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Abstract Pedestrian detection systems are finding their
way into many modern “intelligent” vehicles. The body
posture could reveal further insight about the pedestrian’s
intent and her awareness of the oncoming car. This article
details the algorithms and implementation of a library for
real-time body posture recognition. It requires prior person
detection and then calculates overall stance, torso orienta-
tion in four increments, and head location and orientation,
all based on individual frames. A syntactic post-processing
module takes temporal information into account and
smoothes the results over time while correcting improbable
configurations. We show accuracy and timing measure-
ments for the library and its utilization in a training
application.

Keywords Articulated body posture recognition -
Pose detection - Computer vision - Gesture recognition -
Syntactical behavior classifiers - Error correction

1 Introduction

Current research on smart vehicles focuses on driver assis-
tance systems that help reduce the driver’s manipulative and
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cognitive load [1] in order to improve vehicle safety and to
enhance the driving experience. Common approaches sug-
gest models to determine the car handling performance
considering: (a) real time driver activity recognition, (b) car-
internal state estimation, and (c) context recognition. Most
systems currently in use measure car-related aspects such as
inertia, steering and power input. Much research is oriented
on driver-related systems (e.g., [2]). However, modeling and
determining the vehicle’s context on the street (including
pedestrians, road and traffic conditions, weather, sight, etc.)
is harder.

Intelligent vehicle systems (IVS) for car-external con-
ditions are gaining importance and have already made their
way into cars with automatic parking assistants. A prom-
ising future direction for such systems is facilitating human
behavior prediction, based on pedestrian detection and
body posture. For example, a pedestrian’s torso direction,
her body’s center of gravity, her walking and her gaze
direction are all indicators for future behaviors and intent.
Hence, the vehicle can warn the driver about dangerous
events. Most fatalities involving pedestrians occur outside
crosswalks and traffic intersections, when the driver pre-
sumably is less alert and an ever-vigilant IVS would be
most beneficial (see Fig. 1).

The recent push for unmanned and autonomous systems
in the military domain further increases the demand for
IVSs. The US Army desires reconnaissance vehicles that
can avoid harming pedestrians while assisting soldiers with
the detection of potential threats through automated video
identification and, for example, alert of behavioral indica-
tors for suicide bombing attempts (suicide bombers have
been known to “repeatedly pat themselves to verify that the
bomb vest or belt is still attached” [3]).

Vehicle-based pedestrian detection and posture recog-
nition presents several challenges:
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Fig. 1 Crossing roads outside crosswalks kills. Not shown: crossing
at non-intersections is 3 times more deadly than crossing at
intersections. Source: NHTSA

(a) Every frame is vastly different: background modeling
is impractical and temporal coherency is non-trivial.

(b) Pedestrians are often partially occluded by parked
cars, trees etc.

(c) The system’s latency and speed are critical to its
usefulness.

In this paper, we describe a real-time human body
detection and posture recognition system that we devel-
oped for the US Marine Corps for improving training
feedback (see Fig. 2). While our training data and the
test cases are specific to training ranges and USMC
uniforms, most of the system’s characteristics make it
directly suitable to an IVS: it performs per-frame image
analysis, without considering the background or motion
history, it works in real-time, and it can handle partial
occlusions. Additionally, temporal post-processing (in
recognition space) improves the result’s plausibility and
accuracy.

Our system was compared with two state of the art
efficient and robust pedestrian detectors: Viola-Jones’ [26]
and Tuzel’s [29]. Our method achieved comparable results;
moreover the main advantage is that it capitalizes on the
commonality between postures/poses. Thus, the number of
features needed grows roughly logarithmically with the
number of postures, as opposed to the other two, on which
the training shows linear growth with increasing number of

Fig. 2 Our vehicle setup. The
Velodyne LiDAR is visible on
top and a PtGrey Ladybug
panoramic camera in front. The
forward-looking camera is
mounted on the dashboard next
to a touchscreen display for
visual feedback
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postures (when used for multi-class detectors). Lower
number of features results in faster performance and
requires fewer training images to reach the same accuracy
as the other two detectors.

2 Related work

Human detection and posture recognition in still-images
for a vehicle is described for pedestrian detection in
infrared images [4]. Human pose is only used to reject
false alarms but the system cannot deliver pedestrian
pose. For a comprehensive review of pedestrian detec-
tion techniques for advanced driver assistance systems
refer to [5].

There are two main approaches for detection and rec-
ognition of human postures recognition: three dimensional
(3D) with the aid of a skeletal or dynamic model of the
human body, and two dimensional (2D). The knowledge of
3D body configuration is a tremendously powerful feature
vector for posture recognition, hence, many projects are
headed that way. 2D view-based human posture recogni-
tion, on the other hand, requires the collection of a large set
of independent 2D view images of the scene, which is
computationally expensive. Moreover, installation, cali-
bration, object matching, switching, data fusion and
occlusion are the main obstacles to practicable multiple
camera systems [6]. Alternatively, the work presented in
[7], illustrates how 3D human posture can be recovered
from still images efficiently and accurately, which goes
hand in hand with the requirement of low-cost monocular
solutions relying heavily on simple visual features obtained
from a single view.

