
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1987-08

Deriving Abstractions from a Software Object Network

Chen, Yih-Farn; Ramamoorthy, C.V.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/64539

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

RD-RIO? 472 DERIYING ABSTRACTIONS FROM A SOFTWARE OBJECT NETWORK 1/1
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
Y CHEN ET AL. RUG B? NPS52-07-937

UNCLASSIFIED F/G125N L

IMMMIEMhhMMEI

Q36

M2

1.25 11. 1111.4

m% %4 Mi

IC FILE COPY

NPS52-87-037

00 NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTI
0LCT

NOV 10 0g

D,

C*0

DERIVIG ABSRACTINS FRM A SFTWAR

%

OBJECT NETWORK.

Yih-Farn Chen

C. V. RAMAMOORTHYI

August 1987

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

'0

UNCLASSIFIED
SECURITY CLASSIFICATION OF THiS PAE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-87-037
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

(if applicable)

Naval Postgraduate School Chief of Naval Operations (OP-094)

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943
Ba. NAME OF FUNDING, SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
N0003987WREF312

Space and Warfare Systems Cmd
Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT JTASK WORK UNIT
Washington, DC 20363 ELEMENT NO. NO NO ACCESSION NO

11. TITLE (Include Security Classification)

Deriving Abstractions from a Software Object Network

12. PERSONAL AUTHOR(S)

Yih-Farn Chen and C. V. Ramamoorthy
13a. TYPE OF REPORT 1i3b TME COVERED 14 DATE OF REPORT (Year, Month, Day) 15P AGE COUNT

Techncal ROM TO - Auzust 19871 (

16. SUPPLEMENTARY NOTATION
r

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Program database, software restructuring, modules, layers,
ripple effects, abstraction

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

. High level abstractions from programs can be obtained by"(fl)extracting relational
information from programs to form software object network, and (2y deriving high level
abstractions from that network. ike show how to obtain several interesting abstractions
such as subsystems, ripple effects, logical layers and modules from a software object net-
work represented by a C program database. These abstractions assist programmers' in under-
standing the program structure and point out potential areas for improvement. 46e then
demonstrate-Show rule-based software restructuring can be performed by accessing the
relational information stored in the program database.-' .. ,

, 4_,, ... 4! , r

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 0 SAME AS RPT C DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) , 2c OFFICE SYMBOL

C. V. Ramamoorth%
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete u.. aovernent wo'in, Olfic* 1906-4O6-24.

%0%*ItS. '06

Deriving Abstractions from a Software Object Network

Yih-Farn Chent
C. V. Ramamoorthy

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

High level abstractions from programs can be obtained by (1) extract-

ing relational information from programs to form a software object net-
work, and (2) deriving high level abstractions from that network. We

show how to obtain several interesting abstractions such as subsystems,
ripple effects, logical layers and modules from a software object network
represented by a C program database. These abstractions assist program-

mers in understanding the program structure and point out potential areas
for improvement. We then demonstrate how rule-based software restruc-
turing can be performed by accessing the relational information stored in
the program database.

1. Introduction

Traditionally, a programmer utilizes certain editing commands to understand and

modify software. Such an approach has several severe drawbacks:

(1) In order to trace the logical structure of a program efficiently, a programmer has to

memorize the location of many objects and relations among them. Cop

(2) A programmer is forced to constantly view a program as a set of files, lines, an 07-to

characters. A conceptually simple software modification task may have to be

transformed into numerous error-prone editing actions. It is difficult to guarantee
that the integrity of a program is maintained after several modifications.

(3) Programmers are reluctant to do any major software restructuring, even if the

potential saving of future maintenance cost can be great. Programs become increas-

ingly difficult to understand as new features are added in.

In view of these problems, we have developed the C Information Abstraction (CIA) .

