

Calhoun: The NPS Institutional Archive DSpace Repository

SMALL-SCALE POWER EXTRACTION SYSTEM FOR COMPRESSED AIR ENERGY STORAGE

Pelletier, Nathaniel S.
Monterey, CA; Naval Postgraduate School
http://hdl.handle.net/10945/61243

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

THESIS

SMALL-SCALE POWER EXTRACTION SYSTEM FOR COMPRESSED AIR ENERGY STORAGE

by

Nathaniel S. Pelletier

December 2018

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE			orm Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.			
1. AGENCY USE ONL (Leave blank)	2. REPORT DATE December 2018	3. REPORT TYPE AND DATES COVERED Master's thesis	
4. TITLE AND SUBTITLE SMALL-SCALE POWER EXTRACTION SYSTEM FOR COMPRESSED AIR ENERGY STORAGE			5. FUNDING NUMBERS RMLYV
6. AUTHOR(S) Nathaniel S. Pelletier			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MO ADDRESS(ES) N/A	ING AGENCY NAME(S) A	$\begin{aligned} & \text { 10. S } \\ & \text { MOI } \\ & \text { REP } \end{aligned}$	NSORING / ORING AGENCY T NUMBER
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.			
12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Distribution is unlimited.			12b. DISTRIBUTION CODE A
13. ABSTRACT (maximum 200 words) The goal of this thesis was to improve on the concept of using compressed air as an energy storage medium to generate electrical power. By using compressed air as energy storage, the cost to store power is significantly reduced. An air ejector was used to increase the airflow through a small turbine to maximize the power extraction from the compressed air. The turbine shaft rotation was coupled to a three-phase, permanent magnet generator, to produce three-phase alternating current (AC). A three-phase AC transformer bank was incorporated in one of three modes to optimize the turbine speed: step down, bypass, or step up. The AC was then rectified into direct current (DC) for storage in a super capacitor. Computational fluid dynamics simulation was used to explore entrainment scenarios and their effect on airflow into the turbine. With the obtained entrainment airflows, the internal energy of the expanded air was proven to rise before use by the turbine. This system, if fully developed, could use existing air storage infrastructure at many Department of Defense installations to harness the full potential of renewable energy and provide for more resilient and secure energy.			
14. SUBJECT TERMS small-scale compressed air energy storage (CAES), permanent magnet generator, renewable power storage, turbine, air ejector, thrust augmentation, air entrainment, dynamic transformer utilization, super-capacitor, computational fluid dynamic (CFD), three phase transformer, rectifier			15. NUMBER OF PAGES 165 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UU

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release. Distribution is unlimited.

SMALL-SCALE POWER EXTRACTION SYSTEM FOR COMPRESSED AIR ENERGY STORAGE

Nathaniel S. Pelletier
Lieutenant, United States Navy
BSE, University of South Carolina, 2011
Submitted in partial fulfillment of the
requirements for the degree of
\title{ MASTER OF SCIENCE IN MECHANICAL ENGINEERING }

from the

NAVAL POSTGRADUATE SCHOOL

December 2018

Approved by: Anthony J. Gannon Advisor

Andrea D. Holmes

Co-Advisor

Garth V. Hobson
Chair, Department of Mechanical and Aerospace Engineering

THIS PAGE INTENTIONALLY LEFT BLANK

Abstract

The goal of this thesis was to improve on the concept of using compressed air as an energy storage medium to generate electrical power. By using compressed air as energy storage, the cost to store power is significantly reduced.

An air ejector was used to increase the airflow through a small turbine to maximize the power extraction from the compressed air. The turbine shaft rotation was coupled to a three-phase, permanent magnet generator, to produce three-phase alternating current (AC). A three-phase AC transformer bank was incorporated in one of three modes to optimize the turbine speed: step down, bypass, or step up. The AC was then rectified into direct current (DC) for storage in a super capacitor.

Computational fluid dynamics simulation was used to explore entrainment scenarios and their effect on airflow into the turbine. With the obtained entrainment airflows, the internal energy of the expanded air was proven to rise before use by the turbine. This system, if fully developed, could use existing air storage infrastructure at many Department of Defense installations to harness the full potential of renewable energy and provide for more resilient and secure energy.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

I. INTRODUCTION. 1
A. CURRENT ELECTRICAL ENERGY STORAGE SYSTEMS 1
B. CURRENT CAES SYSTEMS 5
C. THEORETICAL UTILITY SCALE CAES SYSTEMS 6
D. FUTURE UTILITY SCALE CAES SYSTEMS 8
E. SMALLER-SCALE CAES SYSTEMS 11
II. DESIGN IMPROVEMENTS 13
A. COMPRESSED AIR DRIVE UNIT 14

1. Compressed Air Expansion 14
2. Turbo Selection 19
B. ELECTRICAL EQUIPMENT 25
3. Permanent Magnet Generator 25
4. 3-Phase Transformer Bank 27
5. 3-Phase Bridge Rectifier 33
6. Supercapacitor Energy Storage 37
C. AUTOMATED CONTROL 38
7. Control of Air Valve 39
8. Control of Transformer Operation 42
III. CFD ANALYSIS OF COMPRESSED AIRFLOW 47
A. INTRODUCTION AND OBJECTIVE 47
B. CFX PROBLEM SETUP 47
9. Physical and Fluid Flow Domain. 48
10. Computational Mesh Creation 51
11. Boundary Conditions and Solver Options 53
12. Solver Running 54
C. ANALYSIS 55
IV. TESTING AND RESULTS 59
A. EARLY TESTING 59
B. FINAL TESTING 65
V. CONCLUSIONS 71
VI. RECOMMENDATIONS 73
A. AC TO DC CONVERSION 73
B. GENERATOR SELECTION 73
C. TURBINE SELECTION 73
D. VIBRATION ISOLATION 73
E. MOTOR TO GENERATOR COUPLING 74
F. DYNAMIC TRANSFORMER OPERATION 74
G. TEST INSTRUMENTATION 74
H. CAPACITOR SIZING 75
I. EXPLORE PISTON TYPE AIR EXPANSION MOTOR 75
APPENDIX A. ANSYS CFX MODELING OF AIR EJECTOR 77
APPENDIX B. MODIFIED POWER DRIVE UNIT TEST DATA 83
APPENDIX C. NEW POWER DRIVE UNIT INITIAL TEST DATA 107
APPENDIX D. FINAL TEST 16VDC CAPACITOR CHARGE DATA 137
APPENDIX E. FINAL TEST 56VDC CAPACITOR CHARGE DATA 139
LIST OF REFERENCES 141
INITIAL DISTRIBUTION LIST 145

