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The solution of a large-scale linear, integer, or mixed integer programming problem is often 
facilitated by the exploitation of special structure in the model. This paper presents heuristic 
algorithms for identifying embedded network rows within the coefficient matrix of such models. 
The problem of identifying a maximum-size embedded pure network is shown to be among the 
class of NP-hard problems. The polynomially-bounded, efficient algorithms presented here do 
not guarantee network sets of maximum size. However, upper bounds on the size of the maximum 
network set are developed and used to show that our algorithms identify embedded networks of 
close to maximum size. Computat ional  tests with large-scale, real-world models are presented. 

Key words: Networks, Large-Scale Optimization, Basis Factorization, Computat ional  Com- 
plexity, Mixed Integer Optimization, Generalized Upper  Bounds. 

1. Introduction 

The success of mathematical optimization and the increase in size and speed of 

digital computers have led to the modeling of very large and complex systems as 
mathematical programs. The direct solution of the associated linear programming 

(LP) problems using the classical simplex method is often expensive, if not practically 

impossible. 
Large-scale models frequently have sparse coefficient matrices with special struc- 

ture. If special structure can be identified, it can often be used to reduce the apparent 

problem monolith to components of more manageable size, or to admit enhancement 
of solution procedures. Possible ways of exploiting the structure are either factoriz- 

ation algorithms, for which all simplex bases share a common structure under row 
partition, or decomposition. The details of actual exploitation of special structure, 

once identified, will not be discussed here (e.g., see [8] or [9]). 
Useful factorizations (even for a subset of columns) include simple bounds, 

generalized (upper) bounds (GUB), and embedded network rows, among others. 

Simple bound rows have only one non-zero coefficient. GUB refers to a set of rows 

for which each column has at most one non-zero coefficient in the set. Embedded 

generalized network (GN) rows refers to a set of rows for which each column has 

at most two non-zero coefficients in the set. If the nonzero coefficients in the 
embedded network rows are restricted to at most one +1 and one -1  in each 

column, then the structure is referred to as an embedded pure network (NET). 

41 
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Various methods are available to identify special structure in the coefficient matrix. 
These range from simple permutation of rows and columns to full (linear) transfor- 

mations of the coefficient matrix. An intermediate method allows simple scaling 
(multiplication by a nonzero constant) of each row and/or  column. Generally, 
entire transformation methods are used in an at tempt to convert the complete 
coefficient matrix to one having a very special structure, such as a node-arc incidence 
matrix for a network. Partial transformation methods look for large subsets of the 
coefficient matrix which exhibit the desired structure, with the implicit presumption 

that large subsets are more efficiently exploited than small subsets. 
Much of the computational improvement  of the specialized simplex algorithms 

is obtained when logic can be substituted for arithmetic in simplex operations. This 
is most conveniently accomplished when the coefficient values in the special structure 
set are restricted to 0, +1. It is often possible, through row and/or  column scaling, 
to create additional • values. For simple upper bounds, row scaling will suffice. 
G U B  sets can be converted with row and column scaling (except that columns 
corresponding to integer variables are not customarily scaled). To produce pure 
network rows, however, the scaling problem is nontrivial due to the existence of 
two nonzero coefficients~ in many ;columns as Jwell as the requirement that unit 

elements in the same column be of opposite sign. 
The use of G U B  has received much attention since the concept was introduced 

in 1964 by Dantzig and Van Slyke [6]. Some form of GUB has been implemented 
in many commercial LP systems, though restrictions on what constitutes an admiss- 

ible (i.e. implemented) G U B  set vary. Work has been done in the automatic 
identification of GUB sets [2, 3]; computational results on large-scale problems 
indicate that this is not only feasible, but can be extremely advantageous [3, 17]. 

Although some elegant work has been done in the theory of entire conversion 
of a linear program to a pure network problem [1, 14], few practical results have 
been achieved which reliably identify a subset (of rows) which forms a network 
structure if entire conversion fails. An efficient algorithm for doing so is of consider- 
able value because a model usually fails to be completely convertible, and because 
the expense of attempting entire conversion may be prohibitive. 

The problem of finding a maximum G U B  set (in terms of number  of rows) within 
a general coefficient matrix has been shown by Thomen to be NP-hard [17]. We 

prove the same result for the maximum embedded pure network problem. The 
implication is that currently only exponential-t ime algorithms exist to solve these 
identification problems and the hope of finding a more efficient algorithm is dim. 

Therefore,  the efficient identification methods we have developed have been 
heuristic algorithms. They find large, sometimes even maximum structures, but they 
cannot guarantee a maximum result. Since the size of the maximum structure is not 
known for the large-scale problems with which we work, we develop upper bounds 
on this size to evaluate our heuristics [17]. 

Computational results are given for a number of large-scale, real-world problems. 
They show the NET identification algorithms to be very effective and efficient in 
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identifying large sets of pure network rows. ([4] presents equivalent results for G N  
identification.) 