System[1,2]. The goal of CIA is to provide an entity-relationship view to C programmers

by constructing a C program database from the source code. Based on this relational

t This work was supported in part by the Chief of Naval Operations (OP-004) and in part by the California Ml-
CRO program under contract No. 532434-19M0.

/]U /, ,-o

-2-

view, a set of tools are constructed to facilitate software understanding and to automate
the software manipulation process. This paper deals with the problem of deriving high

level abstractions from the C program database and using these abstractions to guide the

software restructuring process.

Section 2 gives an outline of the CIA system; Section 3 introduces the concept of
software object network; Section 4 deals with the extraction of subsystems from C pro-

grams for reusability; Section 5 shows how to compute ripple effects; Section 6 presents an
algorithm for deriving logical layering from C programs; Section 7 discusses the modulari-
zation of C programs; Section 8 introduces a set of rules for software restructuring;

finally, Section 9 gives the conclusion.

2. The C Information Abstraction System

The CIA system consists of three major components (Figure 1):

(1) The C Abstractor, which constructs a program database by extracting relational
information from a set of C programs.

(2) The Information Viewer, which provides relational views to users and allows a set of
library calls to programmers.

(3) The Investigator, which constructs high level software views from the relational

views.

high levelviews

Investigator ,'

relational

C Abstractor I nfo. Viewer

abstraction rules Datab queries

Figure 1: The outline of the C Information Abstraction System

Information to be extracted by the C Abstractor is determined by the conceptual

view of the C programs. We decided to simplify this view by concentrating on global

objects, i.e. objects that can be referenced across function or file boundaries. However,
this simple conceptual view is enough to support most important abstractions as we shall

see later. Figure 2 shows the conceptual view of the C program database. Relations
shown in solid lines can been extracted by the current CIA system; relations shown in dot-

ted lines will be available in the next version of CIA. Definitions of all the relations are

listed in Table 1.

.%V

-3-

manyj-to-one

............
many-to-many

fhuetlon g bva' file

Figure 2: The Conceptual View of the C Program Database

Table 1. Definitions of the Relationshlps
num obj~typel obj~typeR rel.tpe definition

1 file file m-to-m filel includes file2
2 function function m-to-m functionl calls function2
3 gbvar function m-to-m Sbvarl referenced in function2
4 macro function m-to-M macrol referenced in function2
5 function file m-to-m function1 referenced or defined in file2
6 macro file m-to-m macrol referenced or defined in file2
7 gbvar file m-to-m gbvarl referenced or defined in file2
8 type file m-to-m typel referenced or defined in file2
9 gbvar type m-to-1 gbvarl defined as type2

10* type function m-to-m typel referenced or defined in function2
11" type type m-to-m typel referenced in type2

12" macro type m-m macrol referenced in type2
13" macro macro m-m macrol referenced in macro2
14" macro gbvar m-m macrol referenced in gbvar2

* future extensions

To illustrate some of these relations, Example 1 shows a portion of a simple C pro-

gram. Comments are associated with each line wherever there are relations established

due to references.

-4-

Example 1:

#define HEADER 12
#define PACKET 128
#define CONTENT PACKET-HEADER /* macro-macro relation /
char buffer[CONTENTI; /* gbvar-macro relation /
struct message I

char header[HEADER; [* type-macro relation /
char content[PACKETJ; / type-macro relation */

struct packet {
struct message m; / type-type relation
int timestamp;}; l

struct packet pl; /* type-gbvar relation */
receive()

pl=read(buffer, PACKET); /* function-function relation /
/ 2 function-gbvar relations *//" function-macro relation "/

In Example 1, the single statement

pl=read(buffer, PACKET)

establishes four relations because of the references to two global variables pi and buffer,

the reference to the function read, and the reference to the macro PACKET.

Besides the relational information, the program database also keeps information

about the location, size, static scope, data type and other attributes of each object.

Therefore, the Infoview system is capable of providing three important functions (among

others):

(1) Retrieval of information about the attributes of a software object.

(2) Access to relations among software objects.

