
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1984

Automatic identification of embedded network
rows in large-scale optimization models

Brown, Gerald G.; Wright, William G.
Springer

Brown, Gerald G., and William G. Wright. "Automatic identification of embedded
network rows in large-scale optimization models." Mathematical Programming 29.1
(1984): 41-56.
http://hdl.handle.net/10945/63200

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Mathematical Programming 29 (1984) 41-56
North-Holland

AUTOMATIC IDENTIFICATION OF EMBEDDED NETWORK
ROWS IN LARGE-SCALE OPTIMIZATION MODELS

Gerald G. BROWN and William G. W R I G H T

Naval Postgraduate School. Monterey, CA 93940. USA

Received 1 December 1980
Revised manuscript received 17 May 1983

The solution of a large-scale linear, integer, or mixed integer programming problem is often
facilitated by the exploitation of special structure in the model. This paper presents heuristic
algorithms for identifying embedded network rows within the coefficient matrix of such models.
The problem of identifying a maximum-size embedded pure network is shown to be among the
class of NP-hard problems. The polynomially-bounded, efficient algorithms presented here do
not guarantee network sets of maximum size. However, upper bounds on the size of the maximum
network set are developed and used to show that our algorithms identify embedded networks of
close to maximum size. Computat ional tests with large-scale, real-world models are presented.

Key words: Networks, Large-Scale Optimization, Basis Factorization, Computat ional Com-
plexity, Mixed Integer Optimization, Generalized Upper Bounds.

1. Introduction

The success of mathematical optimization and the increase in size and speed of

digital computers have led to the modeling of very large and complex systems as
mathematical programs. The direct solution of the associated linear programming

(LP) problems using the classical simplex method is often expensive, if not practically

impossible.
Large-scale models frequently have sparse coefficient matrices with special struc-

ture. If special structure can be identified, it can often be used to reduce the apparent

problem monolith to components of more manageable size, or to admit enhancement
of solution procedures. Possible ways of exploiting the structure are either factoriz-

ation algorithms, for which all simplex bases share a common structure under row
partition, or decomposition. The details of actual exploitation of special structure,

once identified, will not be discussed here (e.g., see [8] or [9]).
Useful factorizations (even for a subset of columns) include simple bounds,

generalized (upper) bounds (GUB), and embedded network rows, among others.

Simple bound rows have only one non-zero coefficient. GUB refers to a set of rows

for which each column has at most one non-zero coefficient in the set. Embedded

generalized network (GN) rows refers to a set of rows for which each column has

at most two non-zero coefficients in the set. If the nonzero coefficients in the
embedded network rows are restricted to at most one +1 and one -1 in each

column, then the structure is referred to as an embedded pure network (NET).

41

42 G.G. Brown and W.G. Wright / Identifying embedded networks

Various methods are available to identify special structure in the coefficient matrix.
These range from simple permutation of rows and columns to full (linear) transfor-

mations of the coefficient matrix. An intermediate method allows simple scaling
(multiplication by a nonzero constant) of each row and/or column. Generally,
entire transformation methods are used in an at tempt to convert the complete
coefficient matrix to one having a very special structure, such as a node-arc incidence
matrix for a network. Partial transformation methods look for large subsets of the
coefficient matrix which exhibit the desired structure, with the implicit presumption

that large subsets are more efficiently exploited than small subsets.
Much of the computational improvement of the specialized simplex algorithms

is obtained when logic can be substituted for arithmetic in simplex operations. This
is most conveniently accomplished when the coefficient values in the special structure
set are restricted to 0, +1. It is often possible, through row and/or column scaling,
to create additional • values. For simple upper bounds, row scaling will suffice.
G U B sets can be converted with row and column scaling (except that columns
corresponding to integer variables are not customarily scaled). To produce pure
network rows, however, the scaling problem is nontrivial due to the existence of
two nonzero coefficients~ in many ;columns as Jwell as the requirement that unit

elements in the same column be of opposite sign.
The use of G U B has received much attention since the concept was introduced

in 1964 by Dantzig and Van Slyke [6]. Some form of GUB has been implemented
in many commercial LP systems, though restrictions on what constitutes an admiss-

ible (i.e. implemented) G U B set vary. Work has been done in the automatic
identification of GUB sets [2, 3]; computational results on large-scale problems
indicate that this is not only feasible, but can be extremely advantageous [3, 17].

Although some elegant work has been done in the theory of entire conversion
of a linear program to a pure network problem [1, 14], few practical results have
been achieved which reliably identify a subset (of rows) which forms a network
structure if entire conversion fails. An efficient algorithm for doing so is of consider-
able value because a model usually fails to be completely convertible, and because
the expense of attempting entire conversion may be prohibitive.

The problem of finding a maximum G U B set (in terms of number of rows) within
a general coefficient matrix has been shown by Thomen to be NP-hard [17]. We

prove the same result for the maximum embedded pure network problem. The
implication is that currently only exponential-t ime algorithms exist to solve these
identification problems and the hope of finding a more efficient algorithm is dim.

Therefore, the efficient identification methods we have developed have been
heuristic algorithms. They find large, sometimes even maximum structures, but they
cannot guarantee a maximum result. Since the size of the maximum structure is not
known for the large-scale problems with which we work, we develop upper bounds
on this size to evaluate our heuristics [17].