Some of this research has been summarized in [5]. 

2. Problem definition and representations 

The Linear Porgramming Problem is defined here as: 

(L) minimize cx 

s.t. _r <~ A x  <~ ~ (ranged constraints), 

b ~< x ~< 6 (simple bounds), 

where .r and ~ and m-vectors,  x, c, _b and/~ are n-vectors and A is an m x n matrix. 
Consider for the moment  the case where all variables, x, are real-valued; the integer 
and mixed integer cases are admitted later. 

The (maximum) G U B  problem for (L) can be stated as: 

(GUB) Find a (maximum) subset of rows in A which can be scaled to contain only 

0, +1 entries and which satisfy the property that each column of A has at 
most  one nonzero entry in the subset. 

The real values of the nonzero coefficients in A do not make a difference in the 
G U B  problem, because any nonzero entry in a G U B  row can be scaled to +1 by 
column scaling alone. Therefore,  it is convenient to replace A by a binary (0, 1) 
matrix, K, of the same dimension where each nonzero entry of A is replaced by 
+1 with all other entries zero. 

Using the matrix K, with entries kij, the (maximum) G U B  problem can be 
formulated as the binary integer program 

(GUB1) (maximize) ZI'~Z2-~' ' ' ' 'JrZrr,  

s.t. ~ kiizi<~ l ,  j =  l . . . . .  n 
i 

where z~c{0, 1}. 

(z~ is an indicator variable for G U B  inclusion.) 
Alternate representations of the G U B  problem have been developed as the basis 

for various heuristic algorithms and for theoretical considerations such as determin- 
ing the complexity of the problem and developing bounds on the maximum achiev- 
able size of a G U B  set. These include graphical conflict matrix, conflict matrix, and 
vector space representations [17]. 

Two rows in A are said to confl ict  if there is at least one column of A with 
nonzero entries in both rows. If each row of A is considered as a vertex in an 
undirected graph with two vertices connected by an edge whenever the correspond- 
ing rows conflict, then the (maximum) G U B  problem becomes one of finding a 
(maximum) independent set of vertices in the graph. An independent set of vertices 
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in a graph is a subset of the total vertex set with no two vertices adjacent (connected 

by an edge) in the graph. 
The conflict matrix representation of the GUB problem (e.g. [10]) uses an rn x m 

symmetric binary matrix M with each row and column representing a row of A. M 

has +1 values in those i, j entries where row i and row j conflict in A. By definition, 
every row conflicts with itself so the main diagonal of M has all +1 entries. The 

(maximum) GUB problem then becomes one of finding (through permutation of 

the rows of A) an embedded identity matrix (of maximum size) in the conflict 
matrix M. 

The vector space representation [16] considers each row of K as a vector in 

n-space having unit length in those directions corresponding to its non-zero entries. 

The vector R is formed as the sum of each of the row vectors. A unit hypercube 

in n-space situated at the origin with length 1 in all positive directions represents 

the feasible GUB region. If R extends beyond this region, the set of rows is not a 

GUB set and at least one row must be removed to bring R into the feasible region. 

The (maximum) GUB problem becomes one of determining (the minimum number 
of) rows which must be removed in order to bring R into the feasible region. The 

heuristics based on this representation compute gradient vectors which indicate the 
direction of shortest distance to the feasible region and remove first those rows 

which produce the greatest movement in that direction; these methods produce 
GUB sets of comparable quality to other heuristics, but have proven to be more 

computationally efficient. 

The (maximum) Embedded Generalized Network problem for (L) can be stated: 

(GN) Find a (maximum) subset of rows in A which exhibit the property that 

each column of A has at most two nonzero entries in the subset. 

The (maximum) GN problem can be formulated as a binary integer program. 

Defining K as before: 

(GNI) maximize z~ + z2 + '  �9 "+ z,, 

s.t. Skqzi~2, j = l  . . . . .  n, 
i 

where zie{0,1}. 

(z, is an indicator variable for inclusion in the GN set.) 
The GUB gradient method is trivially modified to seek GN rows by seeking 

resultant vectors within a hypercube with sides of length two [4]. 
The (maximum) Embedded Pure Network problem for (L) can be stated as: 

(NET) Find a (maximum) subset of rows in A which can be scaled to contain only 

0, :el entries and which exhibit the property that each column of A 

(restricted to those rows) has at most two nonzero entries, and if the 
column has two nonzero entries, the (scaled) entries are of opposite sign. 

Considering, for the moment only, matrices with 0, :el entries (or a subset of m 

rows with 0, • 1 entries in a general matrix) with no scaling allowed, the (maximum) 

NET problem can be formulated as the binary integer program: 
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(NETI) maximize z~ + z2 + '  �9 �9 + z,,, 
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s.t. Y~ z,<~l, j = l  . . . .  n, 
i:aij=--i 

X zi<~l, j = l  . . . . .  n, 
i:oq=+l 

where zie{0, 1}. 

