

Calhoun: The NPS Institutional Archive DSpace Repository

An Investigation of Timing Synchronization Errors for Tracking Underwater Vehicles

Read, Robert R.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/63314

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for

NPS55-90-15

Naval Postaraduate school Monterey, California

Robert R. Read

July 1990

[^0]
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr.
Harrison Shull
Superintendent
Provost

This report was prepared under the joint support of Naval Undersea Warfare Engineering Station, Keyport, Washington and the Naval Postgraduate School Research Program.

This report was prepared by:

Reviewed by:

PETER PURDUE
Professor and Chairman
Department of Operations Research

Released by:

Dean of Faculty and Graduate Studies

Unclassified

Security Classification of this page

REPORT DOCUMENTATION PAGE					
1a Report Security Classification UNCLASSIFIED		1b Restrictive Markings			
2a Security Classification Authority		${ }^{3}$ Distribution Availability of Repori			
2b Declassification/Downgrading Schedule					
4 Performing Organization Report Number(s) NPS55-90-15		5 Monitoring Organization Report Number(s)			
6a Name of Performing Otganization Naval Postgraduate School	6b Office Symbol (If Applicable) OR	7a Name of Monitoring Organization NUWES			
6c Address (ciry, slate, and ZIP code) Monterey, CA 93943-5000		7b Address (city, siate, and ZIP code)Code 512, Keyport, WA 98345			
8a Name of Funding Sponsoring Organization Naval Postgraduate School	8b Office Symbol (If Applicable) OR/Re	$\begin{aligned} & \text { Procurement Instrument Identification Number } \\ & \text { N0002488WX48044AC } \end{aligned}$			
8c Address (city, sate, and ZIP code) Monterey, California		10 Source of Funding Numbers			
		Progrem Element Number	Provee No	Tas No	

11 Tille (Include Secwity Classification) An Investigation of Timing Synchronization Errors for Tracking Uinderwater Vehicles
12 Personal Author(s) Read, Robert R.

| 13a Type of Report
 Technical | 13 b Time Covered
 From\quad To | 14 Date of Report (year, month,day)
 1990, July | 15 Page Count |
| :---: | :--- | :--- | :--- | :--- |

16 Supplementary Notation The views expressed in this paper are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

$i 7$ Cosati Codes		18 Subject Terms (continue on reverse if necessary and identify by block number) Fracking; calibration; systematic errors; components of variance; synchronization Fodeling:	Group	Subgroup

19 Abstract (continue on reverse if necessary and idensif) by block number
Two separate sensing arrays track the same underwater vehisle. The two versions of track are different, but roughly parallel. One possible explanation is the presence of a timing synchronization error. The report provides a model for describing and correcting such errors, estimation algorithms for quantifying the model paramelers. and statistical methodology for testing the validity of the effects. The techniques are applied to real data. and the results are reported. Also some properties of the noise process are recorded.

AN INVESTIGATION OF TIMING SYNCHRONIZATION ERRORS FOR TRACKING UNDERWATER VEHICLES

R. R. Read

Key Words
Tracking; calibration; systematic errors; components of variance; synchronization modeling

Two separate sensing arrays track the same underwater vehicle. The two versions of track are different, but roughly parallel. One possible explanation is the presence of a timing synchronization error. The report provides a model for describing and correcting such errors, estimation algorithms for quantifying the model parameters, and statistical methodology for testing the validity of the effects. The techniques are applied to real data, and the results are reported. Also some properties of the noise process are recorded.

Acknowledgements

This report had the partial support of the Naval Undersea Weapons Engineering Station, Keyport, Washington. The computer programming and graphical work was performed by Colin Cooper. The manuscript was processed by Hania La Born.

1. INTRODUCTION

This report deals with some calibration problems of monitoring a multiple array underwater tracking range. The arrays in the system are of the short baseline type; each contains four sonar transducers placed rigidly at the corners of a cube in a manner that describes a Cartesian coordinate system in three dimensions. Figure 1 contains a diagram showing the structure for these arrays and indicating the numerous signals they may receive. It is slightly deceptive in that real ray paths are not straight lines.

An array receives a distinctive signal from a synchronously timed pinger attached to the target vehicle. The differentials of the sound wavefront's times of arrival at the four hydrophones allow the computation of the azimuth and elevation angles (spherical coordinate longitude and latitude) of the normal to the wavefront at the origin of the local coordinate system. Then, assuming direct path propagation, one can ray trace using Snell's law, [1], starting with the aforementioned elevation angle and utilizing a velocity-versus-depth profile for the speed of sound in the water. Finally, the time differential between the source pulse at the target vehicle and its arrival at the array is used to stop the ray-tracing algorithm and determine the location of the target relative to the array. The local track is the sequential set of these estimated positions.

Each array in the system operates over a limited radius. As the target sojourns through the range, it is tracked by a number of these arrays. See Figure 2 for a plan view of the Nanoose range. (The zero level in the vertical is taken as mean sea level.) The overall path is constructed by transforming each piece of local track to the coordinates of the range based upon the
assumed location and orientation of the various local coordinate systems. Discontinuities, or mismatches occur because the track produced by one array does not mesh well with that produced by a neighboring array in the overlap regions. Such mismatches can be seen in Appendix B.

It appears that there are several sources of systematic error in the operation of this system. The question of individual array location and orientation has been treated previously [2]. The present report addresses the timing synchronization problem, from a statistical point of view. That is, the pulses received at the arrays are timed to the range clock with great precision. The timing information must be transmitted to the pinger prior to the release of the target vehicle. Although there is no engineering reason to suspect noticeable error in this transfer, some data exhibit behavior consonant with such an interpretation. Thus we build a mathematical model to account for such a source of systematic error, and develop statistical methodology for interpreting the data in the light of the model. Indeed, if the method provided a way to eliminate mismaiches for an entire run for a single vehicle, there would be great temptation to use it as a smoothing filter.

Generally there are several sequences of time points, called point count sets, for which two arrays simultaneously produce track. These occur for tracking in the overlap regions indicated in Figure 2. The paired tracking data of these point counts are called "crossover data." It is the crossover data generated as a result of the target vehicle's entire trip that provide the evidence suggesting timing synchronization problems and the data base for evaluating the use of such a model. Each version of track in a crossover data set is assumed to have been converted to the (common) range coordinate system. The components of this system are called "downrange, crossrange, vertical," or sometimes "centerline, crossline, vertical."

Figure 1. Short Bose Line Array and Ray Poihs.

Figure 2. Nonoose Range

The model is developed in Section 2. It allows for both a timing offset and a drift. Estimation methods and statistical properties are developed. Section 3 contains applications to real data. It is shown that the offsets are significant and the drifts are negligible. The issue of the reality of the effects is also treated. I.e., is it the timing offset constant for all crossover regions used in a given run? To answer this question, some modeling of the components of variance is required and when done, a statistical analysis is performed. It appears that the true cause of these effects is something other than a timing synchronization bias. The analyses are supported by some characteristics of the noise process, and these are presented in Section 4. Conclusions are summarized in Section 5. A number of appendices are included that contain supporting data and information, including source codes for computations.

2. MODEL DEVELOPMENT AND STATISTICAL PROPERTIES

Figure 3 contains a mockup illustrating conditions that support the consideration of a timing synchronization correction. It shows a plan view which includes the radial lines from the arrays to the estimated track points in adjacent overlap regions. Between these regions, much data is supplied only by array A_{2}. The analyst does not see the radial lines on his screen, nor does he see the black dots. He sees only the X's and 0's (no distinction between the two) and no mismatch is apparent. (Mismatches would be apparent however for track pointing in a different direction.) But when one pairs up the radial lines by common time points, then one sees that the two versions of track lack coherence and can be improved by stretching the estimated points to the black dot positions. This can be achieved by a single constant adjustment to the transit time values in the ray tracing algorithm.
Figure 3: Effect of Timing Offset Errors (Synthesized)

The figure iiso helps one to imagine the distinction between the effects of an array location error model and a timing adjustment model. If the former were applied to the situation in Figure 3, at least two arrays would have to be moved. But any such decisions cannot be made in isolation. The ultimate goal is the simultaneous improvement of coherence in all overlap areas and, of course, discontinuities must not be created at other places.

A crossover data set is a set of matched pairs of three vectors

$$
X(t)=\left\{\begin{array}{l}
X_{1}(t) \tag{1}\\
X_{2}(t) \\
X_{3}(t)
\end{array}\right\} \quad Y(t)=\left\{\begin{array}{l}
Y_{1}(t) \\
Y_{2}(t) \\
Y_{2}(t)
\end{array}\right\} \quad t=1, \ldots, T
$$

representing two versions of the same vehicle track for a common set of time values (point counts), I in number. The array that produced $X(t)$ is located at α and the one that produced $Y\left(t^{\prime}\right.$ is located at β. Thus these two versions of track can be represented in their local coordinate systems as

$$
\begin{equation*}
\xi(t)=X(t)-\alpha \quad \eta(t)=Y(t)-\beta \tag{2}
\end{equation*}
$$

Timing synchronization error corrections may be viewed as either stretching or contracting the vectors $\xi(t)$ and $\eta(t)$ by the same (time) amount. The effect of such corrections is not constant, but depends upon (i) the speed of sound in water at the depths $X_{3}(t)$ and $\mathrm{Y}_{3}(\mathrm{t})$; (ii) the elevation angles of the ray traces at these times and depths.

The magnitudes of the time adjustments are small and the effects can be described using first order terms

$$
\begin{align*}
& \xi(t, g(t))=\xi(t)+g(t) a(t) \\
& \eta(t, g(t))=\eta(t)+g(t) b(t) \tag{3}
\end{align*}
$$

where $g(t)$ is a scalar function of time representing the total adjustment for timing offset (δ) and drift (m)

$$
\begin{equation*}
\mathrm{g}(\mathrm{t})=\delta+\mathrm{m}\left(\mathrm{t}-\mathrm{t}_{0}\right) \tag{4}
\end{equation*}
$$

for a conveniently chosen central time, t_{0}; and $a(t), b(t)$ are the scaled directions of stretch

$$
a(t)=v(t)\left\{\begin{array}{l}
\cos (\theta(t)) \cos (\phi(t)) \tag{5}\\
\cos (\theta(t)) \sin (\phi(t)) \\
\sin (\theta(t))
\end{array}\right\}
$$

i.e., $v(t)$ is the speed of sound at depth $\xi_{3}(t), \theta(t)$ is the elevation angle of the ray trace from α at $\xi_{3}(t)$, and $\phi(t)$ is the azimuth of $\xi(t)$ from α. The vector $b(t)$ is defined similarly for the track $\eta(t)$ and its origin β.

It is easily seen that, for given δ, m and t_{0}, the corrected versions of track in the (common) range coordinate system are

$$
\begin{align*}
& X(t, g(t))=X(t)+g(t) a(t) \tag{6}\\
& Y(t, g(t))=Y(t)+g(t) b(t)
\end{align*}
$$

The statistical estimation problem is to chose δ and m so that the two versions of track agree as well as possible. The least squares approach is adopted. Using the notation

$$
\begin{equation*}
\underset{t}{\operatorname{Ave}\|W(t)\|^{2}=\frac{1}{T} \sum_{t=1}^{T} W^{\prime}(t) W(t), ~(t)} \tag{7}
\end{equation*}
$$

we set up the oblective function

$$
\begin{align*}
Q & =\underset{t}{\operatorname{Ave}}\|X(t, g(t))-Y(t, g(t))\|^{2} \\
& =\underset{t}{\operatorname{Ave}}\|X(t)-Y(t)\|^{2}+\underset{t}{\operatorname{Ave}}[g(t)]^{2}\|a(t)-b(t)\|^{2} \tag{8}\\
& +2 \underset{t}{\operatorname{Ave}} g(t)[a(t)-b(t)]^{\prime}[X(t)-Y(t)]
\end{align*}
$$

and find the values of δ and m that minimize Q. When the two partial derivatives are set equal to zero it is seen that there is convenience in choosing t_{0} so that

$$
\begin{equation*}
\underset{t}{\operatorname{Ave}}\left(t-t_{0}\right)\|a(t)-b(t)\|^{2}=0 \tag{9}
\end{equation*}
$$

That is

$$
t_{0}=\text { Ave } t\|a(t)-b(t)\|_{t}^{2} / \underset{t}{\text { Ave }}\|a(t)-b(t)\|^{2}
$$

This done, the normal equations may be expressed as

$$
\begin{gather*}
\delta \operatorname{Ave}\|a(t)-b(t)\|^{2}=-\underset{t}{\operatorname{Ave}(a(t)-b(t))^{\prime}[X(t)-Y(t)]} \tag{10}\\
\underset{t}{\operatorname{Ave}\left(t-t_{0}\right)^{2}\|a(t)-b(t)\|^{2}}=-\underset{t}{\operatorname{Ave}\left(t-t_{0}\right)[a(t)-b(t)]^{\prime}[X(t)-Y(t)]}
\end{gather*}
$$

and one can readily solve explicitly for the minimizing values $\hat{\delta}$ and \hat{m}. Positive values of $\hat{\delta}$ are associated with stretching, negative with contracting.

If we let \hat{Q} be the minimizing value of Q, it is useful to establish the decomposition

$$
\begin{equation*}
Q=\hat{Q}+(\hat{\delta}-\delta)^{2} \operatorname{Ave}\|a(t)-b(t)\|^{2}+(\hat{m}-m)^{2} \underset{t}{\operatorname{Ave}\left(t-t_{0}\right)\|a(t)-b(t)\|^{2}} \tag{11}
\end{equation*}
$$

Before justifying (11) it is convenient to shorten the writing: let $W(t, \delta(t))$ $=X(t, g(t))-Y(t, g(t)) ; \quad c(t)=a(t)-b(t) ; \hat{\delta}(t)=\hat{\delta}+\hat{m}\left(t-t_{0}\right)$. Then the statement says

$$
\begin{align*}
& \underset{t}{\operatorname{Ave}\|W(t, g(t))\|^{2}} \\
& =\underset{t}{\operatorname{Ave}} \| W\left(t, \hat{\delta}(t)\left\|^{2}+(\hat{\delta}-\delta)^{2} \underset{t}{\operatorname{Ave}}\right\|\left(\mathrm{c}(\mathrm{t})\left\|^{2}+(\hat{m}-m)^{2} \underset{t}{\operatorname{Ave}\left(t-t_{0}\right)}\right\| \boldsymbol{\| c}(t) \|^{2}\right.\right. \tag{12}
\end{align*}
$$

and the result is justified by use of the three orthogonality relationships

$$
\begin{gather*}
\operatorname{Ave}\left[W(t, 0)+\hat{\delta} c(t)+\hat{m}\left(t-t_{0}\right) c(t)\right]^{\prime} c(t)=0 \\
\operatorname{Ave}\left[W(t, 0)+\hat{\delta}_{t}(t)+\hat{m}\left(t-t_{0}\right) c(t)\right]\left(t-t_{0}\right) c(t)=0 \\
\operatorname{Ave}\left(t-t_{0}\right) c^{\prime}(t) c(t)=0 \tag{13}
\end{gather*}
$$

which in turn are established using the normal equations (10), and (9).
The significance of the offset and drift parameters can be judged if we develop the means and variances of $\hat{\delta}, \hat{m}$. Letting E denote the mathematical expectation operator, we begin with the assumption

$$
\begin{equation*}
E[W(t, g(t)]=0 \tag{14}
\end{equation*}
$$

which embraces the idea that the two corrected versions of track produce common track without systematic error.