Many approaches have been proposed for human pos-
ture recognition. Most of their recognition accuracy is
affected by the high variability that exists within the same
postures performed by different people.

Three dimensional human body pose is recovered from
monocular image sequences in [8] by applying non-linear
regression on histogram-of-shape context descriptor

vectors. This system was validated with human walking
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sequences on a low-clutter background. In [9] a system was
developed to monitor human behavior for safety purposes.
Four main postures in each of three views (frontal, heading
left and right) were classified: standing, crouching, sitting
and laying. The classification was performed by using a
Bayesian framework utilizing features extracted from
projection histograms of the silhouette. Projection histo-
grams [10] use an HMM for classification and a multi-
camera setup to overcome occlusions. Four main postures
were detected: standing, crawling, sitting, and lying. The
authors rely strongly on a successful segmentation in the
preprocessing stage since the features are extracted from
the human silhouette blobs. Juang and Chang’s work [11]
also requires a successful segmentation for their visual
surveillance system to recognize four postures: standing,
bending, sitting, and lying. The features are obtained from
the DFT coefficients from projected histograms, similar to
[9, 10] and the classification is done through a neural fuzzy
inference network. In [12], 2D images are collected from
different view angles and Fourier descriptors are extracted
from the contours. Classification is obtained using aspects-
graph representation to recognize eight human postures,
including standing, kneeling, sitting and laying down.
Image-matching on successive convexification and linear
programming [13] can successfully recognizing human
postures in cluttered images and videos Yoga poses, skat-
ing and baseball postures are recognized using this
approach.

In summary, there are two main approaches for
recovering human pose from images: model-based
approach (or direct approach) and the learning based
approach (or indirect approach) [14]. Model-based
approaches assume that a parametric body model is
known. A cost function representing the pose is optimized
through incrementally predicting and updating pose
variables. Learning-based approaches do not require a
detailed human body model. The model is learned by
training examples representing typical human poses and
followed by search and comparison, where the new poses
are interpolated.

The approach we adopted for our system learns the
appearance of body parts and their spatial layout without an
explicit body model. The parts are stored in codebooks and
later detected in promising regions (i.e. regions found with
interest point detectors) rather than searching in all the
possible subwindows of an image. The detection is based
on casting votes for the object center from the parts mat-
ched. This approach was recently adopted for articulated
objects detection such as pedestrians and showed very good
performance [15-18]. Our work adopts the multi-class
approach presented in [19], but applies it to posture

recognition. This is an extension of our previous work on
monocular posture recognition [20]. This will be integrated
with into the BASE-IT system, an intelligent methodology
for US Marine training evaluation using behavior analysis
[21]. The postures’ multiview appearance (e.g., front and
back torso) is very similar (compared to the very different
views in [19]), making for a challenging classification task.

We discuss the parts-based method in Sect. 3 for a single
class and for a multiclass problem. Our dataset and a
detailed description of the experiments and results are
presented in Sect. 4. Section 5 suggests further directions
of improvements and concludes the paper.

3 Parts-based object detection

In this section, we review our approach for body detection
and posture recognition using a multi-class detector. First,
we describe the feature extraction process from patches,
followed by a description of the basic and shared classifi-
ers. The objective is a detector for humans in eight body
postures: standing or kneeling, with four view directions
each (torso facing the camera, facing left, right, or the
person’s back towards the camera).

3.1 Dictionary of parts

The dictionary consists of features (patches) extracted from
a set of eight images per class, similar to [16]. The images
are size-normalized (128 x 48 pixels for standing postures
and to 64 x 48 pixels for kneeling). Afterwards, the
images are then convolved with a delta function, x- and
y-derivatives and a Gaussian. For each of the images
resulting from the convolutions, 20 patches are selected
randomly. The interest point locations fall within the
boundary of the annotated silhouette (object of interest).
Such patches are extracted in all filtered images and sub-
sequently grayscale-normalized. Each patches’ size is
selected randomly between 9 x 9 and 25 x 25, and its
“depth” stems from applying the four filters. Each patch is
associated with the location where it was extracted, relative
to the center of the object. This location information is
represented in a binary location mask centered at the object
center. This mask is blurred with a Gaussian function and
then separated into two 1D filters (containing the x,y offset
distances {l,, 1,}) for computational speed reasons, since
apply two 1D filters later will be faster than applying a 2D
filter to the image. Hence, each entry i in the dictionary has
the form v; = {filter, patch, l,, 1, image number}. A total
of 640 entries per class were obtained using the procedure
which is depicted in Fig. 3, and Algorithm 1 below.
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Algorithm 1: Dictionary Creation

// Creates a dictionary of parts including all classes
D€ 0//initialize the dictionary
foreveryclass do

for everyimage | in the dictionary creation setdo
Normalize the image to standard size for the class {128,48} or {64,48}, getly