(3) Retrieval of the definition (contents) of an object.

With the program database, the Investigator can easily derive high level software

abstractions. The view of programs as Software Object Networks will first be discussed.

Then we wilil show how various abstractions can be computed from this network, and

how these abstractions can guide rule-based software restructuring.

3. Software Object Network

In general, we can build a software object network from the program database by

assigning a node for each object and an arc for each relationship between two global

objects. For example, Figure 3 shows the object network constructed from Example 1. In

the rest of this paper, we shall use a slightly more complex software object network shown

in Figure 4 to illustrate several interesting concepts. Big squares denote function objects

and small squares denote global objects of other types. Arcs represent reference relation-

ships. The subnetwork constructed from the function objects and their relationships is

%'

bufr pake
rea ,P°,

Figure 3: The Object Network Constructed from Example 1

considered the backbone of the program structure. The other global objects and references

are considered as the flesh.

Figure 4: A Typical Software Object Network

An object network for a reasonably large program would be too complex to under-
stand because a human can only handle a few objects and relations at a time. To simplify

the understanding of program structure, we need to derive some abstractions from the
object network. We shall examine the following abstractions and discuss their roles in
program understanding and automation:

(1) Reflexive, transitive closure of the reference relation.

(2) Topological sorting of the reference relation.

(3) Clustering based on common references.

The first abstraction is crucial for reusing subsystems in programs and for calculat-
ing ripple effects. The second abstraction helps reveal logical layers in a program. The

third abstraction gives the logical modularization of a program. The object network
shown in Figure 4 would be used repeatedly to illustrate these abstractions in the

following sections.

Based on these abstractions, a user can usually identify the weaknesses in the pro-

gram structure, and a possible software restructuring may be called for. We shall see how

a high level software restructuring operation can be broken down into a series of primitive

operations. The rules governing each primitive operation for the purpose of maintaining

program integrity will be given. Exercising these rules requires accessing the program

database for detailed examination of the relations among software objects.

4. Extraction of Subsystems for Reusing Software

The effort in developing a new software system can be substantially reduced if cer-

tain software objects in other systems can be reused in the new system[3,4]. Reusing a

software object involves several tasks:

(1) Identification: Identify a reusable object that satisfys the needs.

(2) Extraction: Extract that object and its associated objects.

(3) Integration: Integrate the set of extracted objects with the new system.

The first task can be accomplished, to some extent, with the help of structured corn-

ments described in[1,2] or the attributed nodes in the French MENTOR project[5] by
associating machine-processable comments with each reusable software object. Luqi sug-

gests the use of normalization transformations to solve the identification problem for
software adopting different specifications.6].

We shall concentrate on the second and third tasks. We begin by defining the term

subayetem. A subsystem associated with an object X is a set of objects that can be

reached by following the reference links in the object network starting from the object X.
In other words, the mapping from an object to its subsystem is defined by the reflexive,

transitive closure of the reference relations in the object network. We shall call this map-

ping Sub. For example, black boxes in Figure 5 show the subsystem of the function F, i.e.

Sub(F). This type of calculation is similar to the reachability analysis in the state transi-

tion diagrams for finite state machines.

Reusing an object requires extracting its whole subsystem so that there will be no

missing references in the new system. And if we would like to reuse a set of objects

01.02,...,O,, then the objects to be extracted are Sub(Oi)USub(0 2)U • ." USUb(O)2

Integrating objects of a-subsystem into the new system may introduce name conflicts.
We shall come to this problem later when we deal with the problem of software restruc-

turing.
As an example, if we want to reuse the data structure "struct packet" in Example 1,

then the following should be extracted:

d% r Pr K-6WLLJCLV)

-7-

,F

Figure 5: Extraction of a Subsystem from the Object Network

#define HEADER 12
#define PACKET 128
struct message (

char header[IHEADERI; /* macro-type relation */
char content[PACKET];1;

struct packet (
struct message m; /* type-type relation /
int timestamp;

This portion of code can be compiled without missing references. On the other hand,
if we want to extract the function receive, then the whole program portion shown in

Example I and the function read and its associated subsystem (defined in other files)
should all be extracted. The whole extraction process can then be automated using the

information stored in the program database.