LIST OF FIGURES

Figure 1. Wind Generation Compared to Energy Value for Hudson, New York. Source: [2]. 2
Figure 2. Classification of Electrical Energy Storage Systems According to Energy Form. Source: [3]. 2
Figure 3. Capital Energy Cost versus Capitol Power Cost. Source: [4]. 3
Figure 4. Round Trip Efficiency versus Capacity. Source: [5]. 4
Figure 5. Comparison of Power Rating and Rated Energy Capacity. Source: [1]. 5
Figure 6. Schematic of a CAES Plant. Source: [1]. 6
Figure 7. Simplified Scheme of an A-CAES Plant. Source: [8]. 7
Figure 8. Cascade CAES Storage Scheme, for Case of Four PCM Stages. Source: [7] 8
Figure 9. Hydrostor's Use of Salvage Bags for U-CAES Pilot Project. Source: [9]. 9
Figure 10. Land-Based, Constant Pressure A-CAES System by Hydrostor. Source: [10] 10
Figure 11. Fuel Saving According to Different Scenarios. Source: [12]. 12
Figure 12. Proposed Design Concept. Source: [14]. 13
Figure 13. Installation of EXAIR Super Air Nozzle on Original Power Unit 16
Figure 14. Diagram of Air Booster. Adapted from [18]. 17
Figure 15. 2-D Schematic of Typical Steam Ejector with Pressure and Velocity Distribution. Adapted from [19]. 18
Figure 16. Experimental Setup with 3/4in Inlet Ejector Installed 19
Figure 17. Function of an Internal Wastegate. Adapted from [21]. 20
Figure 18. Comparison of Turbine Housings. Sources: [22], [23]. 21
Figure 19. Flow Chart for GT2554R Turbine. Source: [24]. 22
Figure 20. Flow Chart for GT3071R Turbine. Source: [25]. 22
Figure 21. Flow Chart for GTW3884R Turbine. Source: [26]. 23
Figure 22. Illustration of Turbine Housing to Show A/R. Adapted from [27] 23
Figure 23. GT2554R (background) and GT3071R (foreground) with Compressor Wheels Removed 24
Figure 24. Oil Outlet Port of GT3071R with Installed Gasket, Oil Drain Flange, and Plug 25
Figure 25. Scorpion HK-4525-520 Ultimate Motor. Source: [28]. 27
Figure 26. Single Phase Transformer. Source: [30]. 27
Figure 27. Transformer Line Diagram. Source: [31]. 29
Figure 28. Emerson E200EWA with Fusing Installed 30
Figure 29. Comparison of Star and Delta Connections. Adapted from [32]. 30
Figure 30. Transformer Connections for a Delta - Delta Connection. Source: [32]. 31
Figure 31. Final 3-Phase Transformer Bank 32
Figure 32. Transformer Connections for A Phase. Adapted from [31]. 33
Figure 33. Three-Phase Bridge Rectifier Diagram. Source: [33]. 34
Figure 34. Oscilloscope Display of 3-Phase AC to DC Conversion. 35
Figure 35. Voltage Drop Diode Characteristics for 3-Phase Rectifier. Adapted from [33], [34]. 36
Figure 36. MSD-100-12 3-Phase Bridge Rectifier. 37
Figure 37. 16VDC Maxwell BMOD0500 P016 B02-500 Farad Supercapacitor. Source: [35] 38
Figure 38. 56VDC Maxwell BMOD0130 P056 B03-130 Farad Supercapacitor. Source: [36] 38
Figure 39. SS-CAES Previously Proposed Schematic. Adapted from [15]. 39
Figure 40. Parker B6 Pilot Operated Solenoid Valve. Source: [37] 40
Figure 41. Valworx 523606A 3/4in Ball Valve with Valworx 529102A Direct Mount Solenoid Valve Installed 41
Figure 42. Current Diagram for SS-CAES System. Adapted from [15]. 41
Figure 43. Single Phase of Dynamic Transformer Operation 44
Figure 44. Crydom D53TP25D 3-Phase Solid-State Relay. Source: [40]. 45
Figure 45. 3-Phase Transformer Bank with Switching Operation Option 45
Figure 46. Physical Rendering of Air Ejector and Turbo Inlet 48
Figure 47. Fluid Flow Encompassing Shape 49
Figure 48. Fluid Flow Domain 50
Figure 49. Physical Representation of Open Flow Model 51
Figure 50. Open Flow Model Fluid Domain with Mesh Applied 52
Figure 51. Inflation Layers in Primary Nozzle. 53
Figure 52. Residual Convergence Trends 55
Figure 53. Final Solution Residuals 56
Figure 54. Cross Sectional Pressure Distribution. 57
Figure 55. Cross Sectional Mach Number Distribution 58
Figure 56. Modified Power Drive Unit 59
Figure 57. Final Power Drive Unit Installation 60
Figure 58. 16VDC Supercapacitor Voltage for Charge Cycle Charge Cycle Using Modified Power Drive Unit. 62
Figure 59. 16VDC Supercapacitor Voltage for Charge Cycle Using New Power Drive Unit 63
Figure 60. Step Down Transformer Configuration 64
Figure 61. Breakdown in Rectifier Output 64
Figure 62. 16VDC Supercapacitor Voltage for Charge Cycle 66
Figure 63. 16VDC Supercapacitor DC Current for Charge Cycle. 66
Figure 64. 16VDC Supercapacitor Power for Charge Cycle 67
Figure 65. 56VDC Supercapacitor Voltage for Charge Cycle 68
Figure 66. 56VDC Supercapacitor DC Current for Charge Cycle 69
Figure 67. 56VDC Supercapacitor Power for Charge Cycle 70

LIST OF TABLES

Table 1. Technical Characteristics of Electrical Energy Technologies. Source:[4].3
Table 2. Comparison of Current (green) and Previous (red) Permanent Magnet Generators. Adapted from [28], [29]. 26
Table 3. CFX Solution Boundary Conditions. 53
Table 4. CFX Calculated Values of Mass Flow. 56

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF ACRONYMS AND ABBREVIATIONS

A	amps
A/R	area ratio
AA-CAES	advanced adiabatic compressed air energy storage
AC	alternating current
A-CAES	advanced compressed air energy storage
ATM	atmospheres
BESS	battery energy storage system
CAES	compressed air energy storage
C-D	converging diverging
CES	cryogenic energy storage
CFD	computational fluid dynamic
CHRA	center housing rotating assembly
DC	direct current
DG	diesel generator
DoD	Department of Defense
EESS	electrical energy storage systems
ESR	equivalent series resistance
FES	flywheel energy storage
HPC	high pressure compressor
HPT	high pressure turbine
Hz	hertz (cycles/second)
IC	integrated circuit
in	inch
IPC	intermediate pressure compressor
kPa	kilo pascal
LPT	low pressure turbine
MEG	micro energy grid
NAS	sodium Sulphur battery
NO	normally open
NS	normally shut

NYSERDA	New York State Energy Research and Development Authority
Pa	pascal phase change materials
PCM	programmable logic controller PLC
Pounds per square inch gage	
PTC	parabolic trough collectors

ACKNOWLEDGMENTS

I am eternally grateful for my amazing wife, JoAnna, and our three wonderful children, Nathaniel, Josephina, and Noah. Their support in life has made every day a wonderful adventure.

I want to thank my advisors, Dr. Anthony Gannon and Andrea Holmes, for the opportunity to develop and test a concept that was engaging and original. Their technical acuity helped through difficult portions of this project to make it the success that it is.

I also want to thank Dr. Garth Hobson for his technical assistance with the CFD modeling. The difficulty of the problem would not have been surmountable without his expertise.

Lastly, I want to thank John Gibson, the NPS Turbomachinery shop foreman. His experience was instrumental in the building, testing, and repair of the power drive unit.

THIS PAGE INTENTIONALLY LEFT BLANK

I. INTRODUCTION

This thesis aims to use compressed air as a form of potential energy storage for later conversion to efficiently charge a 56VDC supercapacitor. A fully charged supercapacitor is able to power a microgrid when renewable or grid electricity is not available. A background of compressed air as an energy storage method and current technologies in generating power from the compressed air will be explored as a backdrop to the research being conducted for this thesis.

A. CURRENT ELECTRICAL ENERGY STORAGE SYSTEMS

Electrical energy storage systems (EESS), which convert electrical power to a storage medium for later use, vary significantly depending on the scale and needs of the end user. Reasons for storing energy include
helping in meeting peak electrical load demands, providing time varying energy management, alleviating the intermittence of renewable source power generation, improving power quality/reliability, meeting remote and vehicle load needs, supporting the realization of smart grids, helping with the management of distributed/standby power generation, and reducing electrical energy import during peak demand periods. [1]

Each of these reasons for EESS have driven engineers to develop many different solutions. Research into EESS has increased over the past decade, with the main interest focused on storing intermittently generated renewable energy [1]. Renewable power sources like wind, solar, and tidal produce power which varies over the course of a day. As seen in Figure 1, the wind power generation in Hudson, New York, tends to peak when electrical demand was lowest [2]. If this excess capacity is not stored until it is later needed, it is lost. The most common EESS are grouped based on energy form in Figure 2. The selection of the optimum EESS for any given application depends on a variety of factors, many of which are summarized in Table 1.

Figure 1. Wind Generation Compared to Energy Value for Hudson, New York. Source: [2].

