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TOWARDS AN FVE-FAC METHOD FOR DETERMINING
THERMOCAPILLARY EFFECTS ON WELD POOL SHAPE

David Canright and Van Emden Henson
Mathematics Dept., Code MA
Naval Postgraduate School
Monterey, CA 93943

SUMMARY

Several practical materials processes, e.g., welding, float-zone purification, and
Czochralski crystal growth, involve a pool of molten metal with a free surface, with
strong temperature gradients along the surface. In some cases, the resulting ther-
mocapillary flow is vigorous enough to convect heat toward the edges of the pool,
increasing the driving force in a sort of positive feedback. In this work we examine
this mechanism and its effect on the solid-liquid interface through a model problem:
a half space of pure substance with concentrated axisymmetric surface heating, where
surface tension is strong enough to keep the liquid free surface flat. The numerical
method proposed for this problem utilizes a finite volume element (FVE) discretiza-
tion in cylindrical coordinates. Because of the axisymmetric nature of the model
problem, the control volumes used are torroidal prisms, formed by taking a polygonal
cross-section in the (r, z) plane and sweeping it completely around the z-axis. Con-
servation of energy (in the solid), and conservation of energy, momentum, and mass
(in the liquid) are enforced globally by integrating these quantities and enforcing con-
servation over each control volume. Judicious application of the Divergence Theorem
and Stokes’ Theorem, combined with a Crank-Nicolson time-stepping scheme leads
to an implicit algebraic system to be solved at each time step.

It is known that near the boundary of the pool, that is, near the solid-liquid
interface, the full conduction-convection solution will require extremely fine length
scales to resolve the physical behavior of the system. Furthermore, this boundary
moves as a function of time. Accordingly, we develop the foundation of an adaptive
refinement scheme based on the principles of Fast Adaptive Composite Grid methods
(FAC). Implementation of the method and numerical results will appear in a later
report.

INTRODUCTION

Several practical materials processes, e.g., welding, float-zone purification, and
Czochralski crystal growth, involve a pool of molten metal with a free surface, with
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strong temperature gradients along the surface. In many cases (e.g., laser welding)
convection in the liquid metal is driven primarily by thermocapillary forces, and even
in cases where other forces are stronger overall, thermocapillary forces may still be
dominant near the edge of the pool [4]. Previous work [2] showed how vigorous ther-
mocapillary convection can lead to localized intense heat transfer and high velocities
in the “cold corner” region where the liquid free surface meets the solid.

The present work examines how this localized heat transfer modifies the shape of
the solid-liquid interface bounding the pool. When convection is vigorous, the high
heat flux in the corner may melt away the solid near the surface, resulting in a sort
of “lip” around the edge of the pool. This phenomenon is modeled computationally,
and the steady solution sought for a wide range of the two governing parameters.
This is a work in progress, in which numerical methods are proposed and developed
for the problem. Implementation of the method and numerical results will appear in
a later report.

PROBLEM STATEMENT

A half-space of a pure material is subjected to concentrated heating on the flat
horizontal surface, giving a pool of molten material surrounded by solid. The total
heat flux @ is constant, and far away the solid approaches the uniform cold tempera-
ture T, (see Figure 1). Above the horizontal free surface is an inviscid, nonconducting
gas. Surface tension of the liquid is assumed strong enough to keep the free surface
flat (small Capillary number), but with surface tension variations due to a linear
dependence on temperature. The resulting thermal and flow fields are assumed to
be axisymmetric and steady, but the time-dependent equations are given below, to
facilitate a numerical approach using time-like iterations to reach the steady solution.