The concept of subsystem leads us to define four types of weight for each global

object:

(1) The basic weight of each global object is 1.

(2) The actual weight of a global object is the number of lines used in the source code to

define that object.

(3) The basic association weight of a global object X is the number of global objects in
the subsystem of X. For example, the basic association weight of function F in Fig-

ure 5 is 14.

(4) The actual association weight of a global object X is the sum of the actual weight

of all global objects in the subsystem of X. In other words, it is the number of lines
that a programmer has to go through to fully understand X.

Intuitively, a heaty object (an object with a large association weight) is more difficult

to understand than a light object (an object with a small association weight). However,
r f.other factors such as cross-module referencing, the degree of sharing of referenced objects,

d 'r Or, ,

-8-

and control complexity may have to be taken into account. In any case, the actual a88o-

ciation weight appears to be a reasonably good measure to indicate the amount of effort

required to understand and reuse an object.

5. Ripple Effects

Occasionally, a programivier would like to change the definition of a particular object

or even remove the object. Si,', a modification may affect the correct operation of many

other objects. This is termed the ripple effects. To guarantee the program integrity, the

identification of those affected objects is necessary. We shall call the set of objects

involved in the ripple effects the ripple ect. The mapping from an object to its ripple set

is simply defined by the reflexiv--, transitive closure of the referenced-by relation, which is

the reverae of the reference relation. For example, Figure 6 shows the ripple set of the

global object g. In Example 1, the ripple set of the data type "struct packet" consists of

the global variable "pl" and the function "receive".

Figure 8: Calculation of the Ripple Set

Frequently, only a part of a large system under development need be tested. In this

case, the ripple set of an object X indicates the set of objects that cannot be tested if X is

specified but not fully implemented. For example, in Figure 8, if the object g is not fully
implemented, then the function F cannot be fully tested.

Our definition here is different from the one defined by Yau, et al.[7]. In their

approach, detailed ripple effect analysis is provided and it is possible to determine that a
particular statement is affected by a change in the definition of a global variable. Their
approach requires complex lexical analysis and error flow analysis. Our approach sets the

granularity at the level of global objects; required changes inside a global object need not
be identified. However, once the ripple set is determined from the program database, a
programmer can easily identify the impact on each affected object. Our approach

simplifies the program analysis and substantially reduces maintenance cost.

.S

The stability of a program can be defined in terms of the resistance to the potential
ripple effect. Interested readers should refer to [8] and[9].

6. Layering

One way to understand a complex system is to view it in several layers. Each layer
presents an abstraction which reduces the complexity visible to upper layers. Parnas and
Siewiorek refer to each layer as a virtual machine, which provides a set of new instruc-
tions or operators to the upper layers[10].

Ideally, each software object in a program belongs to a particular layer. With a
layering structure, a user can elect to examine a program only to a certain level of details,
i.e.. only objects that belong to levels about that one need to be extracted and viewed.
Unfortunately, most existing programs do not present this layering explicitly. What we
propose to do is assign logical layering to objects in C programs. This logical layering
information would be useful for generating other high level software views such as the
association weight of all objects.

The construction of a layering of all global objects is possible; however, we shall ini-
tially concentrate cn the layering of functions because it gives us a backbone view of the
program without other global objects cluttering the view.

The function layering problem is defined as follows:

Given a set of functions f J ... ,f, and
a set of function call relations of the form f i'fi,

derive an integer labeling L such that if f -- fJ,

then L(f):L(f j).