Figure 2. Classification of Electrical Energy Storage Systems According to Energy Form. Source: [3].

Table 1. Technical Characteristics of Electrical Energy Technologies. Source: [4].

Technology	Energy Density $(\mathbf{W h} / \mathrm{L})$	Power Rating (MW)	Suitable Storage Duration	Lifetime (years)	Discharge Time	Cycling Times (cycles)	Maturity
PHS	$0.5-2$	$30-5000$	H-Mon	$40-60$	$1-24 \mathrm{H}+$	$10,000-30,000$	Mature
Flywheel	$20-80$	$0.1-20$	Sec-Min	$15-20$	Sec-15 Min	20,000	Early Com
CAES	$2-6$	≥ 300	H-Mon	$20-40$	$1-24 \mathrm{H}+$	$8000-12,000$	Early Com
Capacitor	$2-6$	$0-0.05$	Sec-H	$1-10$	Millis-1 H	$50,000+$	Com
SMES	$0.2-6$	$0.1-10$	Millis-H	$20-30$	$\geq 30 \mathrm{Min}$	$10,000+$	Demo/Early Com
TES	$80-500$	$0.1-300$	Min-Days	$5-30$	$1-24 \mathrm{H}+$	-	Demo/Early Com Developing
Solar fuel	$500-10,000$	$0-10$	H-Mon	-	$1-24 \mathrm{H}+$		Developing/Demo Hydrogen
fuel cell	$500-3000$	$0-50$	H-mon	$5-20$	Sec-24 H+	$1000+$	Demo
Li-ion	$150-500$	$0-100$	Min-Days	$5-15$	Min-H	$1000-10,000$	Demo
Lead-acid	$50-90$	$0-40$	Min-Days	$5-15$	Sec-H	$500-10,000$	Mature

Abbreviations: SMES, Superconducting magnetic energy storage; TES, Thermal energy storage.

Figure 3. Capital Energy Cost versus Capitol Power Cost. Source: [4].

Figure 4. Round Trip Efficiency versus Capacity. Source: [5].

To understand why compressed air energy storage (CAES) is being extensively researched, attributes of other EESS should be understood. Pumped hydraulic storage (PHS), although a mature and efficient form of energy storage ($70 \%-85 \%$ efficient), requires a significant amount of land and is reliant upon the topographic land features required for water reservoirs [3]. Superconducting magnetic energy storage (SMES), flywheel energy storage (FES), and capacitor energy storage systems have capital costs that exceed CAES [4] and discharge times that do not exceed one hour [1]. Battery energy storage systems (BESS) also have high capital costs [4], do not exceed one day of discharge capacity [1], and have much shorter lifetimes [4]. BESS also have inherent environmental concerns based on the chemicals used and shorter lifetimes [4]. CAES systems can store in excess of 24 hours of power at capacities exceeding 100's of MW without using any carbon based fuels when combined with renewable energy sources as a hybrid system [6]. CAES systems are an obvious solution for EESS because of their low capital costs, long lifetimes, lack of restriction to topographic features, and low environmental impacts.

Figure 5. Comparison of Power Rating and Rated Energy Capacity. Source: [1].

B. CURRENT CAES SYSTEMS

There are currently two CAES systems employed for commercial utility services. They are both restricted by geographic features because they use salt caverns underground as their compressed air reservoir [1].

The world's first utility-scale CAES plant, the Huntorf power plant, was installed in Germany in 1978. ...it runs on a daily cycle with 8 h of compressed air charging and 2 h of operation at a rated power of 290MW. This plant provides black-start power to nuclear units, back-up to local power systems and extra electrical power to fill the gap between the electricity generation and demand. Another commercial CAES plant started operation in McIntosh, Alabama, in 1991. The 110MW McIntosh plant can operate for up to 26 h at full power. ... A recuperator is operated to reuse the exhaust heat energy. This reduces the fuel consumption by $22-25 \%$ and improves the cycle efficiency from 42% to 54%, in comparison with the Huntorf plant [1].

Figure 6. Schematic of a CAES Plant. Source: [1].

The low efficiency of Huntorf and the McIntosh plant is due to a number reasons. Firstly, these two plants use a gas turbine generator that requires fossil fuels to heat the compressed air [4]. Secondly, the heat generated from compressing the air is exhausted to the atmosphere (shown as the aftercooler and intercooler in Figure 6) instead of being stored for later reuse in a thermal energy storage (TES) system [4]. If this heat of compression were stored and reused upon expansion, fossil fuels would not be required to reheat the air as it expands. Lastly, as the cycle charges and extracts compressed air from the cavern, the air pressure decreases. The changing pressure "leads to a change of the pressure ratio of the compressors causing an increase in irreversible losses. Also, at the end of the discharge, there will be remnant air, which will reduce the efficiency of the whole system." [4] Current research into CAES systems aims to address these inefficiencies.

C. THEORETICAL UTILITY SCALE CAES SYSTEMS

One major obstacle of CAES systems is "when air is compressed, approximately half of the exergy created is in the form of heat...energy that is lost if not properly stored and recovered." [7] New research aims to increase the system efficiency by recovering and reusing this heat. These new designs are called advanced compressed air energy storage
(A-CAES) or advanced adiabatic compressed air energy storage (AA-CAES) systems, depending on the heat recovery mode used [8]. One A-CAES concept uses a gravel bed TES system to recover heat from the intermediate pressure compressor (IPC) prior to the high pressure compressor (HPC). This heat is then transferred back to the compressed air prior to expansion in the high and low pressure turbines (HPT/LPT) [8]. This TES scheme increased efficiency to 77% without the use of fossil fuels to reheat the air [8].

The following acronyms explain the nomenclature in the above figure: low pressure compressor (LPC), intermediate pressure compressor (IPC), motor (M), high pressure compressor (HPC), intercooler (IC), aftercooler (AC), high pressure turbine (HPT), low pressure turbine (LPT), and generator (\sim).

Figure 7. Simplified Scheme of an A-CAES Plant. Source: [8].

Another approach studied used a series of phase change materials (PCM), which use the "latent heat of a first order phase transition" [7], to isothermally store the heat. To store the heat from the compressed air, "the air passes through a series of PCM's with decreasing melting temperatures to strip heat from the air, increasing the compressibility. Prior to decompression, the air again passes through the PCMs in the opposite direction, with increasing melting temperatures prior to decompression." [7] The use of PCM's raises the theoretical efficiency of CAES to 85\% [7].

The following acronyms explain the nomenclature in the above figure: compressor (c) and turbine (t).

Figure 8. Cascade CAES Storage Scheme, for Case of Four PCM Stages. Source: [7].

D. FUTURE UTILITY SCALE CAES SYSTEMS

Canadian company Hydrostor aims to improve efficiency by eliminating the pressure change associated with charging and discharging a fix volume pressure storage vessel while also removing the previous geographic constraints of fixed volume, underground features. They have instead pioneered two new storage concepts that use the hydrostatic force of water to maintain a constant pressure while charging and discharging. This maintains the compressor and expander at their most efficient pressure ratio, which increases the cycle efficiency. This concept has been proved using underwater salvage bags to store air in Lake Ontario. The system has a 1 MW capacity with the air storage at 55 meters (180 feet) in depth. Future mature designs plan for placement of air storage at a depth of 198 meters (650 feet) to increase the storage pressure [9].

Figure 9. Hydrostor’s Use of Salvage Bags for U-CAES Pilot Project. Source: [9].

Hydrostor has also developed a land-based concept that can be installed with a small surface footprint. It uses static water pressure to maintain a constant air pressure. As shown in Figure 10, the static pressure developed by the water is countered by the air pressure. As the compressor fills the air accumulators, the water is displaced to the reservoir. The process works in reverse when discharging the air accumulators to generate electricity. Hydrostor advertises storage capacity of 50-500+ MW, with 6+ hours of discharge capacity [10]. Hydrostor currently has projects under construction in Canada and Australia with 1.5GW+ of projects in advanced development in the US, Australia, Canada, and Chile [10].