Convolve the image Iy with 4 filters f; resulting in I, ,where j=1,..4

Apply interest point detectorand find N interesting points inside the region of interest

for every point x,y do

Extract a patch P; (0<i<N)in everyimage I, the patches’ sizesvaries between [9x9 to 25x25]

Normalize the brightness on the patch P;

Find the relative x',y’ coordinates relative to the center of the object of interest
Create a location mask M. Where M(x",y’) locationis ‘1" while the rest is ‘0’

Decompose the mask into two 1D vectors, Ix,ly

Add the entry v, to the dictionary 6 € D Uv, , where v={f, patch, Ix, ly}.

end for

end for

end for

3.2 Computing the training vectors

The training set images contain each of the eight postures.
From each image, a few feature vectors are obtained using
the following method:

1.

Scaling the objects to within a bounding box of
128 x 48 or 64 x 48 pixels for standing and kneeling,
respectively, and cropping the image to 200 x 200.
The image j is convolved with the filter in dictionary entry
i, then convolved with a Gaussian to smooth the response.
Cross-correlation with the patch in entry i, yielding a strong
response where this patch appears in the filtered image.
Application of the 1D filters I, and [, to the cross-
correlated image, effectively “voting” for the object
center. This is summarized in Eq. 1:

vi(x,y) = (I« f;) @ Pi) L1y (1)

where is the convolution operator, ® is the normalized
cross correlation operator, vi(x,y) is the feature vector
entry i, fis a filter, P is a patch, and [, and [, are the x,y
location vectors.

5. For each image in step 2, we extract feature vectors
v(x,y). A positive sample vector is obtained by
retrieving v at location x,y. The negative training
samples were a subset of 20 vectors retrieved from x,y
locations that had a high response to (1).

Each of these vectors is accompanied with a class label
(1-8) and —1 for negative samples. Given 25 images per class,
we obtain a training set of 4,000 negative and 200 positive
samples, each with 640 features, see Fig. 4 and Algorithm 2.

Algorithm 2: Training Set of Feature Vectors Creation

// Computes feature vectors
F€ @ //initialize the set of feature vectors

N4 number of entries in the dictionary D
foreveryclasscdo

for every image I with index ; belonging to class cin the training set set do

Scale up or down the image I, so the object of interest is {128,48} or {64,48}, (for standing or kneeling)

Crop the image to [w,h]=200x200
F4.€ @ /finitialize the voting matrix
for every entry vi={fi, p., Ix, ly}in the dictionary D do

Convolve image I; with filter f; and smooth the response with a Gaussian & obtaining image Ry

Cross-Correlate Ry with the patch p; obtaining g«
Convolve g with each of the 1D filters Ix and ly obtaining My
P e P UM,

end

Average of the 3D voting matrix 7% resulting in Vi

Find all the local maxima with coordinates x,y over Vi

Extract the N dimensional feature vector from the voting matrix 74 on coordinates x,y, obtaining #:

If the maxima coincide with the true center of the object of interest
Assign the label £="c’ (positive sample) to the feature vector £
Otherwise assign *-1' (negative sample)

FEFUA

end
end

@ Springer
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J;

Fig. 3 Dictionary entries: patches selected randomly (on the left
image) are convolved with a bank of filters. The position is
represented with the location matrix (right): Since the highlighted
patch is directly above the object center (red dot), the matrix is a
blurred spot at the respective vertical offset

3.3 Multiclass Adaboost with shared features

In this section, we briefly describe the joint boosting
algorithm used for multi-class multi-view object detection.
For a more detailed discussion, refer to [19].

A boosting algorithm sequentially adds weak learners to
form a strong classifier. For the multiclass case, the strong
learner is defined as:

M
H(v,c) = Z I (v, c) (2)

where v is the input feature vector, M is the number of
boosting iterations, ¢ is a specific class and H(v,c) = log
Pz = 1|v)/P(z* = —1|v) is the logistic function where z°
is the class ¢ membership label (£1). When the expectation
is replaced by an average over the training data, the cost
function can be written as:
C N
Jypse = Z Wi (25 = hy(vi, c))2 (3)

c=1 i=1

Fig. 4 Positive and negative
vector set creation using the
dictionary entries and sampling
the center out of the silhouette
points

where N is the number of training vectors, wy is the weight
for sample i in class ¢, and z; is the membership label for
sample i in class c. The weak shared learner for multi-class
learning, also called the “regression stump,” is defined as:

as if v/ >0 and c € S(n)
hw(v,c) = b if v{§0 and ¢ € S(n) 4)

kS ifc & S(n)

where V' is the Jfth component of v, 0 is a threshold, ag and
bg are regression parameters, and S(n) is a subset of the
class labels. Each round of boosting consists of selecting
the shared stump and the shared feature f that minimizes
(3), from the subset of classes S(n), using the following
procedure: Pick a subset of classes S(n). Search all the
components f of the feature vector v, for each component,
search over all the discrete values of 0 and for each pair {,
0}, find the optimal regression parameters ag and bg using
(5-7), where ¢ is the indicator function. Finally, select {f,
0, as, bg} that minimizes (3).