A topological sorting algorithm [11] can be applied here to solve the function layer-
ing problem. The basic algorithm is the following:

F the set of functions;
while (F nonempty) do

Find all functions that are not called by any other functions;
Assign label I to all these functions;

Remove these functions from F;

done

However, the above algorithm does not handle recursive functions properly, i.e. closed

paths in the function call graph. To solve this problem, we can collapse all strongly con-
nected components into single nodes using the algorithm described in [12] before we apply
the topological sorting algorithm.

~ ~~ 7.A~ r . ej. '

- 10-

Figure 7 shows the labels obtained for each function by applying the above layering

algorithm. If there is not a direct link between node G and J, then the system represents

a perfect set of victual machinen because the functions at each layer do not reference any

functions at more than one levo' below it. This is termed loss of transparency in [10],

which is a desirable property i, a layered system. However, if there is a link between

node G and J, then layer 3 does not constrilct an ideal virtual machine. Note that the

result of the layering using the tpo'.4Ic .l .;,,rting is not affected by such a link.

....

... "-..

...

Figure 7: Layering of Functions Using Topological Sorting

The function layering obtained may not correspond exactly to the view of human

programmers. However, the labeling gives us some ideas about the depth of each function

in the program structure. Moreover, the difference in the human view and the logical

view could provide hints for potential structure improvements.

If we apply the layering algorithm to all global objects, we can discover unreferenced

objects because they become roots in the layering process and thus would be assigned level

1. If an unreferenced object is not a function or is a function but not one of the legal

entry points of the system, then it should be removed.

7. Modularisation

For the purpose of information hiding [13] and ease of compilation, a program is
usually partitioned into a set of modules. Each module is a set of logically-related func-
tions and private data. Unfortunately, many existing programs were not designed with

modularization in mind. For poorly structured systems, we would like to obtain the logical
modularization by reducing the coupling between modules and increase the cohesion
among objects inside a module[14]. Two modules are strongly coupled if there exist many
cross references among them. Objects in a module are cohesive if they are logically-

related. When a software system becomes large and complex, programmers tend to place
newly written functions in wrong modules or group unrelated functions under the same
module.

Two problems are associated with incorrect modularization:

(1) Low Traceability: Because of unnecessary coupling, many additional modules must be

understood to fully understand one nodule; thus the maintenance cost is higher than

necessary.

(2) Longer compilation tim,: Whenever a change must be made, unnecessary modules

are likely to be affected. 'I Xe. ',:, , implement a change might require the recom-

pilation of modules which, it:, L. 'G., -vo-uld be unaffected.

To obtain the logical modutarization, we start with the idea of cohesion, i.e. trying to

identify functions that are logically related. For a small system, a human can easily per-

form the job. However, for a large software system, software tools are necessary. One

method to detect the logical relations between functions is to examine the degree of shar-

ing of each function pair. The idea is to count the number of common references between

two functions. If this number is large, then chances are good that the two are logically
related since they operate on similar objects.

Hutchens and Basili performed a modularity study based on the concept of used data

binding[15. A used data binding is defined as an ordered triple (p,z,q) where p and q are

functions and z is a variable referenced in both functions p and q. A hierarchy of clusters
can be created by calculating dissimilarity matrixes iteratively from used data bindings.

Hutchens and Basili's modularization study on several projects shows a significant
degree of correspondence between the automatically generated module structures and

those defined by the program developers. However, their study concentrates on the shar-

ing of variables between functions. Our C program database contains all the global object

references for each function. As a result, an algorithm can be developed to calculate the

sharing of global variables, data types, macros, and functions between each pair of func-

tions and to cluster functions accordingly.

Note that there are as many ways to measure the degree of sharing as there are in

measuring the weight of a global object:

(1) basic sharing: only the number of shared global objects is counted.

(2) weighted sharing: the sum of the actual weight (see Section 4) of shared objects is

counted.

(3) basic association sharing: the number of objects in the union of the subsystems of

the shared references is counted. Note that this is different from simply summing up

the basic association weight of all shared references, which would cause some objects

to be counted more than once.