Figure 10. Land-Based, Constant Pressure A-CAES System by Hydrostor. Source: [10].

With all the benefits of CAES, there has been little interest in construction of actual plants. Other than Hydrostor's two projects currently under construction, the DOE only lists one CAES plant under construction, the Jiangsu Jintan National AA-CAES Demonstration Project being built in Jintan, Jiang Su, China. Although it has a capacity of 60 MW , it is designed only as a demonstration project [11]. There are, however, two plants announced to be built by utility companies. The first is the PG\&E advanced underground compressed air energy storage (CAES) in San Joaquin County, California, with a capacity of 300MW [11]. The other is the Bethel Energy Center - Apex compressed air energy storage in Tennessee Colony, Texas, with a capacity of 317 MW [11]. Both of these projects rely on underground geologic formations to store air instead of new air storage concepts.

E. SMALLER-SCALE CAES SYSTEMS

The use of CAES for utility scale projects typically focuses on the cost and efficiency, but there are other costs, not measured in strictly efficiency terms, that can be saved in smaller scale CAES systems (SC-CAES). The New York State Energy Research and Development Authority (NYSERDA) performed an analysis in 2008 looking at the potential of using a mini CAES system with capacity of 10-20MW, to potentially save money from the off-peak to on-peak electricity price difference. They found the value of the mini CAES system did overcome the cost of the system based strictly off the costs saved by using low cost electricity to offset high cost energy [2].

Another use of SC-CAES to save costs was studied for use in a remote telecom station in Canada. Typically, remote telecom stations are powered by a diesel generator (DG) with a typical constant load of 5 kW . The DG requires a constant fuel supply in a remote location, as well as constant maintenance and upkeep costs. The DG currently used at one example sight is only 13% efficient at an expected partial load of 5 kW . Its operating curve shows an increased efficiency of 33% as the load approaches 100% load of 30 kW . The study explored three different scenarios to reduce DG fuel consumption. They are the use of a Bergey 10 kW wind turbine, the use of a PGE 35 kW wind turbine, and incorporation of a SC-CAES system in tandem with either of the two wind turbines. As shown in Figure 11, the use of a hybrid power system incorporating a 35 kW wind turbine and SC-CAES reduced the DG fuel consumption by approximately 98% (1491 liters saved) of fuel in one month. Since this fuel has to be delivered to remote sights, sometimes only accessible by helicopter, there are many other costs saved as well. The same SC-CAES hybrid system reduced the DG run time from 668 hours to only 15 hours in one month. The savings in DG runtime can lengthen the engine life and reduce maintenance costs as well [12].

Figure 11. Fuel Saving According to Different Scenarios. Source: [12].

The use of SC-CAES systems will find additional utilization as research and development into micro energy grids advances. Qinghai University in China designed and built a Micro-Energy Grid (MEG) that utilizes a 100kW solar-thermal compressed air energy storage (ST-CAES) system in quite novel ways. As with traditional CAES systems, renewable electricity is used to compress air for energy storage. The heat of compression is captured with a TES system, while parabolic trough collectors (PTCs), or curved mirrors, are used to add additional heat to the TES. The stored heat is used to reheat the expanding air in an adiabatic process while extra stored heat can he used in the site wide distributed heating network. The turbine exhaust is then additional utilized to generate cooling energy with an attached absorption refrigerator [13]. The more holistic approach to energy generation, storage, and utilization of typically waste energy decreases a MEG's selfreliance on traditional energy sources.

II. DESIGN IMPROVEMENTS

As demonstrated in many large and small-scale CAES systems, the ability to store energy as compressed air has many practical applications. As part of the micro energy grid project, efforts have focused on improving a small-scale energy extraction device based on the conceptual demonstration of thesis work by McLaughlin [14]. Improvements were made to simplify the automated control system developed by Vranas [15], which controls when air is admitted to the turbine based on the state of charge of the supercapacitor. A 3phase alternating current (AC) transformer bank was integrated to allow charging to higher voltages. The 3-phase AC signals generated by the turbine and generator are rectified to a direct current (DC) signal. That power is then used to charge a super-capacitor. The energy stored in the supercapacitor can be inverted for later use in an AC system.

The previous design concept can be seen in Figure 12. The overall design concept will remain unchanged, but significant changes to many components have been made to increase power output.

Figure 12. Proposed Design Concept. Source: [14].

A. COMPRESSED AIR DRIVE UNIT

The two mechanical elements that expand the compressed air and convert it to shaft, rotational energy are broken into two parts in this system. The first expands, accelerates, and entrains atmospheric air. The second takes the high velocity air stream and outputs a shaft rotational energy for use by the generator. This section delves into selection and design criteria for improving both parts of the compressed air drive unit.

1. Compressed Air Expansion

The first step in designing a more efficient drive unit for the generator was to understand the current design, operation, and where it was to fit into the system. McLaughlin [14], made a number of observations and suggestions that would be considered during the design selection. Before any new components could be decided upon, the expected airflow rate at the outlet was required. Since the pressure ratio of the supply or stagnation pressure $\left(\mathrm{P}_{\mathrm{o}}\right)$ to atmospheric pressure (P) was less than 0.5283 , a choked flow was assumed and Equation (1) utilized to determine a nominal airflow of $0.17487 \mathrm{~kg} / \mathrm{s}$ [16]. Fluid flow is said to be choked when for specific stagnation conditions, the maximum mass flow has been reached due to the fluid achieving a sonic flow state [16]. Equation 1 uses the heat capacity ratio of air as $1.4, \mathrm{P}_{\mathrm{o}}$ as 689 kPa , critical area (A^{*}) of the outlet as $93.66 \mathrm{~mm}^{2}$ (based on 10.92 mm diameter), T_{0} as $293^{\circ} \mathrm{K}$, and R is the universal gas constant. This airflow was a conservative initial estimate due to upstream flow constrictions that were more constrictive than the pipe outlet. Future testing will be conducted with airflow meters installed to determine flow rate during testing.

$$
\begin{equation*}
\dot{m}_{\max }=\frac{0.6847 * P_{o} * A^{*}}{\sqrt{R * T_{o}}} \tag{1}
\end{equation*}
$$

Early in experimentation by McLaughlin [14] found that with the flange mounted flush with the turbo inlet, and compressed air allowed to expand from an open pipe freely
into the turbo inlet, the turbine was unable to turn against the resistance of charging a supercapacitor. McLaughlin [14] the discovered that by creating a space between the installed flange and the inlet of the turbo, and opening the turbo wastegate to atmosphere, additional air was entrained into the inlet air stream. This increase in airflow made it possible to run the turbine and charge a supercapacitor.

The reasons that additional air was entrained into the turbo inlet when opened to atmosphere must be understood to design a new power drive unit. The free expansion of compressed air into the turbo inlet created a static pressure that was less than atmosphere pressure. This was proved by McLaughlin [14] when he observed that opening the wastegate, which is normally used to release excess pressure in the turbine housing, actually drew in atmospheric air. Since the turbine outlet exhausts to atmospheric pressure, there was a negative pressure ratio from the inlet to the outlet, that was partially relieved when parts of the inlet where opened to the atmosphere.

McLaughlin [14] also theorized and modeled the entrainment of atmospheric air by the high velocity air stream at the turbo inlet. The compressed air exited the open pipe at the turbo inlet flange at sonic speeds with a large drop in enthalpy. As atmospheric air was drawn into the turbo inlet, it was accelerated by the sonic airflow. The addition of this entrained air raised enthalpy of the total airstream. The lack of a large positive pressure ratio and observed performance improvement with an increase in airflow proves the turbo acts as a reaction turbine. A reaction turbine converts the working fluid’s kinetic energy into work with no pressure drop across the rotating element [16]. To maximize the velocity into the turbine and provide a neutral pressure ratio across the turbine, design will focus on air entrainment and pressure neutralization.

