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ABSTRACT

Measuring atmospheric fluxes requires various steps of measurement quality
control, in addition to experimental design and post-processing corrections, in or-
der to provide robust and high-fidelity data for wider use. However, within the
measurement community, methods for these control steps are still applied ad hoc.
Regardless of the availability of several comprehensive references texts available in
the literature and licensed software programs.The theoretical and technical design
of an algorithm for eddy covariance flux sample quality control and assessment is
presented. This algorithm, WISQ, is robust and efficient and can be readily incor-
porated into existing processing experimental software packages. The goal of this
algorithm is to output a flagging system that can be used to judge the quality of
individual flux samples, with the option for outputting more detailed information.
WISQ is unique in that it directly and automatically assess the sample flux accu-
mulation and convergence. WISQ is also a general method that can be utilized for
flux measurement outside of the realm of meteorology and is open-sourced for ease
in development and innovation.
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A. Motivation

In the second quarter of the twentieth century and into the first decades of this century, microm-
eteorological techniques have greatly matured for measuring the bulk and turbulence charac-
teristics of the atmospheric surface layer over land and water. Developing theses experimental
practices has largely been undertaken to quantify the flux of energy and material at the interface
between the lower atmosphere and the surface; then to develop empirical models (parameteriza-
tions) relating the flux to the bulk variance; and finally, to incorporate these empirical relations
into numerical models that cannot directly resolve the fine-scale turbulence and exchange pro-
cesses. While micrometeorological study can be focused on topics outside of this framework,
the drive to understand the flux at the base of the atmosphere has nonetheless been, and persists
to be, an underlying objective across a large swathe of the discipline. Like other fluid physics
disciplines, this effort involves theoretical developments bolstered by significant experimental
efforts and field observations remain central to the discipline for both basic research and moni-
toring campaigns.

Currently, investigators seeking to quantify the flux overwhelmingly rely on the eddy co-
variance methodi [2]. This approach is well-suited to three-dimensional anemometry, explicitly
estimates the wind stress (i.e., local friction velocity) without making spectral assumptions, and
is mathematically elegant. As with any technique, practically employing EC is an involved
process with many quality control steps from set-up through data processing to ensure robust
measurements [2, 4]. While many of these steps have become more-or-less standard practice,
there are some aspects of the general EC methodology that seem to be applied only sporadi-
cally. In particular, it is rarely reported in the literature how, or if, an investigator confirmed that
each analyzed EC sample (i.e., discrete averaging/processing window) satisfied the condition of
stationarity, which is an essential prerequisite for using EC. When this analysis is conducted,
the approach is idiosyncratic and a standard method has not emerged. An exception to the
above is the advent of analysis software (e.g. EasyFLux R© DL or EddyPro R© from Campbell
Scientific), which do incorporate stationarity assessment. These softwares are becoming more
common [1, 3], but they are not ubiquitous.

In this report, the design of the windowed inspection of stationarity & quality (WISQ) al-
gorithm is described. WISQ is an efficient and robust tool that can be readily incorporated into

iSynonyms include: eddy covariance technique, eddy covariance (no modifier), direct covariance method, and
direct method. Occasionally, eddy correlation is used to describe this method. Herein, we will use eddy covariance
method or in abbreviation, EC.
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EC data processing routines and provides critical information to the investigator on EC analysis
window quality, including stationarity, homogeneity, and that all relevant turbulence scales are
resolved. Here, we will demonstrate the WISQ method for EC sampling and provide examples
of its implementation from a marine meteorological field campaign.

B. A Brief Summary of the Eddy Covariance Method’s Statisti-

cal Basis and the Implications for Stationarity Analysis

Here we will provide a brief summary of the mathematical and statistical basis for using EC
to quantify the turbulence and fluxes within the atmospheric surface layer (ASL). This material
can be found in several reference texts for micrometeorology [2, 4]ii and, on a more purely
physical level, for turbulence [13]. The original concept for EC came out of mathematical and
physical arguments put forward in the World War II era for the purpose of better understanding
near-surface atmospheric turbulence and a desire to move beyond Prandtl’s restrictive mixing
length theory (e.g., see [6, 11]). The reader is directed to these references for further details,
with the textbook by Foken, Aubinet, & Leuning being the most updated and relevant to EC.
We should note that the discussion herein is concerned with the typical method of quantifying
the covariance between the vertical turbulent (or perturbation) wind velocity, w′, and some other
turbulent variable, α ′. This is only one component of a generalized eddy covariance method for
scalar budget analysis [2].

