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SPACECRAFT ROBOTICS TOOLKIT: AN OPEN-SOURCE SIMULATOR FOR SPACECRAFT
ROBOTIC ARM DYNAMIC MODELING AND CONTROL.

Josep Virgili-Llop, Jerry V. Drew II, Marcello Romano

Spacecraft Robotics Laboratory
Naval Postgraduate School

Monterey CA USA

ABSTRACT

An open-source, six-degree-of freedom kinematic and dy-
namic software toolkit for a spacecraft with attached robotic
arm has been developed and released. The toolkit is capable
of simulating a floating or a flying base and can handle ex-
ternal forces, both in operational and in joint space. Based
on a Newton-Euler approach which makes use of the Decou-
pled Natural Orthogonal Complement matrix, the forward
and inverse dynamics are solved using an efficient, recursive
O (n) algorithm. Recursive O (n) formulations to obtain
the generalized inertia and convective inertia matrices have
also been implemented. Written as a collection of function
for MATLAB/ Simulink, the toolkit is very modular and it
can be used for standalone MATLAB scripts or for Simulink
models. The resulting Simulink models are suitable for code
generation and thus can be readily compiled and executed
into embedded hardware or integrated with third party tools.
In addition to modeling the kinematics and dynamics, the
software includes tools to help the user create control and
analysis applications.

Index Terms— SPART, spacecraft robotics, toolkit,
open-source, kinematics, dynamics, control

1. INTRODUCTION

A wide range of space missions require a robotic arm (e.g.
satellite servicing, active debris removal and berthing). The
kinematics and dynamics of space manipulators are highly
non-linear and differ considerably from their terrestrial coun-
terparts. The base-spacecraft is not anchored to the ground
and thus it is free to react to the manipulator’s motion, mak-
ing the modeling and control of space-based manipulators a
complex task. The base-manipulator interaction is stronger
when the mass and inertia of the manipulator and of the base-
spacecraft are comparable. Therefore, the difference between
space and terrestrial manipulators tends to become more acute
on manipulators mounted on small spacecraft.

There is a wealth of literature on the modeling and control
of spacecraft manipulators, but each research group has typi-
cally developed its own software in order to simulate and val-

idate control approaches. In an attempt to help speed the pro-
cess and make space manipulators a more accessible research
topic, the open-source SPAcecraft Robotics Toolkit (SPART)
has been developed and released. SPART [1] computes the
kinematics and dynamics of the spacecraft-manipulator sys-
tem and thus can be used as a simulator (physics engine).
Additionally, it includes control algorithms and tools to an-
alyze the properties of a spacecraft manipulator system (e.g.
workspace and manipulability analysis). The goal is to create
an end-to-end toolkit to tackle spacecraft robotics problems.

This toolkit is originally written in MATLAB/Simulink,
and it can be used as standalone MATLAB scripts or Simulink
models. The Simulink models can subsequently be used for
automatic code-generation and compiled to run in real-time
on the selected target hardware (e.g. for embedded appli-
cations). This open-source code is thus suitable across the
spectrum of system development from prototyping work to
hardware implementation. Written as a collection of differ-
ent functions the toolkit is very modular and flexible and thus
can be integrated with other MATLAB/Simulink projects to
rapidly create an application-specific code with little over-
head.

The six-degree-of-freedom simulator can determine the
system kinematics, such as the homogeneous coordinate
transformation matrices and the velocity Jacobians, and also
the systems dynamics, including the generalized inertia and
convective inertia matrices. Starting with a Newton-Euler
formulation and making use of the Decoupled Natural Or-
thogonal Complement matrix [2, 3] the forward and inverse
dynamic problems are solved using an efficient, recursive
O (n) algorithm. Recursive O (n) formulations to obtain
the generalized inertia and convective inertia matrices have
also been implemented. Several control manipulator and
base-spacecraft control approaches have also already been
implemented (for example, resolved motion-rate control and
a zero reaction maneuver. More control tools are expected to
be added in the near future.