Dces(n) Do sz,‘-'é(v’; > 0)
(5)
EcGS(n) Zi Wfé(\’? > 0)

as(f, 0) =

bs(f,0) = (6)

¢ _ 2T

¢ oW @

Therefore, a shared weak learner is associated with these
six parameters {f, 0, as,bs, k., S,} of the subset of classes
selected. It is more efficient to keep a pointer to the entry in
the dictionary from where f was obtained rather than
keeping the whole feature vector. This also references to
the patch, filter and location vector entries in the dictionary
during the detection stage. This new weak learner is added
to the accumulated classifier, for each training example:

/, L

* | & [h® *QIJ_“ -

%
i

Megative Training Vector

s (4! v =[v ' ’ .

VALY =V Viegios Vieyras o Vigyn ] <

Positive Training Vecter

V(v )= [".-.x._v aVigya Vigpar o Vicyw ] =
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Fig. 5 Dictionary entries
selected by the multiclass
Adaboost

H®v,; ¢) = Hv, ¢) + h,,(v; ¢), where h,, is chosen for the
subset of classes that minimizes the classification error.
When all the rounds are finished, only the dictionary
entries associated with the feature selected are considered
for the detection stage. Figure 5 shows all the patches
selected from the dictionary after training the multiclass
Adaboost for class “torso-0 degrees”.

3.4 Detection

To detect an object of class ¢, a score is calculated for
every pixel as the value of the strong classifier H(v,c). If the
score exceeds a fixed threshold, the object is detected.
H(v,c) is determined with the following procedure.

For every shared weak learner that shares class ¢, do:

1. Apply the weak learner’s four-tuple {f, 6, as, bs} and
filter, patch and vectors L,, L, (obtained via f from the
dictionary), to the test image using (1).

2. Calculate h,(v) = ad(vy> 0) + b, where V, is the
result from the step 1. Hence, each weak learner casts
(continuous-valued) votes for the object of interest.

3. The accumulated voting array (for all 4,,) indicates the
probability distribution of the object in the image.
High values indicate that the weak learners “agreed”
on the center of the object.

We obtain one voting array for every strong detector,
that is, for every class. As some postures are quite similar,
multiple strong detectors often vote for the same or nearby
pixel coordinates. We apply a non-maxima suppression
algorithm to cluster votes into peaks. The final result is the
class of the peak with the highest maximum.

3.5 Torso and head determination

In an analogous fashion, we train a multi-class classifier to
detect the head in four orientations. The full-body detection
is performed first and determines a limited search region
for the head. Experiments yielded the top 1/7th of the body
detection area with added margins above the top to be a
sufficient head search region when the marines are stand-
ing. For kneeling, the top 1/4th of the body detection area
should be used, however in the videos used in our exper-
iments, the marines were standing during the whole

@ Springer

sequence. If multiple bodies are detected, a heuristic
increases the search region, taking nearby body detections
into account.

4 Syntactic-temporal analysis and error correction

High level sequential behavior classifiers may be used to
enhance the low level computer vision classifiers [22]. In
this case, a high level behavior classifier will take as input
the class labels that are output from the low level classifiers
at each time step. If there is more than one low level
classifier that detects objects that are conditionally depen-
dent upon each other, then the high-level classifier may be
able to capitalize on any such dependency. This section
describes two different syntactic-temporal high-level clas-
sifiers used for error correction.

Note that this is different from obtaining temporal fea-
tures from image sequences, such as frame-to-frame dif-
ferencing or motion flow. Instead, this considers sequences
of still-image detections, avoiding limitations on camera
movement.

4.1 Dynamic Bayesian Networks

A Dynamic Bayesian Network (DBN) [23] is a graphical
probability model that can express multiple random pro-
cesses in a single model, making it suitable to enhance the
low-level detections of both torso and head orientations.
Let Q; and Q, represent the hidden random process for
head orientation and torso orientation, respectively. These
hidden processes have observable random processes as
outcomes, represented by O; and O,, respectively. DBNs
allow a conditional dependency between two random
processes (signified by an edge between process nodes),
and we arbitrarily chose the torso orientation to dependent
on the head orientation. The DBN evolves the system state
over time based on transition probabilities between the
nodes. This process dependency and temporal progression
implement syntactic-sequential error correction and ulti-
mately enhance the posture recognition results (see Fig. 6).