A time series of a random variable, α(t), can be decomposed using Reynolds averaging:

α(t) = Ā+α
′(t), (1)

where
Ā =

1
Tα

∫ t0+Tα

t0
α(τ)dτ, (2)

and α ′ is the perturbation component of α , i.e., this holds the turbulence information. Here,
Tα is the analysis time for EC, which has several acceptable monickers but will be referred to
within this report as the averaging window, and t0 is the first time step within Tα . An over bar,
(¯), indicates that the operator (2) has been applied.

Equation 1 mathematically argues that α(t) is separable into distinct components Ā and
α ′ over Tα , which is only strictly possible when the average is defined using ensembles (i.e.,

iiSpecifically: Chapter 7 in Kaimal & Finnigan 1994 and Chapters 1 & 4 in the Foken et al. text.
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ensemble averaging). An ensemble average, Â, is a mean taken over numerous independent re-
alizations of α(t) for identical system conditions. This may be achievable in the laboratory, but
is unachievable and unphysical in the real atmosphere. This challenge is typically circumvented
by calling upon the ergodicity postulate: that under stationary conditions, Ā = Â. Here, station-
arity indicates that the statistics over the averaging window are not dependent of your selection
of t0 within the record spanned by Tα . To emphasize, using eqn. 1 in the real ASL requires
invoking ergodicityiii which is only a valid proposition if the ASL during Tα is stationary. For
Ā = Â over Tα , requires not only stationarity in the mean, but in the higher order moments, e.g.,
variance, as well. Confirming an individual EC sample observed locally stationary conditions
is essential to employing the mathematical basis of the EC method and making a robust flux
measurement.

The length of Tα is central to the issue of stationarity in EC flux calculations and analysis
because this determines the variance contributing to Ā. Fundamentally, Tα is directly related to
sample altitude into the boundary layer and the flow stability. The goal of EC is to quantify the
local turbulence and flux conditions, using a Tα that is too long for the conditions represents
entraining local and macroscopic variance into a single α(t), which can manifest as a trend or
local maxima/minima in the time record that creates non-stationarity. If Tα is too short, then the
sample does not capture all of the low frequency contributions to the turbulence and the total
local flux will be underestimated. For typical daytime, convective surface layer conditions,∼30
minutes is a suitable Tα , though this should shorten (lengthen) as conditions become more con-
vective (stratified). However, given different study aims, especially where spatial heterogeneity
is expected or platform translation is a factor, shorter intervals have been used (e.g., [7, 8, 10])
to quantify the flux, with the acknowledgement that the total flux from the atmosphere to the
surface may not have been captured for every sample.

The literature is replete with various lengths of Tα in both terrestrial and marine studies and
there is no particular "standard", though 30 minutes has emerged as a typical window length.
It is important to note that while theoretically Tα should be adaptively prescribed for the local
turbulence and altitude, the authors are not aware of any study where this was systematically
done in the course of processing a complete flux data set for the purposes of optimizing the
physical robustness of the EC flux estimates. If Tα is varied, it is typically done as part of
methodological studies or quality control analyses (e.g., [9]). Statistically, the optimal window

iiiWhether knowingly, or not.
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length can be estimated as:

Tα ' 2
σ2

ατα

Ā2ε
, (3)

where σ2
a is the time averaged variance, τα is the integral time scale determined from the in-

tegration of the autocorrelation of α(t) over Tα , and ε is the acceptable error level, etc. 0.02,
0.05. Specifically for flux analysis, qualitatively assessing Tα uses the ogive, Γ. In general, Γ

is defined as the normalized cumulative integral of the scaled co-spectrum between variables x

and y:

Γ(ni) =
∫ ni

∞

Cxy(n)dlog(n), (4)