Computational results are given for a number of large-scale, real-world problems.
They show the NET identification algorithms to be very effective and efficient in

G.G. Brown and W.G, Wright/ Identifying embedded networks 4 3

identifying large sets of pure network rows. ([4] presents equivalent results for G N
identification.)

Some of this research has been summarized in [5].

2. Problem definition and representations

The Linear Porgramming Problem is defined here as:

(L) minimize cx

s.t. _r <~ A x <~ ~ (ranged constraints),

b ~< x ~< 6 (simple bounds),

where .r and ~ and m-vectors, x, c, _b and/~ are n-vectors and A is an m x n matrix.
Consider for the moment the case where all variables, x, are real-valued; the integer
and mixed integer cases are admitted later.

The (maximum) G U B problem for (L) can be stated as:

(GUB) Find a (maximum) subset of rows in A which can be scaled to contain only

0, +1 entries and which satisfy the property that each column of A has at
most one nonzero entry in the subset.

The real values of the nonzero coefficients in A do not make a difference in the
G U B problem, because any nonzero entry in a G U B row can be scaled to +1 by
column scaling alone. Therefore, it is convenient to replace A by a binary (0, 1)
matrix, K, of the same dimension where each nonzero entry of A is replaced by
+1 with all other entries zero.

Using the matrix K, with entries kij, the (maximum) G U B problem can be
formulated as the binary integer program

(GUB1) (maximize) ZI'~Z2-~' ' ' ' 'JrZrr,

s.t. ~ kiizi<~ l , j = l n
i

where z~c{0, 1}.

(z~ is an indicator variable for G U B inclusion.)
Alternate representations of the G U B problem have been developed as the basis

for various heuristic algorithms and for theoretical considerations such as determin-
ing the complexity of the problem and developing bounds on the maximum achiev-
able size of a G U B set. These include graphical conflict matrix, conflict matrix, and
vector space representations [17].

Two rows in A are said to confl ict if there is at least one column of A with
nonzero entries in both rows. If each row of A is considered as a vertex in an
undirected graph with two vertices connected by an edge whenever the correspond-
ing rows conflict, then the (maximum) G U B problem becomes one of finding a
(maximum) independent set of vertices in the graph. An independent set of vertices

4 4 G.G. Brown and 1440. Wright / ldent(~'ing embedded networks

in a graph is a subset of the total vertex set with no two vertices adjacent (connected

by an edge) in the graph.
The conflict matrix representation of the GUB problem (e.g. [10]) uses an rn x m

symmetric binary matrix M with each row and column representing a row of A. M

has +1 values in those i, j entries where row i and row j conflict in A. By definition,
every row conflicts with itself so the main diagonal of M has all +1 entries. The

(maximum) GUB problem then becomes one of finding (through permutation of

the rows of A) an embedded identity matrix (of maximum size) in the conflict
matrix M.

The vector space representation [16] considers each row of K as a vector in

n-space having unit length in those directions corresponding to its non-zero entries.

The vector R is formed as the sum of each of the row vectors. A unit hypercube

in n-space situated at the origin with length 1 in all positive directions represents

the feasible GUB region. If R extends beyond this region, the set of rows is not a

GUB set and at least one row must be removed to bring R into the feasible region.

The (maximum) GUB problem becomes one of determining (the minimum number
of) rows which must be removed in order to bring R into the feasible region. The

heuristics based on this representation compute gradient vectors which indicate the
direction of shortest distance to the feasible region and remove first those rows

which produce the greatest movement in that direction; these methods produce
GUB sets of comparable quality to other heuristics, but have proven to be more

computationally efficient.

The (maximum) Embedded Generalized Network problem for (L) can be stated:

(GN) Find a (maximum) subset of rows in A which exhibit the property that

each column of A has at most two nonzero entries in the subset.

The (maximum) GN problem can be formulated as a binary integer program.

Defining K as before:

(GNI) maximize z~ + z2 + ' �9 "+ z,,

s.t. Skqzi~2, j = l n,
i

where zie{0,1}.

(z, is an indicator variable for inclusion in the GN set.)
The GUB gradient method is trivially modified to seek GN rows by seeking

resultant vectors within a hypercube with sides of length two [4].
The (maximum) Embedded Pure Network problem for (L) can be stated as:

(NET) Find a (maximum) subset of rows in A which can be scaled to contain only

0, :el entries and which exhibit the property that each column of A

(restricted to those rows) has at most two nonzero entries, and if the
column has two nonzero entries, the (scaled) entries are of opposite sign.

Considering, for the moment only, matrices with 0, :el entries (or a subset of m

rows with 0, • 1 entries in a general matrix) with no scaling allowed, the (maximum)

NET problem can be formulated as the binary integer program:

G.G. Brown and W.G. Wright Ident(fying embedded networks

(NETI) maximize z~ + z2 + ' �9 �9 + z,,,

45

s.t. Y~ z,<~l, j = l n,
i:aij=--i

X zi<~l, j = l n,
i:oq=+l

where zie{0, 1}.