(4) actual association sharing: the sum of the actual weight of all global objects in the

union of the subsystems of the shared references is counted.

For example, Figure 8 shows the basic association weight of each node. Using type

(3) calculation, the basic association sharing between function F and function G is 12. We
also calculated the basic sharing for all paiiis of functions in a subset of an airline

- 12-

4 2 4i 4

Figure 8: The Basic Association Weight of Each Object

reservation program. This subset includes six major functions: add .fight, subtract 1%ight,

empty.flight, cancel, reserve, and manifest. The result is shown in Table 2. As the table

shows, the function reserve and the function cancel share three function references, nine

macro references, and one global variable reference; the total basic sharing is 13. We can

immediately guess that these two functions are strongly related due to this strong bind-
ing.

In the original program, the six functions are partitioned into two modules, with the

former three grouped in one module, and the tatter three in the other one. Our goal was

to compare how the physical modularization differs from the logical modularization using
the basic sharing measure.

We applied our own clustering algorithm (details are beyond the scope of this paper)

based on the basic sharing measure. The final normalized binding strength among the six

functions are shown in Figure 9, with 0.80 as the cutoff point. The result suggests that it

is more reasonable to assign the two functions add$flight and subtract-flight in one module

and the other four functions in another one. After we examined the airline program in
detail, we agreed with the suggestion. The empty-flight function is designed to remove all

reservations in a particular flight and so it actually operates at the "reservation level".

Therefore, it shares a lot of data structures with the three functions reserve, cancel, and

manifest. On the other hand, the add.flight and subtract flight functions operate at the

"flight level"; therefore, they should be grouped together.

It is easy to understand why the author of the airline reservation program created
the wrong modularization. People tend to group the three functions ended with "flight"

together. However, because of the wrong modularization, whenever we make a change in

the data structure associated with reservations, both original modules need to be recom-

piled. This experiment shows how the difference between logical modularization and the

physical modularization can provide hints for possible structure improvements.

'a

13-

Table 2. The Basic Sharing Among Six Functions
funcnamel func. name! function macro gbvar total

add flight add flight 1 8 3 12
cancel add.fligbt 0 7 1 8
cancel cancel 3 1 12 16

empty, flight add.flight 0 7 1 8
emptyfight cancel 1 9 2 12

emptyfigbt empty, fligbt 3 10 2 1
W manifest add. flight 0 4 1 5
z

manifest cancel 2 7 1 10
IL manifest emptyflight 1 7 1 9

manifest manifest 4 8 1 13

z reserve add. flight 0 6 1 7
reserve cancel 3 9 1 13
reserve empty flight 1 8 1 10
reserve manifest 2 8 1 11

0 reserve reserve 5 10 1 16
subtract.flight add.flight 0 7 1 8
subtract, flight cancel 0 7 1 8

subtract.flight empty.flight 1 7 1 9
subtract.flight manifest 0 5 1 6

0 subtract.flight reserve 0__7__I_8

subtract.flight subtract.flight 2 8 1 11

0.6
add. a d d - ~e m p t y _ e e v
flight flight

0.70.75 0.81 0.69
0.67

subtract.

Figure 9: The Binding Strength Between Pairs of Functions

8. Software Restructuring

After the analysis of laye, tg and mod,,arization proposed in the previous two sec-

tions, a programmer may wisl' to restruo'rce his program in order to reduce future

maintenance costs. However, :,oftware restructuring must be performed with caution.

Any change in a module may affect the correct operation of modules in other places as

explained before in the section on ripple effects. To tackle this problem, we break down

most software restructuring operations into a set of primitive operations, which can be

specified precisely. Higher level resructurin% nperations such as automatic

j

- 14-

modularization ca 1 be composed from a series of these primitive operations with certain

condition checkings using the program database.