Then the system is governed by conservation of energy in the solid and by con-
servation of energy, momentum, and mass in the pool:

, oT 9
solid : E._mv T (1)
liquid %€-+H'VT=I€V2T (2)
Oou 1 9
é—t-+u-Vu——;Vp+z/V u (3)
V.-u=0 (4)

with the conditions at the boundaries and at the solid-liquid interface given by

solid surface (z =0) : %g— =0 | (5)

. oT
liquid surface (z=0) : k P —q(r) (6)
v=20 (7)

148



insulated insulated

T—>T,

Figure 1: Problem Formulation: a half-space of pure material is subjected to concen-
trated surface heating @Q that results in a molten pool. (Outside the surface heating,
the surface is adiabatic.) The melting temperature is Tr,, and far away the solid is at
the cooler temperature T,. The flat liquid surface is subject to thermocapillary forcing,
which drives convection in the liquid. Azisymmetry is assumed.

ou or

N‘a—z‘ = —75; (8)
axis (r =0) aa—f =0 (9)
u=0 (10)

ov
5 =0 (11)
far away (r,z —o0) : T =T, (12)
interface (r = f(z,t)) : T =Ty (13)
—(kVT), = —(kVT)s + pLV(z,1) (15)

Here T is temperature, ¢ is time,  is thermal diffusivity, u is the velocity vector with
components u and v in the 7 and z directions (cylindrical coordinates), p is density,
p is pressure, v is kinematic viscosity, k is thermal conductivity, g(r) is the imposed
surface heat flux (large at r = 0, falling off to zero at some small value of 7, such that
152 q(r)2mr dr = Q), p is viscosity, v (assumed constant and positive) is the negative
of the derivative of the surface tension with respect to temperature, 7, is the melting
temperature, r = f(z,t) gives the position of the solid-liquid interface, L is the latent
heat of fusion, and V(z,t) is the normal velocity of the phase-change interface (that
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is,
0
V() = 71+ (s

where the unit normal vector is
of
s O 1 9/,
a=(f+ o z) A1+ (50)

in terms of the coordinate unit vectors).

'To nondimensionalize the equations, we use a heat flux scale of  and a tempera-
ture scale (relative to the cold temperature) of AT = T, — T.. Then thermal conduc-
tion gives the length scale d = Q/kAT (so g scales as Q/d? = (kAT)?/Q), the ther-
mocapillary coupling gives the velocity scale u; = v AT/u, and the convection time
scale is t. = d/u, = uQ/kyAT?. The viscous pressure scale is pu,/d = kyAT?/Q.
From the phase-change condition, the phase-change time scale is t, = pLQ?/(kAT)3.

The resulting dimensionless equations are

solid : Ma %% = V2T (16)
- or 2
liquid : Ma W+u-VT =V*T (17)
Ou o
Re E—t——i—u.Vu =-Vp+Vu (18)
V.u=0 (19)
with the boundary conditions
solid surface (z=0) : Z_Z =0 (20)
liquid surface (2 =0) : g—f— = —q(r) (21)
v=0 (22)
ou OT
o or (23)
axis (r=20) : g—’f =0 (24)
u=0 (25)
v
5 =0 (26)
far away (r,z —o00) : T =0 (27)
interface (r = f(z,¢)) : T=1 (28)
u=v=0 (29)
~VT} = VT, + \V (30)

where from this point on the variables denote the dimensionless quantities. The main
dimensionless parameters are the Marangoni number Ma = u,d/x = vQ/uks and
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the Reynolds number Re = u,d/v. Their ratio gives the Prandtl number: Pr
v/k = Ma/Re. The other dimensionless parameter is the ratio of time scales, )
tp/te = YQL/vk?AT, and so plays no role in the steady-state solution where V — 0.

e

For the numerical solutions, it is convenient to eliminate the pressure by adopting
a stream-function/vorticity formulation for the flow:

Re(%gt)——Vx(uxw)) = -VxVxuw (31)
U .
w o= VXVX(—;@) (32)
100 10¥
U——‘-;—a—z— , 'U—,‘r"'é"r"‘ (33)

where W is the axisymmetric stream function and w is the vorticity vector (having
only one component, in the # direction), with the flow boundary conditions

liquid surface (z=0) : ¥ =0 (34)
orT
axis (r=0) : =0 (36)
w=0 . (37)
) or ov
interface (r = f(z,t)) : ¥ = 55, 0 (38)

With the assumption of small Capillary number, the resulting small surface de-
flection can be determined as a small perturbation to the flat interface from the
dimensionless normal stress condition at the surface:

v _,1d [ dh

where Ca = yAT /o is the Capillary number for surface tension o, and the deflection
z = h(r) is taken positive upward. The contact line at the edge of the pool is assumed
pinned (h = 0), and volume is conserved globally to determine the constant reference
pressure level.