The first design iteration to increase air entrainment was the installation of an EXAIR Super Air Nozzle onto the original power unit to focus the air exhaust and maximize air entrainment. The inlet flange was also spaced further away from the turbo inlet to neutralize the pressure across the turbine. The experimental gain was better than the original design, but additional effort was made to better utilize supersonic airflow concepts to increase the velocity.

Figure 13. Installation of EXAIR Super Air Nozzle on Original Power Unit

The use of an air mover made by Nortel Manufacturing Limited was also tested for the potential to use compressed air and boost the airflow at a boost ratio of $16: 1$ with an air supply line of 0.9525 cm (3/8in) [17]. The specified airflow increase, distributed in a circumferential manner, fit the desired design criteria. Figure 14 shows how compressed air is supplied in a circumferential manner near the main inlet. As the compressed air is expanded and travels through the center converging section, atmospheric air is induced and an output, with a much larger flow rate at atmospheric pressure, is produced. The device was unable to run the turbine and charge a supercapacitor, so an air entrainment method that utilized supersonic flows was explored.

Figure 14. Diagram of Air Booster. Adapted from [18].

An air ejector uses two sets of converging-diverging nozzles to manipulate a high pressure, low mass flow inlet, into a low pressure, high mass flow outlet as shown on Figure 15. The first converging-diverging (C-D) nozzle accelerates the primary fluid (compressed air) to supersonic speed. This high-speed airflow entrains secondary fluid (atmospheric air) at the suction, which mixes with and raises the enthalpy of the overall stream. The new, mixed airflow, then proceeds through the second C-D nozzle. The converging portion slows the supersonic flow to near sonic speed. The long constant area section allows the near sonic flow to slow and shock back to a subsonic velocity. Across this shock wave pressure rises and the speed is lowered to subsonic speeds as shown by point 4 of Figure 15. In the diverging portion this pressure recovers further, rising above the secondary fluid pressure (atmospheric pressure in this application), but below the primary motive fluid pressure. Velocity lowers in the diffuser, but at the exit, remains above the inlet velocity of both fluids. The use of supersonic airflow concepts will ensure the turbine is supplied with a high velocity, positive pressure airflow.

Figure 15. 2-D Schematic of Typical Steam Ejector with Pressure and Velocity Distribution. Adapted from [19].

Three different sized, GH series, air ejectors were procured for testing. The GH series inlet operating medium pressure range was $239-653 \mathrm{kPa}(20-80 \mathrm{psig})$, allowing for a large range of pressure variations while still being able to effectively to operate [20]. The GH series air ejector was designed to operate with steam as the motive fluid, but technical documentation stated that when operated with air, it would entrain at higher rates [20]. The outlet of the air ejector was smaller than the inlet of the turbine, allowing an opening to atmosphere at the turbo inlet. Through early experimentation and CFD analysis, the opening between the outlet of the air ejector and inlet of the turbo entrained additional atmospheric air through a process called thrust augmentation.

The decision to use the 1.905 cm (3/4in) compressed air supply inlet air ejector was made to maximize the compressed air supply for power production within the capabilities of the shop air supply lines and smaller turbine inlet size. If a larger capacity air compressor and supply line were available, it would be possible to use the 2.54 cm (1in) inlet air ejector with the larger turbine shown in the bottom of Figure 16. The $1.27 \mathrm{~cm}(1 / 2 \mathrm{in})$ inlet air
ejector, shown above the 2.54 cm (1in) inlet air ejector in Figure 16, was decided to be too small for the application.

Figure 16. Experimental Setup with 3/4in Inlet Ejector Installed

2. Turbo Selection

McLaughlin [14] found turbos with ball bearings had less internal friction than turbos with a journal bearing. The reduced internal friction allowed more torque to be transmitted to the generator, producing more electrical power. This decision was incorporated by only using ball bearing turbos for further development. The turbo McLaughlin [14] chose also included a wastegate. The purpose of the wastegate in automotive applications is to allow exhaust gases to bypass the turbine, thus admitting less exhaust gas through the turbine. This allows control of the desired output speed. This application for automotive engines uses high temperature, pressurized gases and works effectively [21]. He also found that by opening the wastegate of the turbine, he was able to entrain more air and create additional power. The reason he entrained more air by opening
the wastegate was that the static pressure in the turbine casing was less than atmospheric pressure.

The rapid expansion of air and entrainment at the inlet to the turbine created a pressure less than atmospheric pressure at the entry of the turbine wheel. When the wastegate valve was opened to atmosphere, additional air entrainment occurred at the wastegate. This observation confirms that there was a slight negative pressure gradient across the turbine, which was restored to a neutral pressure ratio when the wastegate was opened. This was confirmed by his observation "that more shaft power would be produced" as the wastegate was opened [14].

Figure 17. Function of an Internal Wastegate. Adapted from [21].

In order to simplify the turbine and improve the previous design, a turbine housing with no internal wastegate was selected. Focus was placed on fully expanding and entraining air prior to entering the turbine. This served to remove any flow restriction or discontinuity inside the turbine and created the most neutral, if not positive, pressure ratio across the turbine. Figure 18 shows a comparison of the two turbine housings. Internal housing discontinuities are removed with no wastegate present.

A turbine housing with an internal wastegate is shown on the left, and a turbine housing without an internal wastegate is shown on the right.

Figure 18. Comparison of Turbine Housings. Sources: [22], [23].

The selection of the correct size turbine was initially made by taking the calculated chocked flow maximum mass flow rate and comparing to the exhaust flow charts for different sized center housing rotating assemblies (CHRA). The CHRA is the center rotating element with the compressor and turbine wheels. Converting calculated choked airflow of $0.17487 \mathrm{~kg} / \mathrm{s}$ to $\mathrm{lbm} / \mathrm{min}$ for use on turbine flow charts, gave a value of 23.13 lbm/min ($10.4922 \mathrm{~kg} / \mathrm{min}$). Using Figures 19 through 21, a low pressure ratio of approximately 1.25 was assumed to find an operating point for the turbine gas flow. The static pressure at the turbine inlet and outlet was assumed to be atmospheric pressure. The charts did not state if the pressure was based on static or total pressure, so the pressure ratio was expected to be above 1 due to the dynamic pressure increase caused by the high velocity of the air exiting the air ejector. With these assumptions, the Garrett GTW3884R turbo was the most promising candidate. However, since McLaughlin [14] had proven the GT2554R turbo could be successfully operated, the decision was made to continue testing with the proven size CHRA and obtain the Garrett GT3071R turbo as the next size larger for follow on testing. The GT2554R and GT3071R turbos are shown in Figure 23.

Figure 19. Flow Chart for GT2554R Turbine. Source: [24].

Figure 20. Flow Chart for GT3071R Turbine. Source: [25].

Figure 21. Flow Chart for GTW3884R Turbine. Source: [26].

The selection of the GT3071R turbine also required a decision on the turbo housing area/radius (A / R) ratio. The A / R is "defined as the inlet cross-sectional area divided by the radius from the turbo centerline to the centroid of that area." [27] As shown in Figure 20 and 22 , the turbine performance will be affected by the A / R ratio. A larger A / R ratio housing allows flow to "enter the wheel in a more radial fashion, increasing the wheel's effective flow capacity, resulting in lower backpressure..." [27] Since the turbine is operating with the inlet and outlet open to atmosphere, the backpressure should be reduced as much as possible. This led to the selection of the $1.06 \mathrm{~A} / \mathrm{R}$ ratio turbine housing.

Figure 22. Illustration of Turbine Housing to Show A/R. Adapted from [27].

Figure 23. GT2554R (background) and GT3071R (foreground) with Compressor Wheels Removed

Garrett turbo CHRA’s are supplied with ports for oil lubrication of the ball bearings and cooling water to remove heat. Since the present application does not use high temperature gas and is internally cooled by a constant flow of atmospheric air, the water cooling ports were not used. As seen in Figure 24, the oil outlet port had a oil drain flange, gasket, and plug installed so oil could be added and to the oil supply fitting prior to operation to reduce the ball-bearing friction.

