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ABSTRACT 

The current generations of unmanned surface vessels (USVs) are reliant on the 

human operator for collision avoidance. This reliance poses a constraint on the 

operational envelope of the USV as it requires a high bandwidth and low latency 

communication link between the USV and control station. This thesis adopts a systems 

engineering approach in identifying the capability gap and the factors that drive the need 

for a USV with autonomous capability. An algorithm employing edge detection and 

morphological structuring methods is developed in this thesis to explore the feasibility of 

using a computer vision–based technique to provide a situational awareness capability, 

which is required to achieve autonomous navigation. The algorithm was tested with both 

color video imagery and infrared video imagery, and the results obtained from processing 

the images demonstrated the viability of using this information to provide situational 

awareness to the USV. It is recommended that further work be done to improve the 

robustness of the algorithm.   
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EXECUTIVE SUMMARY 

Using unmanned surface vessels (USVs) for “dull, dirty and dangerous missions” 

is gaining traction in recent years as it removes the human from a potentially life-

threatening environment in missions such as mine hunting or maritime interdiction 

(Department of Defense 2011, 17). Current USVs rely on human operators sitting in 

remote control stations, either on land or onboard ships, to monitor the vessels’ 

surroundings and to perform collision detection and avoidance. This reliance on the 

human operator constrains the operating envelope of the USV as it requires a high 

bandwidth and low latency communication link for safe operations, especially in waters 

with heavy traffic. 

An autonomous navigation capability needs to be incorporated into future USVs 

to fully exploit the advantages of operating them. To achieve this desired outcome, the 

USV must have situational awareness of its surroundings. This thesis adopts a systems 

engineering approach for identifying the capability gap in today’s USV and the factors 

that drive the need for a USV with autonomous navigation capability. A functional 

decomposition is completed to identify the functions required for the USV to perform 

autonomous navigation. This thesis uses a computer vision–based technique to 

implement one of the functions identified through the functional decomposition. 

The algorithm, developed in MATLAB, converts the video into individual frames 

before enhancing them for further processing. The images undergo processing using edge 

detection and morphological structuring techniques before information is derived from 

the processed images. The algorithm was tested with images from color video sources as 

well as infrared (IR) video sources. One of the key challenges encountered during this 

process was that shadows caused the information derived from the images to be 

inaccurate. While developing the algorithm, several methods were tested with different 

parameters to determine the most effective method for removing background noise from 

the images. It was found that filtering using the mean intensity value in the image was 

effective with color video images, but it did not work with the IR video images; instead, 



 xviii

filtering the IR video images in the luminance-chrominance color space was found more 

effective.  

Information was derived by analyzing the bounding box that was drawn by the 

algorithm around the objects detected in the images. The boat’s orientation could be 

inferred by comparing the bounding box ratio over time. Similarly, by comparing the 

height of the bounding box over time, information such as whether the boat is sailing 

away or toward the camera could be inferred. 

This thesis demonstrated the feasibility of using a computer vision–based 

technique to provide a situational awareness capability to a USV. Future work focusing 

on removing the shadows in the images is recommended to improve the robustness of the 

algorithm and reliability of the information derived from the images. Another area of 

possible research is fusing the information derived from the algorithm with data from 

other sensors onboard the USV to improve the situational awareness capability.   
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I. INTRODUCTION 

A. BACKGROUND 

Unmanned surface vessel (USV) use in military operations is not something new. 

USVs have been used as early as the period after World War II to conduct minesweeping 

operations and to test the radioactivity of water after atomic bomb tests (Department of 

Defense 2011). They were also used during the Vietnam War to perform minesweeping 

operations. 

In recent years, the Republic of Singapore Navy has used the “Protector” USV in 

anti-piracy operations in the Gulf of Aden for surveillance and force protection missions 

(Republic of Singapore Navy 2017). These operations are deemed “dull, dirty or 

dangerous” for humans, which is why the USV is best suited. The use of USVs in such 

operations removes the human from a potentially life-threatening environment, thus 

reducing the probability of human casualties. Apart from the aforementioned missions, 

there are also plans to use USVs in anti-submarine, surface, and electronic warfare as 

well as for support missions using special operations forces and maritime interdiction 

operations (Department of the Navy 2007). 

B. CHALLENGES OF UNMANNED SYSTEMS 

With increasing use of USVs in a range of missions, there are several challenges 

to overcome, as identified in the Department of Defense’s Unmanned Systems Integrated 

Roadmap FY2011–2036, if the full potential of the unmanned systems is to be realized. 

One of the consequences of the expanding roles of unmanned systems in current 

operations is the burden of the additional manpower required to operate these systems 

while simultaneously operating manned systems. The DOD identifies “autonomy” as 

having the potential to reduce the manpower requirement in the operations of unmanned 

systems because multiple unmanned systems may fall under the control of a single 

operator. The other benefit to increasing the level of autonomy of the unmanned systems 

is that high communication bandwidth is no longer a prerequisite. Currently, many USVs 

can self-navigate by following a set of waypoints or a planned path. However, there is 
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still reliance on the remote operator to monitor the video sent back from the USV for 

potential obstacles and to intervene to avoid collision with other ships in the vicinity 

(Roberts and Sutton 2006). In order for the operator to intervene in a timely manner, the 

video must have a certain level of fidelity and low latency, which severely limit the 

operational range of the USV. Satellite communications do not support such stringent 

requirements imposed on the communication channel. An autonomous USV would 

perform collision avoidance on its own without operator inputs; hence, there would be no 

need to transmit high-quality real-time video from the USV to the remote operator to 

monitor the surroundings and to perform collision avoidance maneuvers. 

C. MOTIVATION OF STUDY 

One of the requirements for a USV to navigate autonomously is the ability to have 

situational awareness (SA) of the environment in which it is operating. Current USVs 

rely mainly on radar to provide SA of its surroundings. Although the USV is equipped 

with a navigation camera, it is mainly used for the remote operator to monitor the 

surroundings. This study explores using an image processing algorithm to analyze the 

video images from the navigation camera to provide another level of SA capability for 

the USV. 