CONDUCTION SOLUTIONS

As a starting point for the numerical method, an analytic solution for the tem-
perature in the conductive limit is used; this limit corresponds to Ma — 0 (for which
the time scale used in nondimensionalizing is inappropriate). If the unit surface heat
input were concentrated at a single point, then the conductive solution would have
spherical symmetry:

T(r,2) ==—= , R=+r2+422 (40)



For a distributed (axisymmetric) heat source ¢(r), the point source solution (40) can
be used as a Green’s function, and the solution found by superposition:

oo r2m q(p) pdb dp
— 41
T(r.2) / / 27r\/p + 12 —2prcos@ + 22 (41)

/ ( 4dpr
\/,TT'T A TR R

where 5 F is the generalized hypergeometric function (see [1]). This formula can be
used to find the temperature for any input heating distribution g, and the isotherm
T =1 specifies the interface position.

)dp (42)

Using this thermal solution with the interface position fixed, the flow equations
(31)—(38) are solved numerically in the viscous limit Re — 0 (again, the time scale
used is inappropriate in this limit). This gives the basic state, which has no fine
details (except near the concentrated heating, where the flow can be described by an
asymptotic solution [3]). This state is used as a starting point for solutions with low
Ma and high Pr.

NUMERICAL METHODS

For computational purposes, the idealized problem of an unbounded solid is trun-
cated to a finite domain in cylindrical coordinates, extending in both the radial and
vertical directions a distance of four times the diffusion length scale d. The boundary
condition on this artificial boundary is that the temperature should decay in the same
way as the conduction solution for the point source, that is,

of _ T (43)
OR R
where R = /r2 + 22 is the spherical coordinate. This asymptotic matching condition
is reasonable (for several diffusion lengths away from the pool) and is far less restrictive
than imposing the Dirichlet condition (7" = 0) on the outer boundary.

To calculate the steady state for various values of Ma and Pr, the time-dependent
equations are stepped in time using the Crank-Nicholson method to obtain the ad-
vantages of absolute stability and large time steps. Then at each time step, an elliptic
problem must be solved. For this, multilevel methods are used, based on a uniform
grid in the (r, z) quarter-plane and the Fast Adaptive Composite (FAC) grid approach
to ensure resolution of all small-scale local details. At the solid-liquid interface, each
grid has irregular elements to fit the interface. At each time step, the position of
the interface is adjusted based on the normal velocity V' from (30). (Note that the
dimensionless parameter A in (30) can be adjusted to control how quickly the inter-
face changes.) The difference equations on the grid are developed using the Finite
Volume Element (FVE) method. This method combines the exact conservation of
mass, momentum, and energy of the finite volume method with the flexibility of the
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finite element method in handling complicated boundary conditions, irregular grids,
etc. (See [5] for an introduction to FAC and FVE methods.) The resulting system
of algebraic equations is solved at each time step. FAC is a method in which the
solutions at the various grid levels are used to correct the composite grid solution,
and the type of solver used on each grid level is unimportant. In this work both
direct methods and iterative solution by line relaxation are used as solvers at each
grid level.