(z~ is an indicator variable for inclusion in the pure network set.) 
Unfortunately, NET does not lend itself to the many representations which GUB 

admits. The primary reason for this is that the scaling problems associated with 

NET make it impossible to disregard the real values of the nonzero coefficients in 

A. Also, the concept of pairwise row conflicts so useful in the GUB algorithms does 

not apply directly to network rows when row scaling is allowed. 
To efficiently confront the scaling dilemma, we restrict the eligibility of rows for 

membership in the network set. The most obvious restriction is to allow no scaling 
and consider only those rows with intrinsic 0, + 1 entries. Two less restrictive options 

are employed in the algorithms described later. These are: 

1. Admit only rows with intrinsic 0, • entries but allow row reflection (multiplica- 

tion of a row by -1) .  
2. Admit only rows whose nonzero entries can be row-scaled to 0, +1. This 

includes rows with all nonzero entries of the same absolute value. 

Two representations of the NET problem are developed for the algorithms 
presented. 

As suggested by Thomen [17], GUB heuristics can be used to produce a bipartite- 

network row factorization which can be partitioned into two subsets, G1 and G2, 

such that each column of the matrix has at most one non-zero entry in G~ and at 

most one non-zero entry in G> Additionally, the entries must be of opposite sign. 
To produce such a (D-GUB) factorization, a GUB heuristic can be applied to the 

eligible rows of A producing Gt, and then applied again to remaining eligible rows 
(not selected in the first pass and compatible for NET inclusion, allowing row 

reflection if necessary) giving G~. 

If we consider only the rows of A with 0, • 1 entries, or those which have been 
scaled to 0, +1, a vector space representation for NET can be developed similar to 

that developed for GUB. The representation can also allow reflection of rows, if 

desired. 

With each row in the eligible set, we associate two vectors in n-space, V + and 
V~, each consisting of • in those dimensions corresponding to • entries in row 
i and zero in all other dimensions. For example, if row i is (1, 0 , - 1 ,  1, 0), then 

V [ = ( 1 , 0 , 0 ,  1,0) and V7 = ( 0 , 0 , - 1 , 0 , 0 ) .  
We define R + (R-)  as the resultant vector from the sum of all V + (V~-). These 

vectors extend from the origin into the orthants of n-space corresponding to all 

positive dimensions and all negative dimensions, respectively. A unit hypercube in 

each of these orthants constitutes the feasible NET region. Should either R + or R 
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extend beyond its feasible region then the rows in the eligible set do not currently 

form an admissible set of network rows. 

The reflection (multiplication by - l )  of a row merely results in the switching of 

the V~ and V~ vectors for the row. That  is, when row i is reflected, the negative 

of V~ becomes V~ and the negative of V /  becomes V +. This in turn will change 

the vectors R + and R - .  In fact, it is possible that just the reflection of these rows 

in an infeasible set may bring R + and R into their feasible regions without  deletion 
of any rows. 

If either R + or R extends beyond the feasible region, a row penalty for each 

row is computed  as the dot product  of V + and R + plus the dot product  of V i  and 
R - .  The row with the greatest row penalty is identified and the revised penalty for 

that  row, if reflected, is computed.  If this reflected penalty is less than the original 

row penalty, the row is reflected, otherwise it is deleted. When both R + and R -  

fall within the feasible region, the set of rows which remain constitutes an admissible 
network set [18]. 

3. Implementat ion of two automatic  pure network identification heuristics 

We describe two algori thms for identifying pure network rows: D - G U B  and 

E-NET.  D - G U B  is quite fast. E - N E T  is not as fast but tends to find more  pure 

ne twork  rows. D - G U B  finds bipartite pure network rows and E - N E T  seeks general 
pure networks.  

The D - G U B  algorithm: 
Step 0. Determine eligible rows. Using the scaling scheme desired, determine 

which rows of the matrix are eligible for selection as network rows. 

Step 1. Find first G U B  set. Apply  a G U B  heuristic to the eligible set. 
Step 2. Determine eligibility for second G U B  set. For  each eligible row not included 

in the first G U B  set, check the columns in which the row has nonzero  entries. In 
each of these column~, if the first G U B  set has no nonzero  entries or  one nonzero  

entry of opposite sign then the row is eligible for inclusion in the second G U B  set 

in its present form. If the first G U B  set has no nonzero  entries or a nonzero  entry 

of like sign in each column,  then the row is eligible for inclusion in reflected form. 
Otherwise,  the row is not eligible and is discarded. 