Let Q) represent the hidden head-orientation random
variable and let O] represent the observed head-orientation
random variable, both at time fr. Then the probability
P(O}1Q)) of observing O} while the true head orientation is
0}, may be interpreted as modeling the accuracy of the
low-level head-orientation classifier. Similarly, letting Q5
represent the hidden torso-orientation random variable and
letting O5 represent the observed torso-orientation random
variable at time ¢ then the probability P(051Q5) of
observing O5 while the true torso orientation is 05, may be
interpreted as modeling the accuracy of the low-level torso-
orientation classifier. The dependency between hidden and
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Fig. 6 Two time slices of the DBN for low-level classifier
enhancement

observed random variables of one low-level classifier type
(e.g. hidden and observed torso orientation) models and
“undoes” the errors statistically observed from the low-
level classifier. Hence, the observed probabilities corre-
spond to the confusion matrix of each low-level classifier.

The dependency (edge) between the hidden nodes for
head-orientation and torso-orientation captures the syntac-
tic context, modeled by the conditional probability of
torso-orientation given a particular head-orientation,
denoted P(Q5|Q}). The Markovian properties of the head-
and torso-orientation’s hidden random processes Q; and Q,
are captured in the DBN’s temporal transition probabilities

P(Q'|Q)) and P(Q57']Q5), respectively.
4.2 Hidden Markov Models

Figure 7 illustrates high-level syntactic-temporal error cor-
rection with a Hidden Markov Model (HMM) [24]. In its
simplest form, an HMM has one hidden and one observed
node. Hence, we formulate our random variables differently
and introduce a new random variable, O3 = Q; x Q,, which
is a joint random variable between the head-orientation
random variable, Q, and the torso-orientation random vari-
able, Q.

The observation probability is derived as P(O3|Q3) =
P(01,0,101,05) = P(01Q)P(0,1Q,) due to the independence

P(Q3IQ})
1 2
Q3 3,

"] PO3IQY) | PO3IQ)

Fig. 7 Two time slices of the Hidden Markov Model for low-level
classifier enhancement

assumption between head-orientation and torso-orientation.
The transition probability is similarly derived as P(Q5"'
03 = P, 057101, 0%) = P(Qi"I0)P(Q5'105), where
Q) represents the jth random variable at time 7.

In summary, all conditional dependencies between
low-level classifier results (both temporal within one type
of low-level classifier and spatial between two types of
low-level classifiers at the same time step) are modeled
with one high-level classifier, either a Dynamic Bayesian
Network or a Hidden Markov Model. Statistics obtained
from training data flow into the models in the following
way:

head-orientation confusion matrix — P(0;1Q1),
torso-orientation confusion matrix — P(0»|0»),
observed head orientation changes — P(Q7'10%),
observed torso orientation changes — P(Q5"'1Q}), and
combinations of head- and torso ors. — P(Q510)).

Should the temporal model be applied to a new situation
with different characteristics, statistics can be obtained
from a bootstrapping run to create a customized high-level
classifier.

5 Experiments

We performed two experiments with the multi-class
detector. In the first, we applied the detector to still
images of Marines (see Fig. 8) with four different ori-
entations and two different postures (standing and
kneeling). In the second experiment we used videos of
Marines in actual training scenarios and applied a torso
and head orientation detectors. The objective is suffi-
ciently accurate posture classification and orientation
estimation for subsequent behavior analysis [25]. The
posture recognition must occur at interactive frame rates
and run on a standard PC or laptop computer. We first
analyze the classifier’s accuracy in the first two exper-
iments, then discuss the impact of temporal syntactical
processing on the video images. Finally, we address
speed performance with several metrics and by compari-
son to another recent pedestrian detector. Additionally, we
show how our application fits into the framework of our
IVS.

5.1 Multi-class detection and posture recognition
in still images

In this experiment we consider two tasks: (a) marine
detection and, (b) posture/orientation recognition on still
images and we compared our system to Viola-Jones
detector [26] and Leibe detector [17].
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For testing and training we used an open source online
image and annotation repository called LabelMe [27]. Our
version currently includes 4,166 annotated images of
Marines performing several exercises, from which we
selected eight different classes: two postures (standing and
kneeling) and four orientations each, based on the torso
(frontal, oriented left, right or away from the camera). For
the dictionary creation, eight samples per class were used,
for training 25 images and for testing another 25 per class.
The images were resized to 128 x 48 for standing, and for
kneeling to 64 x 48 and then images were cropped to a
size of 200 x 200 for the training set and 256 x 256 for
the testing set.

Our first task consisted of object detection regardless of
class. We normalize each detection score to a probability
by dividing each score by the maximum score detected in
the testing set. By varying the threshold of the scores
(between 0 and 1), we obtain a ROC curve (Fig. 9). False
alarms are counted per test area/per image which had an
average of 30,000 test areas.

Our results of the ROC curves show that the Viola-
Jones “complete” method (non-parts based) performs
better than the Adaboost shared detector and Leibe’s
approach.

AR

4 g
= B W o
L _,&"_.J

Fig. 8 Detection of uniformed person from vehicle view

' ' ' ' ' '
e

7777777777777777777777777777777777777

e Adaboost shared | |
Viola-Jones
== w== | gibe based

Hits Rate

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
False Alarms Ratio

Fig. 9 ROC plot for the marine location detector
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The second experiment shows how well the multi-class
detector can deal with the two specific postures and four
orientations in the images. The performance of posture
recognition is summarized in Table 1. We used an oper-
ating point on the ROC where FA = 0.015. This parameter
was empirically found.