As it currently stands, the toolkit has some limitations.
Its underlying formulation is only valid for kinematic-tree
topologies composed of rigid bodied. Closed-loop chains [4]



and flexible bodies [5] are not currently supported, although
they could be implemented in the future.

This toolkit has been developed to support the teaching
and experimental research activities conducted at the Naval
Postgraduate School Floating Spacecraft Simulator (NPS-
FSS) [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The NPS-FSS test
bed is a dynamic simulator consisting of a 4-by-4 meter gran-
ite monolith where Floating Spacecraft Simulators float via
air-bearings (recreating a reduced friction and gravity en-
vironment). A recent addition of the test bed is a modular
four-link manipulator arm [16].

Many mature and advanced general physics engines and
libraries already exists, mainly the Open Dynamics Engine
(ODE) [17], Bullet [18], Simbody [19] and Dynamic Anima-
tion and Robotics Toolkit (DART) [20]. These are mainly
focused in simulation and do not provide, except DART, full
access to internal kinematic and dynamic quantities (i.e. the
generalized inertia matrix, generalized convective inertia or
kinematic transformations, among others). In addition, these
other physics engines and libraries are general in scope and
thus are not focused on spacecraft robotics (floating-base) and
do not include any control algorithms or tools to analyze the
properties of a particular spacecraft-manipulator system con-
figuration. As they are mainly written in C/C++ they are suit-
able for embedded execution but are difficult or cumbersome
to use for rapid algorithm prototyping.

First, the main equations of a spacecraft with a robotic
arm will be reviewed. Then, a brief introduction to the De-
coupled Natural Orthogonal Complement matrix will be pro-
vided. Finally, the architecture and usage of the simulator will
be presented as well as some examples that demonstrate how
the simulator performs under some basic manipulator control
applications.

2. KINEMATIC AND DYNAMIC MODELING

Historically, multiple methods to solve both the forward and
inverse dynamics problems have been proposed. Most of
these methods start by formulating the Newton-Euler (NE) or
Euler-Lagrange (EL) equations.

Approaches based on NE have resulted in very compu-
tationally efficient O (n) [21, pp. 260-265] recursive algo-
rithms for forward and inverse dynamics [22, 23, 24, 25, 26].

Of particular significance for the forward dynamics
problem are the Composite Rigid Body method [23] and
the Articulated-Body method [24]. The forward dynam-
ics of the Composite Rigid Body method [23] results in
a O

(
n3
)

algorithm but with very small coefficients (i.e.
1/6n3 + 11/2n2 + 38/3n − 47 multiplications), making it
competitive for a small number of links (i.e. <12) [2].

A recursive algorithm based on Kane’s equations [27] as
well as a complex algorithm based on Kalman filtering and
smoothing theory[28] have also been proposed. Parallel com-
puting approaches that can reduce the complexity down to

O (log (n)) [29, 30] have been developed although are only
attractive for systems with a large number of coupled bodies.

The recursive approach to be used in this paper is based
on the Decoupled Natural Orthogonal Complement matrices
and theories of linear algebra [31, 32, 2, 3]. This particu-
lar method exhibits a O (n) complexity when solving both
the forward and inverse dynamics problems [2, 3] and allows
one to obtain recursive O (n) formulations for the general-
ized inertia H and the convective inertia C matrices. The
actual computational complexity coefficients are implemen-
tation dependent and and in general, can be improved by op-
timizing the code.

The state of the spacecraft-manipulator system is fully de-
scribed by the joint variables q and their time derivatives q̇ and
q̈. These joint variables q define the joint space, in contrast to
the operational space which uses the Cartesian representa-
tion. Manipulator tasks (e.g. capturing or manipulating an
object) are usually defined in operational space but the con-
trol of the manipulator occurs in joint space (e.g. forces ap-
plied at the manipulator joints). It is worth noting that the
generalized joint variables q include the position and attitude
of the base-spacecraft q0 and the manipulator joint states qm
and so q =

[
q0 qm

]T
. The equation of motion can be ex-

pressed in a compact form by Eq. (1). The τ vector denotes
the generalized forces applied to the system in joint space, H
denotes the generalized inertia matrix, and C is the general-
ized matrix of convective inertia, which contains the Coriolis
and centrifugal forces.