Step 3. Find Second G U B  Set. If there are any rows eligible for the second pass, 

reapply the G U B  heuristic to those rows. 
The  D - G U B  Algor i thm used in Steps 1 and 2 is the two-phase,  one-pass,  

nonbackt racking  G U B  algori thm described in [3]. Phase I a t tempts  to delete as few 

rows as possible in order  to produce a feasible G U B  set. Phase II examines the 
rows deleted in Phase I and reincludes rows which do not violate the G U B  restriction. 

Computa t ional  experience with many real-world models indicates that Phase II 

of the G U B  heuristic rarely adds additional rows to the G U B  sets obtained in either 

pass. For  the second G U B  set, Phase II is especially ineffectual. 
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The E-NET Algorithm begins with an eligible set of rows which normally do not 

form an admissible network set and attempts to delete as few rows as possible to 

obtain a feasible set. Deleted rows are then considered for reinclusion if they do 

not violate the feasibility requirements. 

The measure of infeasibility at any point is a matrix penalty computed as the sum 

of individual row penalties. Rows in the eligible set are examined in order of 

decreasing row penalty and either reflected, if the row penalty would be reduced, 
or removed and placed in a candidate set for later use. This guarantees that the 

matrix penalty will be reduced by at least 1 at each iteration. Thus, the number of 

iterations in Phase I is limited by the initial matrix penalty, which is polynomially 
bounded. In Phase II, the rows in the candidate set are examined for reinclusion 

in the eligible set if they do not increase the matrix penalty. Those not reincluded 
are discarded. 

Statement of the problem: 
Let A ={aq} be an m x n  matrix with a q = 0 ,  • Vi, j. 
Problem: Find a matrix N={nq} with ( m - k )  rows and n columns which is 

derived from A by 

1. Deleting k rows of A where k I> 0, 

2. Multiplying zero or more rows of A by - 1 ,  where N has the property that 

each column of N has at most one +1 element and at most one - 1  element. We 

wish to find a large N in the sense of containing as many rows as possible (i.e. 
minimize k). 

Terminology and notation: 
1. E is the set of row indices for rows eligible for inclusion in N and is called 

the eligible set. 

2. C is the set of row indices for rows removed from E in Phase I (Deletion). 

Some rows in C may be readmitted to E in Phase II. C is called the candidate 
set. 

3. The phrase 'reflect row i' of A '  means to multiply each element in row i' by 
-1  (i.e. ai,j~--ai,j Vj). 

4. Other notation will be defined in the algorithm itself. 
The E-NET Algorithm: 
Phase I - Deletion of infeasible rows 
Step 0. Initialization. Set E = { 1 , 2  . . . . .  m}, C=~3. For each column j of A 

compute the + penalty ( K f )  and the - penalty (K~-) as follows: 

1)_,, 1)_1 
ieE:aij>O iEE:a#<~ll 

These penalties represent the number of excess +1 and -1  elements, respectively, 

in column j which prevent the rows in E from forming a valid N matrix. A penalty 
value of - 1  for K f  ( K / )  indicates that the column does not contain a + 1 ( - 1 )  
element. 
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Step 1. Define row penalties. For  every i c/5,  compute  a row penalty (p~) as follows: 

p,= E K ; +  E /<;. 
jzaij>(} j:aq<O 

This is simply the sum of + penalties for all columns in which row i has a +1 plus 

the sum of - penalties for all columns in which row i has a - 1 .  
Step 2. Define matrix penalty. Compute  the penalty (h) for the matrix by summing 

the row penalties as follows: 

h = Z p s .  
l eE  

If h = 0, then go to Step 7. Otherwise,  go to Step 3. 
Step 3. Row selection. Find the row i' c E with the greatest penalty,  i.e. 

F i n d i ' c E  such that p~,=maxp~. 
i~U 

(If there is a tie, choose i' f rom among the tied values.) Compute  the reflected row 

penalty pi, for i' as follows: 

r E (K;+I)+ E (K;+l t .  
j:ai,~>t} ]:ai,i<:O 

This would be the row penalty for row i' if it were to be reflected. 

Step 4. Delete, or reflect row. 
Case ( i )  pc>~pi. Let E ~-E-{ i ' } ,  C ~ C u { i ' } .  Go to Step 5. 
Case (ii) p~, < Pi,. Reflect row i'. G o  to Step 6. 
Step 5. Reduce column penalties as follows: 

+ 

For  all j such that ai,j > 0, K 7 ~- Kj  - 1. 
For  all j such that ai,i<O, K j  ~-K; -1 .  
G o  to Step 1. 

Step 6. Change column penalties as follows: 

Using the ai v values after reflection of row i': 

For  all j such that a~,j > 0, K~ ~- K 7 + 1 and K i ~- K~- - 1. 
For  all j such that a~, i < 0 ,  K f  ~ K ~  - 1 and K j  ~ K [  + 1. 
G o  to Step 1. 