(z~ is an indicator variable for inclusion in the pure network set.)
Unfortunately, NET does not lend itself to the many representations which GUB

admits. The primary reason for this is that the scaling problems associated with

NET make it impossible to disregard the real values of the nonzero coefficients in

A. Also, the concept of pairwise row conflicts so useful in the GUB algorithms does

not apply directly to network rows when row scaling is allowed.
To efficiently confront the scaling dilemma, we restrict the eligibility of rows for

membership in the network set. The most obvious restriction is to allow no scaling
and consider only those rows with intrinsic 0, + 1 entries. Two less restrictive options

are employed in the algorithms described later. These are:

1. Admit only rows with intrinsic 0, • entries but allow row reflection (multiplica-

tion of a row by -1) .
2. Admit only rows whose nonzero entries can be row-scaled to 0, +1. This

includes rows with all nonzero entries of the same absolute value.

Two representations of the NET problem are developed for the algorithms
presented.

As suggested by Thomen [17], GUB heuristics can be used to produce a bipartite-

network row factorization which can be partitioned into two subsets, G1 and G2,

such that each column of the matrix has at most one non-zero entry in G~ and at

most one non-zero entry in G> Additionally, the entries must be of opposite sign.
To produce such a (D-GUB) factorization, a GUB heuristic can be applied to the

eligible rows of A producing Gt, and then applied again to remaining eligible rows
(not selected in the first pass and compatible for NET inclusion, allowing row

reflection if necessary) giving G~.

If we consider only the rows of A with 0, • 1 entries, or those which have been
scaled to 0, +1, a vector space representation for NET can be developed similar to

that developed for GUB. The representation can also allow reflection of rows, if

desired.

With each row in the eligible set, we associate two vectors in n-space, V + and
V~, each consisting of • in those dimensions corresponding to • entries in row
i and zero in all other dimensions. For example, if row i is (1, 0 , - 1 , 1, 0), then

V [= (1 , 0 , 0 , 1,0) and V7 = (0 , 0 , - 1 , 0 , 0) .
We define R + (R-) as the resultant vector from the sum of all V + (V~-). These

vectors extend from the origin into the orthants of n-space corresponding to all

positive dimensions and all negative dimensions, respectively. A unit hypercube in

each of these orthants constitutes the feasible NET region. Should either R + or R

46 G.G. Brown and W.G. Wright/ ldentiJ~ving embedded networks

extend beyond its feasible region then the rows in the eligible set do not currently

form an admissible set of network rows.

The reflection (multiplication by - l) of a row merely results in the switching of

the V~ and V~ vectors for the row. That is, when row i is reflected, the negative

of V~ becomes V~ and the negative of V / becomes V +. This in turn will change

the vectors R + and R - . In fact, it is possible that just the reflection of these rows

in an infeasible set may bring R + and R into their feasible regions without deletion
of any rows.

If either R + or R extends beyond the feasible region, a row penalty for each

row is computed as the dot product of V + and R + plus the dot product of V i and
R - . The row with the greatest row penalty is identified and the revised penalty for

that row, if reflected, is computed. If this reflected penalty is less than the original

row penalty, the row is reflected, otherwise it is deleted. When both R + and R -

fall within the feasible region, the set of rows which remain constitutes an admissible
network set [18].

3. Implementat ion of two automatic pure network identification heuristics

We describe two algori thms for identifying pure network rows: D - G U B and

E-NET. D - G U B is quite fast. E - N E T is not as fast but tends to find more pure

ne twork rows. D - G U B finds bipartite pure network rows and E - N E T seeks general
pure networks.

The D - G U B algorithm:
Step 0. Determine eligible rows. Using the scaling scheme desired, determine

which rows of the matrix are eligible for selection as network rows.

Step 1. Find first G U B set. Apply a G U B heuristic to the eligible set.
Step 2. Determine eligibility for second G U B set. For each eligible row not included

in the first G U B set, check the columns in which the row has nonzero entries. In
each of these column~, if the first G U B set has no nonzero entries or one nonzero

entry of opposite sign then the row is eligible for inclusion in the second G U B set

in its present form. If the first G U B set has no nonzero entries or a nonzero entry

of like sign in each column, then the row is eligible for inclusion in reflected form.
Otherwise, the row is not eligible and is discarded.

Step 3. Find Second G U B Set. If there are any rows eligible for the second pass,

reapply the G U B heuristic to those rows.
The D - G U B Algor i thm used in Steps 1 and 2 is the two-phase, one-pass,

nonbackt racking G U B algori thm described in [3]. Phase I a t tempts to delete as few

rows as possible in order to produce a feasible G U B set. Phase II examines the
rows deleted in Phase I and reincludes rows which do not violate the G U B restriction.

Computa t ional experience with many real-world models indicates that Phase II

of the G U B heuristic rarely adds additional rows to the G U B sets obtained in either

pass. For the second G U B set, Phase II is especially ineffectual.

G.G. Brown and W.G. Wright / Identifying embedded networks 47

The E-NET Algorithm begins with an eligible set of rows which normally do not

form an admissible network set and attempts to delete as few rows as possible to

obtain a feasible set. Deleted rows are then considered for reinclusion if they do

not violate the feasibility requirements.