H (q) q̈ + C (q, q̇) q̇ = τ (1)

If the inertia matrices are known, Eq. (1) can be used to
obtain a straightforward solution to the forward and inverse
dynamics problems. However, recursive methods are signifi-
cantly more computationally efficient and thus are commonly
used for these tasks. Equation (1) is mainly used to gain in-
sight on the system and to derive other useful expressions
when formulating and solving different control problems. In
particular, the generalized inertia matrixH is very much used
to formulate and solve control problems, and thus it is impor-
tant to obtain it in an efficient manner.

2.1. Kinematics

Each node (i.e rigid body) of the spacecraft-manipulator sys-
tem will be referred as a link and identified by a number using
a regular numbering scheme [26]. In such a scheme the base-
spacecraft (root node) is given the number 0. Each link and
its associate joint connecting it to its parent will have a higher
number than its parent. In the case of branched manipulators,
multiple numbering options will exist and can be chosen arbi-
trarily among them. Figure 1 schematically shows a generic
spacecraft manipulator system and an example of the regular
numbering scheme.



Fig. 1: Generic spacecraft-manipulator system.

Fig. 2: Denavit-Hartenberg parameters (adapted from [33]).

2.1.1. Reference frames and coordinate transformations

An inertial reference frame I with arbitrary origin and orien-
tation is defined and, unless otherwise noted, all magnitudes
will be specified in this frame. Link Li and joint Ji reference
frames are also defined.

The origin and orientation of the joint reference frame Ji
will be chosen using the Denavit-Harteneberg (DH) conven-
tion shown in Fig. 2 [33, 34].

It is important to clarify that the notation i + 1 and i −
1 will be used to denote a child and the parent link or joint
irrespective of their numbering. Additionally the last joint and
link on a branch will be generally denoted by n. This is done
to simplify the notation while accommodating the kinematic
tree topology where links can branch out as it is shown in Fig.
1.

In the DH convention, the k̂i axis of a generic joint Ji is
chosen along the joint rotation (revolute joint) or sliding axis
(prismatic joint). The origin of the Ji frame is located at the
intersection of the k̂i axis with the common normal between
k̂i−1 and k̂i. The îi axis is usually chosen to point at the next
joint origin. In the case of a link with multiple children, thus
with multiple Ji+1, one of the following joints is arbitrarily
selected in order to align îi. Finally the ĵi axis is laid out
completing the right-hand triad.

In such convention there are four different parameters that
univocally describe the relationship between the Ji+1 and Ji
frames. These parameters are shown in Fig. 2, and their ge-
ometric definition is provided in Table 1. Note that these pa-
rameters need to be defined for each pair of connected joints.

The θ and d parameters become the joint variables of revo-
lute and prismatic joint respectively. As each joint is assumed
to only be revolute or prismatic, the generic joint variable q is
used to denote both (irrespective of the joint type).

The link reference frame Li will have its origin located,
without loss of generality, at the link’s center-of-mass and
their axis orientation will match one of their children joints
Ji+1 (to be selected arbitrarily). For convenience, the base-
spacecraft reference frame L0 can also be defined arbitrarily,
but to make the analysis simpler, it will be assumed that the
origin of L0 is located in the base-spacecraft center-of-mass.
In general, the magnitudes related to the base-spacecraft will
be denoted by the subscript 0.