The confusion matrices shows the number of postures
classified correctly (diagonal values) and the confused
postures (off-diagonal). See Fig. 10 for examples of typical
detections and posture recognitions.

These results indicate that the multi-class sharing
method achieves higher posture recognition rates than the
Leibe and Viola-Jones classifiers. The multi-class sharing
method selects dictionary entries based on the amount of
common features between classes, while the Leibe-based
approach does not take this into account. However, the
Leibe-based approach is significantly faster since it
requires fewer convolutions.

Table 1 Confusion matrix for eight posture categories: (a) multi-
class sharing; (b) Leibe’s based, and (c) Viola-Jones

Given class Assigned class

1 2 3 4 5 6 7 8

(@)

Standing 0 19 4 6 0 0 1 0
Standing 90 4 11 8 6 0 1 0 0
Standing 180 9 4 12 4 0 0 0 0
Standing 270 3 5 0 20 0 0 0 0
Kneeling 0 0 0 0 0 16 2 2 2
Kneeling 90 0 0 0 0 2 17 3 2
Kneeling 180 0 0 0 0 0 1 26 0
Kneeling 270 0 0 0 0 0 1 2 20
(b)

Standing 0 17 10 6 12 9 0 5 1
Standing 90 15 18 3 12 7 1 8 1
Standing 180 11 15 6 11 7 0 5 0
Standing 270 5 12 8 17 2 1 9 1
Kneeling 0 0 0 0 0 16 1 1 5
Kneeling 90 0 0 0 0 6 8 4 7
Kneeling 180 0 0 0 0 5 3 10 5
Kneeling 270 0 0 0 0 8 5 1 14
©

Standing 0 12 2 0 2 7 0 3 0
Standing 90 0 4 2 2 2 1 1 1
Standing 180 3 1 6 0 5 0 3 0
Standing 270 0 3 0 3 0 0 0 1
Kneeling 0 0 1 0 0 19 7 6 1
Kneeling 90 0 2 0 5 4 21 5 1
Kneeling 180 1 0 0 0 8 1 4 6
Kneeling 270 1 0 0 2 5 3 3 6
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Fig. 10 Example of detections
in still images

Fig. 11 Snapshots of movies
MOV007, MOVO01B, and
MOV026

Fig. 12 Snapshots of
recognitions in movies
MOV007, MOVO01B, and
MOV026

5.2 Marine posture and head orientation in videos

The training process was similar to the previous section
with the difference that we also created a head orientation
detector. This means that each detector is capable of
classifying four torso and heads orientations each (frontal,
oriented left, right or away from the camera). The same
number of images was used for dictionary creation and the
parameters were identical, too.

For testing, we used three video sequences with 169,
200, and 300 frames and a length of 5-10 s, respectively.
The videos can be viewed at http://vision.movesinstitute.
org, two snapshots can be seen in Fig. 11. The frames were
annotated with ground truth to which our results were
compared. For the purposes of this evaluation, we resized
and cropped the frames to 200 x 200 pixels. Two videos
had three Marines of interest, MOV026 four (and occa-
sionally other training personnel that was not to be inclu-
ded for detection). None of the video clips showed any
kneeling postures.

From the confusion matrices we found that the number
of samples (per frame and per marine) classified correctly
was 76.43 and 72% for the torso and head, respectively.
See Fig. 12 for examples of typical detections and posture
recognitions including head position and orientation esti-
mation. If the body was not detected, no head was sought.
That explains the relative low number of head detections.

A chart depicting the temporal performance can be
found in Fig. 13. For the three movie’s respective 169, 200,
and 300 frames it shows the ground truth, the raw detec-
tions, and the syntactic-temporally post-processed results.
The accuracy is calculated as the number of correct rec-
ognitions over the total number of detections.

We chose the Bayes Net Toolbox [23] to implement the

syntactic-temporal  high-level classifier intended to
improve the recognition accuracy. The optimal “path”
through the Hidden Markov Model is found with an online
Viterbi algorithm (as discussed in Sect. 3.2), where the path
represents the estimated optimal hidden head-orientation
and torso-orientation at each video frame. The Viterbi
algorithm corrects the observed torso orientations from the
low-level classifiers from an average (per-marine) accuracy
of 75.0 to 77.0% and from 71.5 to 75.2% for heads,
respectively. This is an improvement of 3.89% overall,
2.65% for the torso, and 5.16% for the head. The perfor-
mance on the individual movies and Marines is shown in
Fig. 14.