The measure of infeasibility at any point is a matrix penalty computed as the sum

of individual row penalties. Rows in the eligible set are examined in order of

decreasing row penalty and either reflected, if the row penalty would be reduced,
or removed and placed in a candidate set for later use. This guarantees that the

matrix penalty will be reduced by at least 1 at each iteration. Thus, the number of

iterations in Phase I is limited by the initial matrix penalty, which is polynomially
bounded. In Phase II, the rows in the candidate set are examined for reinclusion

in the eligible set if they do not increase the matrix penalty. Those not reincluded
are discarded.

Statement of the problem:
Let A ={aq} be an m x n matrix with a q = 0 , • Vi, j.
Problem: Find a matrix N={nq} with (m - k) rows and n columns which is

derived from A by

1. Deleting k rows of A where k I> 0,

2. Multiplying zero or more rows of A by - 1 , where N has the property that

each column of N has at most one +1 element and at most one - 1 element. We

wish to find a large N in the sense of containing as many rows as possible (i.e.
minimize k).

Terminology and notation:
1. E is the set of row indices for rows eligible for inclusion in N and is called

the eligible set.

2. C is the set of row indices for rows removed from E in Phase I (Deletion).

Some rows in C may be readmitted to E in Phase II. C is called the candidate
set.

3. The phrase 'reflect row i' of A ' means to multiply each element in row i' by
-1 (i.e. ai,j~--ai,j Vj).

4. Other notation will be defined in the algorithm itself.
The E-NET Algorithm:
Phase I - Deletion of infeasible rows
Step 0. Initialization. Set E = { 1 , 2 m}, C=~3. For each column j of A

compute the + penalty (K f) and the - penalty (K~-) as follows:

1)_,, 1)_1
ieE:aij>O iEE:a#<~ll

These penalties represent the number of excess +1 and -1 elements, respectively,

in column j which prevent the rows in E from forming a valid N matrix. A penalty
value of - 1 for K f (K /) indicates that the column does not contain a + 1 (- 1)
element.

48 G.G. Brown and W.G. Wright / Identifying embedded networks

Step 1. Define row penalties. For every i c/5, compute a row penalty (p~) as follows:

p,= E K ; + E /<;.
jzaij>(} j:aq<O

This is simply the sum of + penalties for all columns in which row i has a +1 plus

the sum of - penalties for all columns in which row i has a - 1 .
Step 2. Define matrix penalty. Compute the penalty (h) for the matrix by summing

the row penalties as follows:

h = Z p s .
l eE

If h = 0, then go to Step 7. Otherwise, go to Step 3.
Step 3. Row selection. Find the row i' c E with the greatest penalty, i.e.

F i n d i ' c E such that p~,=maxp~.
i~U

(If there is a tie, choose i' f rom among the tied values.) Compute the reflected row

penalty pi, for i' as follows:

r E (K;+I)+ E (K;+l t .
j:ai,~>t}]:ai,i<:O

This would be the row penalty for row i' if it were to be reflected.

Step 4. Delete, or reflect row.
Case (i) pc>~pi. Let E ~-E-{ i ' } , C ~ C u { i ' } . Go to Step 5.
Case (ii) p~, < Pi,. Reflect row i'. G o to Step 6.
Step 5. Reduce column penalties as follows:

+

For all j such that ai,j > 0, K 7 ~- Kj - 1.
For all j such that ai,i<O, K j ~-K; -1 .
G o to Step 1.

Step 6. Change column penalties as follows:

Using the ai v values after reflection of row i':

For all j such that a~,j > 0, K~ ~- K 7 + 1 and K i ~- K~- - 1.
For all j such that a~, i < 0 , K f ~ K ~ - 1 and K j ~ K [+ 1.
G o to Step 1.

Phase II - Reinclusion of rows from C
Step 7. Eliminate conflicting rows. The rows in E, some possibly reflected f rom

the orignal A matrix, form a valid N matrix. However , some of the rows removed

from E and placed in C may now be reincluded in E if they do not make h > 0.
Remove from C (and discard) all rows which, if reincluded in E in present or

reflected form, would make h > 0, i.e. remove i f rom C if

(a) 3ja such that aq, > 0 and Kj + = 0

or aij, < 0 and K~ = 0

and

(b)

G.G. Brown and W.G. Wright / Identifying embedded networks 49

3j2 such that aq2 > 0 and K j2 = 0

or aq_~ < 0 and K i + = 0

If C = q~, STOP, otherwise go to Step 8.

Step 8. Select row for reinclusion. At this point a row from C may be reincluded
in E. There are several possible schemes for selecting the row. After the row is
reincluded, the column penalties are adjusted. Then go to Step 7.

No dominating rule has been discovered for breaking ties in maximum row penalty
encountered in Step 3. The rule used herein is to select the row with the minimum
number of nonzero entries in an at tempt to place a larger number of nonzero
entries in the network set. Other possible rules are 'first come, first served', maximum

number of nonzero entries, type of constraint, or modeler preference.
Although the algorithm described above is presented for a matrix with strictly

0, + 1 entries, it can be generalized to any matrix by simply letting E be the set of
rows with strictly 0, • entries or which can be scaled to contain only 0, • entries.