The adopted DH convention still leaves some undefined
magnitudes. The origin and the direction of the î axes of the
reference frames of the joints connected to the base-spacecraft
J0+1 are arbitrary. Additionally, the last joint of each branch
does not have a subsequent joint Jn+1 and thus the direc-
tion of î could also be defined arbitrarily. The same occurs
with the last link of a branch Ln where there is no subsequent
joint Jn+1 to inherit its orientation. Generally at the end of
each branch an end-effector will be located, and a convenient
reference frame for that end-effector will be defined. This
end-effector reference frame will be denoted as JEE and can
be used as the Jn+1 reference frame and thus keep the DH
convention for the last link and joint of a branch. Figure 3
shows the disposition of the links and joints and the definition
of their geometric parameters.

The DH parameters are the input to the simulator and de-
scribe the geometric relationship between the different rigid
bodies of the system. With this input, the kinematics func-
tion is able to compute the transformation matrices which re-
late the different joint and links. This homogeneous transfor-
mation matrices from the joint and link frames to the iner-
tial reference frame (ITJi

and ITLi
) can then be computed

recursively moving though the tree topology from the base-
spacecraft outwards as shown in Eq. (2) and (3).



Table 1: Denavit-Hartenberg parameters and their geometric definition.

DH parameter Geometric definition

di,i+1
Distance between the Ji and Ji+1 origins along the k̂i axis. It

is also the prismatic joint variable.

θi,i+1
Rotation from îi to îi+1 along k̂i. It is also the revolute joint

variable.
αi,i+1 Rotation from k̂i to k̂i+1 along ĵi+1.
ai,i+1 Distance along the common normal between k̂i and k̂i+1

Fig. 3: Schematic disposition of links and joints.

ITJi = ITL0

L0TJ0+1

i∏
j=2

Jj−1TJj = ITJi−1

Ji−1TJi (2)

ITLi
= ITJi

JiTLi
= ITJi+1

Ji+1TLi
(3)

A homogeneous transformation matrix is just the combina-
tion of the rotation matrix R and the displacement vector s
written in a compact as the 4× 4 matrix. If Eq. (4) represents
a frame transformation of the vector vJi+1 , its equivalent ho-
mogeneous transformation matrix can then be constructed by
Eq. (5).

vJi = JiRJi+1v
Ji+1 + JisJi+1 (4)

JiTJi+1
=

[ JiRJi+1
JisJi+1

01,3 1

]
(5)

The transformation matrix from the first joint of the branch
to the base-spacecraft L0TJ0+1 is fixed by the spacecraft-
manipulator geometry. The L0sJ0+1

will then be the vector
from the origin of L0 to the arbitrary origin of J0+1 in the

L0 frame (i.e. location of that first joint in the L0 body axis).
This transformation is also required as an input.

L0TJ0+1 =

[ L0RJ0+1
L0sJ0+1

01,3 1

]
(6)

If the mass of each link is denoted by mi, the spacecraft-
manipulator system center-of-mass position rc can be easily
computed using Eq. (7).

rc =

∑n
i=0miri∑n
i=0mi

(7)

The rotation axis of each joint in the inertial frame ei can be
computed using Eq. (8) where IRJi denotes the rotation sub-
matrix in ITJi

. Obviously ei is simply the last column of the
IRJi

rotation matrix.

ei = k̂Ji
= IRJi

 0
0
1

 (8)

The inertia of the ith link in inertial frame can be computed
using Eq. (9).

Ii = IRLi
ILi
i
IRT
Li

(9)

2.1.2. Velocities and accelerations

The angular ωi and linear ṙi velocities of the ith link of the
chain in operational space can be encapsulated into a six-
dimensional twist vector ti.

ti =

[
ωi

ṙi

]
(10)

The twist-propagation equations can be encapsulated in a
more compact form as follows.

ti = Bijtj + piq̇i (11)

Where the 6 × 6 Bi,j matrix denotes the twist-propagation
matrix and the 6-dimensional pi vector represents the twist-
propagation vector. Let t denote the 6 (n+ 1) generalized
twist vector and q̇ the (n+ 6) generalized joint-rate variables
vector.



t =
[
t0 t1 . . . tn

]T
(12)

q̇ =
[
q̇0 q̇1 . . . q̇n

]T
(13)