5.3 Detector speed performance
We first prototyped the training and testing algorithms in
Matlab and profiled the runtime performance. The com-

putationally most expensive operation—calculation of the
normalized cross-correlation of dictionary entries with the

@ Springer


http://vision.movesinstitute.org
http://vision.movesinstitute.org

240 J Real-Time Image Proc (2010) 5:231-244
marine 1 Movie MOVDOT accuracy
torso truth
detector I 99%
syntactic 100%
head truth
detector l I _I 74%
syntactic 75%
maring 2

torso truth

detector
syntactic
head truth
detector
syntactic
marine 3
torso truth
detector 71%
syntactic 70%
head truth |
detector 90%
syntactic 96%
marine 1 |Movie MOVO1B accuracy
torso truth
detection | ]| | |
syntactic
head truth
detection
syntactic
marine 2
torso truth
detection 71%
syntactic 71%
head truth
detection l l l l .:. _I] l I . I I] 65%
syntactic d 76%
marine 3
torso truth
detection :lIl 1 1 97%
syntactic 100%
head truth
detection 100%
syntactic 100%
marine 1 |Mu\rie MOV026 accuracy (in %)
Torso wruih
detecton N I | B Il ERDER N I IERI N BN 45%
syniactc 2%
detecton L IR I I EIE | I RIBN ]| 1 1 | 87%
Syniactc 2%
98%
J8%
| I | 90%
Y%
detecton 94%
s‘g:.acuc 24%
defecton 18%
| syntacte 15%
manne 3
- v

49%

Syntactc

465%

Fig. 13 The temporal progression for the three movies with three,
three and four Marines, respectively. The graph shows for each
marine three rows for the torso and three row for the head. Each set of

image, the convolution of the location 1D filters in the
dictionary entries with the image and the 2D convolution
with the bank of filters—were then compiled from C code
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three rows shows ground truth, pure detection, and after syntactic-
temporal processing. See text for accuracy calculation

and called from Matlab. This cut the detection time in half.
To further speed processing, we implemented the whole
system in C/C++. The decision to speed up training in
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Fig. 14 Accuracy of raw 1 T
detection (light blue left bars)
and after syntactic-temporal
post-processing (right, dark 08k
bars), of (t)orso and (h)ead. The ’
first two movies have three
Marines, the third movie has
four Marines visible 06
04F
02F
g —

Table 2 Detection time for the different procedures using three
implementations

Method operation Matlab (s) Matlab and C++ (s) CH++ (s)
Dictionary creation® 43 43 13
Feature computation  124.4 71.17 133
Training boost 692,000 4,232.95 2,228
Detection 20.15 10.4 1.9

* For the dictionary creation there was either a Matlab or C++
implementation

addition to detection was made to (a) permit faster
re-training for modified data sets, and (b) to avoid negative
effects of inconsistencies that training in Matlab and
detection in C/C++ would have caused. For example, the
precise implementation of interest point detection matters.

Regarding the Adaboost multiclass classifier, the bot-
tleneck occurs at the computation of the regression
parameters a. and b, for unshared classes. The shared
classes can obtain the values a, and by using an efficient
method described in [19]. This procedure was implemented
in C code in order to speed up the classifier training
process.

The first experiment consisted on the evaluation of the
runtime performance of the main functions in our algo-
rithm in the three mentioned implementations: (a) dictio-
nary creation, (b) feature computation, (c) training the
multiclass Adaboost, and (d) the detection stage. The
results were all obtained on an Intel Quad core with
2,92 GB of memory with a 2.4 GHz CPU running MS
Windows XP, see Table 2 and Fig. 15.

We can see from the graph in Fig. 15 that the most
significant improvement occurs when training the multi-
class classifier; however there is no significant difference
between the Matlab & C+4+ compared to C++4- alone. The
detection procedure is the fastest using C++ alone, while
the pure Matlab implementation is significantly slower.

(R R R R R R R R R R R R R R R R R R AR R RN}

;;;;;;;;;;;;;;;;;;; 1 100% | @ Dictionary creation
o

B Feature computation
0 Training Boost
O Detection

Matlab

Matlab
and .
C++ P

Fig. 15 Computation time of each procedure of the multiclass
detector for each of the three implementations

To assess the time performance as a function of the area
scanned, we performed detections on increasing areas of an
image (with increments of 30 pixels in both width and
height) and recorded the detection time. Results are illus-
trated in Fig. 16, illustrating that the pure C++4 imple-
mentation scales almost linearly as opposed to the other
two implementations where the detection time increases in
a quadratic fashion.

To assess the speed and accuracy performance of the
three different methods and in comparison to a recent
successful detector suggested by Tuzel et al. [28], we
measured the detection speed (in any posture) while
varying the detection quality. We gradually reduced the
number of features (strong classifiers, filters etc.) and
evaluated the accuracy (true positives divided by all
detections) on the same set of test images for all detectors.
The results are shown in Fig. 17.