D. PROBLEM FORMULATION AND RESEARCH QUESTIONS 

The USV relies on sensors, such as radar, electro-optics (EO), and an infrared 

(IR) camera, to obtain SA of its surroundings. Depending on the size of the USV, it may 

not have the capacity to carry all these sensors. Current USVs, which rely on man-in-the-

loop operations, would at a minimum have an EO camera for the human operator to 

monitor the USV surroundings. Therefore, the problem addressed in this thesis is whether 

a computer vision–based technique can be used to provide an SA capability for USVs. 

This thesis addresses the following research questions: 

(1) Can a computer vision–based technique be used with EO imagery to 
provide situational awareness for the USV? 

(2) Can a computer vision–based technique be used with IR imagery to 
provide situational awareness for the USV? 
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(3) How do environmental factors affect the computer vision–based 
technique? 

E. THESIS ORGANIZATION 

To address the aforementioned research questions, this thesis is organized as 

follows. Chapter II presents the literature review, providing a topic overview and defining 

autonomy and situational awareness. It also provides information on the categorizations 

of USVs currently being developed. Chapter III describes the systems engineering 

approach used to explore the research questions. The current deficiency in capability is 

identified, and a needs analysis is performed to guide development of the solution. 

Chapter IV presents the algorithm this research developed to address the problem and the 

challenges faced during its development. The chapter describes the series of steps taken 

to derive information from the video images and discusses on the results. Chapter V 

summarizes the development of the algorithm and its results. This chapter also proposes 

recommendations for future work. 
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II. LITERATURE REVIEW 

A. AUTOMATIC SYSTEMS VS. AUTONOMOUS SYSTEMS 

Automatic systems are fully preprogrammed and act repeatedly and 
independent of external influence or control. An automatic system can be 
described as self-steering or self-regulating and is able to follow an 
externally given path while compensating for small deviations caused by 
external disturbances. However, the automatic system is not able to define 
the path according to some given goal or to choose the goal dictating its 
path. (Department of Defense 2011, 43) 

A ship’s autopilot can be viewed as an automatic system that keeps the ship 

sailing at a predetermined speed and bearing. The autopilot compensates for the 

resistance caused by waves by controlling the throttle on the ship to maintain  a preset 

speed. Another example of an automatic system is the cruise control used in some motor 

vehicles to maintain a constant speed defined by the driver. 

In Unmanned Systems Integrated Roadmap FY2011–2036, the Department of 

Defense (DOD) explains that an autonomous system  “is self-directed by choosing the 

behavior it follows to reach a human-directed goal” (Department of Defense 2011, 43). 

For example, an  unmanned surface vehicle (USV) with mine countermeasures (MCM) 

and an autonomous capability will be able to plan its own transit path and scanning 

pattern based on the area, which is defined by the operator. Therefore, the autonomous 

system’s ability to make decisions based on a set of rules or strategies for achieving a 

human-directed goal is its key difference from an automatic system. A prototype of the 

Republic of Singapore Navy’s MCM USV undergoing sea trials in Singapore is shown in 

Figure 1. 
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Figure 1. Republic of Singapore Navy’s MCM USV Undergoing Testing. 
Source: Wong (2017). 

B. LEVELS OF AUTONOMY 

The four levels of autonomy as defined by the DOD in Unmanned Systems 

Integrated Roadmap FY2011-2036 are shown in Table 1. 

 Four Levels of Autonomy. Source: Department of Defense (2011). Table 1.

Level Name Description 
1 Human 

Operated 
A human operator makes all decisions. The system has no 
autonomous control of its environment although it may have 
information-only responses to sensed data. 

2 Human 
Delegated 

The vehicle can perform many functions independently of human 
control when delegated to do so. This level encompasses automatic 
controls, engine controls, and other low-level automation that must 
be activated or deactivated by human input and must act in mutual 
exclusion of human operation. 

3 Human 
Supervised 

The system can perform a wide variety of activities when given top-
level permissions or direction by a human. Both the human and the 
system can initiate behaviors based on sensed data, but the system 
can do so only if within the scope of its currently directed tasks. 

4 Fully 
Autonomous 

The system receives goals from humans and translates them into 
tasks to be performed without human interaction. A human could 
still enter the loop in an emergency or change the goals, although in 
practice there may be significant time delays before human 
intervention occurs. 
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C. MAKING SENSE OF THE ENVIRONMENT 

In order for a USV to operate autonomously in a complex and uncertain 

environment, such as the in the busy Singapore Strait or the Gulf of Aden, it must have 

situational awareness of the environment in which it is operating. The autonomous 

system must have the capability to sense the environment through its different onboard 

sensors and to convert all their data into useful information to make decisions as to the 

course of action for achieving its goal (Department of Defense 2011).  

D. SITUATION AWARENESS 

Situational awareness (SA) is about obtaining information of what is in the 

environment that is related to the tasks or goals that a person is trying to achieve. In 

addition, the ability to comprehend this information is important as it helps in the 

decision-making process in the courses of actions to achieve a particular goal. It is also 

the ability to use this information to predict future events that can aid in deciding future 

courses of actions to achieve the particular goal. According to Endsley and Jones (2011),  

SA is being aware of what is happening around you and understanding 
what that information means to you now and in the future. This awareness 
is usually defined in terms of what information is important for a 
particular job or goal. The concept of SA is usually applied to operational 
situations, where people must have SA for a specified reason, for example, 
in order to drive a car, treat a patient, or separate traffic as an air traffic 
controller. Therefore, SA is normally defined as it relates to the goals and 
objectives of a specific job or function. Only those pieces of the situation 
that are relevant to the task at hand are important for SA. (13)  

The formal definition of SA is as follows: “The perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning, and 

the projection of their status in the near future” (Endsley and Jones 2011, 13)  