Further, let

$$
\begin{equation*}
K_{\delta}=\left[\sum_{t} c^{\prime}(t) c(t)\right]^{-1} ; \quad K_{m}=\left[\sum_{t}\left(t-t_{0}\right)^{2} c^{\prime}(t) c(t)\right]^{-1} \tag{15}
\end{equation*}
$$

and use (13) and (14) to show that the estimators $\dot{\delta}$ and \hat{m} are unbiased.

$$
\begin{aligned}
& E(\hat{\delta})=-K_{\delta} \sum_{t} c^{\prime}(t) E[W(t, 0)]=K_{\delta} \sum_{t} c^{\prime}(t)\left[\delta+m\left(t-t_{0}\right)\right] c(t)=\delta \\
& E(\hat{m})=-K_{m} \sum_{t}\left(t-t_{0}\right) c^{\prime}(t) E[W(t, 0)]=K_{m} \sum_{t}\left(t-t_{0}\right) c^{\prime}(t)\left[\delta+m\left(t-t_{0}\right)\right] c(t)=m
\end{aligned}
$$

To develop variances, we assume that the positive lag covariances are zero; support for this appears in the section on noise characteristics. Let M represent the (zero lag) covariance matrix. (See Appendix C for estimates).

$$
\begin{equation*}
M=E\left[W(t, g(t)) W^{\prime}(t, g(t)]\right. \tag{16}
\end{equation*}
$$

Then one easily represents

$$
\begin{align*}
\operatorname{var}(\hat{\delta}) & =K_{\delta}^{2} \sum_{t} c^{\prime}(t) M c(t) \tag{17}\\
\operatorname{var}(\hat{m}) & =K_{m}^{2} \sum_{t}\left(t-t_{0}\right)^{2} c^{\prime}(t) M c^{\prime}(t) \tag{18}\\
\operatorname{cov}(\hat{\delta}, \hat{m}) & =K_{\delta} K_{m} \sum_{t}\left(t-t_{0}\right) c^{\prime}(t) M c(t) \tag{19}
\end{align*}
$$

If M is proportional to the identity matrix then this last term is zero; the other two terms simplify immensely; and a standard regression development can be used. But the study of noise characteristics does not support this. On the other hand the vectors $\{c(t)\}$ do not change much with t and this has the tendency to render (19) to be small. The reason for this stability is that crossover data occurs only at the greater distances from the sensing arrays; the azimuth and elevation angles and the layer sound speeds do not change much.

It appears that the matrix M changes with the crossover data set. Methodology for estimating it appears in Section 4. Estimates of the M matrices appear in Appendix C.

3. DATA ANALYSIS

The data consists of $\hat{\boldsymbol{\delta}}, \hat{m}$, and supporting values for 69 segments of crossover track collected over four separate days with two (temporally serial, not concurrent) target vehicles (runs) per day. The information is summarized in Table 1. Missing variance estimates indicate either a data shortage or outlier problems. In a few cases the tracks were curved, and the straight line model is not adequate. The units are milliseconds for $\hat{\boldsymbol{\delta}}$, and milliseconds per point count for \hat{m}. One millisecond translates to about 4.5 to 5 feet of distance. The ratios of means to standard deviations are used to judge whether the effects are significantly different from zero. Virtually all of the offsets and some of the drifts are significant although the latter are not strongly so. The " r " column contains the correlations between $\hat{\delta}$ and \hat{m}. They are insignificant. A further search for large scale drift was made by plotting $\hat{\delta}$ against the crossover central time t_{0} for each run. They appear in Figure 4. If a smooth signal were discernible then we would have a way to connect the δ values that appear in each column of Table 2. But they are chaotic and provide no incentive to continue any concern about drift. It is concluded that the offsets are significant and the drifts are not. The latter will be dropped from further consideration. Some graphical examples of the effect our timing corrections have been selected and appear in Appendix B.

Table 1: Offsets, Drifts, Signal to Noise Ratios

Date	Vonicle	δ	σ_{8}	δ / σ_{δ}	m	σ_{m}	m / σ_{m}	1	t_{0}	T
3/23/89	MK 30	1.37	. 0461	29.82	. 00168	. 001627	1.03	-. 00	405.13	42
		1.74	. 0431	40.28	. .00831	. 002217	3.75	. 00	422.72	33
		1.69	. 0925	18.29	. 01559	. 007024	2.22	. 06	417109	19
		. 78	. 0464	16.87	. 00245	. 001588	1.54	02	439.71	45
		-. 15	. 0504	2.97	. 01304	. 001438	9.07	. 02	2012.80	57
		. 10	. 0802	1.23	. 00150	. 005509	. 27	. 01	3080.16	22
		-1.24	. 0480	25.96	. .00119	. 001645	. 72	. 01	2531.21	49
3/23/89	MK 30	3.54	. 0479	73.85	. .00395	. 002118	1.86	. 06	422.64	37
		2.52	. 0584	43.17	-. 00224	. 002136	1.05	.11	1605.22	47
5/10/89	MK 27	3.04	. 0283	107.40	. 00993	. 001142	8.70	. 02	3107.58	43
		3.44	0192	178.88	. .00250	. 000866	2.89	-. 06	3120.22	38
		3.24	. 0401	80.68	. .00007	. 002747	. 02	. 05	6936.70	25
		243	. 0270	90.18	. 00187	.001375	1.36	. 00	311686	34
		1.86	0266	69.80	. 00029	. 000825	35	-. 00	3781.03	56
		1.24	. 0228	54.56	. 00408	000630	6.48	-. 05	5471.41	59
		2.06	. 0197	10459	. 00437	. 000662	6.60	. 02	4720.56	50
		1.99	.0104	190.86	. .00067	. 000364	1.84	. 02	8060.02	50
		2.27	. 0180	126.16	. .00196	. 000770	2.54	-. 03	5992.35	40
		1.89	. 0868	21.72	. .00001	. 000567	. 01	- 01	961569	50
5/10189	MK 27	3.49	. 0194	180.11	. 01062	. 000746	14.23	-. 03	1733.39	45
		3.66	. 0270	135.56	. .00044	. 001268	. 35	. 00	1751.02	37
		4.90	. 0189	259.57	. 00443	. 000689	6.43	01	10196.44	45
		293	. 0258	113.27	. .00545	. 001358	4.02	. 00	1747.85	33
		209	. 0406	51.50	. 00038	. 001887	. 20	.01	2366.96	37
		2.85	. 0243	117.13	-. 000094	000845	1.11	. 07	2980.01	50
		3.87			-. 00050	-. -	. .-	12354.91	50
		237			-. 01074		-. -	--	5316.80	15
		338	. 0131	257.71	. 00257	000458	5.62	00	12215.15	50
		1.36	. 0209	64.92	. 00276	. 000662	4.17	. 06	3585.00	55
		218	0181	120.55	-. 00195	. 000628	3.11	. 07	447800	50
		218	0149	146.48	. 00192	. 000479	4.02	-. 03	587392	54
		491	0096	510.80	. 00022	. 000337	64	. 02	11235.86	50
		3.15	0281	111.97	-. 00202	. 001001	202	-. 05	6480.62	46
6/6:89	MK 27	268	0336	79.78	. 01680	. 003073	5.47	02	1952.64	19
		4.31	0116	371.65	-. 00189	. 000377	5.02	08	10562.53	50
		4.95	0269	184.19	. 00144	. 001136	1.27	-. 04	14411.90	41
		272	0125	21740	00343	. 000434	7.91	. 02	2124.12	50
		4.03	. 0136	29747	. 00242	. 000464	5.22	-. 02	1270975	50
		114	0376	3032	-. 00197	. 001555	1.27	- 01	497922	40
		191	0251	76.25	. 00401	. 001141	3.52	. 07	619742	35
		269	0151	178.04	-. 00143	. 000486	2.93	-. 05	1204401	51
6:6:89	MK 27	211	0232	91.30	00091	. 000783	1.17	. 03	35726	50
		309	0434	71.15	00596	003137	190	-. 02	421.96	24
		290	0195	14886	. .00231	000677	3.42	-. 03	413553	50
		248	. 0233	106.78	. . 00211	. 000692	3.06	. 04	487.61	50
		199	. 0156	12736	. 00192	. 000541	3.55	-. 02	178182	50
		1.04	0202	5,69	. .00075	. 000681	1.10	. 04	250537	50
		1.32	0181	7274	. 00003	000631	. 05	01	1991.06	50
7:21/88	MK 27	207	0217	95.45	. 00060	000725	. 83	- 02	35215	52
		2.75	0300	91.58	. 00020	. 001845	. 11	-. 00	37791	28
		224	0115	19577	-. 00160	. 000398	401	-. 00	444001	50
		1.90	0147	129.27	. 00244	000510	4.79	. 03	46917	50
		147	, 1	129.2	. .00746	4	.	106261	1
		116	0128	90.47	. 00287	001310	219	01	177298	1
		. 29	0144	1986	. 00232	000501	464	. 01	206858	5
		245	0112	ci7.86	00069	. 000392	1.76	00	313766	5
7/21/88	MK 30	137	0245	5585	. 01449	000853	13.46	02	110815	5
		215	0308	69.77	. 00069	002324	. 30	-. 02	115298	2
		96	0192	5018	. 00019	. 000662	29	. 03	665819	5
		1.10	0171	6397	. 00206	000595	3.46	02	21745	5
		69	0189	36.48	-. 00233	000656	354	. 02	436014	5
		- 02	0099	207	00190	000346	5.49	- 06	1149822	5
		. 80	0209	3831	00147	000730	201	- 00	466748	5
		- 42	0337	1235	00355	001173	302	-. 03	1043020	5
		27	0176	1546	00035	000611	57	07	379399	5
		17	0251	669	00024	000952	26	03	514188	2
		54	0496	1088	. 00171	003582	48	03	1203194	2
		61	0259	2351	00509	000897	567	02	301104	
		47	$02{ }^{\circ}$	1594	$\cdots 23$	001380	234	04	569710	

Table 2: Estimates of the Timing Offset

Figure 4. Offset vs. Central Point Count for the eight runs

Since the $\hat{\delta}$ values are significant, it is important to discover what they really represent. They have been labeled timing synchronization offset errors and, if that labeling is a valid physical description, then each run (vehicle) on each day should have its own unique value and this common value could be used to correct all track, not just crossover track. What follows is an analysis of this point.

Table 2 contains a graphical positioning of the sixty-nine $\hat{\delta}$ values according to the eight runs. There were eleven array pairs involved in this process and they are marked with the letters a, b, \ldots, k. (The correspondence with the overlap regions marked in Figure 2 is given in Table 3.) Study of Table 2 shows considerable "within run" variability, and one is inclined to doubt the reality of the constant offset interpretation.

TABLE 3. IDENTIFICATION OF ARRAY PAIRS TO RECONCILE TABLE 2
WITH FIGURE 2

$\mathrm{a}(1,11)$	$\mathrm{e}(3,4)$	i	$(5,56)$
$\mathrm{b}(1,2)$	$\mathrm{f}(4,5)$	j	$(5,14)$
$\mathrm{c}(2,11)$	$\mathrm{g}(5,6)$	$\mathrm{k}(15,16)$	
$\mathrm{d}(2,3)$	$\mathrm{h}(4,55)$		

In passing we also note that the $\hat{\delta}$ values for each array pair appear to have some temporal coherence, and hence the assignable causes may be related to this, but that is an issue for another time.

We proceed to model the components of random error variance and develop a test statistic for examining whether or not all $\hat{\delta}$ for the same run can be viewed as constant. The $\left\{\hat{\delta}_{i}\right\}$ are modeled as being affected by the day (water depth velocity profiles change from day to day), the run (the second run is a different vehicle operating later in the day), and the array pairs generating the crossover data. The array pairs are assumed to produce fixed
effects, with values α_{j} for $j=1, \ldots, 11$; and the day and run effects are assumed to be random with zero means and variances σ_{1}^{2} and σ_{2}^{2} respectively. There is also an experimental (residual) error having zero mean and variance σ^{2}.

The result is the mixed model

$$
\begin{equation*}
\hat{\delta}=X \alpha+Z \beta+e \tag{20}
\end{equation*}
$$

where $\hat{\delta}$ is the 69 component column vector of δ estimates; X is a 69×11 matrix of zeros and ones (incidence matrix) relating the $\hat{\delta}$ component to the array pair; α is the 11 component vector of array pair fixed effects; Z is a 69 rowed partitioned incidence matrix

$$
\begin{equation*}
\mathrm{Z}=\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right) \tag{21}
\end{equation*}
$$

with Z_{1} having 4 columns relating the $\hat{\delta}$ component to its day and Z_{2} having 8 columns relating the $\hat{\delta}$ component to its run. The vector $\beta^{\prime}=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)$ represents the random variables

$$
\begin{array}{ll}
\beta_{1}^{\prime}=\left(\beta_{11}, \ldots, \beta_{14}\right) & \text { independent } \\
\mathrm{N}\left(0, \sigma_{1}^{2}\right) \\
\beta_{2}^{\prime}=\left(\beta_{21}, \ldots, \beta_{28}\right) & \text { independent } \\
\mathrm{N}\left(0, \sigma_{2}^{2}\right)
\end{array}
$$

and the residuals are

$$
e^{\prime}=\left(e_{1}, \ldots, e_{69}\right) \quad \text { independent } \quad N\left(0, \sigma^{2}\right)
$$

Further the vectors β_{1}, β_{2}, e are assumed to be mutually independent.
We will be applying the model (20) separately to each of the eight runs for purposes of estimating the fixed effects (α) for each of those runs. Such estimates will require values for the variance components $\left(\sigma^{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)$. We prefer to estimate them but once, by pooling all of the data. This can be
accomplished separately from the estimation of fixed effects by using the restricted maximum likelihood method: the unequal block size version has been treated by Patterson and Thompson, Ref. [4] and is used here. (See Appendix A for a description of the algorithm.) The results are

$$
\begin{equation*}
\hat{\sigma}_{1}^{2}=0.3571 \quad \hat{\sigma}_{2}^{2}=0.7207 \quad \hat{\sigma}^{2}=0.2430 \tag{22}
\end{equation*}
$$

and the units are seconds squared. It is noted that the run-to-run variance is double that of the day-to-day variance, which in turn is larger than the error variance by a ratio of about seven to five. But the degrees of freedom for the first two variances are small and the estimates may not be very reliable.