If we view - :oftware system as a set of modules, then there are several primitive res-

tructuring operttions:

RI. Reuaming an object ;n a module
R2. Inserting a new objeat into a module

R3. Deleting an object from a module

R4. Moving an object from a module to another module

The rules that govern each of the above operations are shown in the following.

Exercising these rules requires acessing information stored in the program database.

RI: Rename(ObjType, ObjName, NewObjName)

(1) Check to see if there is an object of the type ObfType with the name NewObjNarne; if

true, resolve the conflicts (this requires interactive input from the programmer).

(2) Check to see if there are references to ObjName; if true, change all these references

to refer to NewObjName. Note that the static scope of the object specified by

ObjName must be considered in determining the references.

R2: Insert(ObjType, ObjName, Scope, Module)

(1) Check to see if there is already an object of the type ObJType with the name

ObjName; if true, rename ObjName to a name that does not exist in the module (if

Scope is static), or to a name that has not been used in any modules of the system (if

Scope is non-static).

(2) Place object ObjName in the specified module.

(3) Insert all objects referenced by ObjName by recursively applying rule R2. This is

necessary to bring the whole subsystem associated with ObjName into the new sys-

tem if the object is obtained from another existing system.

R3: Delete(ObjType, ObjName, Module)

(1) Check to see if there are any references to ObjName; if true, issue warnings and the

deletion operation is rejected.

(2) Perform a topological sorting on the objects in the subsystem of the object specified
by ObjName, with strongly connected components collapsed to single objects.

(3) Construct a delete set as filows: Put the object ObjName in the delete set. Starting

from layer 1 of the subsy.,tem, for each object, check whether it is referred to by

only objects in the delete set. If true, add that object to the delete set.

(4) Remove all objects in the delete set.

R4% Move(ObjType, ObjNzme, OldModule, NewModule)

-15 -

(I) Delete the object ObjName from the original module using 113; however, objects in its

delete set is placed in a set B, and its subsystem is specified by the set S.

(2) Insert object ObiName and the objects in the set B to the new module using R2.

Declare all objects in the set S-B as external references in the new module.

Reasons for the algorithms used in R3 and R4 are left as an exercise to the reader. As we

can see, even a simple object movement may require detailed consistency verifications in

many functions and modules. We would like to automate these verifications using infor-

mation available in the program database. High level restructuring can then be accom-

plished by composing these primitives. An automatic modularization program like the one

discussed in the previous section would invoke the required restructuring primitives.

9. Conclusion

We have shown that high level abstractions from programs can be obtained by (1)

extracting out relational information from programs to form a software object network,

and (2) deriving high level abstractions from the software object network. We also demon-

strated how to obtain several interesting abstractions such as subsystems, ripple effects,

logical layers and modules from a software object network represented by a C program

database. Computation of these abstractions can be speeded up by storing and operating
the software object network in the connection memory[16]. These abstractions assist pro-

grammers in undersanding the program structure and point out potential areas for

improvement. We then demonstrated how rule-based software restructuring can be per-

formed with the relational information stored in the program database. Based on our

two-year experience in using the C program database, we believe that a program database

is indispensable for programmers who want to have a better view of their programs and

who need to automate their software development and maintenance tasks.

Acknowledgement

Many people contributed to the implementation of the C Information Abstraction

System. Michael Nishimoto implemented the current C Abstractor; Wen-Ling Chen

implemented most of the INFOVIEW commands; Benjamin Chang and Scott Nishimoto

are responsible for most commands in the Software Investigator; Lenora Eng and Joo-Seok

Song also contributed their work in the early days of the CIA system. We would also like
to thank our colleagues in the Berkeley GENESIS group, in particular Atul Prakash and

Vijay Garg, and our friends at Columbus Bell Labs, in particular Charlie Fritsch, Bruce

Wachlin, Ivan Brohard, Doyt Perry, and Michael Buckley for valuable comments and dis-

cussion throughout the development of the CIA system. Benjamin Chang provided many

comments on an early draft of this paper. Finally, we would like to thank Professor Vin-

cent Lum, Chairman of the Computer Science Department, and all the faculty and staff in
this department for making our stay at Naval Postgraduate School a delightful experi-

ence.