The operational scenario assumed for this research is of an USV navigating 

autonomously in an area where there are other vessels and ships sailing. In order to 

navigate autonomously, the USV needs to know what other vessels are around it and 

where these vessels are heading, so it does not collide with them.  
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E. LEVELS OF SITUATION AWARENESS 

There are three levels of SA that derive from the formal definition. They are as 

follows: 

 Level 1 – Perception of the elements in the environment 

 Level 2 – Comprehension of the current situation 

 Level 3 – Projection of future status 

 

(1) Level 1 – Perception of Elements in the Environment 

In Designing for Situation Awareness, Endsley and Jones (2011) explain, “The 

first step in achieving SA is to perceive the status, attributes, and dynamics of relevant 

elements in the environment” (14). A USV uses its onboard sensors to sense its 

environment; these sensors may include a radar, navigation camera, or thermal imager. 

The relevant elements in this case would be the other vessels sailing in the vicinity and 

other obstacles such as navigation buoys or land masses. 

(2) Level 2 – Comprehension of the Current Situation 

The next level of SA as defined by Endsley and Jones (2011) is “understanding what the 

data and cues perceived mean in relation to relevant goals and objectives” (16). In the 

context of navigating autonomously in a busy strait with many other ships nearby, the 

USV must be able to integrate the data received from multiple sensors to form 

information that is relevant to its task of performing autonomous navigation.  

(3) Level 3 – Projection of Future Status 

According to Endsley and Jones (2011), “Once the person knows what the 

elements are and what they mean in relation to the current goal, it is the ability to predict 

what those elements will do in the future (at least in the short term) that constitutes Level 

3 SA” (18). Within the context of navigating autonomously in a busy strait, a USV with 

this level of SA must be capable of determining which of the detected obstacles may 

become collision threats. 
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F. ELEMENT OF TIME IN SITUATION AWARENESS 

The timeliness of the information gathered plays an important role in SA. For 

example, a ship captain needs to know well ahead of time whether there are any obstacles 

ahead to steer the ship to avoid collision. If this piece of information is not relayed to the 

captain in a timely manner, any action taken subsequently may be insufficient to prevent 

a collision. The other aspect of time in SA is that the course of action depends on the 

amount of time available before an event occurs. In the ship example, if there is sufficient 

time to react from the point the obstacle is detected, the ship could slow down and change 

heading to avoid it. However, if there is insufficient time for the ship to slow down, the 

captain may have to take drastic measures by commanding the ship to go full astern, 

executing an emergency stop to minimize damage to the ship. 

G. CLASSES OF USV 

In The Navy Unmanned Surface Vehicle (USV) Masterplan, the Department of the 

Navy (2007) establishes four classes of USVs based on mission requirements and the 

characteristics of the vessel such as stability, payload fraction, tow power, and endurance. 

The four classes of USV derived from the analysis are presented in the following 

paragraphs. 

(1) X-Class (Small) 

The X-Class USV, as shown in Figure 2, is a small special purpose craft 

measuring three meters or shorter. Its main purpose is to support the mission needs of 

special operations forces or maritime interdiction operations. This class of USV has 

limited endurance, payload, and seakeeping ability (Department of the Navy 2007, 59).  
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Figure 2. X-Class USV. Source: Department of the Navy (2007). 

(2) Harbor Class (7m) 

The Harbor Class USV, as shown in Figure 3, is based on a seven-meter rigid hull 

inflatable boat with moderate endurance. Its main role is to perform intelligence, 

surveillance, and reconnaissance as well as maritime security missions (Department of 

the Navy 2007, 60). 
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Figure 3. Harbor Class USV. Source: Department of the Navy (2007). 

(3) Snorkeler Class (Semi-submersible) 

The Snorkeler Class USV, as shown in Figure 4, is a seven-meter semi-

submersible craft designed mainly for MCM search and neutralization missions as well as 

anti-submarine (ASW) missions. The craft is submerged during operations, which gives it 

an advantage compared to other surface hull types in high-sea states, as it is much more 

stable (Department of the Navy 2007, 61). 
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Figure 4. Snorkeler Class USV. Source: Department of the Navy (2007). 

(4) Fleet Class (11m) 

The Fleet Class USV is an 11-meter planing or semi-planing hull craft, as shown 

in Figure 5. It has moderate speed and endurance while towing payloads for MCM 

missions. It can also be deployed for ASW, surface warfare, or electronic warfare 

missions as it operates at high speed and has very long endurance (Department of the 

Navy 2007, 62).  

 



 13

 

Figure 5. Fleet Class USV. Source: Department of the Navy (2007). 

This chapter presented a literature review on the definition of autonomy and 

situation awareness. The next chapter describes the systems engineering approach 

adopted in the development of the algorithm. 

 

 



 14

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 15

III. SYSTEMS ENGINEERING APPROACH 

Attaining the goal of an autonomous capability in USVs requires an 

interdisciplinary approach as it involves teams with differing specializations such as 

sensors, image processing, as well as navigation and control. A systems engineering 

process is best suited to develop this capability to address the problem formulated in 

Chapter I. 

A. CAPABILITY DEFICIENCY 

The first step in the systems engineering process is to identify the problem before 

proceeding to define the need. A problem exists when there is a gap between the desired 

state and the current state. 

(1) Current State 

Current USVs still rely heavily on human operators to control them and to 

monitor their surroundings to identify and avoid potential collision threats. Hence, high 

bandwidth communication links are required to provide high fidelity video for operators 

to perform these tasks effectively. In addition, the communication link must be without 

high latency, which results in delays in the information presented to the operators and 

untimely actions that could lead to collisions. 

(2) Desired State 

The vision for future USVs is that they will be able to carry out their missions 

based on the goals defined by the operators. The USVs perform the tasks to accomplish 

the goal without human intervention. The USV is able to adapt to the changes in the 

operating environment based on rules or strategies defined by the human operator.  