FVE STENCILS

To recapitulate, the complete system of dimensionless equations is

. oT 1
solid: % = I vV.vT (44)
. oT 1
liquid: 5 +V-(@uTl) = iTa vV.-VT (45)
Ow 1
E—Vx(uxw) = ——EéVxwa (46)
w = VXVX(—?—@) (47)
v 10¥ ., 107,
where u=V x (-—;9) = —;5ZT+;EZ (48)
with the boundary conditions
T
solid surface 2 =0 : %—; =0 (49)
T
liquid surface z=0 : ?3_2 = —q(r) (50)
U= (51)
oT
= — 2
w=— (52)
axis r=0 : {;—3:20 (53)
U = (54)
w=0 (55)
or T
far away 7,z — 00 3E R (Where R=+vr2+ z2) (56)
interface 7= f(z,t) : T =1 (57)
ov
=— = 8
\4 o 0 (58)

= (@), (@) %

where n refers to the direction normal to the interface (outward). (Note: [5° ¢(r)rdr =

1)
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Figure 2: FVE Grid: the orientation of the triangular finite elements (solid) and the
square finite volumes (dashed) are shown. On each triangular element, the variables
are assumed linear between the three nodes. This allows consistent calculation of the
gradients across the volume boundaries. Note that this is only a cross section in the
(r,z) plane; the volumes extend in the 6 direction to form rings.

The Finite Volume Element (FVE) approach to discretizing the system involves
decomposing the domain in two ways: as the union of a set of elements, whose
vertices compose the set of grid points on which the unknowns are defined; and as
the union of a set of control volumes, one for each grid point (see Figure 2). The
unknowns are interpolated over each element, based on the values at the grid points,
giving a continuous representation over the whole domain. This representation is
used to integrate the conservation equations over each control volume. Hence, each
control volume gives three equations involving the three unknowns at the associated
grid point, as well as the values at neighboring points. The resulting set of discrete
equations for the finite element representation of the solution satisfies the conservation
laws exactly over any volume made up of the union of control volumes, including the
whole domain. (Actually, the boundary conditions may eliminate some of the control
volumes.)
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control

volume

Figure 3: From azisymmetry, each control volume results from sweeping the square
cross-section in the (r, z) plane about the z axis, giving a toroidal prism shape. Hence,
the uniform grid gives control volumes that increase with radial position.

For this axisymmetric problem, each control volume is a toroidal prism, the result
of taking a polygonal cross-section in the (r,z) plane and sweeping it all the way
around in the @ direction (see Figure 3). Then, integrating the convection-diffusion
equation (45) over a control volume, interchanging time derivatives and spatial inte-
grals, and applying the divergence theorem gives

dt /T’rdrdz-{—j{ (uT) rdl = a j{ -VTrdl (60)

where the 27 resulting from integration in 6 has been factored out, A refers to the
cross-sectional area (polygon) of the volume, C refers to the closed curve bounding
that cross-section, and i is the unit vector normal (outward) to C.

For the vorticity (46) and stream function equations (47), the control volume is
a vorticity tube, and the appropriate integral is over the cross-sectional area A (with
normal vector 0) Then, applying Stokes’ theorem gives

%//Aw-édrdz—fcﬁ-(uXw)dl

}{Cf:-udl - /Aw-édrdz (62)

1.
—-—e}t{Ct-wadl (61)

where t is the unit vector tangent to C, in the positive 6 sense.

Except near the phase-change interface, a uniform grid is applied with step size A
in both the r and z directions (see Figure 2). (Portions of this grid may be subdivided
into smaller uniform grids by the FAC method.) Each square of the grid is divided
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(k+1.4) (k+1,j+1)

NNE
! | ENE
NW «) )
&i-1) : ! : &+l
i i SE
WSW i |
SSW
Z
(k-1,j-1) (k-1,)
® ¢ r e

Figure 4: The conservation integrals for each control volume cross-section involve siz
separate area integrals over the siz triangular elements adjoining the central point;
the line integrals involve eight separate parts (the NW and SE elements each contain
two segments).

into two triangular elements by a diagonal (in the direction of increasing r + z), and
linear interpolation is used over-each triangular element. The control volume cross
sections are squares of side h, centered on each grid point (except for half-squares at
the boundaries and small quarter-squares at the corners).