Prespecified network rows can also be accommodated with the following modifica-
tions:

Let P={i] row i is prespecified}.
Then E ~ E - P.

After computation of K f and K~ in Step 0, for each column j,
if 3 i e P s u c h t h a t a q = l t h e n K 7 ~ - K f + l ,
i f 3 i e P s u c h t h a t a q = - I t h e n K j ~ K ; + l .
Rows in P are not eligible for deletion or reflection. At the termination of the
algorithm, the rows in N are given by E u P.

Computational experience on real-world models indicates that Phase II of the
E - N E T ~gor i thm is even less productive than that of the G U B algorithm. In only
two of sixteen cases were any rows eligible for reinclusion and the maximum number
eligible was three. This indicates that the expense of examining the rows in the
candidate set for eligibility is probably not justified for the occasional small improve-
ment in quality.

4. Problem complexity

Analysis of the N E T problem suggests that it cannot be solved optimally by an
efficient algorithm.

The problem of entire conversion by general linear transformation of any matrix
to the node-arc incidence matrix of a pure network if such conversion is possible,
has been shown to be polynomial in complexity [1, 14]. This, however, does not
apply to the problem of finding the maximum embedded pure network should entire
conversion fail. (The entire G U B problem is polynomial, too.) A decision problem
implied by finding the maximum size embedded pure network set is the following:

50 G.G. Brown and W.G. Wright/ ldent[fying embedded networks

(NETD) Given an m • n matrix A and an integer p < m, determine whether A

contains a set of p or more rows such that each column of A (restricted
to those rows) has at most two nonzero entries equal to +1, where two

entries in the same column must be of opposite sign.

Given a set of p rows from A, it is easy to verify, in polynomial time, whether

the set satisfies the above criterion. Given an integer p < m, it is not easy to determine

whether there exists a set of p or more rows in A which satisfies the cr i te r ion-- in

general, there does not currently exist an algori thm which can do so in polynomial
time.

Two rows conflict if they both contain a nonzero element of like sign in a c o m m o n
column. It is evident that the absence of pairwise conflicts is necessary in a valid

pure network set, for the existence of a conflict violates the opposite-sign require-

ment for columns containing two nonzero elements. It is also sufficient, because the

violation of the criterion for a valid network set would require at least one column

of A to contain at least two nonzero entries of like sign in rows of the set. This, in
turn, would imply that the two rows in which this occurs are in conflict.

N E T D is obviously in NP. We show that N E T D is NP-comple te by a t ransforma-

tion f rom the independent set decision problem which is known to be NP-comple te

[7]:

(ISD) Given any graph G with m vertices and an integer p < m , determine
whether G contains a set of p or more independent vertices (i.e. vertices

not adjacent) .

ISD can be conver ted (in polynomial time) to an instance of N E T D as follows.

Create an m • n ver tex-edge incidence matrix A with aij = ! if edge j is incident to
vertex i in G and zero otherwise. There exists a set of p or more nonconflicting

rows in A if and only if there exists a set of p or more independent vertices in G.

Therefore , N E T D in NP-complete .
N E T D with row-reflection allowed is also NP-complete . Create A f rom G as

above and append an n • n negative identity matrix below A. Then, with row
reflection allowed, (_AI) contains a set of n + p or m o r e nonconflicting rows if and

only if G contains an independent set of size p or greater. Therefore , N E T D with

row-reflection is NP-complete .
This analysis of pure network identification algorithms has only addressed the

worst-case bound. No conclusions can be made about the average per formance of

an optimal a lgor i thm-- i t may be possible to develop an optimal algori thm with

good average performance, but having an exponential worst-case bound.

5. Upper bounds on maximum pure network set size

The problem of finding a maximum-size pure -ne twork set of rows in a matrix

appears to be hard. This also applies to the problem of determining just the size of

G.G. Brown and W.G. Wright / Identifying embedded networks 51

a maximum set. Upper bounds on the maximum set size, computed in polynomial

time, can be useful in evaluating the quality of network sets produced by heuristic

algorithms.
The bounds developed here apply to the maximum set size obtainable from the

set of eligible rows, and thus depend on the scaling restrictions employed.

Each column of the matrix is allowed at most two nonzero entries in the network

set. If k represents the maximum number of nonzero entries in any column of A
(considering only entries in eligible rows), then it is clear that at least k - 2 rows

must be deleted from the eligible set in order to make this 'worst column' feasible.

Since the column counts are readily available in the form of the column penalties
(K~ and K /) , an upper bound on the network set size for a matrix with m eligible
r o w s is:

ul = m - max(K~ + K T) .
J

This bound is sharp in that matrices can be constructed for which it is achieved.

A second bound almost always tighter than ul, is based on a matrix penalty
computed from column penalties, rather than row penalties as in the NET algorithm.
This penalty is:

H= E KT+ E K;.
j:K~>0 j:Kj>O

Clearly, as long as H > 0, the rows remaining in the eligible set do not form a

valid network set. The reflection of a row in the eligible set may decrease H, increase

H, or leave it unchanged. The deletion of a row from the eligible set may decrease

H, or leave it unchanged. The actual effect of a reflection or deletion depends on

the rows remaining in the eligible set and their state (unreflected or reflected) at
the time. However, it is possible to compute for each row the maximum possible

reduction in H obtainable by reflection or deletion of the row, regardless of the

other rows remaining in the eligible set. These maximum possible reductions are

called the reflection potential and deletion potential for the row, respectively.