Cxy =−nSxy/γ
2, (5)

where ni is the ith frequency bin of an FFT of x and y with length N/2+1, Sxy is the co-spectrum
(e.g., x and y are the vertical (w) and horizontal (u) wind velocity, respectively), and γ is the
relevant turbulent scaling (e.g., u∗). Γ(n) is typically integrated from high frequencies (usually
the Nyquist) to low frequencies (ideally 1/Tα ). In completely stationary and homogeneous
flux conditions, Γ(n) should follow a smooth spline that has an initial plateau around 0 for
high frequencies, rolls off to a quasi-linear slope over the mid-frequency subrange, and finally
converges on −1 at low frequencies. The ogive is a powerful tool in analyzing the quality of a
particular EC sample, but to the authors’ knowledge it remains largely absent as a quality control
step in the majority of flux analysis presented in the literature. We believe this is primarily due
to the difficulty of incorporating the ogive into an automatic processing algorithm.
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Figure 1: (a) EC window from CASPER-West that failed every WISQ test; (b) an EC window
that passed every WISQ test. These are referred to as A and B and were observed on 9/30
20:30 UTC and 10/03 16:45 UTC, respectively. The velocity components are the x→ u, y→ v,
and z→ w, where u, v, and w are physically the eastward, northward, and upward velocities,
respectively.

C. WISQ: Windowed inspection of stationarity & quality

The concept and impetus behind WISQ are not novel. Foken et al. (2012) dedicate the entire
Chapter 4 as a reference guide for assuring data quality in EC data. WISQ as an algorithm,
nor this report, can supersede their substantial effort. However, the algorithm we describe here
provides an efficient and robust approach to testing stationarity for an individual EC sample.
WISQ can be readily incorporated into an investigator’s or system’s data processing algorithm.
In particular, WISQ conducts a direct test of the ogive and provides critical information on
the homogeneity (or steady state) and convergence of the flux over the prescribed averaging
window. For our purposes, we will define an individual EC sample as the discrete time series
of variables with temporal extent Tα that is used for the flux calculations. Herein, we will use
the term window to define the temporal extent of the sample. WISQ is designed around three
tests: (1) checking the window is ergodic, (2) checking the flux accumulation over the window
is homogeneous, and (3) checking that the integral flux scale is resolved. The outcomes of these
tests are denoted E, X , and O, respectively. The results of the three tests are categorical values
[0,1], except for O, which includes values [0,0.5,1]. For all tests, a value of 0 (1) indicates
that the evaluation passed (failed). For O, 0.5 is used as intermediate conclusion, which can be
considered a low pass. WISQ can also output more detailed information that could be useful
for quality control analysis. The details regarding each test are discussed below.

WISQ operates on individual windows (a time series beginning at t0 and ending at t0 +Tα )
of the three orthogonal components of the wind velocity [u,v,w], where w is always the vertical
componentiv. WISQ is an empirical method and therefore literally tests for the user’s acceptable
amount of non-stationarity. Thus, we define ε as the critical limit of non-stationarity. In Kaimal
and Finnigan, their equivalent ε is set to 0.02, which is most likely too restrictive for field data.
By default, WISQ uses the limit ε = 0.1. The functionality of WISQ will be demonstrated
using two averaging windows of data from the CASPER-West field study (see [9]), a window

ivA scalar flux version has been developed: WISQS, that applies similar analysis but only requiring w and a
scalar record s as input
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that failed all the tests (E = X = O = 1) and one that passed all of them (E = X = O = 0).
These will be referred to as windows A and B, respectively. Both of these samples come from
a Campbell Scientific IRGASON system mounted ∼5 meters above the ocean surface.

Figure 2: Demonstration of four idealized EC sample phenotypes. Markers denote ensemble
averages (Âi) and the red-dashed line marks a linear trend of ensemble members. Here, the
samples have been scaled and translated for easier comparison.

E: Testing for Sample Ergodicity

Ensemble statistics are calculated for both horizontal components [u,v] using discrete sub-
windows spread continuously across Tα . The number of realizations within each sub-window
is defined as:

n̂ =
Nδ t
Ni

, (6)

where N is the number of realizations within Tα , δ t is the time step (inverse of sampling fre-
quency, ns), and Ni is the number of sub-windows (user-defined, e.g., 10). If necessary, n̂ is the
nearest integer value closest to zero. For an ergodic window we assume that,

∑
Ni
j=1 Â j

Ni
' Ā, (7)
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again, where Ā is the time-average mean. However, simply confirming (7) over Tα is not suf-
ficient for ergodicity. Figure 2 provides an example of four idealized time series highlighting
various conditions found in typical EC data. For example, there is a window that clearly sat-
isfies (7); a window with a slow, mean trend over Tα ; a case with a ramp beginning part-way
through the record such that Âi 6= Ā; and a final window with a distinct "impulse" or event
halfway through Tα . In this final case, Âi ≈ Ā and (7) would have been validated to within ε ,
but qualitatively and intuitively, this is not an ergodic sample.