The base-spacecraft q̇0 state is composed of its angular veloc-
ity in body axis and its linear velocity in inertial frame, thus
making it a six-dimensional vector. The rest of the general-
ized joint variables will then be part of the manipulator and
will be generically denoted by the n-dimensional qm vector.

q̇0 =
[
ω0 ṙ0

]T
(14)

q̇ =
[
q̇0 q̇m

]T
(15)

Using the generalized joint variables q̇, a velocity transforma-
tion or natural orthogonal complement 6 (n+ 1) × (n+ 6)
matrix N can be defined. The velocity transformation matrix
maps the velocities in joint space q̇ to velocities in the opera-
tional space t.

t = Nq̇ (16)

This matrix, first introduced by Angeles and Lee [31], can be
decoupled to obtain the decoupled natural orthogonal com-
plement [32] with Nl being the 6 (n+ 1) × (n+ 6) lower
block triangular matrix and Nd the 6 (n+ 1)× (n+ 6) block
diagonal matrix.

N = NlNd (17)

Nl =


16.6 06,6 · · · 06,6
B10 16,6 · · · 06,6

...
...

. . .
...

Bn0 Bn1 · · · 16,6

 (18)

Nd =


P0 06,1 · · · 06,1
06,6 p1 · · · 06,1

...
...

. . .
...

06,6 06,1 · · · pn

 (19)

For the base-spacecraft the the usual pi 6-dimensional propa-
gation vector becomes a 6 × 6 matrix that contains the base-
spacecraft rotation matrix as shown in Eq. (20). The velocity
transformation matrix is then simplified as follows.

P0 =

[ IRL0 03,3
03,3 13,3

]
(20)

t0 = P0q̇0 (21)

It is important to note that the twist-propagation matrix will
be zero Bi,j = 0 if the two links are not in the same branch,
producing branch induced sparsity on the Nl matrix. A sin-
gle branch manipulator will produce a full lower trigonal Nl

matrix. Additionally as all the links share a branch with the
base-spacecraft then Bi0 6= 0.

The accelerations can then be computed by differentiating
the twist-propagation equations as follows.

ṫ0 = Ω0P0q̇0 + P0q̈0 (22)

ṫi = Bi,i−1ṫi−1 + Ḃi,i−1ti−1 + Ωipiq̇i + piq̈i (23)

With Ḃij being the 6 × 6 time derivative of the twist-
propagation matrix, Ωi being the 6 × 6 angular velocity
matrix. This twist-rate vector can also be expressed using the
velocity transformation time-derivative as follows.

ṫ = Nq̈ + Ṅ q̇ (24)

2.1.3. Jacobians

The individual velocity transformation matrices that compose
N are also known as Jacobians [33] which is the common de-
nomination used when formulating spacecraft robotics con-
trol problems [35, 36].

Instead of being used to obtain the generalized twist vec-
tor t, Jacobians are used to obtain the velocities of an arbitrary
point on the manipulator. The 6× (n+ 6) Ji Jacobian can be
used to obtain the ith link velocities ti as shown in Eq. (25).
It can be easily obtained as an horizontal slice of the velocity
transformation matrix N .

ti = Jiq̇ (25)

More generically, a Jacobian that maps the velocities in joint
space q̇ to the velocities in operational space of a generic point
on the ith link xi can be also be defined and will be denoted
by Jxi

. The contributions to the operational space velocity
from the base-spacecraft motion q̇0 and from the manipulator
motion q̇m can be made explicit by splitting the Jxi Jacobian
into the 6 × 6 base-spacecraft Jacobian J0xi and the 6 × n
manipulator Jacobian Jmxi

. The operational space velocities
can be simply obtained by Eq. (27).

Jxi
=
[
J0xi

Jmxi

]
(26)

ti = J0iq̇0 + Jmiq̇m (27)

A particular point of interest is the origin of the end-effector
reference frame JEE denoted by xEE . The end-effector Ja-
cobians J0EE and JmEE can be also obtained and thus, the
end-effector velocities can then be computed as follows.

tEE = J0EE q̇0 + JmEE q̇m (28)



2.2. Dynamics

The torques ni and forces fi in operational space applied to
the ith link center-of-mass can also be encapsulated into a
six-dimensional wrench vector wi.

wi =

[
ni
fi

]
(29)

The NE equations can then be written for each link as follows.