Figure 24. Oil Outlet Port of GT3071R with Installed Gasket, Oil Drain Flange, and Plug

B. ELECTRICAL EQUIPMENT

The electrical system takes a shaft rotational power and produces a DC output to charge a supercapacitor. The requirements for this system are complex due to the desire to maintain the turbine at an optimum speed and be able to start with an uncharged supercapacitor with low or no energy stored. The design and evolution of the electrical system are explored in detail in this section.

1. Permanent Magnet Generator

The conversion of stored energy to usable electrical energy is the focus of this thesis, and the equipment used to convert the mechanical energy of the compressed air drive unit to electrical energy is important. Permanent magnet motor act as generators for this project. They are simple, do not have brushes that need replacement or cleaning, and do not require magnetic field excitation voltage. If a generator that required a field excitation was used, it would require a power source to initially startup. Due to the nature of being a backup power supply, this system should function to startup without any external power supply.

Anticipating an increase in output power of the new drive unit, a motor that would be better suited to the current project was found. The Scorpion HK-4525-520 motor, pictured in Figure 25, was used instead of the HKIII-4035-560 motor for the following reasons outlined in Table 2: less internal motor resistance, higher max continuous power rating, and larger peak current to better absorb any transient without damage [28].

A maintenance regimen of lubricating the motor bearings every 2-3 uses was incorporated with a manufacturer recommended lubricant. The coupling device from the motor to the turbine was upgraded. Instead of using a flexible polymer, a nylon reinforced rubber tube, typically used as automotive fuel line, was used for added strength.

Table 2. Comparison of Current (green) and Previous (red) Permanent Magnet Generators. Adapted from [28], [29].

Scorpion HK-4525-520 Ultimate Motor Specifications	Scorpion HKIII-4035-560 Motor Specifications		
Number of Magnet Poles	10	Number of Magnet Poles	10
Motor Wind	$5+6$ Turn YY	Motor Wind	8 Turn Delta
Motor Kv Value	520 RPM per Volt	Motor Kv Value	560 RPM per Volt
Motor Resistance per Phase	0.012 Ohms	Motor Resistance per Phase	0.014 Ohms
Max. Continuous Current	100 Amps	Max. Continuous Current	100 Amps
Max Continuous Power	4450 Watts	Max Continuous Power	4200 Watts
Peak Current	230 Amps (2 sec)	Peak Current	120 Amps (5 sec)
Peak Continuous Power	10,200 Watts (2 sec)	Peak Continuous Power	$5200 \mathrm{Watts}(5 \mathrm{sec})$

Figure 25. Scorpion HK-4525-520 Ultimate Motor. Source: [28].

2. 3-Phase Transformer Bank

A transformer offers the advantages of electrical isolation of one circuit to another, and allows the ability to step up or step down AC voltage. The primary coil windings around a magnetic iron core induce a magnetic field in the transformer core. When AC is applied to the primary core, this magnetic field in the transformer core alternates at the same frequency as the applied AC. This alternating magnetic field induces a voltage in the secondary winding. The ability to change the primary voltage (V_{P}) input to a different secondary voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$ is based on the ratio of the number of primary windings $\left(\mathrm{N}_{\mathrm{P}}\right)$ and the number of secondary windings $\left(N_{S}\right)$. The ratio of N_{P} to N_{S} is what determines if voltage will be stepped up or down [30].

Figure 26. Single Phase Transformer. Source: [30].

The first goal in developing the upgrades to the power drive unit and generator was to be able to reach the 16VDC rating of the supercapacitor. The original power drive unit was only able to reach 15VDC during an endurance run [14]. As an interim design step, the addition of the Exair super air nozzle to the original setup, enabled reaching 16VDC 8 minutes sooner than McLaughlin [14] reached 11VDC. After the upgraded power drive unit and generator were installed, the 16VDC goal was reached. The next goal was to be able to charge a 56VDC supercapacitor. The simplest way to accomplish this was to use transformers to boost the AC voltage from the generator prior to rectifying it to DC. Since 3-phase AC power is the output from the generator, options for using a 3-phase transformer or 3 single-phase transformers wired as a 3-phase transformer bank were investigated. Finding a single 3-phase transformer that could function at the low power outputs of this system within design parameters proved impracticable because of the cost of these large transformers and unsuitability for the low power outputs. The use of small, single-phase transformers was decided as a solution to this problem.

Altering a system that can reach 16VDC to now reach 56VDC requires a step up of at least 3.5 times the input voltage. Three Emerson E200EWA encapsulated industrial control transformers were selected because of their 200VA rating and ability to perform a step up of 5 times the input voltage. Although the transformers were designed to take an input power of 120 VAC or 240 VAC and reduce it to 24 VAC , they can be used in reverse to step up the power at a ratio of $5: 1$ or 10:1 [31]. A ratio of $5: 1$ was chosen since it was closest to the needed 3.5 step up needed. As seen in Figure 27, by selecting the H1 and H2 connection points on the primary side, a conversion of 120 VAC to 24 VAC is a step of 5:1. If a larger step is needed in the future, a $10: 1$ option is available by using the H 3 and H 4 terminals instead. Figure 28 shows a single transformer from the top with fuses installed to protect the transformers in the event of an electrical fault.

The selected transformers are rated to operate at 60 Hz [31]. In this experimental application, they will be operated across a wide range of frequencies, sometimes higher than 1000 Hz . This is due to the speed of the turbine being low when supercapacitor voltage is low, and increasing as the supercapacitor is charged.

The arrangement to wire the 3 single-phase transformers as a 3-phase transformer bank, was made based on keeping the system simple and ungrounded. Figure 29 provides a comparison between the connections between a star and delta connection. Another advantage to connecting the primary and secondary sides of the transformer in a Delta connection is that if one transformer faults, the other two transformers will continue to produce 3-phase power at two thirds of the full output capacity. The line diagram for a delta - delta connected transformer shown in Figure 30. The example voltages show a step up of 10 times the input voltage. The final installed transformer bank pictured in Figure 31 mimics Figure 30's nomenclature of banks A, B, and C, with the generator output wired to the secondary windings side and the output to the rectifier wired to the primary windings in a step up configuration of 5:1.

Figure 32 shows individual wire connections to the Emerson E200EWA transformer for the A phase. This can be related to Figure 30 and applied to phases B and C for a full schematic.

Figure 27. Transformer Line Diagram. Source: [31].

Figure 28. Emerson E200EWA with Fusing Installed

Figure 29. Comparison of Star and Delta Connections. Adapted from [32].

Figure 30. Transformer Connections for a Delta - Delta Connection. Source:

Figure 31. Final 3-Phase Transformer Bank

Figure 32. Transformer Connections for A Phase. Adapted from [31].

3. 3-Phase Bridge Rectifier

A diode in an electrical circuit acts to allow current in one direction only, much like a check valve in a fluid system. If six diodes are arranged as shown in Figure 33, a circuit known as a 3-phase bridge rectifier is created. A bridge rectifier takes an AC power input and converts it to a DC output to charge the supercapacitor. Figure 34, taken from an early experimental setup, shows the 3-phase voltages output from the generator (blue, green, yellow) and the DC voltage output from the 3-phase bridge rectifier (red). Figure 34 shows an early, unexpected discovery, in that the sine wave input to the bridge rectifier is flattened instead of sinusoidal shape. It was discovered that the 3-phase input to the rectifier is limited to the voltage of the supercapacitor at the output of the rectifier. This was experimentally determined by slowing down the turbine by throttling supply air. As the speed lowered and the AC voltage output lowered, the full AC sine curves resumed. As the
speed was again increased, the AC curves flattened to the DC voltage of the supercapacitor. Since the supercapacitor can only charge at the voltage it is currently at, the DC current supplied pulsates. This was proved by measuring current of the DC charge wires using a clamp on current meter set to read an AC current. When reading an AC current, the meter employs the measurement of an electromagnetic induction due to the varying magnetic field. If the DC current had no pulsation, this mode of current reading would measure 0 amps. In testing, multiple readings of 0.5 amps was observed. This can be later exploited to optimize the speed of the turbine.