Phase II - Reinclusion of rows from C 
Step 7. Eliminate conflicting rows. The rows in E, some possibly reflected f rom 

the orignal A matrix, form a valid N matrix. However ,  some of the rows removed  

from E and placed in C may now be reincluded in E if they do not make h > 0. 
Remove  from C (and discard) all rows which, if reincluded in E in present or  

reflected form, would make  h > 0, i.e. remove i f rom C if 

(a) 3ja such that aq, > 0 and Kj  + = 0 

or  aij, < 0 and K~ = 0 
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3j2 such that aq2 > 0 and K j2 = 0 

or aq_~ < 0 and K i  + = 0 

If C = q~, STOP, otherwise go to Step 8. 

Step 8. Select row for reinclusion. At this point a row from C may be reincluded 
in E. There are several possible schemes for selecting the row. After  the row is 
reincluded, the column penalties are adjusted. Then go to Step 7. 

No dominating rule has been discovered for breaking ties in maximum row penalty 
encountered in Step 3. The rule used herein is to select the row with the minimum 
number  of nonzero entries in an at tempt  to place a larger number of nonzero 
entries in the network set. Other  possible rules are 'first come, first served',  maximum 

number  of nonzero entries, type of constraint, or modeler  preference. 
Although the algorithm described above is presented for a matrix with strictly 

0, + 1 entries, it can be generalized to any matrix by simply letting E be the set of 
rows with strictly 0, • entries or which can be scaled to contain only 0, •  entries. 

Prespecified network rows can also be accommodated with the following modifica- 
tions: 

Let P={i ] row i is prespecified}. 
Then E ~ E - P. 

After  computation of K f  and K~ in Step 0, for each column j, 
if 3 i e P s u c h t h a t  a q = l  t h e n K  7 ~ - K f + l ,  
i f 3  i e P s u c h t h a t  a q = - I  t h e n K j ~ K ; + l .  
Rows in P are not eligible for deletion or reflection. At the termination of the 
algorithm, the rows in N are given by E u P. 

Computational  experience on real-world models indicates that Phase II of the 
E - N E T  ~gor i thm is even less productive than that of the G U B  algorithm. In only 
two of sixteen cases were any rows eligible for reinclusion and the maximum number  
eligible was three. This indicates that the expense of examining the rows in the 
candidate set for eligibility is probably not justified for the occasional small improve- 
ment in quality. 

4. Problem complexity 

Analysis of the N E T  problem suggests that it cannot be solved optimally by an 
efficient algorithm. 

The problem of entire conversion by general linear transformation of any matrix 
to the node-arc incidence matrix of a pure network if  such conversion is possible, 
has been shown to be polynomial in complexity [1, 14]. This, however, does not 
apply to the problem of finding the maximum embedded pure network should entire 
conversion fail. (The entire G U B  problem is polynomial, too.) A decision problem 
implied by finding the maximum size embedded pure network set is the following: 
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(NETD)  Given an m • n matrix A and an integer p < m, determine whether  A 

contains a set of p or more  rows such that each column of A (restricted 
to those rows) has at most two nonzero  entries equal to +1,  where two 

entries in the same column must be of opposite sign. 

Given a set of p rows from A, it is easy to verify, in polynomial  time, whether  

the set satisfies the above criterion. Given an integer p < m, it is not  easy to determine 

whether  there exists a set of p or more  rows in A which satisfies the cr i te r ion-- in  

general,  there does not currently exist an algori thm which can do so in polynomial  
time. 

Two rows conflict if they both contain a nonzero  element of like sign in a c o m m o n  
column. It is evident that the absence of pairwise conflicts is necessary in a valid 

pure network set, for the existence of a conflict violates the opposite-sign require-  

ment  for columns containing two nonzero  elements. It is also sufficient, because the 

violation of the criterion for a valid network set would require at least one column 

of A to contain at least two nonzero  entries of like sign in rows of the set. This, in 
turn, would imply that the two rows in which this occurs are in conflict. 

N E T D  is obviously in NP. We show that N E T D  is NP-comple te  by a t ransforma-  

tion f rom the independent  set decision problem which is known to be NP-comple te  

[7]: 

(ISD) Given any graph G with m vertices and an integer p < m ,  determine 
whether  G contains a set of p or more  independent  vertices (i.e. vertices 

not adjacent) .  

ISD can be conver ted  (in polynomial  time) to an instance of N E T D  as follows. 

Create  an m • n ver tex-edge incidence matrix A with aij = ! if edge j is incident to 
vertex i in G and zero otherwise. There  exists a set of p or more  nonconflicting 

rows in A if and only if there exists a set of p or  more  independent  vertices in G. 