Mi =

[
Ii 03,3

03,3 mi13,3

]
(30)

Miṫi + Ṁiti = wi (31)

Ṁ =

[
ωi × Ii 03,3

03,3 03,3

]
(32)

The compact NE equations can then be generalized for all the
system links as follows.

Mṫ+ Ṁt = w (33)

w =
[
w0 w1 . . . wn

]T
(34)

M = diag
([

M0 M1 . . . Mn

]T)
(35)

The wrenches can be decomposed in non-contributing wrenches
wn, that do not contribute the system motion and contribut-
ing wrenches wc. The contributing wrenches can be further
divided by the ones provided by the joint actuators wq (con-
trol wrenches) and the wrenches due to external or internal
interactions wF .

w = wc + wn = wq + wF + wn (36)

As the non-contributing wrenches wn do not perform any
work, they can be eliminated by premultiplying the NE Eq.
(33) by NT as tTwn = q̇TNTwn = 0.

NT
(
Mṫ+ Ṁt

)
= NTwq +NTwF (37)

Applying the twist (Eq. (16)) and the twist-rate (Eq. (24))
vector into Eq. (37) recovers the generalized equation of mo-
tion already shown in Eq. (1).

Hq̈ + Cq̇ = τ (38)

H = NTMN (39)

C = NT
(
MṄ + ṀN

)
(40)

τ = τ q + τF (41)

τF = NTwF (42)

τ q = NTwq (43)

The (n+ 6) × (n+ 6) generalized inertia matrix H is sym-
metric and positive semi-definite and can be subdivided in the
6×6 base-spacecraft inertia matrixH0, the n×nmanipulator
inertia matrixHm and the 6×n base-manipulator coupling in-
ertia matrix H0m. Similarly the generalize convective inertia,
which is not symmetric, can also be subdivided in analogous
subparts (although in this case the C matrix in not symmetric.

H =

[
H0 H0m

HT
0m Hm

]
(44)

C =

[
C0 C0m

Cm0 Cm

]
(45)

3. SOFTWARE ARCHITECTURE

The toolkit source code can be found at [1] and it is being
released with a GNU GPL v3 license [37]. The core of the
toolkit is a collection of MATLAB functions that provide
the basic kinematic and dynamic quantities – mainly the
kinematic transformations, the flying- and floating-base Ja-
cobians, and the flying- and floating-base generalized inertia
and convective inertia matrices.

These core functions are then assembled to create the
O (n) forward and inverse dynamic algorithms. These algo-
rithms can solve for a floating or a flying base. These forward
and inverse dynamic solvers are then used as the basis to
create a dynamic simulator. These already implemented sim-
ulators are also available as Simulink blocks (the system’s
plant).

Another set of MATLAB functions is used for control.
Multiple types of controllers can be build easily using these
functions. A resolved motion, a zero and desired reaction
maneuver, and a transpose Jacobian have already been de-
veloped. The control input required to counteract the base
reaction due to the manipulator motion can also be computed.
These controllers are also available as Simulink blocks, which
can then be used to control the plant. Using the Simulink au-
tomatic code generation capabilities, a C version of these con-
trollers can be generated and later compiled for a specific em-
bedded hardware target running a Real-Time Operating Sys-
tem Environment.

Finally, another set of functions are used to analyze the
properties of a spacecraft with a robotic arm. Algorithms
used to analyze the workspace and the kinematic manipulabil-
ity have already been implemented. SPART aims to become
an end-to-end solution to tackle spacecraft robotics problems
(from analysis to simulation and control).