Then in the integrated conservation equations (60, 61, 62), the area integrals are
over six triangular regions (portions of the six elements), and the line integrals are
over four line segments, each with halves in two different elements (see Figure 4). In
terms of components, the integrated equations are

d ov ov ov ov
= 7= - ZZTds— | 2T el
= /ATrdrdz + /Nar Tdr— [ = Tds— [ Zrdr+ [ =Ta
1 oT oT oT orT
= m(N—(;)—Z—rdr+/E§7—;rdz—vSgrdr—/w—a—;—rdz),
(63)
d oV w ov w ov w ov w
E AwdeZ =+ /N—g;;d’l“— E—a';';:dz— S-g;*;d7’+/ngz—?dz
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1 Ow O(rw) 1 Ow o(rw)l
- Re(/Nazdr+/Is or sz Sazdr /W or sz ’

ov1 ov 1 ov1 ov 1

— — =24 L de— | g | ZZZ
//Awdrdz N Ozr T EOrT dz s O0zr ar w orr az, (65)
where from here onward, w refers to the one nonzero component of vorticity, and
the labels N, E, S, and W refer to the four line segments of the line integrals by

“compass direction” relative to the central node.

Substituting the piecewise linear element representation of the unknowns into the
above integrals gives the discrete (in space) equations. (We use Maple to evaluate and
sum the integrals for these equations.) The equations are then presented in stencil
notation. In stencil notation, for example

a b ¢
d e f |T,
g h 1

where the center of the matrix e is the coeflicient of T" at the gridpoint P, the other
entries (a, b...) in the matrix are the coeflicients of the values the unknown (7' at
the neighboring gridpoints, and r and z are horizontal and vertical coordinates of P,
respectively. Blank entries indicate zero coeflicients, and a central ¥ indicates the sum
of all the other coefficients in the matrix. Note that in the nonlinear convective terms,
each of the coefficients of T or w is itself expressed as a stencil in ¥ (each centered at
the same point P); to save space, the ¥ is left out of the vorticity convection stencil.

At a typical grid point, the discretized equations become

2—2e 1+ 2¢

d h? 16 16
3;'2—4- —’}'5%6 145 2+']E€ T
1—-166 2"‘166
1 -1
-2 1 \/ 1|

) 2 -1 -1
+ & -1 Y 1 1 |o -1 v |T

r -1 -1 )

1 N/ 1 -2 |¥
-1 1
] 1
= 1 1-1c —14 l+3e |T (66)
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2 2 1 [A1]U [Ap] W
ah ( 9 14 9 )w+_1_ ([A3]\Il [CAlT [AdT )w
1

1 . Loae A
=5 1— 3¢t —[4+§(e+—-e‘)] 1436 |w
—z€" 1+ g€
(67)
1 rh2 2 1
1t —241t+17] 17 | T=—+] 2 14 2 |w (68)
1 241 2

where the internal stencils

—1+2et €
[CaAl¥=| 1+t —et4+e 1—-€ |V,
—et —1-le

let 1
[Ai] = ( —2 1- et ) ’ [Ay]
2+1% —1-
[As] = | 3¢ —-1-¢t , [A4] = ~l14+e -1 |,
-1t 2+17

1+t s [AG] = 1+'2'6— -2 ’
—zet -1 1 —3€

+ € - € + 1 _ 1
1—¢/2’

1l
TN
|
ok
|
iy
~—

[4s]

and the definitions

"= ——, 1
1+¢/2° 1—¢/2° 1+¢€/2°

€ =

are employed and r is the radial coordinate at the central point P. Note that for
those integrals in 7 with-integrands containing 1/r, that factor was pulled outside the
integral to avoid logarithms; the error introduced is of the same order as that due
to the piecewise linear representation itself. Also, the heat equation was rescaled by
1/r, and the stream function equation was rescaled by 7.

The radial dependence of the coefficients is a direct result of the axisymmetric
geometry. This dependence makes the calculation somewhat more complicated than
the corresponding two-dimensional problem. But far from the axis, where r > h and
hence € < 1, the equations approach the corresponding two-dimensional versions,
facilitating comparison.