Therefore ,  N E T D  in NP-complete .  
N E T D  with row-reflection allowed is also NP-complete .  Create  A f rom G as 

above and append an n • n negative identity matrix below A. Then,  with row 
reflection allowed, (_AI) contains a set of n + p  or m o r e  nonconflicting rows if and 

only if G contains an independent  set of size p or  greater.  Therefore ,  N E T D  with 

row-reflection is NP-complete .  
This analysis of pure network identification algorithms has only addressed the 

worst-case bound. No conclusions can be made about  the average per formance  of 

an optimal a lgor i thm-- i t  may be possible to develop an optimal algori thm with 

good average performance,  but having an exponential  worst-case bound.  

5. Upper bounds on maximum pure network set size 

The problem of finding a maximum-size pure -ne twork  set of rows in a matrix 

appears  to be hard. This also applies to the problem of determining just the size of 
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a maximum set. Upper bounds on the maximum set size, computed in polynomial 

time, can be useful in evaluating the quality of network sets produced by heuristic 

algorithms. 
The bounds developed here apply to the maximum set size obtainable from the 

set of eligible rows, and thus depend on the scaling restrictions employed. 

Each column of the matrix is allowed at most two nonzero entries in the network 

set. If k represents the maximum number of nonzero entries in any column of A 
(considering only entries in eligible rows), then it is clear that at least k - 2  rows 

must be deleted from the eligible set in order to make this 'worst column' feasible. 

Since the column counts are readily available in the form of the column penalties 
(K~ and K / ) ,  an upper bound on the network set size for a matrix with m eligible 
r o w s  is: 

ul = m -  max(K~ + K T ) .  
J 

This bound is sharp in that matrices can be constructed for which it is achieved. 

A second bound almost always tighter than ul, is based on a matrix penalty 
computed from column penalties, rather than row penalties as in the NET algorithm. 
This penalty is: 

H= E KT+ E K;. 
j:K~>0 j:Kj>O 

Clearly, as long as H > 0, the rows remaining in the eligible set do not form a 

valid network set. The reflection of a row in the eligible set may decrease H, increase 

H, or leave it unchanged. The deletion of a row from the eligible set may decrease 

H, or leave it unchanged. The actual effect of a reflection or deletion depends on 

the rows remaining in the eligible set and their state (unreflected or reflected) at 
the time. However, it is possible to compute for each row the maximum possible 

reduction in H obtainable by reflection or deletion of the row, regardless of the 

other rows remaining in the eligible set. These maximum possible reductions are 

called the reflection potential and deletion potential for the row, respectively. 

The bound is determined by finding the minimum number of row deletions 

necessary to reduce H to zero. This cannot, of course, be specified exactly; however, 

the result will be conservative in that it will guarantee that at least that number of 
rows must be deleted. 

Consider the possible states of a column j of A in which row i has a nonzero 
entry (i.e. a~j # 0). The six possible cases are summarized in Table 1. 

The nonzero entries in each column are counted only when they occur in the 

initial eligible set. The penalties used are those computed before any row reflections 
or deletions have occurred. 

Consider first the effect on column j, and thus H, of reflecting row L In cases 1, 

5 and 6, reflection of row i would not change H. In case 4, reflection of row i would 

decrease H by 1, unless another row with a nonzero in column j was previously 
reflected. In cases 2 and 3, reflection of row i would actually increase H by 1, unless 
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Table 1 

K ~ = column penalty of like sign to % (K~ 
if a~j>0; K[ if aij<O); /K'j' =column 
penalty of unlike sign to % 

Case K~ K~' 

1 0 - 1  

2 0 0 
3 0 >0 
4 >0 -1 
5 >0 0 
6 >0 >0 

enough  o the r  rows with nonze ro  entr ies  in co lumn j were  ref lected or  de le ted  to 

p roduce  a - 1  value for  Kj ' .  Since we cannot  be sure that  ref lect ion in cases 2 and 

3 would  actual ly  increase  H, we must  cons ider  H unchanged  by reflect ion in these 

cases. In summary ,  we al low H to be dec reased  only by ref lect ion of rows with 

nonze ro  entr ies  in co lumns  exhibi t ing case 4. The  ref lect ion po ten t ia l  for row i is 

c o m p u t e d  by summing the effects for each co lumn in which row i has a nonze ro  

e lement ,  with the condi t ion  that  only  one row ref lect ion is a l lowed to decrease  H 

for each column exhibi t ing case 4. 

Row de le t ions  p rov ide  g rea te r  oppo r tun i t y  for reducing  /4. In cases 1 and 2, 

de le t ion  of row i has no effect on H, while in cases 4, 5, and 6, de le t ion  of row i 

d i rec t ly  decreases  H by 1. In case 3, de le t ion  of row i does  not  d i rec t ly  decrease  

H, but  it al lows reflect ion of ano the r  row with a nonze ro  in column j, p roduc ing  a 

net  decrease  of 1 in the  value of H. In summary ,  we al low H to be dec reased  by 

de le t ion  of rows with nonze ro  ent r ies  in co lumns  exhibi t ing case 3, 4, 5 or  6. The  

de le t ion  poten t ia l  for row i is c o m p u t e d  by summing  the effects for  each co lumn 

in which row i has a nonze ro  entry.  