Using the model (20) one sees that the covariance matrix of the observables is

$$
\begin{equation*}
\mathrm{H}=\sigma^{2} \mathrm{I}_{n}+\mathrm{Z} \Gamma \mathrm{Z}^{\prime} \tag{23}
\end{equation*}
$$

where I_{n} is the identity matrix of order n, Γ is diagonal, the first four values being σ_{1}^{2} and the next eight σ_{2}^{2}; and Z is partitioned $\left(Z_{1}, Z_{2}\right)$ as before. For the
full data set $n=69$, but recall that our goal is to check whether the fixed effects (offset estimates) can be viewed as constant within each run. The plan is to estimate the fixed effects for each run and test whether they can be viewed as constant (over the array pairs).

To do this we proceed as follows. The $\hat{\delta}$ values for the $\mathrm{k}^{\text {th }}$ run can be identified by the ones in the $k^{t h}$ column of $Z_{2}, k=1, \ldots, 8$. The array pairs involved (not necessarily all eleven) are identified by ones in the X matrix restricted to the $\mathrm{k}^{\text {th }}$ run. The Z matrix is restricted in a like fashion and the covariance matrix (of order n, the number of crossover data sets in the $\mathrm{k}^{\text {th }}$ run) has the same structure as (23) with the reinterpretation of inputs. Of course the estimates (22) must also be input.

Let K be the number of array pairs involved in the $k^{\text {th }}$ run. Use the Aitken estimator [3]

$$
\begin{equation*}
\hat{\alpha}_{k}=\left(X_{k}^{\prime} \hat{H}_{k}^{-1} X_{k}\right)^{-1} X_{k}^{\prime} \hat{H}_{k}^{-1} \hat{\delta}_{k} \tag{24}
\end{equation*}
$$

and its covariance matrix

$$
\begin{equation*}
\operatorname{var}\left(\hat{\alpha}_{k}\right)=\left[X_{k}^{\prime} \hat{H}_{k}^{-1} X_{k}\right]^{-1}=\hat{V}^{-1} \tag{25}
\end{equation*}
$$

and the subscript k modifies the previous definitions of symbols so that only the $k^{\text {th }}$ run is involved. If the null hypothesis is true (i.e., the α_{k} all fall on the main diagonal of the K dimensional space), then the maximum likelihood estimate of the common value is

$$
\begin{equation*}
\bar{\alpha}=\sum_{i=1}^{K} \sum_{j=1}^{K} V^{i j} \hat{\alpha}_{k}(j) / \sum_{i}^{K} \sum_{j}^{K} V^{i j} \tag{26}
\end{equation*}
$$

It also follows from the normality assumptions that the quadratic

$$
\begin{equation*}
\left(\hat{\alpha}_{k}-\bar{\alpha}\right)^{\prime} V\left(\hat{\alpha}_{k}-\bar{\alpha}\right) \sim \operatorname{Chi} \text { Square }(K-1) \tag{27}
\end{equation*}
$$

and this statistic is the weighted distance of the components of α from the main diagonal (i.e., the constant fixed effect that is the same for all array pairs). Thus the null hypothesis should be rejected when this distance is too large.

The numerical results for the eight runs are contained in Table 4. The column marked p^{*} contains the p values (empirical significance level) corresponding to the test statistics listed under the "distance" column. Seven of the eight values indicate rather rare events and the eighth, $\mathrm{p}^{*}=0.14$, is associated with one degree of freedom. Low degrees of freedom tend to
dampen the chances of finding significant results. The final column is the ratio of the distance (27) to its standard deviation under the null hypothesis.

We assert that the array pair effects are not constant and that there are other sources of systematic error that dominate this process.

TABLE 4. TESTING THE EIGHT RUNS FOR CONSTANT FIXED EFFECTS

$\bar{\alpha}$	$\mathrm{K}-1$	Distance	p^{*}	distance/SD
0.61	6	30.17	3.6×10^{-5}	8.71
3.03	1	2.12	0.14	1.51
2.35	8	17.71	0.06	4.43
3.09	9	51.67	5.2×10^{-8}	12.18
3.05	4	41.48	2.1×10^{-8}	14.67
2.13	6	14.16	0.03	4.09
1.79	7	18.13	0.01	4.85
0.46	8	$30.4 \div$	1.8×10^{-4}	7.61

4. CHARACTERISTICS OF NOISE

In order to study the stochastic nature of the tracking errors we fit straight lines to the track. (This was done even for track that did not appear linear via a visual scan of graphical output. The exceptional cases are marked in Appendix C.) It is assumed that the target vehicles speed is constant. The result is a set of deterministically spaced points that fall on a straight line in three space. From these we can produce residuals and, assuming local stationarity, study the noise structure.

The basic (unadjusted for constant speed) straight line is found by principal components. Let $X(t)$ be used for $X(t, 0)$, eq. (6) and

$$
\begin{equation*}
\bar{X}=\frac{1}{T} \sum_{t} X(t) \tag{28}
\end{equation*}
$$

We seek a projection (direction) $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right)^{\prime}$

$$
\begin{equation*}
Z(t)=\sum_{1}^{3} p_{i} X_{i}(t)=p^{\prime} X(t) \tag{29}
\end{equation*}
$$

that will maximize the variance of $\{Z(t)\}$

$$
\begin{equation*}
\sigma_{Z}^{2}=\frac{1}{T} \sum_{t}[Z(t)-\bar{Z}]^{2}=p^{\prime} C_{x} p \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{x}=\frac{1}{T} \sum_{t}(X(t)-\bar{X})(X(t)-\bar{X})^{\prime} \tag{31}
\end{equation*}
$$

is the covariance matrix of the track data, $X(t)$.
Since the vector p is a set of direction numbers, we adopt the usual constraint, $\sum_{1}^{3} p_{!}^{2}=1$. (This will keep σ_{2}^{2} finite.) It is easily shown that the three solutions to the eigen problem

$$
C_{x} p=\lambda p
$$

provide us with an orthonormal basis

$$
\begin{equation*}
P=\left\{P_{1}, P_{2}, P_{3}\right\} \tag{32}
\end{equation*}
$$

where P_{1} is the eigen vector corresponding to λ_{1} and $\lambda_{1}>\lambda_{2}>\lambda_{3}$. Since $\sigma_{Z}^{2}=$ $\mathrm{p}^{\prime} \mathrm{C}_{\mathrm{x}} \mathrm{p}=\lambda \mathrm{p}^{\prime} \mathrm{p}=\lambda$, and our goal is to maximize σ_{Z}^{2}, we choose the first eigen vector for use.

The set of values

$$
\begin{equation*}
Z_{1}(t)=P_{1}^{\prime}(X(t)-\bar{X}) \tag{33}
\end{equation*}
$$

represents the succession of values after the vectors $\{X(t)-\bar{X}\}$ are projected onto the line of the first principal component. These projections are orthogonal projections and may not well represent the relative positions of a target vehicle heading in the direction P_{1} at constant speed. Accordingly it is appropriate to make an adjustment in the $\left\{Z_{1}(t)\right\}$ to account for constant speed. The collection of point counts,

$$
\begin{equation*}
t_{1}<t_{2}<\ldots<t_{T} \tag{34}
\end{equation*}
$$

all differ by integral multiples of some base value, Δ, representing distance traversed per point count. Let us perform a simple linear regression of the $Z_{1}(t)$ on the times (34). The fitted values are

$$
\begin{equation*}
\hat{Z}(t)=a+b(t-\bar{t}) \tag{35}
\end{equation*}
$$

where $a=\frac{1}{T} \sum_{t} Z_{1}(t)$ and $b=\sum_{t}(t-\bar{t}) Z_{1}(t) / \sum_{t}(t-\bar{t})^{2}$. Now the successive values of $\hat{Z}(t)$ difter by integral multiples of a converted base value, $b \Delta$, and represent the constant speed progression of the vehicle in the direction P_{1}.

It remains to represent the distances $\hat{Z}(t)$ in the original coordinate system. Let

$$
\begin{equation*}
R(t)=(\hat{Z}(t), 0,0)^{\prime} \tag{36}
\end{equation*}
$$

be the estimated position of the vehicle in the basis P, and then

$$
\begin{equation*}
X_{s l}(t)=\bar{X}+P R(t) \tag{37}
\end{equation*}
$$

will be the straight line in the original coordinates. Similarly, when $\{Y(t)\}$ is put into this algorithm, we produce $Y_{s l}(t)$.

Now we are positioned to estimate the covariance matrices of the noise processes

$$
\begin{align*}
& D_{x}=\frac{1}{T} \sum_{t}\left[X(t)-X_{s l}(t)\right]\left[X(t)-X_{s l}(t)\right]^{\prime} \\
& D_{y}=\frac{1}{T} \sum_{t}\left[Y(t)-Y_{s l}(t)\right]\left[Y(t)-Y_{s l}(t)\right]^{\prime} \tag{38}\\
& D_{x y}=\frac{1}{T} \sum_{t}\left[X(t)-X_{s l}(t)\right]\left[Y(t)-T_{s l}(t)\right]^{\prime}
\end{align*}
$$

Computational work shows considerable variability in these matrices as one changes the day, the run, and the array pair. Also the cross correlations are mostly different from zero. The matrix M, eq. (16), is estimated by

$$
\begin{equation*}
\hat{M}=D_{x}+D_{y}-D_{x y}-D_{x y}^{\prime} \tag{39}
\end{equation*}
$$

and used in (17), (18), and (19). The quantities (38) and (39) appear in Appendix C, and illustrate their variable nature.

Another immediate use of the noise processes is to look at the autocorrelations. In addition to the three individual components we define a "noise displacement" process

$$
\begin{equation*}
d(t)=\left\{\sum_{1}^{3}\left(X_{i}(t)-X_{s l_{i}}(t)\right)^{2}\right\}^{\frac{1}{2}} \tag{40}
\end{equation*}
$$

(Of course the same is done for $\{Y(t)\}$.)
The autocovariances

$$
\begin{equation*}
R(h)=\frac{1}{T} \sum_{t=1}^{T-h}(d(t)-\bar{d})(d(t+h)-\bar{d}) \tag{41}
\end{equation*}
$$

for $\{\mathrm{d}(\mathrm{t})\}$ and for the individual components $\left\{\mathrm{X}_{\mathrm{i}}(\mathrm{t})-\mathrm{X}_{\mathrm{sl}_{\mathrm{i}}}(\mathrm{t})\right\}$ are computed and normalized. Plots of $R(h) / R(0)$ vs h appear in Appendix D. It is typical that they become and remain in a general level of "static" for $h \geq 1$.

5. SUMMARY

The paper contains methodology for estimating the presence of timing synchronization error and judging its significance in the framework of our short baseline array underwater test range. The methodology was applied to real data. Some plots illustrating the effects appear in Appendix B. One must view them with care because the coordinate scales are so different. It is rather typical that some unresolved systematic error is exposed in the side view.

Analysis of the results does not support the timing synchronization error model as accounting for the discrepancies. Other sources of systematic ero: must be unmasked first. Possibilities include the orientation of the arrays [2], biases in the raytracing inputs [3], and perhaps a temporal or spatial gradient in the depth velocity profile.

Appendices C and D contain information about the second order properties of the three dimensional noise process and about time lag correlations.

APPENDIX A. PATTERSON AND THOMPSON ALGORITHM

The purpose of this appendix is to document the computational method for estimating variance components that is but implicitly described in the Patterson and Thompson paper [4]. We use the notation of that paper. Specifically

$$
\begin{equation*}
y=X \alpha+\epsilon \tag{A,1}
\end{equation*}
$$

where the observeable y is an n component column vector, X is an n by t matrix of rank t determined by the allocation of treatments to units, α is at vector of fixed effects, and ϵ is a mean zero n vector of normal random variables with covariance matrix

$$
\begin{equation*}
\mathrm{V}=\sigma^{2} \mathrm{H} \quad \mathrm{H}=\mathrm{Z} \Gamma \mathrm{Z}^{\prime}+\mathrm{I} . \tag{A.2}
\end{equation*}
$$

The matrix I is the identity of order n, Z is the n by b design matrix for c block factors, and I^{-}is a diagonal matrix containing the variance components relative to the basic error variance σ^{2}. I.e.,

$$
\begin{equation*}
\mathrm{H}=\mathrm{I}+\sum_{\mathrm{p}=1}^{\mathrm{c}} \mathrm{Z}_{\mathrm{p}} \mathrm{Z}_{\mathrm{p}}{ }^{\prime} \gamma_{\mathrm{p}} \tag{A.3}
\end{equation*}
$$

and each block design matrix, Z_{p}, is n by b_{p}; each plot having exactly one level in each $Z_{p}, p=1, \ldots, c$, the variance of the $p^{\text {th }}$ block is

$$
\begin{equation*}
\sigma_{p}^{2}=\gamma_{p} \sigma^{2} \quad \text { for } p=1,2, \ldots, c \tag{A.4}
\end{equation*}
$$

and Z in (A.2) has the partitioned form

$$
\begin{equation*}
Z=\left(Z_{1}, Z_{2}, \ldots, Z_{c}\right) . \tag{A.5}
\end{equation*}
$$

The diagonal elements of Γ are b_{1} consecutive $\gamma_{1}{ }^{\prime} s, b_{2}$ consecutive $\gamma_{2}{ }^{\prime} s, \ldots$, and b_{c} consecutive γ_{c} 's, with $\sum_{p=1}^{c} b_{p}=b$.