(3) Gap in Current Capability 

Current USVs lack the levels of autonomy required to operate without a man in 

the loop for live feedback and control. USVs with an autonomous capability must have 

some form of situational awareness for them to make decisions without human operators. 



 16

B. NEEDS ANALYSIS 

There are several factors that drive the need to develop USVs with autonomous 

navigation capability. 

(1) Communication Links 

Navigation video takes up a large portion of the data transmitted from the USV 

back to the remote control station. It also requires a low latency link for the operator to 

make timely decisions in maneuvering to avoid collisions. The issue of latency is even 

more critical when the USV is transiting at high speed. A USV that is capable of 

performing autonomous navigation eliminates the requirement of a human operator who 

constantly monitors the USV’s surroundings to identify potential collision threats. Hence, 

there is no need to transmit high fidelity video back from the USV—which requires high 

bandwidth. 

(2) Manpower 

In Unmanned Systems Integrated Roadmap FY2011-2036, the Department of 

Defense (DOD) highlights, “Today’s unmanned systems require significant human 

interaction to operate. As these systems . . . are fielded in greater numbers, the demand 

for manpower will continue to grow. The appropriate application of autonomy is a key 

element in reducing this burden” (Department of Defense 2011, 44). The manpower issue 

is even more acute for nations with ageing populations such as Singapore. According to 

Kor Kian Beng’s article in the Straits Times, the Singapore Armed Forces are set to face 

a one-third reduction in manpower supply (Kor 2017). 

(3) Susceptibility to Communications Jamming 

The USV could be deployed in hostile territory where communications may be 

jammed by an adversary. Hence, a USV that requires constant communication with the 

remote control station for its operation will be rendered ineffective. However, a USV that 

has an autonomous capability will be able to operate in a communications-denied 

environment because it does not rely on a human located in the remote control station. 

(4) Cooperative or Collaborative Coordination among Multiple Vehicles 
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Operating a group of USVs to perform large-scale missions, such as anti-

submarine or mine countermeasures missions, will not be feasible without an autonomous 

capability. The amount of communication bandwidth required will be too great to carry 

out an effective mission if every USV has to be tele-operated from a remote control 

station. Building autonomy into the USVs means they can operate in a cooperative or 

collaborative manner without human intervention. 

C. FUNCTIONAL DECOMPOSITION 

A functional decomposition methodology is used to determine the functions 

required for the USV to perform autonomous navigation. The functional decomposition 

for achieving autonomous navigation is shown in Figure 6. 

 

Figure 6. Functional Decomposition for Autonomous Navigation 

The top-level functions are to acquire situation awareness, perform decision 

making, and execute maneuvers. The function to acquire situation awareness can be 

further decomposed into sensing and comprehending the environment as well as 

projecting future states. 
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D. FUNCTIONAL FLOW 

The top-level functional flow block diagram is shown in Figure 7. In this thesis, 

the focus is on the comprehend environment function. This function processes the sensor 

data from onboard the USV; in this case, the information is a video from a navigation 

camera. 

A0

Sense Environment

A1

Comprehend 
Environment

A2

Project future 
states

Data from sensors
USV Surroundings

Information related 
to task

 

Figure 7. Top-Level Functional Flow Block Diagram 

The functions within the comprehend environment block can be further 

decomposed into the functional flow block diagram shown in Figure 8. 

A1‐1

Convert video to 
individual images

A1‐2

Enhance image for 
processing

A1‐3

Process image

A1‐4

Extract image 
properties

A1‐5

Derive information

 

Figure 8. Functional Flow for Comprehend Environment 

This chapter summarized the SE approach used to identify the capability 

deficiency and analyze the needs for bridging the capability gap. A functional 

decomposition and a functional flow were used to identify the top-level functions that the 

algorithm must execute. 
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IV. COMPUTER VISION–BASED TECHNIQUE FOR 
MOTION ESTIMATION 

This chapter describes the steps in the computer vision–based technique 

developed to provide situational awareness for the unmanned surface vehicle (USV). The 

concept of this technique is to use a ship’s characteristics from imagery to determine its 

orientation. The technique consists of the following: preliminary steps to enhance the 

images, an algorithm to localize the ship, and measurements to characterize the ship. 

A. GENERAL IDEA 

A model was constructed in the MATLAB environment to test the algorithm 

without any external influences such as background objects or shadows. The model was 

constructed to turn from 180 degrees (the ship’s bow facing the camera) to 360 degrees 

(the ship’s stern facing the camera), which is similar to the movement of the ship in the 

electro-optics (EO) video imagery. An image of the model representing the ship with a 

bearing of 270 degrees is shown in Figure 9. 

 

Figure 9. Image of Model Representing a Ship 

The bounding box ratio plotted against the ship’s orientation is shown in Figure 

10. The plot shows that when the ship’s bow or stern is facing the camera, the ratio is at 

its minimum value. The value is at its maximum when the port or starboard side of the 

ship is facing the camera. This model demonstrates the feasibility of deducing the 

orientation of the boat from the bounding box ratio obtained after processing the images.  
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Figure 10. Bounding Box Ratio Plot for Model 

All black and white images shown in this chapter have their colors inverted to 

reduce the amount of ink used when the thesis is printed. 

B. IMAGERY PREPROCESSING 

The image processing algorithm was developed in the MATLAB development 

environment. The algorithm follows the functional flow described in Chapter III, Section D. 

The first step in the algorithm routine is to extract the individual frames from the 

video and convert them into images before processing. The frame rate of the video is 

sixty frames per second; however, from the experiments performed, it was sufficient to 

extract the frames at one-third the video’s frame rate without losing fidelity in the 

information. The individually extracted frames are in red-green-blue (RGB) format as 

shown in Figure 11. 

 

Figure 11. Image Extracted from Video 
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Each RGB image is converted to grayscale format before its background is 

removed. The intensity plot of the original grayscale image is shown before the 

background is removed (Figure 12) and afterward (Figure 13). 