WISQ evaluates ergodicity by testing the hypothesis that the statistics of the sample over
Tα converges on the statistics of Ni ensembles within Tα (i.e., Â→ Ā). This is done using three
sub-tests: (1) that Âi are normally distributed, (2) the root-mean-square deviation of Âi from Ā

is less than ε , and (3) the root-mean-square deviation of σ̂i from σ̄ is less than ε . The first test
(T ) is categorical true/false ({0,1}) determined using a Shapiro-Wilk test algorithm [12]v and
performed on the Ni ensembles. For this test, the confidence interval is fixed at 0.05. For the
other two tests, the deviations are defined as:

µ =

√
∑

Ni
i=1(Âi− Ā)2

Ni
, (8)

and,

σ =

√
∑

Ni
i=1(σ̂i− σ̄)2

Ni
, (9)

for the means (µ) and variance (σ2), respectively. These tests are applied independently to the
horizontal velocity components [u,v] and the parameters are denoted by a subscript: Tu, µu, etc.
From these sub-tests, component-wise indices are defined:

Iu = ωu× (Tu +µu +σu) (10)

Iv = ωv× (Tv +µv +σv), (11)

where ωu,v are weighting functions for the relative contribution of the component to the overall
flow magnitude, i.e., ωu = |ū/

√
u2 + v2|. This weighting is done because WISQ can analyze

any orthogonal velocity components, not necessarily those in a stream orientation. The results
of E do not want to give equal importance to the cross-stream component as the along-stream

vAhmed BenSaïda (2020). Shapiro-Wilk and Shapiro-Francia normality tests.
(https://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-
tests), MATLAB Central File Exchange. Retrieved June 23, 2020.
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component, where the former is more susceptible to non-stationarity. In order to pass E, the
condition Iu,v < 2ωu,vε must be satisfied (a 2 is used because an ergodic sample would have
T = 0.)

The evaluation of E heavily weights the results of T , because if T = 1 then Iu,v will always
be > 2ωu,vε (for ε < 0). In doing this, we directly test the normality of the EC sample, which
is fundamental to the overall application of Reynolds decomposition. This test is limited in
that it cannot discern between the stationary and slow, quasi-linear trend examples in Figure 2
(the impulse and partial ramp all failed this test). The other two tests directly evaluate whether
the ensemble statistics have converged on the sample statistics to a sufficient threshold and are
more sensitive to subtle trends in the sample. For example, in Figure 2, the slow trend example
has an Iu = (0+0.29+0.19) = 0.48, which is greater than the default threshold (2× ε = 0.2),
assuming ωu = 1 for our demonstration.

The ergodicity evaluation (E) in WISQ provides information on the mean over Tα
vi. While

this is fundamentally important to EC and the Reynolds decomposition of field data, it is not
necessarily indicative of the stationarity of the perturbations, or turbulence, across Tα . Figure
2 provides a key example to this point. In the Reynolds decomposition (eqn. 1) α ′ is extracted
from α by demeaning and detrending. This process effectively removes slow, quasi-linear
trends in α . From Figure 2, detrending cannot adequately remove the instance of an impulse or
ramp localized to some time within Tα . More sophisticated methods for removing slow, non-
linear trends (see [5]), but they are not incorporated into WISQ at this time. It is important to
note that while the results of E may not directly pertain to the turbulence statistics, the results
of E may provide insight into the overall conditions within the sample window.

viAn additional component to E has been added to test the vertical velocity, w. These tests are very similar to
those described above, except that only σ is evaluated, such that there is an unweighted index Iw = Tw+σw. The w
test is preempted by a check that |w̄/

√
u2 + v2|> 0.01, and if true, then the sample is assumed to be non-ergodic.

Exceeding 0.01 is probably caused by very low winds and/or the presence of a mean tilt off the vertical in [u,v,w].
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Figure 3: v-component of A and B, showing the observed (thick lines) and ensemble (error
bars) values. The three parameters used to determine E are also presented. The critical values,
using ε = 0.2, for these samples are 0.35 and 0.38, respectively. Here we can see that v̂i from
A and B are normally distributed (TA,B = 0), but Iv,A is nearly 3× the critical value.