To obta in  this bound ,  the ref lect ion and de le t ion  potent ia l s  for each row in the  

el igible  set a re  computed .  Then  the max imum possible  reduct ion  of H by row 

ref lect ions a lone is c o m p u t e d  by summing the individual  row reflect ion potent ia ls .  

If H > 0 at this point ,  then rows must  be dele ted .  Rows are  de l e t ed  in o rde r  of 

decreas ing  de le t ion  po ten t i a l  unti l  H ~< 0. The  upper  bound  is then c o m p u t e d  as: 

u. = m -  number  of rows de le ted ,  

where  m is the n u m b e r  of rows in the initial el igible set. 

This bound  is ev ident ly  sharp ,  because examples  can be cons t ruc ted  which satisfy 

the bound  exactly. 
The  u2 bound  is t ighter  than the u~ bound  for the r ea l -wor ld  mode l s  we have 

examined ,  however  coun te r  examples  exist. 

S imi lar  a rguments  can be used to const ruct  even be t t e r  bounds ,  but  the  addi t iona l  

compu ta t i on  cost may  not be just if ied for rout ine  use with every  model .  
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6. Computat ional  results 

The D - G U B  and E - N E T  algorithms were coded in FORTRAN and were tested 

on the set of real-world models  with characteristics shown in Table 2. The counts 
of nonzero  coefficients do not include objective functions or right-hand sides. 

Table 2 

Sample LP (MIP) model characteristics 

Model Description Rows Cohmms Nonzero 
coefficients 

Total Binary 

NETTING Currency exchange 90 177 114 375 

AIRLP Distribution 171 3040 0 6 023 
COAL Energy development 171 3753 0 7 506 

TRLICK Fleet dispatch (Set covering) 220 4752 4752 30 074 
c u P s  Production scheduling 361 582 145 1 341 

FERT Production & distribution 606 91124 0 40 484 
PIEs Energy production & consumption 663 2923 0 13 288 

PAD Energy production & consumption 695 3934 0 13 459 
ELEC Energy production & consumption 785 2800 0 8 462 
GAS Production scheduling 799 5536 0 27 474 

mEOW Energy production & consumption 976 2172 0 13057 
FOAM Production scheduling 1000 4020 42 13 083 

I.ANG Equipment & manpower scheduling 1236 1425 0 22 028 
JCAP Production scheduling 2487 3849 560 9 510 

PAPER Econometric production 3529 6543 0 32 644 
ODSAS Manpower planning 4648 4683 0 30 520 

The results obtained for the D - G U B  algorithm are given in Table 3. The row 
eligibility criterion used was that each contain only 0, +1 entries, or be able to be 
scaled to 0, + 1 entries by row scaling only. The number of eligible rows as a fraction 
of the total row count ranged from 9% to 100% (the objective row(s) not being 
eligible in any case). The number of G U B  rows obtained in each pass is indicated. 
In two cases, the entire eligible set was determined to be a G U B  set, so no second 
pass was required. The times given are in CPU seconds for the IBM 3 6 0 / 6 7  with 
the program compiled using FORTRAN IV H (Extended) with OPT1MIZE (2). 

The results for the E - N E T  algorithm are given in Table 4. Also  included are the 
upper bounds on the maximum pure network set size computed from the problem 
data. The times given for determining the eligible set should be nearly the same as 
those for the D - G U B  algorithm since the same eligibility criterion and code were 
used in both cases. The eligibility of rows in the candidate set for reinclusion in 
Phase II was determined, but Phase II was not included due to the absence of 
eligible rows in nearly every case. The solution time does not include the time 
required to determine eligibility for Phase II. The N E T  quality value is the number 
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Tab le  3 