  

Figure 12. Original Grayscale Image before Removing Background 

 

Figure 13. Original Grayscale Image with Background Removed 
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After the image’s background is removed, the contrast of the image is enhanced 

using bottom-hat filtering. This step allows for more accurate edge detection in the 

subsequent stage without including background objects. The bottom-hat filtered image is 

shown in Figure 14.  

 

Figure 14. Contrast Adjusted Image 

C. SHIP LOCALIZATION 

The following steps are taken to allow for image property characterization 
at a later stage. According to Mathworks Edge detection is an image 
processing technique used for finding the boundaries of objects within 
images. It works by detecting discontinuities in brightness. Edge detection 
is used for image segmentation and data extraction in areas such as image 
processing, computer vision, and machine vision. (Mathworks 2017a) 

There are several edge detection methods in MATLAB. They are as follows: 

(1) Sobel 

(2) Prewitt 

(3) Roberts 

(4) Log 

(5) Zerocross 

(6) Canny 
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The Sobel edge detection method uses the Sobel Operator to detect the edges in 

the image. The Sobel operator, also known as the Sobel-Feldman operator, was first 

developed in 1968 by Irwin Sobel and Gary Feldman at the Stanford Artificial 

Intelligence Project. The idea was presented in a seminar at that time as “A 3x3 Isotropic 

Gradient Operator for Image Processing.” The Sobel operator applies a pair of 3x3 

convolution masks on the image vertically and horizontally to measure the gradient in 

each direction. The absolute magnitude is then obtained from the summation of both the 

gradients in vertical and horizontal directions (Sobel 1990). 

In MATLAB, a threshold is established from the gradients of the pixels in the 

image; pixels for which the gradient magnitude is greater than the threshold are treated as 

edges. The output of the image after applying edge detection is shown in Figure 15.  

 

Figure 15. Image after Applying Edge Detection Method 

The next step is to dilate the image to eliminate edge discontinuities. Dilation 

adds pixels to the boundaries of objects in an image based on the size and structuring 

elements (Mathworks 2017c). The structuring elements used in this algorithm are an 

octagon and a diagonal line. The output of the image after dilation is shown in Figure 16. 

This step is used to connect the edges that were detected in the previous step. 
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Figure 16. Image Output from MATLAB after Dilating the Image 

Next, the holes in the image are filled, as shown in Figure 17. A hole is defined as 

a set of background pixels that cannot be captured by filling in the background from the 

edge of the image (Mathworks 2017b). 

 

Figure 17. Image Output from MATLAB after Fill Operation 
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The next step involves removing pixels that are connected to the border of the 

image. Presumably, these pixels include noise and the target of interest in the center of 

the image. The image is shown before removing the pixels connected to the border 

(Figure 18a) and afterward (Figure 18b). 

a)  b)  

Figure 18. Effects of Removing Objects Connected to the Border 

The final step in processing the image is to generate a convex hull image to aid in 

the subsequent extraction of image properties. The object’s edges in the image are 

smoothened, as shown in Figure 19. 

 

Figure 19. Convex Hull Image 
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D. SHIP CHARACTERIZATION 

The next step is to measure and analyze the objects in the image to derive 

information from it. The properties that can be measured in MATLAB using the 

“regionprops” function are described in the shape properties table in the Appendix. 

The regionprops function returns the measurements for the properties found in the 

Appendix as a structural array for each object in the image. The measurements for all the 

objects found in the image are shown in Table 2. The area property represents the number 

of pixels of each object in the image. The centroid property specifies the center of mass 

of each object; it is represented by the x-coordinate followed by the y-coordinate. The 

bounding box property is represented by the upper left corner coordinates of the 

bounding box and the dimensions of the bounding box. 

 Image Object Measurements Table 2.

Area 
(px2) 

Centroid (px) Bounding Box (px) 

15766 [119,865] [39,789,155,140] 
11040 [265,898] [195,840,137,111] 
57785 [621,500] [469,308,272,337] 

 
 

Most likely, the ship will occupy the greatest number of pixels in the image. 

Hence, to filter out the other objects, the object with the maximum area is found based on 

the area property. The index for this object is then used to extract the information for the 

bounding box and Centroid, which correspond to the object with the largest area. 

The bounding box and Centroid data are used to overlay a bounding box on the 

original image for visual verification that the correct object is selected, as shown in 

Figure 20. 
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Figure 20. Example of an Image with Bounding Box Overlay 

This chapter presented the steps in the algorithm to process the images, with their 

corresponding outputs shown after applying each operation. The next chapter presents the 

results from testing the algorithm with EO and infrared imagery. 
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V. PROCESSING ELECTRO-OPTICS AND 
INFRARED IMAGERY 

This chapter describes the results and the challenges faced while testing the 

algorithm with electro-optics and infrared (IR) imagery. The different methods attempted 

during the development of the algorithm to remove background noise are also described 

in this chapter. 

A. EXPERIMENTS USING EO IMAGERY 

The bounding box’s aspect ratio is used to infer the orientation of the ship. The 

aspect ratio of the bounding box is found by dividing the width of the box by the height 

of the box. 

The bounding box ratio plotted against the ship’s orientation is shown in Figure 

21. There were a total of 90 images in this series, each frame representing one-third of a 

second of the video. 

The plot begins with the bow of the ship facing the camera and then turning 

clockwise 180 degrees. A subset of the sequence of images showing the movement of the 

ship as it turns is shown in Figure 22 and Figure 23. As shown in Figure 21, when the 

ship’s bow or stern faces the camera, the ratio is at its minimum value. The ratio starts to 

increase as the port side of the ship turns toward the camera. 
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Figure 21. Ratio of Bounding Box against Relative Orientation of Ship 

 

Figure 22. Subsequence of Images of Ship Turning (180°–270°) 
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Figure 23. Subsequence of Images of Ship Turning (270°–360°) 

Another experiment was conducted to investigate the effects of sampling the 

video at a lower frequency. There were a total of 30 frames in this experiment; instead of 

having three frames representing each second of the video, each second of the video was 

represented by one frame. The results of the bounding box ratio is shown in Figure 24. As 

shown, the plot with 30 frames exhibits similar trends to the one with 90 frames. Both 

plots show that the ratio is at a minimum when the ship’s bow or stern faces the camera. 