The bound is determined by finding the minimum number of row deletions

necessary to reduce H to zero. This cannot, of course, be specified exactly; however,

the result will be conservative in that it will guarantee that at least that number of
rows must be deleted.

Consider the possible states of a column j of A in which row i has a nonzero
entry (i.e. a~j # 0). The six possible cases are summarized in Table 1.

The nonzero entries in each column are counted only when they occur in the

initial eligible set. The penalties used are those computed before any row reflections
or deletions have occurred.

Consider first the effect on column j, and thus H, of reflecting row L In cases 1,

5 and 6, reflection of row i would not change H. In case 4, reflection of row i would

decrease H by 1, unless another row with a nonzero in column j was previously
reflected. In cases 2 and 3, reflection of row i would actually increase H by 1, unless

52 G.G. Brown and W.G. Wright/ Identifying eml~edded networks

Table 1

K ~ = column penalty of like sign to % (K~
if a~j>0; K[if aij<O); /K'j' =column
penalty of unlike sign to %

Case K~ K~'

1 0 - 1

2 0 0
3 0 >0
4 >0 -1
5 >0 0
6 >0 >0

enough o the r rows with nonze ro entr ies in co lumn j were ref lected or de le ted to

p roduce a - 1 value for Kj ' . Since we cannot be sure that ref lect ion in cases 2 and

3 would actual ly increase H, we must cons ider H unchanged by reflect ion in these

cases. In summary , we al low H to be dec reased only by ref lect ion of rows with

nonze ro entr ies in co lumns exhibi t ing case 4. The ref lect ion po ten t ia l for row i is

c o m p u t e d by summing the effects for each co lumn in which row i has a nonze ro

e lement , with the condi t ion that only one row ref lect ion is a l lowed to decrease H

for each column exhibi t ing case 4.

Row de le t ions p rov ide g rea te r oppo r tun i t y for reducing /4. In cases 1 and 2,

de le t ion of row i has no effect on H, while in cases 4, 5, and 6, de le t ion of row i

d i rec t ly decreases H by 1. In case 3, de le t ion of row i does not d i rec t ly decrease

H, but it al lows reflect ion of ano the r row with a nonze ro in column j, p roduc ing a

net decrease of 1 in the value of H. In summary , we al low H to be dec reased by

de le t ion of rows with nonze ro ent r ies in co lumns exhibi t ing case 3, 4, 5 or 6. The

de le t ion poten t ia l for row i is c o m p u t e d by summing the effects for each co lumn

in which row i has a nonze ro entry.

To obta in this bound , the ref lect ion and de le t ion potent ia l s for each row in the

el igible set a re computed . Then the max imum possible reduct ion of H by row

ref lect ions a lone is c o m p u t e d by summing the individual row reflect ion potent ia ls .

If H > 0 at this point , then rows must be dele ted . Rows are de l e t ed in o rde r of

decreas ing de le t ion po ten t i a l unti l H ~< 0. The upper bound is then c o m p u t e d as:

u. = m - number of rows de le ted ,

where m is the n u m b e r of rows in the initial el igible set.

This bound is ev ident ly sharp , because examples can be cons t ruc ted which satisfy

the bound exactly.
The u2 bound is t ighter than the u~ bound for the r ea l -wor ld mode l s we have

examined , however coun te r examples exist.

S imi lar a rguments can be used to const ruct even be t t e r bounds , but the addi t iona l

compu ta t i on cost may not be just if ied for rout ine use with every model .

G.G. Brown and W.G. Wright / ldenti[ving embedded networks 53

6. Computat ional results

The D - G U B and E - N E T algorithms were coded in FORTRAN and were tested

on the set of real-world models with characteristics shown in Table 2. The counts
of nonzero coefficients do not include objective functions or right-hand sides.

Table 2

Sample LP (MIP) model characteristics

Model Description Rows Cohmms Nonzero
coefficients

Total Binary

NETTING Currency exchange 90 177 114 375

AIRLP Distribution 171 3040 0 6 023
COAL Energy development 171 3753 0 7 506

TRLICK Fleet dispatch (Set covering) 220 4752 4752 30 074
c u P s Production scheduling 361 582 145 1 341

FERT Production & distribution 606 91124 0 40 484
PIEs Energy production & consumption 663 2923 0 13 288

PAD Energy production & consumption 695 3934 0 13 459
ELEC Energy production & consumption 785 2800 0 8 462
GAS Production scheduling 799 5536 0 27 474

mEOW Energy production & consumption 976 2172 0 13057
FOAM Production scheduling 1000 4020 42 13 083

I.ANG Equipment & manpower scheduling 1236 1425 0 22 028
JCAP Production scheduling 2487 3849 560 9 510

PAPER Econometric production 3529 6543 0 32 644
ODSAS Manpower planning 4648 4683 0 30 520

The results obtained for the D - G U B algorithm are given in Table 3. The row
eligibility criterion used was that each contain only 0, +1 entries, or be able to be
scaled to 0, + 1 entries by row scaling only. The number of eligible rows as a fraction
of the total row count ranged from 9% to 100% (the objective row(s) not being
eligible in any case). The number of G U B rows obtained in each pass is indicated.
In two cases, the entire eligible set was determined to be a G U B set, so no second
pass was required. The times given are in CPU seconds for the IBM 3 6 0 / 6 7 with
the program compiled using FORTRAN IV H (Extended) with OPT1MIZE (2).