D - G U B  a lgo r i t hm results  

Mode l  Eligibil i ty N e t w o r k  rows found 

R o w s  T i m e  Pass 1 T i m e  Pass 2 T i m e  To ta l  T i m e  

R o w s  N o n z e r o  

Ref lec ted  coeff ic ients  

in set 

NEnf'TING 

AIRLP 

COAL 

TRUCK 

CUPS 

FERT 

PIES 

PAD 

ELEC 

GAS 

PU+OT 

FOAM 

LAN{} 

JCAP 

PAPER 

ODSAS 

59 0.01 

150 0.09 

l l I  0.1l 

219 0.76 

300 0.05 

585 0.62 

142 0.09 

174 0.10 

322 (I.12 

752 0.58 

109 0.10 

966 0.33 

850 0.26 

1811 (/.26 

36 0,03 18 0.04 54 0.07 18 

15(1 0.41 All GUB i50 0.41 0 

I11 0.50 AII GUB 111 0.50 0 

29 3.96 18 4.44 47 8.40 18 

150 0,14 101 0.15 251 0.29 1 

559 3.00 13 3,(13 572 6.03 13 

128 0.5t 0 0.05 128 0.56 0 

160 0.52 0 0,06 160 0.58 0 

266 0.47 6 0.52 272 0.99 6 

607 2.61 75 2.39 682 5.00 75 

96 0.44 13 (I.48 109 0.92 1 

917 0.95 34 0.94 951 1.89 1 

342 2.91 243 0.83 585 3.74 1 

517 1.49 357 1.01 874 2.50 2(11 

2324 0.79 1016 3.53 468 3.71 1484 7.24 433 

410 0.61 195 1.84 122 1.55 317 3.39 92 

89 

3(10(I 

3753 

1755 

710 

16291 

1392 

1552 

2691 

90(18 

479 

8001 

1804 

2622 

8176 

5344 

Tab le  4 

E - N E T  a lgo r i t hm resul ts  

Model  Eligibil i ty U p p e r  bounds  N e t w o r k  rows  found  

R o w s  T i m e  U I  U2 N u m b e r  T i m e  Qua l i ty  

R o w s  N o n z e r o  

ref lected coeff icients  

in set 

NETTING 59 0.01 58 57 

AIRLP 150 0.09 150 150 

COAL 111 0.11 111 111 

TRUCK 219 0.76 214 137 

c u p s  300 0.05 299 297 

PERT 585 (/.62 584 572 

PZES 140 11.09 139 132 

PAD 174 0.10 171 164 

ELEC 322 0.14 310 306 

GAS 752 0.60 750 7t0 

PIt_OT 11)9 0.10 109 109 

FOAM 966 0.34 965 955 

LANG 850 0.29 836 758 

JCAP 1811 0.26 1801 1092 

PAPER 2324 0.66 

ODNAS 410 0.61 

54 0.08 94.74% 18 

150 0.35 100% 0 

I l l  0.43 100% 0 

46 19.82 33.58% 18 

295 0.14 99.33% 1 

572 6.15 100% 13 

128 (/.59 96.97% 0 

16(1 059  97.56% 0 

286 2.07 93.46% 34 

668 9.71 94.08% 33 

i09 0.36 I0(/% 1 

951 1.16 99.58% 1 

661 14,82 87.20% 2 

917 44.(17 83.97% 200 

2316 2072 1627 94.16 78.52% 6(13 

4(16 369 286 14.55 77.51% 45 

89 

3000 

3753 

1781 

862 

16291 

1392 

1552 

2915 

11002 

479 

8001 

2239 

254(I 

8995 

62117 
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of rows in the network set, expressed as a percentage of the better upper bound 

on the pure network set size. As explained earlier, the actual maximum network 
set size is, in general, unknown and thus the actual NET quality may be better than 
this conservative estimate. In particular, the bounds are almost certainly too high 
for problems with a large number of eligible rows (e.g. PAPER) and for problems 
with dense, or unstructured coefficient matrices (e.g. TRUCK, which is included in 
this study as a deliberate torture-test). 

7. Conclusion 

The identification algorithms are very fast (especially when compared with com- 
puter time expended in any attempt to solve these problems) and they consistently 
produce maximum or near maximum pure network sets (from the eligible rows) as 
evidenced by the upper bounds. 

Better yet, they provide independent insights which can be used to explain and 
improve the model at hand, or make it easier to solve. For instance, several models 
in Table 2 have been revealed as multi-commodity production/transportation prob- 
lems, a totally unexpected perspective for the model proponents. Further, these 
results have yielded prescriptive benefits for model solution, especially via 
decomposition. 

Many problems exhibiting intrinsic network structure are disguised by their 
formulation and resist the simplistic attempts used here to rescale them. In particular, 
the COAL model is known to be an entire network if appropriately restated, but it 
is not yet evident how this is to be discovered using efficient, general, problem- 
independent automatic identification. Methods used to scale an entire matrix to 
0, :el values (see [1, 14]) can be attempted, but failing entire conversion the next 
step is not evident. 

Using the conflict matrix method of Greenberg and Rarick [10], Schrage [15] 
reports finding several other embedded structures (e.g. pre-Leontief rows). Our 
implementation and experience with this method at large scale has not been 
encouraging. Its principal disadvantage is the requirement for some efficient rep~ 
resentation of the conflict matrix. We feel that the superior speed and modest region 
demands of the gradient method exhibited in GUB,  GN and NET identification 
will carry over to the identification of other special structures. In particular, we 
have successfully sought pre-Leontief and network decomposition factorizations, 
the former were sought via an obvious redefinition of a conflict in the GUB gradient 
method, and the latter with repeated use of NET identification and column dropping. 

McBride [12] has employed these identification methods in his 'side constrained 
network'  simplex implementations. He reports that computation time and cost for 
GN, or NET identification are more than offset by reduced solution effort required 
by his factorized simplex system. 
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