The toolkit as it currently stands is mainly standalone in
an effort to facilitate its interaction with other third-party tools



is being made. Integration with other robotic frameworks as
ROS (a set of software libraries and tools that help you build
robot applications) [38], GAZEBO (a multi-robot simulator
for outdoor environments) [39] and MoveIt! (software for
mobile manipulation, incorporating the latest advances in mo-
tion planning, manipulation, 3D perception, kinematics, con-
trol and navigation) [40] is being carried out. These other
frameworks could complement SPART adding visualization,
path-planning, navigation and networking capabilities.

Currently the spacecraft-manipulator description is pro-
vided to SPART using a custom structure. Integration with
the commonly used URDF, SDF, and VSK file formats is en-
visioned in the near-future.

4. EXAMPLE APPLICATIONS

A Desired Reaction Maneuver and a workspace analysis will
be used to briefly illustrate the capabilities of the toolkit.

4.1. Desired-Reaction-Maneuver

If the manipulator has additional degrees-of-freedom, these
can be used to partially or totally impose a desired base-
spacecraft reaction. This concept was first proposed by
Yoshida [41] as a means to avoid base-spacecraft reaction
and is commonly known as Zero Reaction Maneuver (ZRM).
This concept is extended here to obtain any desired base
reaction maneuver.

In general, to transmit a desired reaction to the base Eq.
(46), which includes the requested trajectory txi

and the de-
sired base reaction q̇0 can be used. In Eq. (46)M′

denotes
the system’s initial angular and linear momentum.

[
q0
txi

]
−
[

H−10

J0xi
H−10

]
M
′

=

[
−H−10 H0m

Jmxi
− J0xi

H−10 H0m

]
q̇m

(46)
Although Eq. (46) assumes that q̇0 and txi

have to be fully
controlled, partial control is also an option. Partial control can
be imposed by only including the portions of interest of the
state vector (q̇0 and txi

) and its associated matrices portions
into Eq. (46).

To obtain the joint velocities q̇m required to obtain the re-
quested txi

motion while transmitting a reaction to the base
that forces the prescribed q̇0 motion, Eq. (47) can be em-
ployed.

q̇m =

[
−H−10 H0m

J?
xi

]−1([
q̇0
txi

]
−
[

H−10

J0xiH
−1
0

]
M
′
)

(47)
To solve this Desired Reaction Maneuver (DRM) an in-

verse needs to be computed, and the process is susceptible
to encounter singularities (in even less intuitive locations than
when inverting only Jacobians). To obtain stable solutions Eq.

Base-spacecraft Links
Mass kg 100 10
Size [cm] 75×75 50×5

Table 2: Parameters of the exemplary case.

(48), which uses the adjugate of the G matrix and in which k
is an arbitrary scalar, can be used. If k = 1/ det (G) the same
results are recovered as when using the inverse, but imposing
an upper limit on k will bound q̇m in the vicinity of the sin-
gularity. This method is recommended when computing the
solutions.

q̇m = k adj (G)

([
q̇0
txi

]
−
[

H−10

J0xi
H−10

]
M
′
)

(48)

G =

[
−H−10 H0m

J?
xi

]
(49)

A ZRM is then a subset of the general DRM case presented
here when the spacecraft-manipulator system is initially at
restM′

= 0 and when no reaction on the base-spacecraft is
desired q̇0 = 0 (or only no-angular-velocity reaction ω0 = 0).

It is interesting to note that the DRM can be used to
counteract the presence of small initial momentumM′

(due
to residual base-spacecraft angular motion for example) and
provide the required manipulator motion which keeps the
base-spacecraft and the xi point fixed q̇0 = txi = 0. Another
important aspect is that these techniques can be also used for
spacecraft with multiple manipulator arms. The second arm
can provide the extra degrees-of-freedom to implement the
ZRM or DRM.

An example of a DRM with a four-link manipulator is
shown in Fig. 4. The end-effector describes a prescribed mo-
tion of constant orientation (zero degrees). During this ma-
neuver, the additional degree-of-freedom is used to keep the
base-spacecraft pointing towards the end-effector (imposing
a desired reaction) while the base-spacecraft position is left
uncontrolled. For this maneuver SPART has been used for
the propagation of state variables and to generate the control
inputs.