X: Testing for Homogeneous Flux Accumulation

The following two tests, X and O, directly address the stationarity of the flux over Tα . Par-
ticularly, the instantaneous vertical flux of stream-wise momentum, wu(t) = 〈w− w̄〉〈U −Ū〉,
where the 〈〉 indicates a window-wide detrending and demeaning. Here, U is the stream-wise
velocity calculated from [u,v] following,

θ = tan-1(u/v)+π (12)

U =−vcosθ −usinθ . (13)

The stream-wise component is tested because it is assumed this holds the majority of the flux
and is most sensitive to the energy containing scales. This assumption falters in the case of low
winds or strong convection—cases, in general, where stationarity itself fails. For scalar fluxes,
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WISQS is recommended because the stationarity results can be quite divergent from the momen-
tum fluxes. X tests the homogeneity of the flux using the normalized cumulative summation, χ .
In a sense, χ is the fractional accumulation of flux, which for stationary conditions, should be
homogeneously distributed across Tα . The time-dependent accumulation for the stream-wise
flux is defined as:

χwu(ti) =−
∑

ti
i=t0 wu∫ N
i=t0 wu

, (14)

An ideal EC sample would exhibit χ ≈ χ0 =−i/N, which is simply a direct linear proportion-
ality with a zero intercept and a slope of unity. Here, i/N is the fraction of run, i being the ith

realization in Tα and N being the total number of realizations. We will refer to the ideal accu-
mulation function as χ0. The numerator in (14) is carried out using discrete summation, while
the denominator is calculated using trapezoidal numerical integration. Figure 4 compares χwu

for A and B. The quality of χwu is evaluated in WISQ using the standardized residual between
χwu and χ0:

Rχ = χwu−χ0 (15)

σχ =−

√
∑

N
i=1 [Rχ(ti)− R̄χ ]2

N
, (16)

where σχ cannot exceed the threshold, σc = ε . Figure 5 provides the time-dependent distribu-
tions of Rχ for the two samples from CASPER-West. While B does have some Rχ ≥ σc, σB

χ for
this window is ∼0.06.
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Figure 4: Flux accumulation, χ for A and B, as a function of fractional segment time i/N. The
ideal χ0 =−i/N is shown as the dashed line.

Figure 5: Time-dependent residual, Rχ = χwu +χ0 with the standard deviations (σχ ) of both A
(blue) and B (orange). The cutoff standardized residual, σc = ε , are shown as magenta dotted
lines. σA

χ = 0.101 and σB
χ = 0.069

O: Testing for the Convergence of the Ogive

The ogive, Γ, is the spectral equivalent to χ and provides critical information on the stationarity
and completeness of the flux sample over Tα . In particular, an ogive that asymptotes to |1|
at low frequency indicates that the integral scale of turbulence is resolved and thus the given
sample is a complete estimate of the local flux. In this sense, the asymptotic behavior—if
present—directly relates to the suitability of the prescribed window length. The integral scale
tends to shift to higher (lower) frequencies in convective (stratified) conditions. Fundamentally
for EC, Tα should be determined iteratively for each local condition in order to achieve the
most representative sample of the local flux. However, this is rarely done in practice and it is
generally assumed that a single Tα is sufficient—which may be more acceptable in the marine
environment where stability tends to be weaker and near neutral.

The co-spectrum, ℜ(Fwu) = Swu, is calculated using the windowed (Hamming or Blackman-
Harris) fast Fourier Transform (FFT) scaled into the variance spectrum. As part of the spectral
processing, Fwu is smoothed using log-uniform averaging routine that has a tunable smooth
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parameter, s, that increases (decreases) the amount of smoothing when s decreases (increases).
Specifically, s controls the slope of the distribution of un-smoothed samples within the smoothed
frequency spectrum. This slope, m, is inversely proportional to s, m ∝ s−1. For example, s = 4
increases the number of additional amplitudes averaged together per increase in frequency,
twice as quickly as s = 8. Due to this relationship, s must be > 0 and saturates in effective
smoothing at around s∼ 24, therefore a value [2,24] is recommended. Figure 6 provides an ex-
ample for the impact of s on a sample spectrum from CASPER-West and includes a comparison
of the results from a Blackman-Harris and Hamming windowing of the FFT.