Figure 33. Three-Phase Bridge Rectifier Diagram. Source: [33].

Three Phases of VAC shown in Green, Yellow, and Blue. Rectifier VDC output shown in Red.

Figure 34. Oscilloscope Display of 3-Phase AC to DC Conversion

During testing of the original power electronics, the IXYS VUO86-16NO7-481366 3-phase bridge rectifier, ran very hot. It was theorized that the increase in temperature was because the rectifier was operating outside of the designed capability for the increased power of the drive unit. Observations made by McLaughlin [14], noticed a 0.8 VDC drop across each diode during testing. Figure 35 shows the voltage drop across the rectifier decreases as the temperature of the rectifier increases, and an expected drop of approximately 0.8 VDC was correct based on current and temperature.

Forward current is abbreviated as I_{F}, and voltage drop per diode as V_{F}.
Figure 35. Voltage Drop Diode Characteristics for 3-Phase Rectifier. Adapted from [33], [34].

Due to the old rectifier's required solder mounting on an integrated circuit (IC) board, a new, higher power rated rectifier was procured with bolt on connections for ease of installation. The new rectifier's voltage drop is expected to be approximately 0.8 VDC as well, so no performance gains were obtained with the new rectifier. The new rectifier is encapsulated and its temperature performance was unable to be observed in testing, so its affect upon lowering the voltage drop was not quantifiably measured.

Figure 36. MSD-100-12 3-Phase Bridge Rectifier

4. Supercapacitor Energy Storage

The use of a supercapacitor for energy storage was driven by many of the disadvantages of using batteries as an energy storage medium. Batteries take longer to charge due to the chemical reactions that occur and they have a limited life cycle. Batteries have an upper limit lifecycle of ten thousand cycles, and their storage capacity degrades as they near their end of life [4]. Supercapacitors have a much longer cycle lifespan with minimal degradation due to age and use. The 16VDC Maxwell BMOD0500 P016 B02 16VDC - 500 farad supercapacitor, used in initial testing, is shown in Figure 37. It has a 10 -year life span when stored at 16 volts and is rated for one million cycles [35]. Supercapacitors also have much lower equivalent series resistance, (ESR) when compared to batteries. The ESR is a measure of the internal resistance of the storage device, and limits the max current discharge rate.

Later tests utilized a larger 56VDC Maxwell BMOD0130 P056 B03-130 farad supercapacitor, shown in Figure 38. This increased the energy storage rating from 18 Watt hours (Wh) to 57 Wh . The increase in energy storage capacity is ideal from an energy storage perspective, and system development should strive to use the highest VDC capacitor possible.

Figure 37. 16VDC Maxwell BMOD0500 P016 B02-500 Farad Supercapacitor. Source: [35].

Figure 38. 56VDC Maxwell BMOD0130 P056 B03-130 Farad Supercapacitor. Source: [36].

C. AUTOMATED CONTROL

The design requirement that the SS-CAES power extraction unit operate with minimal operator input requires that various functions be automated. The system was designed to be as simple as possible, so the number of automated functions were reduced to the control of air admittance to the power drive unit, and control of the transformer mode of operation.

1. Control of Air Valve

Previous thesis work by Vranas [15], developed an initial design to control the admittance of air to the power drive unit, as shown in Figure 39. It took into account the requirement to black start the system by manually opening a ball valve until the control system can power up on the power generated by the power drive unit. Once power is available, the programmable logic controller (PLC) would open the normally shut (NS) solenoid valve to control the air being admitted to the turbine. If the ball valve were accidently maintained open, the PLC would shut the normally open (NO) solenoid valve. The initial design used 3/8in air supply lines and Parker B6 series, internally piloted solenoid valves shown in Figure 40. The internal pilot allows a very small voltage to control the pilot valve, which then opens the main valve to admit air to the system.

Figure 39. SS-CAES Previously Proposed Schematic. Adapted from [15].

Figure 40. Parker B6 Pilot Operated Solenoid Valve. Source: [37].

With the increase in size of the air supply line to the power drive unit from 3/8in to $3 / 4$ in, the automated control valve also had to be replaced. The overall control system was also simplified for ease of use. A ball valve was selected instead of an increased size Parker B6 series to eliminate any pressure drop across the valve. A Valworx 3/4in ball valve with a spring return to shut condition was coupled with a Valworx direct mount solenoid valve, to enable control of the ball valve with air pressure and a 24 VDC control signal [38]. The ball valve with the installed solenoid is shown in Figure 41. When a 24VDC signal is applied to the solenoid valve, it opens, allowing compressed air to be admitted to the air actuated ball valve, which opens the ball valve. If the pressure of the air bank drops below a nominal 653kPa (80psig), it will no longer be able to hold the ball valve open and it will shut. This is an ideal cutoff pressure to the drive unit because below 653 kPa (80 psig), the efficiency drops markedly [39]. If air bank pressure recovers, the ball valve will reopen to continue power generation. Once the 24 VDC control signal is removed, the ball valve will also shut. The solenoid only uses 4W of DC power, which was supplied from a DC power source for testing. The solenoid valve also has to capability to be manually operated when power is not available so the black start capability is retained. The PLC is capable of providing a 24VDC control signal when properly configured as proven in testing by Vranas [15].

Figure 41. Valworx 523606A 3/4in Ball Valve with Valworx 529102A Direct Mount Solenoid Valve Installed

Figure 42. Current Diagram for SS-CAES System. Adapted from [15].

As shown in Figure 42, the overall design is simpler than the previous design shown in Figure 39. However, the capability of the PLC to override an operator error in holding open the solenoid valve to prevent overcharging the supercapacitor is lost. Since the manual override of the solenoid requires someone to maintain the valve open and the supercapacitor takes approximately 30 minutes to charge from a black start condition, it is unlikely that someone would hold the valve open too long. This reasoning led to the elimination of the override feature for simplicity, but this feature could easily be added back in the future. It is thought that a more advanced active control system would eventually be added to the system.

2. Control of Transformer Operation

The last design challenge was a result of the supercapacitor characteristic that it has to be charged at the voltage that it is currently at, and its voltage increases from 0VDC to rated voltage as the energy density increases. That means when the supercapacitor is nearly empty, the charge voltage is low, and the voltage supplied by the generator is also held low. The motor's RPM/volt relationship works in reverse when being used as a generator so a 520 RPM/V motor creates 1V of potential for every 520RPM. When switching motors from 560RPM/V to 520RPM/V, a 7\% reduction in the turbine speed to generate the same voltage occurred. Turbines are more efficient at higher speeds so this decreases efficiency. With the transformer bank installed to increase voltage by a factor of 5 , the generator output voltage and speed is now also reduced by a factor of 5 from the voltage of the supercapacitor, even further reducing efficiency.

The only ways to increase the speed of the generator is to increase the supercapacitor voltage, which can either take time from an uncharged state, or change the mode of operation of the transformer bank away from step up mode. To optimize the speed of the turbine, it was determined that the transformer bank can be dynamically utilized in 3 different modes: to step down voltage, bypass the transformer bank, and step up voltage. This gives the ability to maintain the turbine speed higher when the supercapacitor voltage is low, bypass the transformer bank to lower the turbine speed with an appropriate upper
speed limit is reached, and again lower turbine speed by stepping up voltage to reach the 56VDC capacity of the supercapacitor. By stepping down voltage in a $1: 5$ ratio, the speed of the turbine is increased by a factor of 25 when compared to the step up mode of operation. This allows the turbine to operate at a higher, more efficient speed, while the supercapacitor voltage is low. By changing the transformer mode of operation based on supercapacitor voltage, the turbine speed can be maintained higher, efficiency improved, and the supercapacitor can be charged to higher voltages. Although a $5: 1$ ration was chosen for this project, the same transformers can be reconfigured for a $10: 1$ winding ratio, allowing for even higher voltages to be realized.