4.2. Workspace and Manipulability analysis

SPART also contains functions that analyze a particular
spacecraft-manipulator robotics configuration. A planar ex-
ample, considering identical links connected by revolute
joints, is used (similar to what is used in other references
[42]). The parameters used are provided in Table 2. The
center-of-mass of each link will be located in its geometric
center, and its inertia is obtained by assuming a homogeneous
bodies. The first joint will have a ±90 degree rotation limit
and for subsequent joints a ±115 degree limit is assumed.
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Fig. 4: DRM example evolution.

An example of reachable fixed vehicle workspace is
shown in Fig. 5. Note that if a third link is added to the
manipulator, the reachable workspace is greatly expanded as
shown in Fig. 5b. Additionally with a third link the attitude
of the end-effector can also be controlled (and a dextrous
workspace could be defined).

Defining the workspace for a floating base is more chal-
lenging. The straight-path workspace is defined as the volume
that can be reached if the point of interest (e.g. end-effector) is
moved in a straight line from the starting configuration. This
volume is obviously continuous and its boundary can be nu-
merically obtained by subsequently moving the manipulator
until it is no longer possible to maintain a straight line motion.
Geometric and joint limits can be included when obtaining
this workspace. An example of this workspace is shown in
Fig. 6. This workspace considers the spacecraft-manipulator
system in a certain configuration, so it is tied to this particular
starting configuration.

The kinematic, static and dynamic manipulability ellip-
soids provide quantitative measures of the ability to move a
manipulator point xi (usually the end-effector) in a particular
direction and to obtain the velocity transmission ratio (kine-
matic manipulability ellipsoid) or the force transmission ra-
tio (static and dynamic manipulability ellipsoids) from joint
space to operational space along that direction. These ellip-
soids are a tool to seek optimal manipulator configurations to
perform a task in a certain direction (e.g. exert a force, an
acceleration or a velocity to an object and achieve a certain
accuracy on those magnitudes).

For the kinematic manipulability ellipsoid, joint velocities
of unit norm q̇T q̇ = 1 are considered. Using the Jacobians to
map the joint velocities into operational space the following
ellipsoid equation is obtained [33].

tTxi

(
JxiJ

T
xi

)−1
txi = 1 (50)

The quadratic Jxi
JT
xi

term defines the ellipsoid. The
eigenvectors of this term define the principal axis of the el-
lipsoid and the eigenvalues are the a2, b2 and c2 semi-axes
of the ellipsoid. In this case the ellipsoid is centered around
xi. This ellipsoid only depends on the Jacobian, and thus it is
only a function of the spacecraft-manipulator geometry and
current configuration (joint state q). An example is provided
in Fig. 7.

The volume of an ellipsoid is proportional to the prod-
uct of its semi-axis and thus the volume of the ellipsoid is
proportional to the kinematic manipulability measure kmxi

.
Examples of this measure is provided in Fig. 5.

kmxi =
√

det
[
Jxi

JT
xi

]
(51)

5. CONCLUSIONS

An open-source spacecraft robotics toolkit has been devel-
oped and realized. The toolkit includes function that deter-
mine, using an O (n) algorithm, the kinematic and dynamic
quantities based on the Decoupled Natural Orthogonal Com-
plement matrix. This forms the basis of recursive forward
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Fig. 5: Kinematic manipulability measure and reachable workspace.
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and inverse dynamic algorithms. These are available as MAT-
LAB functions or Simulink blocks. Multiple control algo-
rithms, which build upon the kinematic and dynamic quan-
tities have been implemented and are also available in the
form of MATLAB functions or Simulink blocks. Using the
Simulink’s automatic code generation capability, a C imple-
mentation of these controllers can be obtained and later com-
piled to be is executed on embedded hardware. Tools to an-
alyze the properties of the spacecraft-manipulator have also
been implemented.
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