Out goal is the estimation of $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{c}, \sigma^{2}$ by the restricted maximum likelihood method for the unbalanced case. The steps follow. Let

$$
\begin{align*}
& S=I-X\left(X^{\prime} X\right)^{-1} X^{\prime} \tag{A.6}\\
& W=Z^{\prime} S Z+\Gamma^{-1} \tag{A.7}
\end{align*}
$$

The algorithm is an iterative one, and initial values for the $\gamma_{1}, \ldots, \gamma_{c}$ are needed to develop W in (A.7). The $b b_{y} b$ matrix W and its inverse can be partitioned according to $b_{1}, b_{2}, \ldots, b_{c}$. So doing allows both

$$
\begin{gather*}
\beta=W^{-1} Z^{\prime} S y \tag{A.8}\\
U=\Gamma^{-1}-\Gamma^{-1} W^{-1} \Gamma^{-1} \tag{A.9}
\end{gather*}
$$

to be viewed as partitioned. I.e.,

$$
\begin{align*}
& \beta^{\prime}=\left(\begin{array}{l}
\beta_{1}^{\prime}, \beta_{2}^{\prime}, \ldots, \beta_{c}^{\prime} \\
U=\left\{U_{i j}\right.
\end{array}\right\} \quad i, j=1, \ldots, c \tag{A.10}
\end{align*}
$$

and $U_{i j}$ is a $b_{i} b_{y} b_{j}$ matrix.
Now we are positioned to define

$$
\begin{align*}
& R=y^{\prime} S y-y^{\prime} S Z \beta \\
& \beta_{p}=\beta_{p}^{\prime} \beta_{p} / \gamma_{p}^{2} \tag{A.11}
\end{align*}
$$

and $E_{p}=$ trace $\left(U_{p p}\right)$ for $p=1, \ldots, c$. Then define the modified information matrix $\left\{\mathrm{f}_{\mathrm{ij}}\right\}$, of order $\mathrm{c}+1$,

$$
\begin{align*}
& f_{i j}=\operatorname{trace}\left(U_{i j} U_{j i}\right) \quad \text { for } i, j=1, \ldots, c \\
& f_{p, c+1}=f_{c+1, p}=E_{p} \quad \text { for } p=1, \ldots, c \tag{A.12}\\
& f_{c+1, c+1}=n-t
\end{align*}
$$

and let $\{f i j$ be its inverse.
Finally, the estimator update equations are, using $k=c+1$

$$
\begin{align*}
& \hat{\sigma}^{2}=\sum_{j=1}^{k-1} f^{k j} B_{j}+f^{k k} R \\
& \hat{\gamma}_{i}=\hat{\gamma}_{i}^{(0)}+\frac{1}{\hat{\sigma}^{2}}\left\{\sum_{j=1}^{k-1} f^{i j} B_{j}+f^{i k} R\right\} \text { for } i=1, \ldots, c \tag{A.13}
\end{align*}
$$

and the new $\left\{\hat{\gamma}_{i}\right\}$ can be placed in (A.7) to start the next iteration. No initial value for σ^{2} is required, but it must be updated at each iteration. The algorithm should be stopped when (A.13) is stable. The variance components are computed from (A.4)

The application in the present report has $c=2$, with $b_{1}=4$ and $b_{2}=8$. It is helpful to record the partitioning and inversion of W, (A.7).

$$
\begin{align*}
W & =\left[\begin{array}{ll}
Z_{1}^{\prime} S Z_{1} & Z_{1}^{\prime} S Z_{2} \\
Z_{2}^{\prime} S Z_{1} & Z_{2}^{\prime} S Z_{2}
\end{array}\right]+\left[\begin{array}{ll}
I_{1} / \gamma_{1} & 0 \\
0 & I_{2} / \gamma_{2}
\end{array}\right] \tag{A.14}\\
& =\left[\begin{array}{ll}
W_{11} & W_{12} \\
W_{21} & W_{22}
\end{array}\right] \quad \text { symmetric. } \\
W^{-1} & =\left[\begin{array}{ll}
W^{11} & W^{12} \\
W^{21} & W^{22}
\end{array}\right] \tag{A.15}
\end{align*}
$$

can be computed from

$$
\begin{align*}
& W^{22}=\left[W_{22}-W_{21} W_{11}^{-1} W_{12}\right]^{-1} \\
& W^{12}=-W_{11}^{-1} W_{12} W^{22} \tag{A.16}\\
& W^{11}=\left[I_{1}-W^{12} W_{21}\right] W_{11}^{-1}
\end{align*}
$$

APPENDIX B. EFFECTS OF CORRECTIONS

Some selected results of applying the method are given in Figures BI through B4; two solutions for each of the four days, top and side views for each. Original track from the first member of the array pair is marked with a cross, and from the second member with a small circle. The (timing) corrected tracks are marked with connected solid lines for the former and dashed lines for the latter.

The first set in Figure B1 shows no noticeable corrections, $\hat{\delta}$ is small. The second set in that figure has $\hat{\delta}=3.54$ and is a real data version of the situation depicted by Figure 3. The first set of Figure B2 appears as if one track is corrected more than the other. But this can be explained because the "stretching angles" are different. The second set of this figure shows a rather common condition in that the corrected track is at a shallower depth than the original.

The first set in Figure B3 has something of a "showcase" flavor; the top view has corrected track with desirable coherence. (But a systematic separation in the vertical remains.) The second set also shows tantalizing improvement. The first set in Figure B4 has $\hat{\boldsymbol{\delta}}=-0.8$, and provides an example of modest "contracting" of points. The second set is an extreme case of curved track. The top view has an excellent correction displayed, but the side shows that the vertical is still separated.

Figure B1. Before and After Offset Correction - 3/23/89

Figure B2. Before and After Offset Correction - 5/10/89

Top View

Figure B3. Before and After Offset Correction - 6/6/89

$\mathrm{T}=50 \quad \delta=-0.80 \quad$ Pair $(4,54)$

Figure B4. Before and After Offset Correction - 7/21/89

APPENDIX C. COVARIANCE MATRICES

The covariances of the residual processes, eq. (38), are recorded here along with \hat{M}, eq (39), which estimates M, eq. (16). The cross covariances $D_{\text {xy }}$ are converted to correlations, R_{xy}, by

$$
R_{x y}(i, j)=D_{x y}(i, j) /\left[D_{x}(i, i) D_{y}(j, j)\right]^{\frac{1}{2}} ; \quad i, j=1,2,3 .
$$

The order of presentation is that of Table 1. The number of points used, T, is occasionally smaller than its Table 1 counterpart. This is due to outlier rejection based upon a visual view of the track. In three instances these values are zero and then, the covariances are not computed.

In a number of instances the covariances are marked with a " c " or " cc " in the identifying column. This means the track was curved (c) or excessively cu-ved (cc) so that the straight line filter could not reasonably be assumed tc provide a valid representation of the path. It is a curiosity that, in many of these instances, the cross correlations are strong and their use produces, via eq. (16), compensatory values. That is, the M matrices do not appear to be especially large. Some large cross correlations also appear in cases that pass the visual test for straight line track.

Table C.l. Covariances and Cross Correlations of Residuals

Dote	T		$0 \times$			Dy			Rxy			M	
		2.04 1.11 .17	1.11 1.16 1.39	.17 1.39 3.87	$\left[\begin{array}{l}1.83 \\ 2.21 \\ -.60\end{array}\right.$	2.21 3.08 -1.51	$\left.\begin{array}{r}-.60 \\ -1.51 \\ 1.96\end{array}\right]$.15 .22 .23	.01 .22 .22	.14 .11 .20	[$\begin{array}{r}3.28 \\ 2.75 \\ -1.26\end{array}$	2.75 3.39 -.81	-1.26 -.81 4.73
	55	3.17 -1.58 2.08	-9.58 4.42 -2.51	2.08 -2.51 4.36	2.74 1.09 -1.15	1.09 2.82 .09	-1.15 .09 4.54	.68 .13 -.01	-.02 .12 -.03	-.10 . .37 -.03	1.93 -.82 1.35	-.82 6.37 .3 .56	1.35 -3.56 9.16
	50	1.04 -1.43 3.91	-1.43 12.39 -4.40	3.91 -4.40 15.02	$\left[\begin{array}{r}.45 \\ -.05 \\ -1.64\end{array}\right.$	-.05 1.96 -.06	-1.64 -.06 6.26	$\left[\begin{array}{r}.03 \\ . .16 \\ .00\end{array}\right.$.03 .11 .06	-.05 .10 -.05	9.45 -1.31 2.40	-1.31 13.26 -5.50	2.40 5.50 22.23
	54	.59 .76 .92	.76 4.47 -2.17	.92 -2.17 6.72	.56 . .47 -.76	. .47 2.03 .45	-.76 .15 2.03	.19 .17 . .31	.05 .07 .12	-.02 -.07 .05	.94 .02 .54	.02 6.92 -2.15	.54 -2.15 8.38
c	21	8.84 25.18 -1.76	25.18 107.44 .08	-1.76 .08 4.53	$\left[\begin{array}{r}10.19 \\ 28.52 \\ .14\end{array}\right.$	28.52 119.27 -2.10	.14 -2.10 1.66	.75 .93 -.11	.84 .99 .13	.00 -.08 -.36	4.84 -3.15 -9.18	-3.15 2.49 1.54	-1.18 1.54 8.15
	46	1.80 2.60 2.80	2.60 5.00 2.22	2.80 2.22 7.20	$\left[\begin{array}{r}\text {. }\end{array}\right.$ (${ }^{\text {a }}$	-1.62 5.79 -2.58	-.26 -2.58 4.46	$\left[\begin{array}{r}-.09 \\ .02 \\ .09\end{array}\right.$	-.24 -.20 -.01	.35 .21 .22	2.58 1.37 1.99	1.37 12.90 -1.62	1.99 -1.62 9.19
$\begin{array}{r} 6 / 6 / 89 \\ M K \cdot 27 \end{array}$	19	22.47 2.34 44.62	2.34 1.20 2.35	44.62 2.35 108.62	20.54 2.78 43.31	$\begin{aligned} & 2.78 \\ & 2.26 \\ & 7.06 \end{aligned}$	43.31 7.06 108.13	.92 .16 .92	.62 .48 .41	.99 .25 .95	- $\begin{array}{r}3.37 \\ .91 \\ -4.02\end{array}$.91 1.88 .81	-4.02 .81 11.69
	50	.59 .62 1.83	-.42 4.12 .9 .34	1.83 -1.34 6.30	.27 -.01 -.71	-.01 2.32 .19	-.71 .19 2.42	.34 -.06 .21	$\cdot .10$.08 -.07	-.14 .13 -.13	$\begin{array}{r}.59 \\ -.26 \\ \hline .05\end{array}$	-.26 5.94 -1.41	1.05 -1.41 9.75
	41	2.14 -2.12 2.08	-2.12 3.03 -1.37	2.08 -1.37 4.66	.69 1.37 .37	1.37 3.39 1.97	.37 1.97 2.81	.35 .12 .19	.47 -.09 .39	-.07 .16 .09	\|r $\begin{array}{r}1.97 \\ -1.12 \\ 2.09\end{array}$	-1.12 6.90 -1.20	2.09 -1.20 6.84
c	50	1.92 -1.31 -.15	-1.39 1.57 -1.49	-.15 -1.49 5.17	1.50 . .79 .96	. .79 .76 .04	.96 -.04 1.80	.12 -.42 .50	. . .60 -.25	-.15 -.07 .31	\|r $\begin{array}{r}3.00 \\ -1.04 \\ .29\end{array}$	-1.04 1.03 -.98	.29 -.98 5.09
c	33	814.12 -28.74 -10.84	-28.74 9.11 1.42	10.84 1.42 1.63	822.25 -23.79 1.99	-23.79 7.32 -.89	1.99 -.89 4.39	1.00 .38 .19	$\cdot .28$.73 .12	.09 .14 -.08	.73 .96 -1.07	.96 4.53 . .74	-1.07 -.74 6.45
	35	1.70 -2.22 2.57	-2.22 3.77 -9.75	2.57 -1.75 7.55	\|r $\begin{array}{r}1.83 \\ 3.08 \\ -1.64\end{array}$	3.08 6.71 .1 .07	-1.64 -1.07 5.50	$\left[\begin{array}{r}.16 \\ .09 \\ . .12\end{array}\right.$	- 27 .16 -.13	.01 .00 -.07	4.12 1.26 9.25	1.26 8.85 -2.25	1.25 -2.25 13.99
	35	.54 .71 1.51	.791 3.71 -1.40	1.51 -1.40 4.38	1.14 -.06 -4.60	-.06 5.61 1.32	-4.60 1.32 18.88	[$\begin{array}{r}.08 \\ .10 \\ .05\end{array}$.13 .08 .12	.18 -.15 .12	($\begin{array}{r}1.81 \\ -9.20 \\ -3.35\end{array}$	-1.20 8.60 -.40	-3.35 -.40 21.08
	51	$\begin{array}{r} .50 \\ .02 \\ 1.25 \end{array}$	$\begin{array}{r} .02 \\ 2.50 \\ -1.64 \end{array}$	$\begin{array}{r} 1.25 \\ -1.64 \\ 5.59 \end{array}$	1.04 -.80 -1.73	.80 2.09 .52	-1.73 .52 4.55	.39 .09 .09	-09 .01 .03	.03 .03 .14	.97 -.54 -.55	$\begin{array}{r} .54 \\ .53 \\ .1 .10 \end{array}$	-.55 -1.10 8.74

APPENDIX D. AUTOCORRELATIONS

Examples of autocorrelation functions of residuals $R(h) / R(0)$, (see eq. (41)) are presented in Figure D1 through D6. The first two are for the displacement process, eq. (40). The latter four are for the three components of displacement.

Array 2

Array 11

Figure D1. Autocorrelation of noise displacement $3 / 23 / 89 \quad \hat{\delta}=0.15$

Array 4

Array 54

Figure D2. Autocorrelation of noise displacement
$7 / 4 / 88 \quad \hat{\delta}=1.10$

Array 4

Downrange

Array 5

Downrange

Crossrange

Depth

Crossrange

Depth

Figure D3. Autocorrelation of noise components

$$
5 / 10 / 89 \quad \hat{\delta}=1.24
$$

Array 3

Downrange

Array 4

Downrange

Crossrange

Depth

Depth

Figure D4. Autocorrelation of noise components

$$
5 / 10 / 89 \quad \hat{\delta}=2.85
$$

Array 2

Downrange

Array 11

Crossrange

Crossrange

Depth

Depth

Figure D5. Autocorrelation of noise components

$$
6 / 06 / 89 \quad \hat{\delta}=2.48
$$

Array 1

Downrange

Array 2

Downrange

Crossrange

Depth

Crossrange

Depth

Figure D6. Autocorrelation of noise components

$$
7 / 21 / 89 \quad \hat{\delta}=2.75
$$

APPENDIX E. COMPUTER SOURCE CODES

The major programs needed to produce Table 1 are documented here. Basically there are three steps:
(i) Extract pertinent crossover data from T-files
(ii) Produce the covariance matrices of residuals; $\mathrm{D}_{\mathrm{x}}, \mathrm{D}_{\mathrm{y}}, \mathrm{D}_{\mathrm{xy}}$ and M . See equations (38) and (39)
(iii) Develop the estimates, eq. (9) and (10). Develop supporting statistics, eq (17), (18), (19)

Also the user needs access to Table E.1, the coordinates of the various arrays at the Nanoose range.