Figure 17 suggests that the Viola-Jones’ method is fast
but does not scale well with increasing number of features,
meaning that longer computation times (or faster
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Fig. 16 Detection time versus scanned area
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Fig. 17 The tradeoff between accuracy and speed. Non-monotonic
curves are caused by expensive post-processing and due to the
particular test image set

processor) will not improve the overall performance.
Tuzel’s method produces reasonable accuracy only for
higher processing times. Note that the increasing number of
features does not have a major impact on the algorithm’s
performance. It does, however, result in higher computa-
tional complexity.

For the Tuzel et al. [28] approach we used their nine-
dimensional feature matrix suggested in their paper: pixel
locations—x,y; color (RGB) values and the norm of the
first and second order derivatives of the intensities with
respect to x and y. To plot the graph, we gradually removed
one feature (from the nine) and sampled the accuracy. We
found that the time to compute the covariance for different
scales is very low (only the time taken to access the inte-
gral covariances), where the main delay was the distance
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computation in Riemannian manifolds. With increasing
number of features this delay becomes significant.

6 Discussion and future work

We implemented a joint boosting algorithm to address the
problem of human posture recognition for behavior
analysis purposes in the scope of intelligent vehicles. The
weak detectors were trained jointly so the number of
shared features was maximized. We found that the mul-
ticlass detector was able to successfully detect Marines
when they were not cluttered, with up to 98.73% detec-
tion, where in situations where the Marines were occlu-
ded, the classifier succeeded in classifying only up to
53% of the torso orientations correctly. The results
between posture detection and recognition classifiers
show that the Viola-Jones method performed better on the
detection task only, while the multiclass Adaboost out-
performed both Viola-Jones and Leibe’s method for
posture detection and recognition. We suspect that this is
due to the better ability of the parts-based multiclass
Adaboost approach to capitalize on the commonality
between postures/poses without loosing their character-
istics. In order to overcome the obstacle of recognition on
highly cluttered images with occluded Marines (often
common with local object detector methods) syntactic-
temporal analysis was adopted for correcting low-level
classification errors. HMMs are able to correct short-term
incorrect recognitions. Additionally, HMMs can recover
from situations where there are no head and/or torso
observations from the low-level classifiers (i.e. low-level
classifier misses), exploiting the Markovian property. In
other words, the current observation, whether it be the
null observation or not, is dependent only on the previous
observation. In the case of the null observation, the
Hidden Markov Model therefore recovers using the pre-
dicted hidden state of the previous state to predict the
hidden state of the current state. This is true for both the
head-orientation random variable and the torso-orienta-
tion random variable. However, the current HMM
implementation cannot correct sequences made of a
consistent, long duration of incorrect recognitions.

In addition to comparing various posture detection and
recognition classifiers, followed by high-level syntactical
correction of low-level posture classifiers, we compared
software implementations for eventual deployment in real
time systems: pure Matlab, pure C++, and a hybrid
implementation. Performance tests showed the pure C++
implementation to be up to ten times faster, particularly for
the detection task (1.9 vs. 20.15 s). Surprisingly, the C++
implementations scaled sub-logarithmically with increas-
ing image size.
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The shared-features of the multiclass Adaboost low-
level classifier provide a fast first stage for posture recog-
nition. The HMM does not cause noticeable delays in the
recognition system since it operates on a much reduced
feature space (4 x 4 discrete states) and only at regions
where Marines have been detected.

A natural extension of this work will be experimenting
with features that can be computed faster, such as HoG
(Histogram of Gradients). This will remove the need for the
computationally expensive cross-correlation to obtain fea-
tures, and the HoG features are robust enough to cope with
affine transformations. Thus, this will result in shorter
times and possibly a more robust detector. In addition, we
have begun to optimize the dictionary creation step that
precedes the computationally expensive Adaboost selec-
tion. Hence, it is imperative to start with a dictionary whose
entries were selected in some optimal fashion, and per-
mitting use of a one step cost function.

Regarding hardware implementation, we are currently
looking into several other hardware options to further
improve the speed performance. Most computationally
expensive operations are 2D image filtering (convolution
and cross-correlation), which are easily parallelized on
SIMD (single instruction, multiple data) architectures such
as graphics processors (GPU) or even on programmable
logic devices (Field Programmable Gate Array, FPGA).
The further advantages of FPGAs make them well suited to
applications in vehicles: low power consumption, low heat
dissipation, and no opportunity for software failures.

7 Conclusions

DARPA’s Urban Challenge wisely excluded the recogni-
tion of pedestrians and pedestrian avoidance from the
competition: IVS must still improve upon these capabilities
before autonomous vehicles can be trusted in real-life sit-
uations. This paper presented a system for combined
detection and posture recognition of US Marine Corps
(USMC) members, which can be used for enhancing any
IVS system. After algorithm evaluation and prototyping in
Matlab, we implemented a real-time library and evaluated
its performance on various test videos. Syntactic-temporal
post-processing was found to improve the accuracy to just
over 76%, which includes both body detection, and torso
and head orientation estimations.

The presented system has applications for automatic
USMC training performance evaluation as well as for
people detection and collision avoidance for intelligent
vehicle systems.
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