream
wave. The last result differs somewhat from
Bengtsson’s calculations with a non-linear model
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which showed the static stability maximum
lagging the stream function, in fact, almost
coinciding with the trough.

The 61-hour period of integration was not
adequate to give truly limiting phase differences
for the 8000-km wave in every case; however
the essential characteristics were apparent.
Here amplitudes were again reduced but also
substantial changes were noted between the
final phase differences of the E-wave and the «
and w-waves when the heat exchange was
included.

The limiting lag of the thermal wave behind
the stream function wave and the concomitant
amplification has been described as a funda-
mental shortcoming of the two-level model.
However, in view of the differences in the be-
havior of short and long waves it might be
conjectured that an initial disturbance, often
of short wave length as evidenced by synoptic
charts, lengthens as the system intensifies. As
a result the limiting phase difference between



198

the pressure and thermal waves would then
tend toward a smaller value in three or four days,
particularly if friction reduces the lag still more.
Thus predictions from a two-level model may
not differ radically from observations in this
respect.

There is a well known tendency for pressure
systems to develop off the east coasts of conti-
nents in winter which is generally ascribed to
the addition of energy through sensible and
latent heat from the warm ocean. Although
much more complex, this situation bears a rela-
tion to the present investigation. On the basis
of the results obtained here it is evident that
mere warming of air behind the trough and
cooling ahead would not bring about intensi-

G. J. HALTINER

fication. However if the air ahead of the trough
comes off a cold land mass and heat energy is
added from the relatively warm ocean, intensi-
fication can take place. Some unpublished
computations by the author demonstrate that
a stationary heat source ahead of the trough
will produce intensification.
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BJIUAHUE TEIIJOBOI'O OBMEHA HA ITUHAMURY BAPORJIMHHBIX BOJIH

C noMomplo HeaguabaTnmueckoif ABYyXypoBeH-
HOW MOJeNu ¢ MepeMeHHONH CTATHYECKOU yCToi-
YNBOCTBI0 HCCIefyeTcA IMHAMUYECKAs YCTOMH-
YUBOCTb M TEPMUYECKAHd CTPYKTypa rapMOHH-
YeCKHX BoamymeHuit. OGMeH TenjoM NpPHHU-
MaeTcd IPONOPLHMOHANBHHIM PA3HOCTH TeMIle-
paTyp BO3AyXa M TNOACTHJIAWIIeH NOBEPXHO-
cTH. JTOT TUI HeaAnabaTHMUeCKOIro HarpeBaHuUs
YMEHBINAET HEYCTOUYMBOCTh KOPOTKUX M Cpef-
HUX BOJH M CABHMTaeT MAKCHUMYM HeyCTOHuM-
BOCTH B CTOPOHY KOPOTKMX BOJIH II0 CPABHEHMIO
¢ aguabaTuvecKoif MOAeNbIo; OJHAKO, HEYCTOM-
YMBOCTh AJMHHBIX BOJIH Boapacraer. Pemenue
3aJaydl C HAYAJbHBIMH NAHHBIMH [OJA pasind-
HHIX HAuyaJbHHX pas3HocTedt a3 BOJHB QyHK-
MM TOKA, TEMIEPATyPHOI BOJHH W BOJIHHI CTa-
THYECKON YCTOWYMBOCTH OOHAPYHHUBAET BaM-
HOCTh 3TUX INApPaMETPOB JJIA XapPaKTePHCTHK

pocTa BO3MyIeHUN, IpuyeM OSTU XapaKTepH-
CTHKHU ABJIAITCA KoMmniekcHuIMM. [IpepmenbHble
yrab aaa 4000-kM BOJHBL garoT 85° gunA oT-
CTABAHNA TepMUYECKON BOJHBI 10 OTHOIIEHUIO K
BOJIHE QYHKIMH TOKA, & NOCIETHAA OTCTAeT OT
BOJH BEPTUKAJbHOW CKOPOCTH M CTATHYECKOMH
ycroituuBoct Ha 90° m 110° COOTBETCTBEHHO;
CYLIECTBEHHOM pAasHUIBI MemAy ajguabarude-
CKMM M HeagunaGaTHYeCKUM CIy4YaAMH He 00-
HapyseHo. s 8000-kM BOJHBI, TepMUYECKAA
BOJIHA OTCTAeT OT BOJHBI (YHKIHMM TOKA HpH-
6ausurenbHo HA 30°, a BonHA QYHKIUM TOKA, B
CBOI0 O4YepeAb, OTCTAeT OT BOJIH CTAaTUYECKOH
YCTORYMBOCTH ¥ BepTMKAJIbHO! CKOpPOCTH Ha
140° gna aguabaTHUECKOTO MOTOKA, TOrAA KAK C
VYeTOM Telmioo0MeHa COOTBeTCTBYIOIIME LHQpPHI
cocrasiadaT 25° n 105°.
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