158



Discretized Boundary Conditions

Along the surface z = 0, each of the three boundary conditions for the three
unknowns requires different treatment. The temperature at each grid point along
the surface is determined by a heat balance over the corresponding control volume,
with a half-square cross section (h x h/2). The contribution of the surface to the
convective flux integral is zero, since there is no velocity normal to the surface, and
the contribution of the surface to the diffusive flux integral is given by the Neumann
type boundary condition [ ¢(r)rdr. The resulting discrete equation is

2— 3¢ 1+ 2¢
d h? 1 1
E—zz %”%6 7+1—6€ %+'1"6‘6 T
1 |
y ¥
1
-+ 3r 2 -1 -1 T
" , v V
1 11 ! 1,1 1 r+h/2
= m 5-26 -2 §+ZE T+’]"Ma/r_h/2 Q(T)T‘d’l’ (69)

Here we specify the heat flux as a symmetric function of r that decays smoothly to
zero at some finite radius pp,q., while satisfying [5° ¢(r)rdr = 1:

6 22
Q(T) = ﬂ?naz [1 N (pTZaz) ] T S Pmaz (70)
0, T > Pmaz

For the calculations, we use pmez = 1.

The thermocapillary stress condition at the surface specifies the vorticity: w = %Tr—.
However, because of the linear interpolation between grid points, % is not well defined
at grid points on the surface. Hence, for the surface only, the vorticity is specified
at half-grid points (i.e., 7 = (i + 3)h), and triangular finite elements are formed
with neighboring points. This keeps the discretization of this important condition at
the same order of accuracy as the other equations, but entails special treatment of
the grid points next to the surface. The surface is also a streamline, where ¥ = 0
(Dirichlet condition). Using that fact and these special surface vorticity elements
gives the following flow equations for points by the surface (a distance h from the

surface):

L R ' (18w o 1519
Z 2] B 1 1 - = — | |B3l¥ B|¥ 4|
a2l s Mo ran|l )T



1 —

15 , 5 7 7865
+ +_ 1.1 T4 5 -
6€ [4 + 16¢€ 16€ ] s T 1€ |w

T (71)
%e+ -—%—e‘* —_ %e‘ -;— + %6*
1
It —24+1t+17] 17 | ¥ =

2 1
rh? [ rh
AL I E RS TR D T
8 4 8
24( ) 16 _1 1
where

and [Dg]E( S+ let —%)

Along the z axis, symmetry requires that there is no heat flux across the axis,
nor flow, nor shear stress, so both ¥ and w are zero there. Then for points on the
axis, the discrete heat balance over the cylindrical control volumes (half-square cross
section h/2 X h) gives:

ENENN|INTY
o
~——
~
+
| =
BN
TN
—
~— o —,—
(]
N
—
~—
S
-
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1
1 2
- -3 2 |T = 0(73)
1
2
where the equation was scaled using the average 7 = h/4. The homogeneous Dirichlet
conditions on ¥ and w apply to points on the axis, and for grid points neighboring
the axis, the usual stencils apply; no special treatment is necessary.

The temperature at the grid point at the origin is determined by a small control
volume (quarter-square cross section h/2 x h/2) with specified surface heat flux and
no flux (nor convection) through the axis:

14
ih_2 1_4l§ % T + _1._ -1 T
dt 24 44 2h U
1 h
1 2, 1 4 b2

Again, at the origin, both ¥ and w are zero (note the two boundary conditions on
vorticity are consistent at this point, due to the symmetry). Hence, the usual surface
flow equations apply to the grid point next to the origin.

At the far boundaries of the computational domain, the boundary condition on
the heat diffusion equation in the solid is that it decays in the same way as the
spherically symmetric solution for a point source:

oT T - r z
T=—R=-——"R=-T—=t-T—=1z2
\Y% R R 7  t ik (75)
where R = /72 + 22. This allow the heat flux across the artificial boundary to
be computed in terms of the temperature there, a Robin type boundary condition.
Below we give the discrete equations for the two edges (half-square volumes) and

three corners (quarter-square volumes) where this boundary condition is applied.