Step (i) is managed by the program KEYGATE, written in FORTRAN 77, Miscosoft optimizing compiler 4.01. This program reads the NUWES T-files and performs a series of gating operations in order to produce crossover data in the required seven column format. It will prompt the user for
(a) name of the range (e.g., Nanoose)
(b) Number of records to ignore (e.g., 31 for bypassing the DVT information)
(c) The target vehicle mode (e.g. 7)

First, it will strip out all data other than mode 2 or mode 7. Second, it identifies all point counts for which a position vector is available for two or more arrays. Third, it reads an array location file and removes data that cannot be reasonably identified with an overlap region. Next, it organizes the data by pairs of arrays. Finally, it prompts the user for his array pair and output filename; it selects and records all the data of the desired type.

Step (ii) is contained in the program PRINCOM3.M. This is a PCMATLAB program that performs the eigen analysis, eq. (32); develops the smoothed fit, eq. (37); and the covariance matrices (38) and (39). The latter is placed on an output file to be used in Step (iii). It also develops the autocorrelation sequence, e.g. (41) of the displacement process.

A slight modification of this program can be made to develop autocorrelations for the three components of residuals instead of for the displacement process.

Step (iii) is performed by the program TIMECOR, a FORTRAN 77 code. The Microsoft FORTRAN optimizing compiler 4.01 is used. The user should note that requirements of the three input files:

VELOCITY.DAT is a two-column data set containing the water layer boundaries and the sound speeds in 25 ft increments

TRPDOTRX.DAT is the seven-column crossover data output of KEYGATE to which has been appended the locations of the two arrays as the 'ast record.

MMATRIX.M is the covariance matrix, M, produced by PRINCOM.M in Step (ii).

Since the ray tracing exit layer elevation angles are not contained in T-files it is necessary to reconstruct them in order to compute Equation (5). This is accomplished by the subroutine TGEN. The methodology of TGEN is explained in [3] under the heading of ray fitting.

There are two outpit files which, taken together, contain all of the information indicated in Table 1.

TABLE E.1. COORDINATES OF THE NANOOSE ARRAYS

Array Number	Date of Survey	Downrange	Crossrange	Depth
0	$6 / 20 / 85$	12188.01	-131.52	-1295.33
1	$6 / 20 / 85$	19463.16	-174.99	-1308.76
2	$7 / 12 / 85$	26991.39	-109.83	-1323.25
3	$1 / 07 / 88$	34505.10	-80.76	-1323.32
4	$10 / 24 / 88$	42005.19	-55.17	-1318.28
5	$6 / 20 / 85$	49497.00	-25.23	-1315.58
6	$6 / 20 / 85$	56972.28	-21.21	-1308.50
7	$7 / 30 / 85$	64680.66	15.33	-1353.39
8	$11 / 16 / 88$	71969.73	-29.28	-1300.89
9	$5 / 07 / 84$	3.00	3.00	1.00
10	$3 / 12 / 84$	47100.00	-3600.00	-1300.00
11	$7 / 18 / 85$	23173.89	-6488.40	-1312.09
12	$6 / 20 / 85$	30731.25	-6553.05	-1312.90
13	$6 / 20 / 85$	38213.61	-6640.77	-1323.05
14	$6 / 20 / 85$	45647.07	-6513.18	-1324.78
15	$6 / 19 / 85$	53249.43	-6354.60	-1316.66
16	$9 / 13 / 85$	60859.74	-6356.07	-1313.42
17	$6 / 16 / 87$	68217.93	-6524.10	-1313.43
54	$2 / 02 / 88$	38029.95	5401.98	-1212.69
55	$6 / 20 / 85$	45645.75	6369.66	-1188.12
56	$7 / 30 / 85$	53180.13	6417.96	-1218.84
57	$7 / 30 / 85$	60745.71	6419.40	-1088.24
23	$6 / 20 / 85$	41605.14	-12150.18	-1268.23
24	$4 / 17 / 89$	49572.00	-12966.00	-1300.00
25	$10 / 24 / 88$	56993.79	-12999.37	-1205.48
26	$8 / 08 / 88$	64442.94	-12971.04	-1255.35
27	$7 / 15 / 80$	22119.60	-15908.70	83.00
28	$5 / 04 / 83$	45000.00	1500.00	-1350.00
29	$2 / 02 / 79$.00	.00

KEYGATE

PROGRAM KEYGATE
Program to read in raw data from Keyport hydrophone arrays, segregate it by mode, and throw out unusable records. The output of this program is to be read in by the program KEYMAIN.

Modified by Colin R. Cooper $11 / 15 / 89$

INTEGER*4 CRT, KBD
CHARACTER* 25 DSNAME, SITNAM
CHARACTER*9 TEMP1, TEMP2, TEMP3, TEMP4
PARAMETER ($K B D=5, C R T=6$)
WRITE(CRT,*) ' Please enter the name of your input file: '
READ(KBD,'(A)') DSNAME
WRITE(CRT,") ' Please enter the name of the range configuration file:',
READ(KBD,'(A)') SITNAM

TEMP1 = TEMP1.TMP'
TEMP2 = 'TEMP2.TMP'
TEMP3 $=$ TEMP3.TMP'
TEMP4 $=$ TEMP4.TMP'
CALL STRMOD(CRT,KBD,TEMP1,DSNAME)
CALL PAIR(CRT,KBD,TEMP1,TEMP2)
CALL RANGE(CRT,KBD,SITNAM,TEMP2,TEMP3)
CALL PAIR2(CRT,KBD,TEMP3,TEMP4)
CALL RECICRT,KBD.TEMP4)
WRITE(CRT,") Operation complete. KEYGATE terminating...
STOP
END

SUBROUTINE STRMODCRT,KBD,TEMP1,DSNAME)
Program to strip all modes except 2's and 7's from the Keypor، data. (2 indicates target ship, 7 indicates torpedo).

CHARACTER DO*2, DSNAME*25, TEMP1*9
INTEGER PC, ARRAY, CRT, NHEAD
OPEN(1,FLLE=DSN'AME,STATL' $\quad={ }^{\circ} \mathrm{OLD}^{\prime}$)
WRITE(CRT,")' How many records of header do you want to strip off the file?',
KEAD(KBD.") NHEAD
DO $11 \mathrm{l}=1$, NHEAD
READ(;")
11 CONTINLE

WRITE(CRT,")' Input mode to be kept?' READ(KBD,*) NUM

OPEN $\left(2\right.$, FILE $=$ TEMP1,STATUS $={ }^{\prime}{ }^{\prime}{ }^{\prime} E W^{\prime}$ ')
$10 \operatorname{READ}(1,100, E N D=50, E R R=40) P C, D O, X, Y, Z, A R R A Y, M O D E$
IF(DO .NE.' ')GOTO 20
IF(MODE .NE. NUM) GOTO 20
WRITE $(2,110)$ PC, $X, Y, Z, A R R A Y, M O D E$
20 CONTINUE
GOTO 10
40 WRITE(CRT,") THERE WAS AN ERROR IN THE FILE'
50 CONTINUE
100 FORMAT(15,A2,1X,F7.1,2X,F7.1,2X,F7.1,30X,12,2X,11)
110 FORMAT($1 \times, 15,2 \times, 3 F 10.1,2 X, 12,2 \times, 12$)
CLOSE (UNIT=1)
CLOSE(UNIT: $=2$)
RETURN
END

SUBROUTINE PAIR(CRT,KBD,TEMP1,TEMP2)
Program to pair point counst after the data has been gated by STRMOD. Second pass.

DIMENSION X(200), Y(200), Z(200)
INTEGER*4 PC(200), ARRAY(200), MODE(200), CRT, HOLD
CHARACTER*9 TEMP1, TEMP2
OPEN(1,FILE=TEMP1,STATUS='OLD')
OPEN $\left(2\right.$, FILE $=$ TEMP 2, STATUS $={ }^{\prime}$ NEW $^{\prime}$ '
HOLD $=0$
IREC $=0$
NREC $=0$
I = 1

Read records by two's to compare point counts.

```
    READ(1,*,END=40,ERR=30) PC(I),X(I),Y(1),Z(1).
        ARRAY(I), MODE(I)
    READ(1,",END=40,ERR=30) PC(1+1),X(I+1),Y(1+1),Z(I+1),
        ARRAY(I+1), MODE(I+1)
    NREC = NREC + 1
    IF(PC(l+1).EQ HOLD) THEN
        WRTTE(2,100: PC(I+1),X(I+1),Y(l+1),Z(l+1),
        ARRAY(I+1),MODE(1+1)
            HOLD = PC(1+1)
        GOTO20
END IF
IF(PC(I) EQ. \(\mathrm{PC}(1+1)\) THEN
WRTTE \((2,100) \mathrm{PC}(1), X(1), Y(1), Z(1), \operatorname{ARRAY}(1), \operatorname{MODE}(1)\)
WRITE \((2,100) \mathrm{PC}(1+1), X(l+1), Y(l+1), Z(l+1)\),
```

$+$
10

```
                                    ARRAY(l+1), MODE(l+1)
        HOLD = PC(I+1)
        IREC = IREC + 1
        COTO 20
    END IF
    IF(PC(I) .NE. PC(I+1)) THEN
        PC(1) = PC(1+1)
        X(1) = X(I+1)
        Y(1)=Y(I+1)
        Z(1)=Z(l+1)
        ARRAY(1) = ARRAY(I+1)
        MODE(1)=MODE(l+1)
        I=1
    END IF
    GOTO 10
20 I = I + 1
    GOTO10
30 WRITE(CRT,*)' THERE IS AN ERROR IN THE DATA FILE IN REC.',NRE
    WRITE(CRT,*)' ... OPERATION TERMINATING DUE TO ERROR.'
    STOP
40 CONTINUE
    CLOSE(UNIT=1)
    CLOSE(UNIT=2)
100
FORMAT(1X,15,2X,F7.1,2X,2F9.1,2X,12,2X,12)
    RETURN
    END
```

SUBROUTINE RANGE(CRT,KBD,SITNAM,TEMP2,TEMP3)
This program completes the third gating of Keyport range data. It reads array location dath from a site specific configuration file and tests to see if the data is in the valid overlap area.

INTEGER* 4 ARRAY, CARRAY, CRT, P
REAL*4 CONFIG(200,4), LX, LY, LZ, MAXVAL CHARACTER SITNAM*25, TEMP2*9, TEMP3*9

Open input and output files:

OPEN(1,FLLE=TEMP2,STATUS='OLD')
OPEN(2,FILE=SITNAM,STATUS='OLD')
OPEN $(3$, FILE $=$ TEMP3,STATUS='NEW')

Read site configuration into CONFIG array:
$\mathrm{NREC}=0$
$\mathrm{I}=1$
$10 \operatorname{READ}\left(2,{ }^{*}, E N D=40, E R R=30\right)$ CONFIG(1,1), CONFIG(1,2), CONFIG(1,3),
$+\quad$ CONFIG(I,4)
NREC = NREC + 1
$\mathrm{I}=\mathrm{I}+1$
GOTO 10
30 WRITE(CRT,")' There was an error reading the config file in record',NRB
40 CONTINUE
CLOSE(UNIT=2)
NDREC $=0$

Read X, Y, Z, and ARRAY from input data file:

45 READ (1,*,ERR=70,END=80) PC, X, Y, Z, ARRAY, MODE
DO $501=1$,NRE
$L X=\operatorname{CONFIG}(1,1)$
$L Y=$ CONFIG(1,2)
$L Z=\operatorname{CONFIG}(1,3)$
CARRAY $=$ INT(CONFIG(1,4))
MAXVAL $=4700$.

Match array number in data file with that in config. file. If they are equal compute slant range distance (SRDIST):

IF(ARRAY EQ. CARRAY THEN
SRDIST $=$ SQRT $\left((X-L X)^{*+2}+(Y \cdot L Y)^{* *} 2+(Z-L Z)^{* * 2}\right)$
IF(MAXVAL GE. SRDIST) THEN
WRITE(3,100) PC, X, Y, Z, ARRAY, MODE, SRDIST
NDREC = NDREC + 1

END IF

END IF
50 CONTINUE GOTO 45

70 WRITE(CRT,") There is an error in the data file. '
80 CONTINUE
CLOSE(UNIT=1)
CLOSE(UNIT=3)
100 FORMAT $(3 X, 15,3(3 X, F 10.1), 2(3 X, I 2), 3 X, F 8.2)$
RETURN
END

SUBROUTINE PAIR2(CRT,KBD,TEMP3,TEMP4)
Program to pair point counts after the data has been tested by RANGE. Fourth pass.

DIMENSION X(200), Y(200), Z(200), SRDIST(200)
INTEGER* 4 PC(200), ARRAY(200), MODE(200), CRT, HOLD
CHARACTER* ${ }^{*}$ TEMP3, TEMP4

OPEN(1,FILE=TEMF3,STATUS='OLD')
OPEN(2,FILE=TEMP4,STATUS='NEW')
HOLD $=0$
IREC $=0$
NREC $=0$
$1=1$
Read records by two's to compare point counts.

READ (1,", END=40,ERR=30) PC(I), X(I), Y(I), Z(I),
ARRAY(I), MODE(1), SRDIST(I)
$+$
10 READ $\left(1,{ }^{*}, E N D=40, E R R=30\right) \mathrm{PC}(\mathrm{I}+1), \mathrm{X}(\mathrm{I}+1), \mathrm{Y}(\mathrm{I}+1), \mathrm{Z}(\mathrm{I}+1)$,
ARRAY $(1+1), \operatorname{MODE}(\mathrm{I}+1), \operatorname{SRDIST}(1+1)$
NREC $=$ NREC +1
IF(PC(I+1) .EQ. HOLD) THEN
WRITE $(2,100)$ PC($1+1), X(1+1), Y(1+1), Z(I+1)$,
$\mathrm{HOLD}=\mathrm{PC}(1+1)$ GOTO 20
END IF
IF(PC(I) .EQ. $\mathrm{PC}(\mathrm{I}+1)$) THEN
WRTE $(2,100) \mathrm{PC}(\mathrm{I}), \mathrm{X}(\mathrm{I}), \mathrm{Y}(\mathrm{I}), \mathrm{Z}(\mathrm{I}), \operatorname{ARRAY}(\mathrm{I}), \operatorname{MODE}(\mathrm{I})$, RDIST(I)
$\operatorname{WRITE}(2,100) \mathrm{PC}(\mathrm{I}+1), \mathrm{X}(\mathrm{I}+1), \mathrm{Y}(\mathrm{I}+1), \mathrm{Z}(\mathrm{I}+1)$,
ARRAY $(1+1), \operatorname{MODE}(\mathrm{l}+1), \operatorname{SRDIST}(\mathrm{I}+1)$
$\mathrm{HOLD}=\mathrm{PC}(1+1)$
IREC = IREC + 1
GOTO 20
END IF
IF(PC(I) .NE. PC(I +1$)$) THEN
$P C(1)=P C(1+1)$
$X(1)=X(1+1)$
$Y(1)=Y(I+1)$
$\mathbf{Z}(1)=\mathbf{Z}(\mathrm{l}+1)$
$\operatorname{ARRAY}(1)=\operatorname{ARRAY}(1+1)$
$\operatorname{MODE}(1)=\operatorname{MODE}(\mathrm{l}+1)$
$\operatorname{SRDIST}(1)=\operatorname{SRDIST}(1+1)$
$\mathrm{l}=1$
END IF
GOTO 10
$20 \quad \mathrm{I}=\mathrm{I}+1$
GOTO 10
WRITE(CRT,*)' THERE IS AN ERROR IN THE DATA FILE IN REC.','NRE WRITE(CRT,"' ... OPERATION TERMINATING DUE TO ERROR.'
STOP
40
CLOSE(UNTT = 1)
CLOSE(UNIT=2)

RETURN

END

SUBROUTINE REC(CRT,KBD,TEMP4)
Program to produce the final gating of Keyport hydrophone array test data.