The results for the E - N E T algorithm are given in Table 4. Also included are the
upper bounds on the maximum pure network set size computed from the problem
data. The times given for determining the eligible set should be nearly the same as
those for the D - G U B algorithm since the same eligibility criterion and code were
used in both cases. The eligibility of rows in the candidate set for reinclusion in
Phase II was determined, but Phase II was not included due to the absence of
eligible rows in nearly every case. The solution time does not include the time
required to determine eligibility for Phase II. The N E T quality value is the number

54 G.G. Brown and W.G. Wright / Identifying embedded networks

Tab le 3

D - G U B a lgo r i t hm results

Mode l Eligibil i ty N e t w o r k rows found

R o w s T i m e Pass 1 T i m e Pass 2 T i m e To ta l T i m e

R o w s N o n z e r o

Ref lec ted coeff ic ients

in set

NEnf'TING

AIRLP

COAL

TRUCK

CUPS

FERT

PIES

PAD

ELEC

GAS

PU+OT

FOAM

LAN{}

JCAP

PAPER

ODSAS

59 0.01

150 0.09

l l I 0.1l

219 0.76

300 0.05

585 0.62

142 0.09

174 0.10

322 (I.12

752 0.58

109 0.10

966 0.33

850 0.26

1811 (/.26

36 0,03 18 0.04 54 0.07 18

15(1 0.41 All GUB i50 0.41 0

I11 0.50 AII GUB 111 0.50 0

29 3.96 18 4.44 47 8.40 18

150 0,14 101 0.15 251 0.29 1

559 3.00 13 3,(13 572 6.03 13

128 0.5t 0 0.05 128 0.56 0

160 0.52 0 0,06 160 0.58 0

266 0.47 6 0.52 272 0.99 6

607 2.61 75 2.39 682 5.00 75

96 0.44 13 (I.48 109 0.92 1

917 0.95 34 0.94 951 1.89 1

342 2.91 243 0.83 585 3.74 1

517 1.49 357 1.01 874 2.50 2(11

2324 0.79 1016 3.53 468 3.71 1484 7.24 433

410 0.61 195 1.84 122 1.55 317 3.39 92

89

3(10(I

3753

1755

710

16291

1392

1552

2691

90(18

479

8001

1804

2622

8176

5344

Tab le 4

E - N E T a lgo r i t hm resul ts

Model Eligibil i ty U p p e r bounds N e t w o r k rows found

R o w s T i m e U I U2 N u m b e r T i m e Qua l i ty

R o w s N o n z e r o

ref lected coeff icients

in set

NETTING 59 0.01 58 57

AIRLP 150 0.09 150 150

COAL 111 0.11 111 111

TRUCK 219 0.76 214 137

c u p s 300 0.05 299 297

PERT 585 (/.62 584 572

PZES 140 11.09 139 132

PAD 174 0.10 171 164

ELEC 322 0.14 310 306

GAS 752 0.60 750 7t0

PIt_OT 11)9 0.10 109 109

FOAM 966 0.34 965 955

LANG 850 0.29 836 758

JCAP 1811 0.26 1801 1092

PAPER 2324 0.66

ODNAS 410 0.61

54 0.08 94.74% 18

150 0.35 100% 0

I l l 0.43 100% 0

46 19.82 33.58% 18

295 0.14 99.33% 1

572 6.15 100% 13

128 (/.59 96.97% 0

16(1 059 97.56% 0

286 2.07 93.46% 34

668 9.71 94.08% 33

i09 0.36 I0(/% 1

951 1.16 99.58% 1

661 14,82 87.20% 2

917 44.(17 83.97% 200

2316 2072 1627 94.16 78.52% 6(13

4(16 369 286 14.55 77.51% 45

89

3000

3753

1781

862

16291

1392

1552

2915

11002

479

8001

2239

254(I

8995

62117

G,G. Brown and Vg~G. Wright/ ldent{l~ving embedded networks 55

of rows in the network set, expressed as a percentage of the better upper bound

on the pure network set size. As explained earlier, the actual maximum network
set size is, in general, unknown and thus the actual NET quality may be better than
this conservative estimate. In particular, the bounds are almost certainly too high
for problems with a large number of eligible rows (e.g. PAPER) and for problems
with dense, or unstructured coefficient matrices (e.g. TRUCK, which is included in
this study as a deliberate torture-test).

7. Conclusion

The identification algorithms are very fast (especially when compared with com-
puter time expended in any attempt to solve these problems) and they consistently
produce maximum or near maximum pure network sets (from the eligible rows) as
evidenced by the upper bounds.