At the edge where r is at its maximum the stencil is given by

d h’2 2 11 7% _2%6 T 1 1 1 %2—— %36 - %3p T
| o [T T | e e TS
1- 3= 6 3~ 86 8P

where p = hr/(r + 22).

At the edge where z is at its maximum the stencil is

ARy sy scsiag e L6 sy |T=0
2 16 16 2 2 -
ZEZA R M ) Ma X
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where

11 1. 1 3 101 1, 1
a='2‘—16—§(1—§€)6 =-2-76 =§+Zf—§(1+§€)ca

and ¢ = hz/(r? + 2?).

At the corner where both 7 and z are at a maximum the stencil is

dn|, 1

22 1_3,. 415 T—— | uv |T=0

dioa| 27 1€ i6 Ma

1— e £ — jee '3
where
1 1 1, 1 3 9

= _ ez 1—= =_1+2e—2 1— 26,

e (ol 11
=378 %"

d h? 1
= T 1
dt 24

NI
<
S}

Finally, at the corner where r is maximum and z = 0 the stencil is

3
S€

1

—§e T-—

I >

3
2 2
e 3

[NIVY

N =

a
dt 2

[N

Tracking the Phase-Change Interface

One of the biggest challenges in models of phase change is the tracking over
time of the position of the two-phase interface. As one of the main goals of the
current research is the examination of the effects of thermocapillary convection on
the interface shape, great care is necessary in accurately modeling the geometry and
dynamics of the phase change process.

The grid structure must be modified near the interface. (While it would be possible
to quantize the interface position to lie on grid points, that would make moving the
interface difficult and would introduce errors that would be magnified in the multilevel
representation.) We represent the interface as piecewise linear between the points at
which it crosses the diagonals of the main grid, which have slopes equal to 1. This
representation assumes that the interface orientation never reaches an angle of 135°
(or —45°) relative to the surface (i.e., parallel to the main diagonals); this seems
reasonable, considering the interface is an isotherm that meets the surface at 90° and
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must end at 0° at the axis. (A more general approach would include representations
for several different local grid orientations.)

The movement of the interface through melting or solidification is governed by
the local heat balance near the interface. Hence the main requirement for the control
volume around each interface point (along the diagonals) is that the volume contain
the interface both at the current time and at the next time step, that is, the control
volumes must allow room for movement. (Then for the next time step, new control
volumes may be used.) Hence, not only the current interface position, but also an
estimate of the future position, is required to construct the current local grid. An
alternate approach is to adjust the solidification timescale parameter A at each time
step to constrain the maximum motion of the interface to remain within the interface
control volumes; physically this would correspond to time-dependent latent heat L.

To keep the geometry as simple as possible while allowing the interface points to
move along the main diagonals, we construct the control volumes on a diagonal grid.
(Here we refer to the control volumes by their cross sections in the (r, z) plane.) The
main diagonals are spaced a distance h/+/2 apart, and control volume boundaries in
that direction lie midway between them. Control volume boundaries in the perpen-
dicular direction are spaced the same, unless such boundary would cross the current
or predicted interface, in which case that segment is removed, giving a double-wide
volume (v/2h x h/+/2). [Note: it is conceivable that, if the interface orientation
exceeds 90°, triple-wide control volumes may be necessary.] Then any grid points
within the interface control volumes are removed. If space remains between the inter-
face control volume and the remaining regular grid, an auxiliary grid point is inserted
on the diagonal a distance h/+/2 from the regular grid point, with its diagonal square
control volume (h/v/2 x h/+/2). [Note: to simplify the programming, the auxiliary
points could be omitted; then the control volumes for the interface points will be
either single width (no grid point removed) or triple width (one grid point removed).]
Then the control volumes for the regular grid points adjoining this diagonal grid are
pentagons in one of three configurations: at an “inside” corner with one diagonal side,
two regular sides, and two regular half-sides; at a straight edge, either horizontal or
vertical, with one regular side, two regular half-sides, and two diagonal sides; or, at
an “outside” corner with three diagonal sides and two regular half-sides.