As the ship starts to turn starboard, the ratio increases until the ship’s port side faces the 

camera. The ratio decreases as it continues to turn with the stern facing the camera. 
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Figure 24. Second Bounding Box Ratio at One Frame per Second 

One of the challenges processing the images was the effect of shadows therein. 

The shadows caused the image processing algorithm to mistakenly treat the shadows as 

part of the ship. This skewed the ship’s dimensions, thereby affecting the calculation of 

the bonding box ratio. 

One method for removing shadows from images is to convert the images into a 

different color space format to find properties that are unique to the shadows. The first 

attempt to address the shadow problem involved converting the red-green-blue (RGB) 

format image into the luminance-chrominance (YCbCr) format. In the YCbCr format, the 

luminance information is stored in the Y component while the chrominance information 

is stored as two color-difference components, Cb and Cr. The mask is constructed by 

modifying the thresholds for the luminance channel. The results of applying the mask are 

shown in Figure 25. The shadows share similar properties with parts of the ship, as 

shown by the white background of the image. Therefore, if shadows are removed, a large 

portion of the ship will also be removed. 
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Figure 25. Binary Image after Applying the Mask in YCbCr Color Space 

The second attempt converted the image into hue, saturation, and value (HSV) 

color space. The hue of the image represents the color of the image. As the hue increases 

from zero to one, it corresponds with color changes from red through green, cyan, blue, 

magenta, and back to red. The saturation of the image represents how much white is in 

the color. A value of one represents one of the hue colors, for example pure red. The 

value parameter represents the brightness of the color. The masked image is constructed 

by modifying the saturation and value thresholds. The results after applying the mask are 

shown in the binary image in Figure 26. 



 34

 

Figure 26. Binary Image after Applying Mask in HSV Color Space 

Due to the shadows in the image sharing similar characteristics with the ship, 

either in terms of luminance or saturation, it was not possible to filter out the shadow of 

the ship in the water from the images using the aforementioned techniques. 

B. EXPERIMENTS USING INFRARED VIDEO 

Experiments were carried out to test the algorithm using IR video to see whether 

the problems of shadows can be overcome. Experiments were conducted with two 

different videos. In the first, the ship’s starboard side faces the camera, moving from left 

to right (hereafter known as IR_Video1). In the second, the ship moves away from the 

camera, making slight adjustments to its path, with the stern facing the camera (hereafter 

known as IR_Video2). 

(1) Processing IR_Video1 

One of the video frames that was extracted from IR_Video1 is shown in Figure 

27. Each video frame was extracted in RGB format although to the naked eye the image 

is only in black and white. 
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Figure 27. Image Extracted from IR_Video1 

As shown in Figure 27, there are several noise sources in the image. The shoreline 

can be seen on the top edge of the video, the timestamp of the video is on the top left 

hand corner of the image, dark spots representing birds can be seen in the foreground, 

and the shadow of the ship shows in the water. To reduce the errors in the calculation of 

the bounding box ratio, it is necessary to remove these instances of background noise 

from the image before further processing. 

The algorithm developed for processing video in color requires modification to 

process the IR video images. The same routine used to remove the background cannot be 

used as it will result in an image with all the pixels having the same intensity, as shown in 

Figure 28.  



 36

 

Figure 28. Intensity Plot of Background-Removed Image 

The YCbCr masking filter used in earlier experiments with the video in color was 

used to remove the background noise from the IR image.   

The output of the masked image is shown in Figure 29; observe that the 

timestamp at the top left corner and the skyline at the top edge of the image have been 

removed. However, the bright spots as well as a small part of the shadow near the bow of 

the ship were not successfully removed. The mast at the bow of the ship was 

inadvertently removed as a result of the filtering because the luminance of the mast was 

much darker than the other parts of the ship. The mast on the bow was not as tall as the 

mast on the pilothouse; therefore, it did not skew the overall height of the ship despite 

being removed. 

These bright spots near the ship pose a problem when performing bottom-hat 

filtering to enhance the contrast of the image as the pixels adjoin to the ship. As a result, 

subsequent edge detection results in a ship that is larger than the actual size. The result 

after adjusting the contrast of the image is shown in Figure 30. 
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Figure 29. Output from YCbCr Masking 

 

Figure 30. Image after Applying Contrast Adjustment 

The image processing routine was then applied to the contrast-enhanced image to 

perform the steps described in Chapter IV, Section A. The snapshots of each step in the 

algorithm routine are shown in Figure 31. 
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a)  b)  

c)  d)  

Figure 31. IR Image Processing: Dilation (a), Filling the Holes (b), Clearing 
Borders (c), Creating a Convex Hull (d) 

The bounding box ratio plot is shown in Figure 32. From the plot, it can be seen 

that the first 14 frames have approximately the same values. From frame 15 onward, the 

ratio starts to increase although the ship is not turning in this video. As indicated by the 

plot in Figure 32, the maximum bounding box ratio value corresponds with frame 19 of 

the video, shown in Figure 33. From the image, it can be observed that the bounding box 

extends beyond the bow of the ship. This is due to a bird, represented by a group of bright 

pixels, which the algorithm has mistaken as part of the ship during the image processing. 