INTEGER PC, ARRAY, PC1, PC2, A1, A2, ARRAY1, ARRAY2, CRT
INTEGER PCA(10), ARRAYA(10), HOLD
DIMENSION XA(10), YA(10), ZA(10), SRDISTA(10)
CHARACTER OUTFIL*25, ANS*1, TEMP4*9, TEMP1*9,RANGE*7
RANGE='NANOOSE'
99 WRITE(CRT,") What is the name you wish to give to ${ }^{\circ}$,
$+$
READ(CRT' (A)' OUTFIL

WRITE(CRT,")' Enter the numbers of the arrays to be paired: '
READ(KBD,*) A1, A2
OPEN(1,FILE=TEMP4,STATUS='OLD')
OPEN(2,FILE='TEMP1.DAT',STATUS='OLD')
5 READ (1,*,END=8,ERR=8) PC, X,Y,Z, ARRAY, MODE, SRDIST
JF((ARRAY.EQ. A1).OR.(ARRAY.EQ. A2)) THEN WRITE $(2,100)$ PC, X, Y, Z, ARRAY,SRDIST
END IF
GOTO 5

8 CONTINUE
CLOSE (UNTT=1)

```
Routine to pair data again:
```

REWIND 2
OPEN(4,FILE='TEMP2.DAT',STATUS='OLD')
$I=1$
IFLAG $=0$
FIRST $=1$
$\mathrm{HOLD}=0$
$\mathrm{M}=0$

9 READ (2,100,END=40) PCA(I), XA(1), YA(1), ZA(1),
$+\quad$ ARRAYA(I), SRDISTA(I)
IF(FIRST .EQ. 1) THEN
FIRST $=0$
HOLD = PCA(I)
END IF
IF(PCA(I) EQ. HOLD) THEN
$\mathrm{I}=\mathrm{I}+\mathrm{I}$
$\mathrm{M}=\mathrm{M}+1$
GOTO 9

ELSE

In cases where there are three or more reports for a given point count, segregate by comparing SRDIST. if there are more than 3 reports, discard all.

```
IF (M .EQ. 3) THEN
    IF(ARRAYA(M).EQ. ARRAYA(M-1)) THEN
        IF (ARRAYA(M) .EQ. ARRAYA(M-2)) THEN
        GOTO50
    ELSE
        IF (ABS(SRDISTA(M-2)-SRDISTA(M)) .LT.
                                    ABS(SRDISTA(M-2)-SRDISTA(M-1))) THEN
            WRITE(4,100) PCA(M), XA(M), YA(M), ZA(M),
                    ARRAYA(M), SRDISTA(M)
            WRITE(4,100) PCA(M-2), XA(M-2), YA(M-2), ZA(M-2),
                        ARRAYA(M-2), SRDISTA(M-2)
            IFLAG = 1
        ELSE
            WRITE(4,100) PCA(M-1), XA(M-1), YA(M-1), ZA(M-1),
                        ARRAYA(M-1), SRDISTA(M-1)
            WRITE(4,100) PCA(M-2), XA(M-2), YA(M-2), ZA(M-2),
                ARRAYA(M-2), SRDISTA(M-2)
            IFLAG = 1
        ENDIF
    END IF
ELSE
    IF (ARRAYA(M) .EQ. ARRAYA(M-2)) THEN
    IF (ABS(SRDISTA(M-1)-SRDISTA(M)) .LT.
                ABS(SRDISTA(M-1)-SRDISTA(M-2))) THEN
            WRITE(4,100) PCA(M), XA(M),YA(M), ZA(M),
                ARRAYA(M), SRDISTA(M)
            WRITE(4,100) PCA(M-1), XA(M-1), YA(M-1), ZA(M-1),
                ARRAYA(M-1), SRDISTA(M-1)
            IFLAG =1
        ELSE
            WRITE(4,100) PCA(M-1), XA(M-1), YA(M-1), ZA(M-1),
                ARRAYA(M-1), SRDISTA(M-1)
            WRITE(4,100) PCA(M-2), XA(M-2), YA(M-2), ZA(M-2),
                        ARRAYA(M-2), SRDISTA(M-2)
            IFLAG = 1
        END IF
    ELSE
        IF (ABS(SRDISTA(M)-SRDISTA(M-1)) LTT.
                ABS(SRDISTA(M)-SRDISTA(M-2))) THEN
            WRITE(4,100) PCA(M), XA(M), YA(M), ZA(M),
                ARRAYA(M), SRDISTA(M)
            WRITE(4,100) PCA(M-1), XA(M-1), YA(M-1), ZA(M-1),
                ARRAYA(M-1), SRDISTA(M-1)
            IFLAG = 1
        ELSE
            WRITE(4,100) PCA(M), XA(M), YA(M), ZA(M),
                ARRAYA(M), SRDISTA(M)
            WRITE(4,100) PCA(M-2), XA(M-2),YA(M-2), ZA(M-2),
                ARRAYA(M-2), SRDISTA(M-2)
            IFLAG =1
        END IF
        END IF
```


END IF

```
ELSE
    IF ((M .EQ. 2) .AND. (ARRAYA(M) .NE. ARRAYA(M-1))) THEN
                WRITE(4,100) PCA(M), XA(M), YA(M), ZA(M),ARRAYA(M),
                SRDISTA(M)
            WRITE(4,100) PCA(M-1), XA(M-1), YA(M-1), ZA(M-1),
                ARRAYA(M-1), SRDISTA(M-1)
```


END IF

END IF
CONTINUE

CONTINUE
IFLAG $=0$
PCA(1) $=\mathrm{PCA}(\mathrm{I})$
$X A(1)=X A(1)$
$Y A(1)=Y A(1)$
$Z A(1)=Z A(1)$
ARRAYA(1) = ARRAYA(1)
SRDISTA(1) = SRDISTA(1)
$\mathrm{I}=2$
$\mathrm{M}=1$
$\mathrm{HOLD}=\mathrm{PCA}(1)$
DO $45 \mathrm{~L}=2,10$
$P C A(L)=0$
$X A(L)=0$
$Y A(L)=0$
$Z A(L)=0$
$\operatorname{ARRAYA}(\mathrm{L})=0$
SRDISTA(L) $=0$
CONTINUE
END IF
GOTO 9
40 CONTINUE

NREC $=0$
CLOSE (UNIT=4)
OPEN(7,FILE='TEMP2.DAT',STATUS='OLD')
OPEN(9,FILE=OUTFIL,STATUS='NEW')
WRITE(9,300) RANGE, A1, A2

Read in array data in two record pairs:

10 READ $(7,100, E N D=60, E R R=70) \mathrm{PC} 1, \mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$, ARRAY1, SRDIST1
READ (7,100,END=60,ERR=70) PC2, X2, Y2, Z2, ARRAY2, SRDIST2
IF(ARRAY1 .EQ. A1 .AND. ARRAY2 EQ. A2) THEN

If arrays are in specified order (e.g. 4,5):

WRITE(9,200) PC1, X1, Y1, Z1, X2, Y2, Z2
END IF
IF(ARRAY1 .EQ. A2 .AND. ARRAY2 EQ. A1) THEN

If arrays are in reverse order (eg. 5,4):
$\operatorname{WRITE}(9,200) \mathrm{PC} 1, \mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2, \mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$
END IF

> Increment record counter:

NREC $=$ NREC +1
GOTO 10
70 WRITE(CRT,*)' There is a bad record in the file.'
60 CONTINUE
CLOSE(UNIT=2)
CLOSE(UNIT=7)
CLOSE(UNTT=9)
100 FORMAT($15,3(2 X, F 8.1), 2 X, 12,2 X, F 8.2)$
200 FORMAT($2 \mathrm{X}, 15,1 \mathrm{X}, 6(2 \mathrm{X}, \mathrm{F} 11.1)$)
300 FORMAT(16X,A10,2X,I2,3X,I2)
WRITE(CRT,") ' Do you want to try another array pair? (Y/N)'
READ(KBD,(A)') ANS
IF(ANS .EQ. 'Y.OR. ANS .EQ. 'y') GO TO 99
RETURN
END

PRINCOM3

function [Autocorx, Autocery]= princom3(fname)

```
autocorrelation of the displacement process.
iname \(=\{\) 'd: \(\backslash m d a t a \\) Iname 'out' \(] ;\)
eval('load iname ));
eval( \({ }^{\prime}\) keyout = ' fname ';']);
eval( ( clear ' fname));
```

PRINCOM3.M will evaluate the principal components of the passed data file. Computes the
$X=$ keyout(:5:7);
$Y=$ keyout(: 2:4);
[len,n]=size(keyout);

```
Compute averages and covariance matices for the tracks produced by each of the arrays.
Xav=ones(len,1)*sum(X)/len
Yav=ones(len,1)*sum(M)/len ;
XX=X-Xav;
YY=Y-Yav;
ipc=keyout(,1);
CX=cov(XX);
CY=cov(MM)
```

Develop the eigen analysis. Choose largest eigen value.

```
[WX,DX]=eig(CX) ;
[WY,DY]=eig(CY) ;
```

if $\operatorname{DX}(1,1)>D X(2,2)$
if $\mathrm{DX}(1,1)>\mathrm{DX}(3,3)$
$\mathrm{l}=1$;
end
elseif $\operatorname{DX}(2,2)>\operatorname{DX}(3,3)$
$1 \mathrm{x}=2$;
end
if $D X(3,3)>D X(1,1)$
if $\mathrm{DX}(3,3)>\mathrm{DX}(2,2)$
$\mathrm{l}=3$;
end
end
if $D Y(1,1)>D Y(2,2)$
if $\operatorname{DY}(1,1)>\operatorname{DY}(3,3)$
$l y=1 ;$
end
elseif $\operatorname{DY}(2,2)>\operatorname{DY}(3,3)$
$l y=2$;
end
if $\operatorname{DY}(3,3)>\operatorname{DY}(1,1)$
if $\operatorname{DY}(3,3)>\operatorname{DY}(2,2)$
$l y=3$;
end
end
$P X=X X{ }^{*} W X ;$
$P Y=Y Y^{*} W Y$;
$\mathbf{u x}=\mathrm{PX}(:, \mathrm{lx})$;
$u y=P Y($ (,ly);

Modify data projection onto the first principal component to account for constant speed.
ipcav=sum(ipc)/length(ipc);
$m x=\left(s u m\left(u x .{ }^{*}(i p c-i p c a v)\right)\right) /\left(s u m\left((i p c-i p c a v) .{ }^{.}(i p c-i p c a v)\right)\right) ;$ my=(sum(uy."(ipc-ipcav)))/(sum((ipc-ipcav).*(ipc-ipcav)));
$a x=\left(\operatorname{sum}(u x) /\right.$ length(ux)) $-\left(m x^{*} i p c a v\right)$;
$a y=(s u m(u y) / l e n g t h(u y))-(m y * i p c a v) ;$
$u h x=\left(m x^{*} i p c\right)+a x ;$
$u h y=\left(m y^{*} i p c\right)+a y$;
PPX=zeros(len,3);
PPY=zeros(len,3);
PPX(;,lx)=uhx;
PPY(:,ly)=uhy;

Compute the straight line tracks in the original coordinate system.
$X S L=\left(P P X^{*} W X^{\prime}\right)+X a v ;$
$Y S L=\left(P P Y{ }^{*} W Y^{\prime}\right)+Y a v ;$

Develop the displacement process of residuals.

```
distx = sqrt((X(:,1) - XSL(:,1)).^2 + (X(:,2) - XSL(;,2)).^2 + (X(:,3) - XSL(;,3)).^2);
disty = sqrt(Y(:,1)-YSL(:,1)).^2 + (Y(:,2) - YSL(;2)).^2 + Y(;3)-YSL(;3)).^2);
davx = sum(distx)/length(distx);
davy = sum(disty)/length(disty);
vx = distx - davx;
vy = disty - davy;
```

Compute the auto correlations.

Autocorx $=$ zeros(length(vx),1);
Autocory $=$ zeros(length(vy),1);
for $k=1$ length(vy)
for $\mathrm{i}=1$:length(vy) $-k+1$
Autcorx $(k)=A u t o c o r x(k)+v x(i) * v x(i+k-1)$;
Autocory $(k)=$ Autocory $(k)+v y(i)^{*} v y(i+k-1)$;
end
Autocorx(k) $=$ Autocorx(k)/sum(vx.^2);
Autocory $(k)=A u t o c o r y(k) / s u m(v y . \wedge 2)$;
end
dg
subplot(211)
plot(Y(:,1),Y(:,2),'or',YSL(:,1),YSL(:,2),'-r',X(:,1),X(:,2),'xg',XSL(:,1),XSL(:,2),'-g')
title([fname ' - Corrected Tracks with Principal Components'])
xlabel('Down Range'), ylabel('Cross Range')
subplot(212)

title('Corrected Tracks with Principal Components')
xlabel('Down Range'), ylabel('Depth')

```
pause
dg
h = 0:length(Autocorx)-1;
subplot(211),plot(h,Autocory,'or',h,Autocory,'-r')
title([fname ' - Autocorrelation of Distance, Y Array'l),grid
subplot(212),plot(h,Autocorx,'or',h,Autocorx,'-r')
title('Autocorrelation of Distance, X Array'),grid
clg
plot(h(1:27),Autocorx(1:27),'or',h(1:27),Autocorx(1:27),'r')
title('Autocorrelation of Residual Distance'),grid
xlabel('Point Count Lag')
```


TIMCOR

PROGRAM TIMECOR
06/06/90
This program estimates the timing synchronization offset and drift parameters based upon cross-over data from T-files. Since exit angles and transit times are not recorded to these files they must be reestimated. Location information for each of the involved arrays is also required.
This program was compiled using:
Microsoft FORTRAN OPTIMIZING COMPILER ver. 4.01
This files must be able to access the following files
VELOCITY.DAT - Sound velocity vs. depth data.
TRPDOTRX.DAT - Torpedo tracking data.
MMATRIX.M - Correlation matrices for data.
OUTPUT1.COV - Output file containing delta and tnot
OUTPUT2.COV - Output file containing cross correlation and M matrices.
Users Notes:

- VELOCITY.DAT file contains layer boundaries and sound velocities for 25 ft . depth increments.
- TRPDOTRX.DAT file contains point counts and three position components for each of the two contributing arrays. The position data from the lower numbered array is columns two through four. The last record contains the coordinate position of the two arrays..
- MMATRIX.M file contains the set of covariance matrices produced by AUTOCOR3.M.
- The two output files contain all the information appearing in Table 1.