Using s = 20 and a Blackman-Harris window, the ogives (Γ) for A and B were compared
(Figure 7a). As a reference, WISQ assumes that an ideal Cwu (the non-dimensional Swu) should
approximately follow a Gaussian distribution. Using the observed Γ ≈ 0.5 and the variance of
logn as scaling parameters, WISQ builds the reference ogive, Γ0. In this way, Γ0 is an adaptive
reference for Γ. For each window, Γ is tested within each of the major sub-regions of the ogive:

Figure 6: Examples showing varying s in WISQ. For all except one, the Blackman-Harris FFT
windowing method was used. Here, moderate and high smoothing are defined as s = 16 and
s = 4, respectively.

(1) the roll-off, −0.2 < O < 0 (Figure 7b); (2) the transition, −0.8 < O < −0.2(Figure 7c);
and (3) the convergence zone, −1 < O < −0.8 (Figure 7d). For the roll-off (1), WISQ tests O

against an exponential function of the form: aebn. For this test, it is required that the adjusted
r2 between the observed and model function be above 1−ε/2 and that b < 0. For the transition
(2), we expect that O will follow a quasi-linear function and the only parameter tested for this
sub-region is the r2 between the observed and linear fit. As a preemptive, if the correlation
between Γ and Γ0 is below 1− ε , i.e., an ogive that is grossly malformed, then WISQ assumes
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that tests (1) and (2) would fail and skips to (3).

For the convergence zone (3), Γ is compared directly to Γ0. WISQ determines the number
of Γ amplitudes within ±ε/2 of the corresponding G amplitudes. If the number of amplitudes
exceeds 20% of the total number of samples within the convergence zone, then Γ has satisfac-
torily converged. Otherwise, the observed ogive did not converge. Figure 7b-d demonstrate the
results of this three-step analysis of Γ for B.

Figure 7: Results of the three-part ogive test applied by WISQ. (a) The ogives for A (blue) and
B (orange) are shown. They have been shifted along the abscissa for comparison and are given
along-side their respective Γ0. (b) The evaluation of the roll-off against an exponential model,
aebn (dot-dashed black line). For this case, b=−3.3 and r2 = 0.98, indicating strong agreement
with the expected roll-off behavior. (c) Analysis of the transition region, which is expected to
be quasi-linear and for this case exhibited an r2 = 0.94. (d) Analysis of the convergence zone,
showing Γ/Γ0 as a function of logn. For this case, ∼40% of Γ is within ±ε/2 = 0.05 of Γ0,
which meets the criteria for convergence within WISQ. For reference, the time-to-convergence
was ∼65 seconds. b-d only show results for B and the horizontal scale is log(n) for each axis.
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D. Results from a field dataset: CASPER-West

WISQ was applied to the CASPER-West observations using a Tα of 30 minutes and analyzing
flux sensors at two levels, approximately 5 and 16 m above the mean water level, respectively.
A total of 2,185 windows were analyzed for each flux level, but only 1,704 (78%) are analyzed
here because of flow interaction with the FLIP superstructure and mast. WISQ was systemati-
cally run to evaluate the impact of two critical input parameters: Ni and ε , which were applied
over the sets {4,6,10,20} and {0.05,0.1,0.2,0.3}, respectively. Of course, E is the only test
sensitive to Ni. This analysis will help to demonstrate the sensitivity of the algorithm to different
criteria and environmental conditions. In terms of bulk results, E and X were the two tests that
failed the most often and the rate of failure was strongly dependent on ε (Figure 8ab). Regard-
less of Ni, if ε = 0.05, then practically 100% of the CASPER-West samples at both elevations
failed ergodicity (E = 1). For larger values of ε , increasing Ni tended to increase the prevalence
of E = 1. Using Ni = 4 (the default value for WISQ), about 60% of windows were flagged
E = 1 (for ε = 0.2), this increased to over 80% if using Ni = 20. We would expect these results
to be sensitive to Tα and the results of the O test, but this was not evaluated systematically here.
We also found a slight z-dependence in these results for 0.1 < ε < 0.3, in that about 5% more
windows failed this test at 16m versus 5 m. These changes were partially driven by increased
prevalence of T = 1 with increasing Ni—for Ni = 4 only 93 windows failed this criteria (T = 1),
for Ni = 20 this increased to 224, a 2.4-fold increase. However, the predominant cause of the
changes in Figure 8a was the relationship between Ni, µ , σ , and ε .