The algorithm was tested with different filtering values to remove this noise (pixels); 

however, it also removed pixels that constituted part of the ship, thus skewing the 

bounding box ratio as well. 
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Figure 32. Bounding Box Ratio Plot for IR_Video1 

 

Figure 33. Frame 19 of IR_Video1 
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(2) Processing IR_Video2 

A different video was used to test the same algorithm developed in Chapter IV, 

Section C. A set of frames extracted from the video is shown in Figure 34. In this video, 

the shoreline as well as the horizon line can be seen at the top of the image. 

a)    b)  

c)    d)  

Figure 34. Images 1 (a), 50 (b), 150 (c), and 250 (d) from IR_Video2 

The images were passed through the YCbCr filter to remove the background 

noise. The output from the filter is shown in Figure 35. It can be observed that the YCbCr 

masking did not completely remove the shoreline nor the horizon line. The contrast of the 

image was enhanced before the image is passed through the image processing routine. 

The resultant image is shown in Figure 36. 
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Figure 35. Output from YCbCr Masking of IR_Video2 Image 

 

Figure 36. IR_Video2 Image after Contrast Adjustment 
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The image passed through the image processing routine after the contrast was 

enhanced. The output from each step of the image processing routine is shown in Figure 

37. Notably, the shoreline and horizon line are removed after the clear border operation. 

a)  b)   

c) d)  

Figure 37. Output from Each Step of Image Processing Routine: Dilation (a), 
Filling the Holes (b), Clearing Borders (c), Creating a Convex Hull (d) 

The bounding box ratio plot is shown in Figure 38. As shown on the plot, an 

outlier point corresponds with frame number 107. The high bounding box ratio from that 

particular frame was caused by the processing routine failing to remove the shoreline and 

horizon line after the clear border operation, as shown in Figure 39. Hence, it caused the 

processing algorithm to incorrectly identify the shoreline as the ship.  
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Figure 38. Bounding Box Ratio Plot for IR_Video2  

a)  b)  

c)  d)  
 

Figure 39. Output from Each Step of Image Processing Routine for Frame 
Number 107: Dilation (a), Filling the Holes (b), Clearing Border (c), 

Creating a Convex Hull (d) 
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(3) Processing IR_Video1 without contrast enhancement 

The images extracted from IR_Video1 were processed using the same algorithm 

without contrast enhancement. As shown by the bounding box ratio plot in Figure 40, 

there is more variability in between the frames as compared to the plot in Figure 32. The 

maximum value corresponds with frame 2 of the video while the minimum values 

correspond to frames 4, 13, and 17 of the video. 

 

Figure 40. Bounding Box Ratio Plot for IR_Video1 without Contrast 
Enhancement 

As illustrated in Figure 41, the bounding box has the closest fit to the ship. In 

Figure 42, on the other hand, the bounding box includes parts of the shadow of the ship in 

water. Notably, Figure 43 does not depict bright spots in the image as Figure 33 does. 
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Figure 41. Frame 2 from IR_Video1 

 

Figure 42. Frame 4 from IR_Video1 
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Figure 43. Frame 19 of IR_Video1 without Contrast Enhancement 

(4) Processing IR_Video2 without Contrast Enhancement 

The same algorithm without contrast enhancement was tested with images 

extracted from IR_Video2. The bounding box ratio plot is shown in Figure 44. 

Obviously, one of the frames has a much higher value than the rest. The reason for this 

high value is that the algorithm treated the wake behind the ship as part of the vessel, as 

shown in Figure 45. 

As illustrated in Figure 44, the value of the bounding box increases between 

frames 30 and 90, which correspond with the ship turning starboard as it sails away from 

the camera, as shown in Figure 46.  
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Figure 44. IR_Video2 Bounding Box Ratio Plot without Contrast Enhancement 

 

Figure 45. IR_Video2 Frame 97 Bounding Box Image 
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a)  b)  

Figure 46. IR_Video2 Frames 33 (a) and 94 (b) with Bounding Box 
Superimposed  

Apart from deriving information from the bounding box ratio, information can 

also be derived from the bounding box height data. The bounding box height data plotted 

against each video frame is shown in Figure 47. The plot shows the bounding box height 

decreasing as the frame number increases, which implies the ship is sailing away from 

the camera. Therefore, the bounding box height data can be used to infer whether the ship 

is sailing away from or toward the camera. In Figure 47, frame 114 has a much lower 

value than the preceding frame. A comparison of the two frames with their bounding 

boxes is shown in Figure 48. From Figure 48, it is obvious that frame 114 is much darker 

than frame 113; thus, the algorithm did not detect the mast of the ship, resulting in a 

much lower value for the bounding box height. 
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Figure 47. Plot of Bounding Box Height against Video Frames 

a)  b)  

Figure 48. Comparison of Bounding Box Height over Consecutive Frames 113 
(a) and 114 (b) 
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VI. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSION 

This research demonstrated the feasibility of using a computer vision–based 

technique to derive relevant information to provide a situational awareness (SA) 

capability for the unmanned surface vehicle (USV). 

The needs for developing an algorithm to provide this capability were illustrated 

using a systems engineering approach. A combination of functional decomposition and 

functional flow was used to define the algorithm’s necessary functions to provide the SA 

capability. 

An image processing algorithm was developed in MATLAB to process video 

images to derive information that is relevant to the SA capability of the USV. The 

algorithm attempts to draw a bounding box around a ship detected in the video and 

subsequently use the characteristics of the bounding box to infer information about the 

ship’s orientation and motion. Different techniques were tested during the development 

of the algorithm to remove the background noise in the images. It was found that images 

from color and infrared (IR) videos require different methods to filter out the background 

noise. Results after filtering show that IR images have less background noise than do 

color video images. 

One of the challenges encountered during the development process of the 

algorithm was the effect of shadows in the images. The shadows could not be filtered out 

easily due to their visual similarity to the ship. Because the algorithm falsely detected 

shadows as part of the ship, the bounding box measurements were skewed. The effect of 

the shadows appears to be more pronounced when the ship is near the camera. From the 

experiments performed with the IR video images, the algorithm without contrast 

enhancement yielded better results. 