Better yet, they provide independent insights which can be used to explain and
improve the model at hand, or make it easier to solve. For instance, several models
in Table 2 have been revealed as multi-commodity production/transportation prob-
lems, a totally unexpected perspective for the model proponents. Further, these
results have yielded prescriptive benefits for model solution, especially via
decomposition.

Many problems exhibiting intrinsic network structure are disguised by their
formulation and resist the simplistic attempts used here to rescale them. In particular,
the COAL model is known to be an entire network if appropriately restated, but it
is not yet evident how this is to be discovered using efficient, general, problem-
independent automatic identification. Methods used to scale an entire matrix to
0, :el values (see [1, 14]) can be attempted, but failing entire conversion the next
step is not evident.

Using the conflict matrix method of Greenberg and Rarick [10], Schrage [15]
reports finding several other embedded structures (e.g. pre-Leontief rows). Our
implementation and experience with this method at large scale has not been
encouraging. Its principal disadvantage is the requirement for some efficient rep~
resentation of the conflict matrix. We feel that the superior speed and modest region
demands of the gradient method exhibited in GUB, GN and NET identification
will carry over to the identification of other special structures. In particular, we
have successfully sought pre-Leontief and network decomposition factorizations,
the former were sought via an obvious redefinition of a conflict in the GUB gradient
method, and the latter with repeated use of NET identification and column dropping.

McBride [12] has employed these identification methods in his 'side constrained
network' simplex implementations. He reports that computation time and cost for
GN, or NET identification are more than offset by reduced solution effort required
by his factorized simplex system.

56 G.G. Brown and W.G. Wright / Identifying embedded networks

8. Acknowledgment

W e e n j o y e d s c r u p u l o u s r e v i e w s of th is p a p e r by t h e r e f e r e e s a n d R. K e v i n W o o d .

A r e f e r e e ' s s u g g e s t i o n (a t t r i b u t e d to G a r y K o e h l e r) a n d a s p i r i t e d s e s s ion w i t h

K e v i n e v e n t u a l l y a c c o m m o d a t e d r o w r e f l e c t i o n in t h e c o m p l e x i t y a r g u m e n t .

References

[1] R. Bixby and W. Cunningham, "Converting linear programs to network problems", Mathematics
of Operations Research 5 (1980) 321-357.

[2] A. Brearly, G. Mitra and H. Williams, "Analysis of mathematical programming models prior to
applying the simplex algorithm", Mathematical Programming 8 (1975) 54-83.

[3] G. Brown and D. Thomen, "Automatic identification of generalized upper bounds in large-scale
optimization models ' ', Management Science 26 (1980) 1166-1184.

[4] G. Brown and R. McBride, "Extracting embedded generalized network problems from general LP
problems", paper presented at ORSA/TIMS (Houston, TX, September 1981).

[5] G. Brown and W. Wright, "Automatic identification of embedded structure in large-scale optimiz-
ation models", in: H. Greenberg and J. Maybee, eds., Computer-assisted analysis and model
simplification (Academic Press, New York, 1981) (proceedings from Boulder, CO, March 28,
1980) pp. 369-388.

[6] G. Dantzig and R. Van Slyke, "Generalized upper bounding techniques", Journal of Computer and
System Sciences 1 (1967) 213-226.

[7] M. Garey and D. Johnson, Computers and intractability: A guideto the theory of NP-completeness
(W.H. Freeman and Company, San Francisco, 1979L

[8] G. Graves and R. McBride, "'The factorization approach to large-scale linear programming",
Mathematical Programming l 0 (1976) 91 - 110.

[9] G. Graves and T. Van Roy, "Decomposition for large-scale linear and mixed integer linear
programming", UCLA Technical Report (Los Angeles, CA, November 1979).

[10] H. Greenberg and D. Rarick, "Determining GUB sets via an invert agenda algorithm", Mathemati-
cal Programming 7 (1974) 240-244.

[11] R. McBride, "Linear programming with linked lists and automatic guberization", Working Paper
No. 8175, University of Southern California, School of Business (Los Angeles, CA, July 1975).

[12] R. McBride, "Solving linear programs with network factorization", Working Paper, University of
Southern California, School of Business (Los Angeles, CA, September 1982).

[13] V. Klee, "'Combinatorial optimization: What is the state of the art". Mathematics of Operations
Research 5 (1980) 1-26.

[14] J. Musalem, -Converting linear models to network models", Ph.D. Dissertation, UCLA (Los
Angeles, CA. January 1980).

[15] L. Schrage, "Some comments on hidden structure in linear programs", in: H. Greenberg and J.
Maybee, eds., Computer-assisted analysis and model simpffl~cation (Academic Press, New York,
1981) (proceedings from Boulder, CO, March 28, 1980) pp. 389-395.

[16] S. Senju and Y. Toyoda, "An approach to lineal programming with 0-1 variables", Management
Science 15 (1968) B196-B207.

[17] D. Thomen, "Automatic factorization of generalized upper bounds in large-scale optimization
problems", M.S. Thesis, Naval Postgraduate School (Monterey, CA, September 1979).

[18] W. Wright. ~'Automatic identification of network rows in large-scale optimization models," M.S.
Thesis, Naval Postgraduate School (Monterey, CA, September 1980).