DIMENSION IPC(150)
CHARACTER 30 LINE
REAL'8 Y1(150,2), Y2(150,2), Y3(150,2), YC1(150,2), YC2(150,2)
REAL*8 LL(55),G(55),VV(55),A2,P1,P2,V0,V1,TTIME (150,2)
REAL*8 THETA(150,2), DEPTH(55),PHI $(150,2), \mathrm{V}(150,2), \mathrm{DZ}$
REAL*8 B1 (150,2), $\mathrm{B} 2(150,2), \mathrm{B} 3(150,2), \mathrm{YC} 3(150,2)$
REAL* 8 DEN,GG,SSB,SSR,TD,TM,SIG,DD,TEMP
REAL*8 MEQGEQ(150),DELTA,T1,TNOT,D1,D2,MSR,MSB
REAL*8 DUM1,DUM2,DUM3,DUM4,DUM5,DUM6,DUM7
REAL"8 M(3,3),C(150,3),VDEL,SDEL,VM,SDVM,COVDM

REAL"8 DELTAN,MEQN,R,CX(3,3),CY(3,3),CXY(3,3),RXY(3,3),T INTEGER*4 TEE

Read in the data from the data files.

OPEN(UNIT $=2$, FILE $=$ 'VELOCITY.DAT',STATUS='OLD') OPEN(UNIT=7,FILE='TRPDOTRX.DAT',STATUS='OLD') OPEN(UNIT=10,FILE='MMATRIX.M',STATUS='OLD') OPEN(UNIT=11,FLLE='OUTPUT1.COV',STATUS='OLD') OPEN(UNIT=12,FILE='OUTPUT2.COV',STATUS='OLD')
$\operatorname{READ}(10,120) \mathrm{CX}(1,1), \mathrm{CX}(2,1), \mathrm{CX}(3,1), \mathrm{CX}(1,2), \mathrm{CX}(2,2)$,
CX(3,2),CX(1,3),CX(2,3),CX(3,3)
READ $(10,120) \mathrm{CY}(1,1), \mathrm{CY}(2,1), \mathrm{CY}(3,1), \mathrm{CY}(1,2), \mathrm{CY}(2,2)$,

- $\quad \mathrm{CY}(3,2), \mathrm{CY}(1,3), \mathrm{CY}(2,3), \mathrm{CY}(3,3)$

READ $(10,120) \mathrm{CXY}(1,1), \mathrm{CXY}(2,1), \mathrm{CXY}(3,1), \mathrm{CXY}(1,2), \mathrm{CXY}(2,2)$,

- $\quad \mathbf{C X Y}(3,2), \mathrm{CXY}(1,3), \mathrm{CXY}(2,3), \mathrm{CXY}(3,3)$
$\operatorname{READ}(10,124) \mathrm{T}$
TEE $=$ IDINT(T)
1F (TEE.EQ.0) THEN
DO $2 \mathrm{I}=1,3$
$\operatorname{RXY}(1, \mathrm{I})=0.0 \mathrm{D} 0$
$R X Y(2, \mathrm{l})=0.0 \mathrm{D} 0$
$\operatorname{RXY}(3, \mathrm{l})=0.0 \mathrm{D} 0$
2 CONTINUE
ELSE
DO 41 = 1,3
DO $3 \mathrm{~J}=1,3$
RXY(J,I) $=\mathrm{CXY}(\mathrm{J}, \mathrm{I}) / D S Q R T(C X(I, I) * C Y(J, J))$
$M(J, 1)=C X(J, 1)+C Y(J, 1)-C X Y(1, J)-C X Y(1,1)$
3 CONTINUE
4 CONTINUE
ENDIF

5 READ $\left.12,{ }^{\prime}(A)^{\prime}, E N D=7\right)$ LINE
GOTO 5
7 BACKSPACE 12
W'RITE (12,122)TEE
DO8 $1=1,3$
8 WRTTE $(12,121) \mathrm{CX}(\mathrm{I}, 1), \mathrm{CX}(1,2), \mathrm{CX}(1,3), \mathrm{CY}(\mathrm{I}, 1), \mathrm{CY}(1,2)$,
$\mathrm{CY}(\mathrm{l}, 3), \mathrm{RXY}(\mathrm{l}, 1), \mathrm{RXY}(\mathrm{l}, 2), \mathrm{RXY}(\mathrm{I}, 3), \mathrm{M}(\mathrm{l}, 1), \mathrm{M}(1,2), \mathrm{M}(\mathrm{l}, 3)$
WRITE $(12,123)$
$\mathrm{l}=1$
10 READ(7,*IPC(1),Y1(1,1),Y2(I,1),Y3(1,1),
IF(IPC(I).EQ.999) GOTO 15
$\mathrm{I}=\mathrm{I}+1$
GOTO 10
15 LEN=1-1

120 FORMAT(1X,9(E15.4,1X))

121
 2X,' $\left.\prime^{\prime}, 25 \mathrm{X}, 1^{\prime \prime}\right)$
122 FORMAT(12X, $\Gamma, 1 X, 3(F 7.2,1 X), 7,2 X, \Gamma, 1 X, 3(F 7.2,1 X), 7]$,

123 FORMAT(12X,'', 25X,'',2X,''',25X,'',2X,' '',25X,'J

- 2X, 'L',25X, 'ل')

124 FORMAT(1X,E15.4)

Read the VELOCITY.DAT file and prepare for isogradient raytracing

$D Z=25$

$\mathrm{I}=1$
25 READ (2,*,END=30) TEMP,VV(1)
$\mathrm{I}=\mathrm{I}+1$
GOTO 25
30 CONTINUE
$\mathrm{GG}=(\mathrm{VV}(1-1)-\mathrm{VV}(1-7)) / 6$.
DO $35 \mathrm{~J}=\mathrm{I}, 55$
$V V(J)=V V(J-1)+G G$
35 CONTINUE
LL(1) $=12.5$
DEPTH(1) $=0$
DO $40 \mathrm{I}=2,55$
$\mathrm{LL}(\mathrm{l})=\mathrm{LL}(\mathrm{l}-1)+\mathrm{DZ}$
$\operatorname{DEPTH}(\mathrm{I})=\mathrm{DEPTH}(\mathrm{I}-1)+\mathrm{DZ}$
40
CONTINUE
DO $431=2,55$
$\mathrm{G}(\mathrm{l}-1)=(\mathrm{VV}(\mathrm{I})-\mathrm{VV}(\mathrm{I}-1)) / \mathrm{DZ}$
43 CONTINUE
$G(55)=G(54)+G G / D Z$
DO $45 \mathrm{I}=1,52$
45 CONTINUE
DO $80 \mathrm{~J}=1,2$
$\mathrm{N}=15$
IFLAG $=0$
DO 70 TT $=1$, LEN

Set variables the the call to TGEN subroutine. TGEN returns the time and elevation.
$A 2=\mathrm{Y} 3(\mathrm{LEN}+1, \mathrm{~J})$
$\mathrm{P} 1=\mathrm{SQRT}(\mathrm{Y} 1(\mathrm{IT}, \mathrm{J})-\mathrm{Y} 1(\mathrm{LEN}+1, \mathrm{~J}))^{*} 2+\left(\mathrm{Y} 2(\mathrm{IT}, \mathrm{J})-\mathrm{Y} 2(\mathrm{LEN}+1, \mathrm{~J}){ }^{* *} 2\right)$
$\mathrm{P} 2=-\mathrm{Y} 3(\mathrm{TT} . \mathrm{J})$
IF(TT.NE.1) THETA(TT,J)=THETA(TT-1,J)
CALL TGEN(LL,G,VV,A2,P1,P2,THETA(IT,J),TTIME(TT,J),
VO,V1,DEPTH,IFLAG)
IFLAG=1

Find the azimuth angles from each array.
$\operatorname{PHI}(I T, J)=\operatorname{DASIN}((Y 2(T T, J)-Y 2(L E N+1, J)) / S Q R T((Y 2(T T, J)-$

- $\left.\left.\quad \mathrm{Y} 2(\mathrm{LEN}+1, \mathrm{~J}))^{+\infty} 2+(\mathrm{Y}, \mathrm{IT}, \mathrm{J})-\mathrm{Y} 1(\mathrm{LEN}+1 \mathrm{~J})\right)^{\infty} 2\right)$) IF((Y1(TT,J)-Y1(LEN+1,J)).LT.0) PHI(TT,J)=3.14159265359 $-\mathrm{PHI}(\mathrm{TT}, \mathrm{J})$

Locate the layer containing the source and set it's velocity.

50	IF(-Y3(TT,J).LE.DEPTH(N).AND.-Y3(TT,) .GT.DEPTH(N-1)) GOTO 60
	IF(-Y3(TT,J).GT.DEPTH(N) THEN
*	$\mathrm{N}=\mathrm{N}+1$
	ELSE
	$\mathrm{N}=\mathrm{N}-1$
	IF(N.LE.1) THEN
	$\mathrm{N}=1$
	GOTO 60
	ENDIF
	ENDIF
	GOTO 50
60	$\mathrm{V}(\mathrm{IT}, \mathrm{J})=\mathrm{VV}(\mathrm{N})$

Calculate the $\mathrm{B}(\mathrm{T})$ adjust.،.،ents (Sperical Coordinates: Equtaion (5))
$\mathrm{B} 1(\mathrm{IT}, \mathrm{J})=\mathrm{V}(\mathrm{IT}, \mathrm{J}) * \mathrm{DCOS}(\mathrm{THETA}(\mathrm{IT}, \mathrm{J}))^{*} \mathrm{DCOS}(\mathrm{PHI}(\mathrm{TT}, \mathrm{J}))$
$B 2(T T, J)=V([T, J) * D C O S(T H E T A(I T, J)) * D S I N(P H I(I T, J))$
$B 3(I T, J)=V(I T, J) * D S I N(T H E T A(I T, J))$
70 CONTINUF
80 CONTINUE
DO 90 I=1,LEN
90 CONTINUE

Calculate DELTA and TNOT.
$D 2=0$
$\mathrm{T} 1=0$
DEN $=0$
DO $200 \mathrm{IT}=1$, LEN
$\mathrm{D} 1=\left(\left((\mathrm{B} 1(\mathrm{IT}, 1)-\mathrm{B} 1(I T, 2))^{*}(\mathrm{~B} 1(\mathrm{IT}, 1)-\mathrm{B} 1(I T, 2))\right)+\right.$

- ((B2(IT,1)-B2(IT,2))*(B2(IT,1)-B2(IT 2)))+
- ((B3(IT,1)-B3(IT,2))*(B3(IT,1)-B3(IT,2))))
$D E N=D E N+D 1$
$\mathrm{T} 1=\mathrm{T} 1+(\mathrm{IPC}(I T) * \mathrm{D} 1)$
$\mathrm{D} 2=\mathrm{D} 2+\left((\mathrm{B} 1(\mathrm{TT}, 1)-\mathrm{B} 1(\mathrm{TT}, 2))^{*}(\mathrm{Y} 1(\mathrm{IT}, 1)-\mathrm{Y} 1(\mathrm{IT}, 2))\right)+$
- (\quad B2(IT,1)-B2(IT,2))*(Y2(IT,1)-Y2(IT,2))) +
* (B3(IT,1)-B3(IT,2))*(Y3(IT,1)-Y3(IT,2))))
$\mathrm{C}(\mathrm{IT}, 1)=\mathrm{B}_{1}(I T, 2)-\mathrm{B} 1(\Gamma, 1)$
$C(T T, 2)=B 2(\Pi T, 2)-B 2(I T, 1)$
$\mathrm{C}(I T, 3)=\mathrm{B} 3(I T, 2)-\mathrm{B} 3(I T, 1)$
200 CONTINUE
TD = DSQRT(DEN)

DEN=DEN/LEN
TNOT=(T1/LEN)/DEN
DELTA=-(D2/LEN)/DEN

Calculate m and g.

D1 $=0.0 \mathrm{D} 0$
D2 $=0.0 \mathrm{D} 0$
DO 210 IT=1,LEN
$\mathrm{DD}=\left(\left((\mathrm{B} 1(\mathrm{TT}, 1)-\mathrm{B} 1(\mathrm{TT}, 2))^{*}(\mathrm{~B} 1(\mathrm{IT}, 1)-\mathrm{B} 1(\mathrm{TT}, 2))\right)+\right.$
(B2(IT,1)-B2(IT,2))*(B2(IT,1)-B2(IT,2)))+
$\begin{array}{ll}* \quad & \left.(B 2(I T, 1)-B 2(I T, 2))^{*}(B 2(T, 1)-B 2(I T, 2))\right)+ \\ * \quad & \left(\left(B 3(I T, 1 ;-B 3(T T, 2))^{*}(B 3(I T, 1)-B 3(I T, 2))\right)\right)^{*}\end{array}$

- (IPC(IT)-TNOT)*(IPC(IT)-TNOT))
$D 1=D 1+D D$
$\mathrm{D} 2=\mathrm{D} 2+\left((\mathrm{B} 1(\mathrm{TT}, 1)-\mathrm{B} 1(\mathrm{TT}, 2))^{*}(\mathrm{Y} 1(\mathrm{IT}, 1)-\mathrm{Y} 1(\mathrm{IT}, 2))+\right.$
((B2(IT,1)-B2(IT,2))*(Y2(IT,1)-Y2(IT,2)))+
* $\quad($ (B2 (IT, 1)-B3(IT,2))*(Y3(IT,1)-Y3(IT,2))))*
- (IPC(IT)-TNOT)