The auxiliary grid points form triangular elements with neighboring regular grid
points and/or neighboring auxiliary grid points. This leaves trapezoidal elements
adjoining the interface. Note that triangulating these trapezoids could result in very
complicated relations between elements and volumes. Therefore we use a “warped”
bilinear interpolation on these trapezoidal elements.

Where the interface intersects the surface or the axis, the grid must be further
modified to track these important points. This involves computing the heat balance
on a diagonal surface (or axis) control volume and tracking the position of the interface
along the diagonal. Depending on the proximity of the interface point on the diagonal
to the surface (or axis), then either the interface is extrapolated from the point inside
the surface perpendicularly to the surface or the “interface point” on the diagonal
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outside the surface is used to linearly interpolate the interface to the surface.

The interface is defined as the isotherm where 7' = 1, and on the interface the fluid
velocity is zero (no slip), and so ¥ = 0. The unknown vorticity at interface points is
determined by the stream function equation integrated over the liquid portion of the
control volume; here the circulation can be calculated (with no contribution along
the interface, due to no slip) to find the unknown strength of the vorticity tube:

// wdrdz=¢ t-udl (76)
A; C

where A; is the liquid area, with bounding curve C;. (Note that this equation contains
no time derivative.)

The only remaining unknown is the future position (along the diagonal) of the
interface point. This is governed by the heat balance over the liquid and solid portions
of the control volume:

)\Ma"lc% //Az rdrdz =

d
—— T
7 //A,+As rdrdz

— h-(uT) rdl
c,n (uT) r

+Ma™! fc _8-VTrd (77)
1+Cs

where A; + A, indicates the entire control volume, with bounding curve C; + Cs;.
(Note that A; and C; vary over the time step, while the control volume as a whole
does not.) The interpretation is that the heat coming in by convection and diffusion
goes to raise the temperature inside (though the interface temperature is fixed) and
to melt some solid, increasing the liquid portion of the volume (the first term).

The discrete equations are very complicated for regular grid points bordering
the diagonal interface grid and for interface points, and so are not reproduced here.
To guard against typographical errors, the stencils were derived using the symbolic
mathematics capabilities of the Maple software ([6]). Maple converted the result-
ing expressions into C language code, which were cut and pasted directly into our
simulation code.

The diagonal grid around the interface requires local diagonal coordinates. We
call these (z,y), where

T=z+r r=(z—y)/2
y=z—r so that 2= (3412 (78)

Then the velocity becomes

u=———X+——y (79)



Note that the (z,y) coordinates are scaled down in length by a factor of V2 relative
to the (r, z) coordinates, and on the diagonal grid the values of the (z,y) coordinates
are integer multiples of h (rescaled). In the area integrals, the Jacobian gives dr dz =
dz dy/2, but in each of the line integrals, the scaling of the differential is exactly
compensated by the scaling of the derivative (with respect to z or y). The slight
complication of rescaling is more than offset by the simplification of the algebra,;
otherwise factors of v/2 would abound. The bilinear interpolation for the trapezoidal
elements is also in terms of the (z,y) coordinates, both to simplify integration with
respect to the diagonal coordinates, and to avoid the singular case where the trapezoid
is a diagonal perfect square, which cannot be interpolated with a bilinear form in (r, 2).

Conclusion

In this preliminary work we have developed a finite volume element method for deter-
mining the shape of the weldpool. The governing equations and boundary conditions
have been discretized in space, and a time-stepping method can be applied to solve
the equations. An FAC method has been devised for resolving the fine details near
the moving interface and is being implemented as part of the continuing research.

The basic numerical methods discussed have been implemented in code and tested.
A future report will describe the details of the time-stepping, the FAC resolution near
the interface, and the numerical results on the total problem.
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