1 -- !

References

1. Yih-Farn Chin and C.V. Ramamoorthy, "The C Information Abstractor," The Tenth
International Computer Software and Applications Conference (CO MPSAC), Chi-

cago, October 1988.

2. Michael Nishimoto and Yih.Farn Chen, "Tutorial on the C Information Abstraction

System," Tech. Report No UCB/CSD 827, Computer Science Division, University of

California, Berkeley, Sprini 1987.

3. Ellis Horowitz and John B. Munson, "An Expansive View of Reusable Software,"

IEEE Trans. on Software Engineering, vol. SE-10, no. 5, pp. 477-487, September
1984.

4. C.V. Ramamoorthy, Vijay K. Garg, and Atul Prakash, "Reusability Support in I

GENESIS," The Tenth International Computer Software and Applications Confer-

ence (COMPSAC), October 1986.

5. Veronique Donzeau-Gouge, Gerard Huet, Gilles Kahn, and Bernard Lang, "Program-

ming Environments Based on Structured Editors: The MENTOR Experience," in

Interactive Programming Environments, ed. Erik Sandewall, pp. 128-140,

McGraw-Hill, Inc., 1984.

6. Luqi, "Normalized Specifications for Identifying Reusable Software," Tech. Report
NPS52-87-007, Computer Science Department, Naval Postgraduate School, March

1987.

7. S. Yau, "Ripple Effect Analysis of Software Maintenance," Proc. of 2nd Interna-

tional Computer Software and Applications Conference, 1978.

8. Norman Loongsung Soong, "A Program Stability Measure," Proc. Annu. ACM

Conf., pp. 183-173, 1977.

9. Stephen S. Yau and James S. Collofello, "Some Stability Measures for Software

Maintenance," IEEE Trans. on Software Engineering, vol. SE-6, no. 8, pp. 545-552,
November 1980.

10. D.L. Parnas and D.P. Siewiurek, "Use of the Concept of Transparency in the Design -,

of Hierarchically Structured Systems," Comm. ACM, vol. 18, no. 7, pp. 401-408,

July 1975.

11. Donald E. Knuth, The Art of Computer Programming (2nd Ed.), 1, pp. 258-265, il

Addison-Wesley Publishic-.j '-'.,-,ay, 1973.

12. Sara Baase, Computer AI.. ,ma, pp. 157-183, San Diego State University, 1978.

13. D.L. Parnas, "On the Cri,eria to Be Used in Decomposing Systems into Modules,"

Communications of the ACM, vol. 15, no. 12, pp. 1053-1058, December 1972.

14. Edward Yourdon and Larry Constantine, Structured Design, pp. 84-141, Prentice-

Hall, Inc., 1979.

N

-~ V

- 17-

15. D.H. Hutchens and V.R. Basili, "System Structure Analysis: Clustering with Data

Bindings," IEEE Transactions on Software Engineering, vol. SE-l, no. 8, pp.
749-757, August 1985.

16. W. Daniel Hillis, "The COL nection Machine," A.I. Memo #646, MIT Artificial Intel-

ligence Laboratory, Septeiti ber 1981.

Ii

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943-5100

Office of Research Administration I
Code 012
Naval Postgraduate School
Monterey, CA 93943-5100

Chairman, Code 52 10
Computer Science Department
Naval Postgraduate School

Monterey, CA 93943-5100

David K. Hsiao 1
Code 52Hq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Y. F. Chen 20
Computer Science Division (EECS)
University of California
Berkeley, CA 94720

Chief of Naval Research 1
800 N. Quincy St.
Arlington, VA 22217

'r

~~, ,

7 *4/

'V

-E~e