210 CONTINUE
MEQ $=-(\mathrm{D} 2 / \mathrm{LEN}) /(\mathrm{D} 1 / \mathrm{LEN})$
$\mathrm{TM}=\mathrm{D} 1$
DO $230 \mathrm{~J}=1,2$
DO $220 \Pi T=1$,LEN
$\mathrm{YC1}(\mathrm{TT}, \mathrm{J})=\mathrm{Y} 1(\mathrm{IT}, \mathrm{J})+\left(\mathrm{B} 1(\mathrm{IT}, \mathrm{J})^{*}\left(\mathrm{DELTA}+\left(\mathrm{MEQ}^{*}(\mathrm{IPC}(\mathrm{IT})-\mathrm{TNOT})\right)\right)\right)$ $\mathrm{YC} 2(\mathrm{TT}, \mathrm{J})=\mathrm{Y} 2(\mathrm{TT}, \mathrm{J})+\left(\mathrm{B} 2(\mathrm{IT}, \mathrm{J}) *\left(\mathrm{DELTA}+\left(\mathrm{MEQ}^{*}(\mathrm{IPC}(\mathrm{IT})-\mathrm{TNOT})\right)\right)\right)$ $\mathrm{YC3}(\mathrm{IT}, \mathrm{J})=\mathrm{Y} 3(\mathrm{IT}, \mathrm{J})+\left(\mathrm{B3}(\mathrm{IT}, \mathrm{J})^{*}\left(\mathrm{DELTA}+\left(\mathrm{MEQ}{ }^{*}(\mathrm{IPC}(I T)-\mathrm{TNOT})\right)\right)\right)$ $G E Q(I T)=D E L T A+\left(M E Q^{*}(I P C(I T)-T N O T)\right)$ CONTINUE
220 CONTINUE

Create the output files.
$S S R=0.0 D 0$
$\mathrm{SSB}=0.0 \mathrm{D} 0$
DO 231 IT = 1,LEN
$\mathrm{SSR}=\mathrm{SSR}+(\mathrm{YCl}(\mathrm{IT}, 1)-\mathrm{YC1}(\mathrm{IT}, 2))^{*}+2+(\mathrm{YC} 2(\mathrm{TT}, 1)-$ $\mathrm{YC} 2(I T, 2))^{* *} 2+(\mathrm{YC} 3(T T, 1)-\mathrm{YC} 3(\Gamma T, 2))^{* *} 2$
$\mathrm{D} 1=\left(\left((\mathrm{B} 1(\mathrm{IT}, 1)-\mathrm{B} 1(\mathrm{IT}, 2))^{*}(\mathrm{~B} 1(\mathrm{IT}, 1)-\mathrm{B} 1(\mathrm{IT}, 2))\right)+\right.$ ((B2(IT,1)-B2(IT,2) $\left.)^{*}(B 2(I T, 1)-B 2(I T, 2))\right)+$ ((B3 (IT,1)-B3(IT,2))*(B3(IT,1)-B3(IT,2))))
$S S B=S S B+D 1^{*} G E Q(I T)^{* *} 2$
231
CONTINUE
MSR $=$ SSK / (LEN - 2)
$\mathrm{MSB}=\mathrm{SSB} / 2$
$\mathrm{SIG}=\mathrm{DSQRT}(\mathrm{MSR})$
TD = TD*DELTA $/$ SIG
$T M=M E Q^{*} D S Q R T(T M) / S I G$

Calculate VDEL,SDEL,VM,SDVM (variances and standard deviations).

```
    DUM2 = 0.0D0
    DUM3 = 0.0D0
    DUM5 = 0.0D0
    DUM6 = 0.0D0
    DO 235 ]=1,3
        DO 233 J= 1,3
            DUM1 = 0.0D0
            DUM4 = 0.0D0
            DO 232 IT = 1,LEN
                DUM1 = DUM1 + (C(IT,I)*C(IT,j))
            DUM4 = DUM4+((IPC(IT)-TNOT)**2 *C(IT,I)*C(IT,J))
232 CONTINUE
                DUM2 = DUM2 + (M(1, ) * DUM1)
                DUM5 = DUM5 + (M(I,J) * DUM4)
    CONTINUE
        DO 234 TT = 1,LEN
            DUM3 = DUM3 + (C(IT,I)**2)
            DUM6 = DUM6 + ((IPC(IT) - TNOT)** * C(IT,I)*2)
        CONTINUE
    CONTINUE
    VDEL = DUM2/DUM3**2
    SDEL = DSQRT(VDEL)
    VM = DUM5/DUM6*2
    SDVM = DSQRT(VM)
    DUM2 = 0.0D0
    DO 238 [T = 1,LEN
        DUM1 = 0.0D0
        DO 237 I = 1,3
        DO 236 J = 1,3
            DUM1 = DUM1 + (C(IT,I)*C(IT,J)*M(I,J))
            CONTINUE
        CONTINUE
        DUM2 = DUM2 + ((IPC(IT) - TNOT) * DUM1)
    CONTINUE
    COVDM = DUM2/(DUM3 * DUM6)
    READ(11,'(A);END=280)LINE
    GOTO 270
280 BACKSPACE 11
    IF(SDEL.EQ.0.0D0) THEN
        DELTAN = SDEL
        MEQN = SDEL
        R = SDEL
        GOTO 285
    ENDIF
    DELTAN = DABS(DELTA)/SDEL
    MEQN = DABS(MEQ)/SDVM
    R = COVDM/(SDEL'SDVM)
285 DELTA = DELTA * 1000.0D0
    MEQ = MEQ * 1000.0D0
    SDEL = SDEL * 1000.0D0
```

SDVM $=$ SDVM * 1000.0D0
WRITE(11,350)DELTA,SDEL,DELTAN,MEQ,SDVM,MEQN,R,TNOT,LEN

FORMAT(F5.2,2X,F5.4,2X,F6.2,2X,F7.5,2X,F7.6,2X,2(F7.2,2X),
F8.2,2X,12)

WRITE(*,*) PROGRAM COMPLETED!
END

SUBROUTINE TGEN(LL,G,VV,A2,P1,P2,ANGLE,TIME,
V0,V1,DEPTH,IFLAG)

TGEN generates transit time and elevation angle at a target if given the horizontal range, the depth of the sensor and the target, the layer boundaries and the gradients. Isogradiant raytracing is used.

Calling Arguments are as follows:
LL - An array containing the layer midpoints.
G - An array containing the gradients for each layer.
V V - An array containing the velocity at each layer.
A2 - The depth of the sensor (positive down).
P1 - Range of the target (horizontal down).
P2 - Depth of the target (positive down).
V0,V1 - The values for a straight line single layer regression of depth vs. velocity.
DEPTH - An array containing the depth of each layer.
Return arguments are as follows:
ANGLE - The final angle at the target.
TIME - The time of transit.

User Notes:
All floating point numbers are defines: REAL"8
All times are in seconds, and all angles in radians.

DIMENSION L(55),G(55),V(55),LL(55),VV(55)
DIMENSION TH(55),T(55),VZ(55)
DIMENSION C2(55),TT(55),DEPTH(55)
REAL*8 L,G,LL,VV,TH,VZ,C2,TT,T,RO,A1
REAL*8 A2,P1,P2,C1,C22,THETA,VM
REAL*8 THETAZ,RV,R,TIME,ANGLE,EP,DZ,DEPTH,V0,V1,V

Initialization: Set the value for DZ , the layer thickness. The sensor is assumed to be at RANGE 0. Determine the values for J, which is $1+$ Number of layers less than or equal to the sensor depth, and I, which is the number of layers less than or equal to the torpedo depth. Redefine the endpoints of those layers locally to be the depths of the torpedo and sensor. Define local values for the LL and VV arrays.

EP=0.1D-6
$\mathrm{DZ}=25.0 \mathrm{D} 0$
$\mathrm{A} 1=0.0 \mathrm{D} 0$
$\mathrm{J}=1$
$1=0$
DO $10 K=1,55$
$L(K)=L L(K)$
$V(K)=V V(K)$
IF(DEPTH(K).LE.A2) $\mathrm{J}=\mathrm{j}+1$
IF(DEPTH(K).LE.P2) $I=I+1$
10 CONTINUE
IF(I.LE.0) I=1
$\mathrm{N}=1+\mathrm{J}-\mathrm{I}$
$\mathrm{V}(\mathrm{l})=\mathrm{V}(\mathrm{l})+\mathrm{G}(\mathrm{l})^{*}(\mathrm{P} 2-\mathrm{L}(\mathrm{l}))$
$V(J)=V(J-1)+G(J-1)^{*}(A 2-L(J-1))$
$L(1)=P 2$
$\operatorname{IF}(A 2 . G T . L(J-1)) G(J)=G(J-1)$
$L(J)=A 2$
$\mathrm{R} 0=\mathrm{P} 1-\mathrm{A} 1$
$\mathrm{V} 1=(\mathrm{V}(\mathrm{J})-\mathrm{V}(\mathrm{I})) /(\mathrm{A} 2-\mathrm{P} 2)$
$\mathrm{V} 0=\mathrm{V}(\mathrm{J})-\mathrm{V} 1^{*} \mathrm{~A} 2$

Calculate an initial estimate for the angle and time using a single layer approximation.
$\mathrm{C} 22=-\mathrm{V} 0 / \mathrm{V} 1$
$\mathrm{Cl}=\left((0.5 \mathrm{D} 0)^{*}(\mathrm{P} 1-\mathrm{A} 1)\right)$
$\mathrm{Cl}=\mathrm{C} 1+\left((0.5 \mathrm{D} 0)^{*}(\mathrm{~L}(\mathrm{I})-\mathrm{L}(\mathrm{J}))^{*}\left(\mathrm{~L}(\mathrm{I})+\mathrm{L}(\mathrm{J})-2.0 \mathrm{D} 0^{*}\right.\right.$
C22)/(P1-A1))
IF(IFLAG.GT.0) GOTO 48
THETA $=$ DATAN((A1-C1)/(A2-C22))
WRITE(*,*) DEFINE THETA AGAIN'
GOTO 49
48 THETA=ANGLE
49 CONTINUE

Use the angle THETA to raytrace back through all the layers. First, use the ray invariant (RV) and the velocity to calculate the entrance andgle at each layer..
$R=A 1$

Find the maximum su und speed
$V M=V(1)$
DO $495 \mathrm{~K}=\mathrm{l}$, J
IF (V(K).GT.VM) VM $=V(K)$
495
CONTINUE
$50 \quad \mathrm{RV}=\operatorname{DCOS}(\mathrm{THETA}) / \mathrm{V}(\mathrm{J}) \mathrm{J})$

```
        T(K)=DTAN(TH(K))
        VZ(K)=V(K)-L(K)*G(K)
        CZ(K)=-VZ(K)/G(K)

Using the angle just calculated, iterate backwords through the layers from sensor to target to get the horizontal range. Stop at the depth of the target.

\section*{R=0.0D0}

DO \(70 \mathrm{~K}=\mathrm{J}, \mathrm{l}+1,-1\)
\(\mathrm{Cl}=\mathrm{R}-\mathrm{T}(\mathrm{K})^{*}(\mathrm{~L}(\mathrm{~K})-\mathrm{C}(\mathrm{K}-1))\)
\(\mathrm{R}=\mathrm{C} 1+\mathrm{T}(\mathrm{K}-1)^{*}(\mathrm{~L}(\mathrm{~K}-1)-\mathrm{C} 2(\mathrm{~K}-1))\)
70 CONTINUE

Test if the value for the range is within torerance. If not, redefine THETA, the initial angle, and raytrace again. If wthin tolerance, calculate the time of travel based on THETA, and return.
```

EP=0.1D-6
IF((DABS(R-P1)).LE.EP) GOTO 100
THETAZ=THETA
THETA=DATAN(DTAN(THETAZ)*(R-A1)/R0)
GOTO 50
100 TT(J)=DLOG((1.0D0+DSIN(TH(J)))/(DCOS(TH(J))))
TIME=0.0D0
DO 110 K=J-1,I,-1
TT(K)=DLOG((1.0D0+DSIN(TH(K)))/(DCOS}(TH(K)))
TIME=TIME+(TT(K)-TT(K+1))/G(K)
110 CONTINUE
ANGLE=THETA
RETURN
END

```

\section*{REFERENCES}
[1] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. New York: Wiley, 1982.
[2] R. R. Read, Program for the Simultaneous Estimation of Displacement and Orientation Corrections for Several Short Base Line Arrays, NPS Technical Report, NPS55-85-028, November, 1985.
[3] R. R. Read, A Study of Underwater Sound Ray Tracing Methodology, NPS Technical Report (in preparation).
[4] H. D. Patterson and R. Thompson, "Recovery of inter-block information when block sizes are unequal." Biometrics, Vol. 58, No. 3, 1971.

\section*{INITIAL DISTRIBUTION LIST}
Library (Code 0142) ..... 2
Naval Postgraduate SchoolMonterey, CA 93943
Defense Technical Information Center ..... 2
Cameron Station Alexandria, VA ..... 22314
Department of Operations Research ..... 20
Naval Postgraduate School
Monterey, CA 93943
ATTN: Prof. Robert R. Read, Code OR-Re
Department of Operations Research ..... 1
Naval Postgraduate School
Monterey, CA ..... 93943
ATTN: Prof. R. N. Forrest, Code OR-Fo
Naval Postgraduate School ..... 1
Monterey, CA 93943
ATTN: Research Administration, Code 012
Department of Operations Research ..... 1
Naval Postgraduate School
Monterey, CA ..... 93943
ATTN: Prof. P. Purdue, Code OR-Pd
Department of Operations Research ..... 1
Naval Postgraduate School Monterey, CA 93943
ATTN: Prof. J. Esary, Code OR-Ey
Department of Operations Research ..... 1
Naval Postgraduate School
Monterey, CA 93943
ATTN: Prof. O. B. Wilson, Code PH-WI
Department of Operations Research ..... 1
Naval Postgraduate School
Monterey, CA 93943
ATTN: Prof. L. Johnson, Code OR-Jo
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATIN: R. Mash, Code 50
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington 98345
ATTN: R. D. Helander, Code 51
Naval Undersea Warfare Engineering Station ..... 2
Keyport, Washington ..... 98345
ATTN: S. L. McKeel, Code 512
Naval Undersea Warfare Engineering Station ..... 2
Keyport, Washington 98345
ATTN: J. Knudsen, Code 5122
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: T. Ward, Code ..... 5122
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATIN: G. Olsen, Code ..... 5122
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: J. Hall, Code 5121
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: R. Evans, Code 5113
Naval Undersea Warfare Engineering Station1
Keyport, Washington ..... 98345
ATTN: L. Beer, Code 5113Naval Undersea Warfare Engineering Station1
Keyport, Washington ..... 98345
ATTN: L. Bogan, Code 5111
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: D. Hutchins, Code 5232
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: J. Cain, Code 70E2
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: E. Roberts, Code 70B1
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: J. Chase, Code 70B1
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: Cmdr Dewry, Code 80
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: A. Pickard, Code 801
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: P. Correa, Code VITRO
Naval Undersea Warfare Engineering Station ..... 1
Keyport, Washington ..... 98345
ATTN: B. Boyer, Code VITRO
Center for Defense Analyses ..... 1
1800 N. Beauregard St.
Alexandria, VA ..... 22311
Center for Naval Analyses ..... 1
4401 Ford Ave.
Alexandria, VA ..... 22302-0268```


[^0]:    Approved for public release; distribution is unlimited.
    Prepared for:
    Naval Postgraduate School,
    Monterey, CA 93955