In conclusion, the bounding box measurements can be used for inferring a ship’s 

orientation and for determining whether it is sailing away from or toward the camera. 
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Images from IR video sources were also found more suitable for the algorithm developed 

in this research as there was less background noise in the image.     

B. RECOMMENDATIONS 

To improve the robustness of the algorithm, more work is required to remove the 

effects of shadows in the images, so the bounding box measurements can be more 

accurate. Another area of research ought to involve fusing information derived from the 

other sensors to provide the USV an SA capability. 
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APPENDIX.  SHAPE PROPERTIES 

Shape Measurement Properties in MATLAB. Source: Mathworks (2017d). 

Property Name Description 
  
‘Area’ Returns a scalar that specifies the actual number of pixels in the region. 

(This value might differ slightly from the value returned by bwarea, 
which weights different patterns of pixels differently.) 

‘BoundingBox’ Returns the smallest rectangle containing the region, specified as a 1-by-
Q*2 vector, where Q is the number of image dimensions, for example, 
[ul_corner width]. Ul_corner specifies the upper-left corner of the 
bounding box in the form [x y z ...]. Width specifies the width of the 
bounding box along each dimension in the form [x_width y_width ...]. 
Regionprops uses ndims to get the dimensions of label matrix or binary 
image, ndims(L), and numel to get the dimensions of connected 
components, numel(CC.ImageSize). 

‘Centroid’ Returns a 1-by-Q vector that specifies the center of mass of the region. 
The first element of Centroid is the horizontal coordinate (or x-
coordinate) of the center of mass, and the second element is the vertical 
coordinate (or y-coordinate). All other elements of Centroid are in order 
of dimension. This figure illustrates the centroid and bounding box for a 
discontiguous region. The region consists of the white pixels; the green 

box is the bounding box, and the red dot is the centroid.  
'ConvexArea' Returns a scalar that specifies the number of pixels in 'ConvexImage'. 
'ConvexHull' Returns a p-by-2 matrix that specifies the smallest convex polygon that 

can contain the region. Each row of the matrix contains the x- and y-
coordinates of one vertex of the polygon. 

'ConvexImage' Returns a binary image (logical) that specifies the convex hull, with all 
pixels within the hull filled in (set to on). The image is the size of the 
bounding box of the region. (For pixels that the boundary of the hull 
passes through, regionprops uses the same logic as roipoly to determine 
whether the pixel is inside or outside the hull.) 

'Eccentricity' Returns a scalar that specifies the eccentricity of the ellipse that has the 
same second-moments as the region. The eccentricity is the ratio of the 
distance between the foci of the ellipse and its major axis length. The 
value is between 0 and 1. (0 and 1 are degenerate cases. An ellipse whose 
eccentricity is 0 is actually a circle, while an ellipse whose eccentricity is 
1 is a line segment.) 

'EquivDiameter' Returns a scalar that specifies the diameter of a circle with the same area 
as the region. Computed as sqrt(4*Area/pi). 

'EulerNumber' Returns a scalar that specifies the number of objects in the region minus 
the number of holes in those objects. This property is supported only for 
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2-D label matrices. Regionprops uses 8-connectivity to compute the 
Euler number measurement. To learn more about connectivity, see Pixel 
Connectivity. 

'Extent' Returns a scalar that specifies the ratio of pixels in the region to pixels in 
the total bounding box. Computed as the Area divided by the area of the 
bounding box. 

'Extrema' Returns an 8-by-2 matrix that specifies the extrema points in the region. 
Each row of the matrix contains the x- and y-coordinates of one of the 
points. The format of the vector is [top-left top-right right-top right-
bottom bottom-right bottom-left left-bottom left-top]. This figure 
illustrates the extrema of two different regions. In the region on the left, 
each extrema point is distinct. In the region on the right, certain extrema 
points (e.g., top-left and left-top) are identical. 

'FilledArea' Returns a scalar that specifies the number of on pixels in FilledImage. 
'FilledImage' Returns a binary image (logical) of the same size as the bounding box of 

the region. The on pixels correspond to the region, with all holes filled in, 
as shown in this figure. 

'Image' Returns a binary image (logical) of the same size as the bounding box of 
the region. The on pixels correspond to the region, and all other pixels are 
off. 

'MajorAxisLength' Returns a scalar that specifies the length (in pixels) of the major axis of 
the ellipse that has the same normalized second central moments as the 
region. 

'MinorAxisLength' Returns a scalar that specifies the length (in pixels) of the minor axis of 
the ellipse that has the same normalized second central moments as the 
region. 

'Orientation' Returns a scalar that specifies the angle between the x-axis and the major 
axis of the ellipse that has the same second-moments as the region. The 
value is in degrees, ranging from -90 to 90 degrees. This figure illustrates 
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the axes and orientation of the ellipse. The left side of the figure shows an 
image region and its corresponding ellipse. The right side shows the same 
ellipse with the solid blue lines representing the axes, the red dots are the 
foci, and the orientation is the angle between the horizontal dotted line 
and the major axis. 

'Perimeter' Returns a scalar that specifies the distance around the boundary of the 
region. Regionprops computes the perimeter by calculating the distance 
between each adjoining pair of pixels around the border of the region. If 
the image contains discontiguous regions, regionprops returns 
unexpected results. This figure illustrates the pixels included in the 
perimeter calculation for this object. 

'PixelIdxList' Returns a p-element vector that contains the linear indices of the pixels in 
the region. 

'PixelList' Returns a p-by-Q matrix that specifies the locations of pixels in the 
region. Each row of the matrix has the form [x y z ...] and specifies the 
coordinates of one pixel in the region. 

'Solidity' Returns a scalar specifying the proportion of the pixels in the convex hull 
that are also in the region. Computed as Area/ConvexArea. 

'SubarrayIdx' Returns a cell array that contains indices such that L(idx{:}) extracts the 
elements of L inside the object bounding box. 
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