For X and O, the results were insensitive to Ni because ensemble members were not used in
their evaluations (Figure 8bc). Predictably, windows more often passed the homogeneity and
convergence tests as ε increased to 0.3, changed by about 20% at every interval. There was a
significant difference between the proportion of X and O that failed, for a given ε . For example,
when ε = 0.05, over 80% of windows failed the homogeneity test, whereas only about 30% of
windows did not converge—note that Figure 8c only includes the proportion of ogives where
no integral length scale was resolved. However, as expected, flux convergence was strongly
z-dependent, with the two levels shown here separated by over 10%, the largest margin due to z

for any test in WISQ.

The WISQ output also enables investigating the trends within the various quality control
metrics. A key parameter for flux analysis is Tα . The time scale of convergence of the ogive is
related to energy containing eddy frequency, which must be resolved within Tα for a complete

flux sample. Figure 9 shows the distribution of this time scale for CASPER-West. Specifically,
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this distribution reflects the windows where O 6= 1 and the time scale was calculated from the
frequency of the local minimum of Γ. As expected, for ogives that converged, the majority
of time scales approached 20-30 minutes, or Tα was sufficient to resolve all of the relevant
turbulent motion for the given z and stability. However, we did also find that nearly >20% of
windows converged at time scales less than 6 minutes, or 1/5 of Tα . These cases coincided with
relatively strong convection within the surface layer. For strongly stable cases, which were rare
in this data set, we would expect the ogive to not converge and, thus, these windows would not
be reflected in Figure 9.

Comparable to E, X revealed a drastic change in retention rates (i.e., windows that passed the
criteria X = 0) with changing ε . From Figure 8, there is a nearly 60% change in the proportion
of windows passing this test as ε varies from 0.05 to 0.3. X is strongly related to the mean wind
speed and exhibited a persistent diurnal pattern (Figure 10). For ε = 0.1, the most prevalently
homogeneous windows typically come from the local maxima associated with the diurnal sea
breeze. We can also see that the transitions in wind speed regime do not typically pass criteria
for homogeneity; also, while it is rare, low wind periods can be adequatetly homogeneous at
the ε = 0.1 cut-off (see inset in Figure 10).
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Figure 8: The proportion of windows that failed the three primary evaluations in WISQ: E (a),
X (b), and E (c). The latter two are independent of the number of ensembles used Ni. For O,
this only includes ogives that did not converge, not ogives that were malformed. The results of
two different measurement heights are compared. ε is the tolerance or threshold used to assess
the individual averaging windows; N is the total number of windows analyzed (this analysis,
and N, does not include windows impacted by flow distortion).
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Figure 9: Probability distribution (P) of the time to convergence (in minutes) determined from
WISQ analysis of the stream-wise ogive. For the CASPER-West analysis, Tα was set to 30-
minutes, therefore, the bin 20− 30 minutes indicates that this interval was appropriate for ap-
proximately 60% of the windows where the ogive converged.

Figure 10: Time series of wind speed(vertical axis) over the CASPER-West time period with the
results of the homogeneity test X marked in red-filled (X = 0) and open (X = 1) circles. The four
different cases of ε are shown for comparison, the time series have been translated vertically
for illustration ("med" indicates the median value). The inset highlights the characteristics over
a slightly less than 24-hour period.
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E. Summary

The design and implementation of a novel algorithm (WISQ) that evaluates the quality and
stationarity of individual eddy covariance samples has been described. WISQ was designed
with efficiency and generalization in mind and can be readily incorporated into already exist-
ing processing and quality assessment algorithms. While conceptually WISQ is not new, it
is unique in that is provides an automatic evaluation of the temporal and spectral stream-wise
flux, which is critical to data quality considerations and had been previously limited to visual
inspections. There are always trade-offs when automatically applying an evaluation to noisy
geophysical data. However, the primary advantage to these tools, such as WISQ, is they en-
able the efficient and quantitative analysis post-collection or in quasi-real time that is free from
investigator biases and can help standardize the methods applied across a study, project, or
discipline. This is especially useful for large datasets, long-term monitoring, real-time pro-
cessing, and inter-platform comparison. We must emphasize that WISQ provides guidance
through its flagging system, but it remains the investigator’s prerogative whether or not par-
ticular flux sample is deemed high quality and stationary. While WISQ was designed using
an atmospheric turbulence dataset, the method is general and applies to any sampling of tur-
bulent flows where stationarity is a concern for data quality. The software is maintained at
https://gitlab.nps.edu/dortizsu/wisq.
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