Changing the flow of power through the transformer should be done autonomously with a PLC. The switching of transformer operations will by controlled by solid state relays (SSR). A SSR acts like a mechanical relay, but instead uses semiconductor elements to perform the circuit isolation and switching functions. Figure 43 shows the three modes of operation of one phase of the 3-phase transformer bank. Since 6 switching functions for each phase are required, a total of 18 switches will be needed to control all 3 phases of the transformer bank, for 3 different modes of operation. To simplify the wiring and installation requirements, 3-phase SSR's were used. This lowered the number of SSR switches required from 18 to 6. The Crydom D53TP25D, shown in Figure 44, was used because of its lower power dissipation and ability to control three switching functions with one control input [40]. Using a 4-32VDC control signal, it controls the switching on and off of three phases of main line power. The mainline power rating is 25 A , which is well below previously observed current flow to the supercapacitor [40]. The final installed SSR experimental setup is shown in Figure 45. The generator’s 3-phase output is fed into this setup at the left terminal block and the control signals for the SSR's are supplied at the terminal block at the bottom of Figure 45.

The PLC and its programming were not programmed to automatically control the ball valve and SSR's due to time constraints and additional functionalities that were desired to be added in follow on thesis work. Instead, a DC voltage source was applied to simulate the control signal to operate the ball valve and SSR's.

Figure 43. Single Phase of Dynamic Transformer Operation

Figure 44. Crydom D53TP25D 3-Phase Solid-State Relay. Source: [40].

Figure 45. 3-Phase Transformer Bank with Switching Operation Option

THIS PAGE INTENTIONALLY LEFT BLANK

III. CFD ANALYSIS OF COMPRESSED AIRFLOW

A. INTRODUCTION AND OBJECTIVE

An air ejector uses two sets of converging-diverging nozzles to manipulate a high pressure, low mass flow, into a low pressure, high mass flow outlet. The first accelerates the inlet motive flow (compressed air) to supersonic speed. This high-speed airflow entrains additional air at the suction which raises the enthalpy of the overall stream. It then proceeds passes through the second nozzle, where pressure is recovered and the speed is lowered to subsonic speeds. This pressure velocity relationship for the air ejector is shown in Figure 15.

This subsonic, high velocity air exits the air ejector and enters the turbine inlet. However, the outlet of the air ejector is smaller than the turbine inlet, and there exists a potential to harness the remaining pressure of the air ejector exit stream to entrain more atmospheric air prior to entry into the turbine. This has the potential to increase the mass flow rate through a reaction type turbine and increase the enthalpy of the stream prior to energy extraction, thereby increasing the power extraction. This secondary entrainment is called thrust augmentation.

The computational fluid dynamics (CFD) analysis aims to model and analyze the primary and secondary ejection processes to investigate the feasibility of a secondary air entrainment at the exit of the air ejector into the turbine housing. By creating an accurate CFD model that reflects experimental observations, an understanding of the primary and secondary entrainments can be gleaned. This will allow for future design changes and optimization of the current design selection.

B. CFX PROBLEM SETUP

The general solution development approach is to model the physical domain in Solidworks, create the fluid flow domain in the ANSYS CFX software suite from the physical domain, generate an appropriate mesh, apply boundary conditions and solver options, run the solver, and analyze the results.

1. Physical and Fluid Flow Domain

A physical model of the air ejector must be rendered in Solidworks in order to build the required fluid domain in ANSYS CFX. The Solidworks model was created by measuring the air ejector with a micrometer, gauge pins, and depth micrometer. The geometry of the turbo inlet flange was also measured for physical modeling of the thrust augmenter and to create a smooth entry surface, which makes airflow analysis easier. Sharp edges at air entry points creates calculation discontinuities, and in physical applications, cause unneeded losses. A smooth inlet was added to the primary suction for the same reasons. As shown in Figure 46, the air ejector and turbine inlet were fitted with smooth surfaces where air is entrained. The file was saved as a parasolid file format for ease of importing into ANSYS CFX.

All dimensions are measured in mm.
Figure 46. Physical Rendering of Air Ejector and Turbo Inlet

To model the fluid flow domain from the physical model shown in Figure 46, another shape has to be generated. It encompasses the fluid flow path and includes a control
volume extending outward from the suctions to allow variations to dissipate and obtain accurate results of overall mass. This encompassing shape is shown in Figure 47.

Figure 47. Fluid Flow Encompassing Shape

The two shapes are imported into ANSYS CFX, the encompassing shape treated as a positive area, the physical model is treated as a negative area, and the left over shape is the volume that is analyzed for fluid flow characteristics. The fluid flow domain is shown in Figure 48.

Figure 48. Fluid Flow Domain

To remove computational difficulties that arise from the complex internal flow path at the primary ejection and determine the highest achievable airflow, the primary nozzle ejection volume was refined to be modeled as an open volume. The physical representation of the open flow model is shown in Figure 49. This physical model represents the most open airflow path possible and could be used to improve the commercially available air ejector or used to design a new air ejector. All remaining sharp edges in the fluid flow path were rounded slightly to assists in solution computation.

Figure 49. Physical Representation of Open Flow Model

2. Computational Mesh Creation

A computational mesh must be applied to the fluid flow domain to define the number of points that the ANSYS CFX software analyzes to calculate expected fluid flow characteristics. A mesh with more points can lead to a more accurate solution, but takes longer to calculate. As shown in Figure 50, areas with laminar flow require less nodes to create an accurate solution, while areas with turbulent flow require more nodes since the boundary layer is much smaller. Creating an adequate mesh is an iterative process, and should be refined as interim results are analyzed.

Figure 50. Open Flow Model Fluid Domain with Mesh Applied

Fluid flow which is supersonic requires especially detailed solution development near the wall, and thus a finer mesh with more points to develop a solution must be employed. Initial solutions revealed inaccuracies evident by the presence of oblique shocks and Y+ values greater than 200 in critical throat regions. Inflation layers were added as early analysis of the visual cross section of Mach number revealed oblique shocks at many walls due from a too course mesh, and later upon analysis of high $\mathrm{Y}+$ values. Adding inflation layers creates more computational points as the wall is approached in an attempt to accurately resolve the viscous sublayer flow. Due to the supersonic airflow, particular attention was paid to the inflation layers in critical regions by slowing the growth rate and adding additional layers. This allows ANSYS CFX more computational points where the fluid flow is the most difficult to solve, aids in resolving the viscous sublayer, which leads to a reduced the Y+ value. Figure 51 shows the use of inflation layers, especially at the throat of the primary nozzle. Similar inflation layers were also used on the secondary nozzle of the air ejector. The final solution mesh contained 146,077 nodes and 461,913 elements.

Figure 51. Inflation Layers in Primary Nozzle

3. Boundary Conditions and Solver Options

Initially, all pressures were referenced to 0 Pa as an absolute scale, but they were modified to remove the possibility of being divided by zero and referenced to one atmosphere. This did not have a noticeable effect on the solution, but removed a possible source of error. Boundary conditions had to be varied to obtain a working solution, and the final conditions are listed in Table 3. Turbulence was varied in two regions beyond the default 5\% intensity due to expected high turbulence, which resulted in better convergence.

Table 3. CFX Solution Boundary Conditions.

	Inlet (INLET)	Primary Ejection (INLET)	Thrust Augmenter (INLET)	Outlet (Opening)
Flow Regime	Subsonic	Subsonic	Subsonic	Subsonic
Mass and Momentum	Total Press. 689 kPa	Total Press. 0 Pa	Total Press. 0 Pa	Opening Press. And Dirn 0 Pa
Flow Direction	Normal to B.C.	Normal to B.C.	Normal to B.C.	Normal to B.C.
Turbulence	High (Intensity =10\%)	High (Intensity =10\%)	Medium (Intensity = 5\%)	Medium (Intensity = 5\%)
Heat Transfer	Total Temp 300K	Total Temp 300K	Total Temp. 300K	Opening Temp 300K

The default domain used air as an ideal gas with reference pressure set to 1 atm. A no slip wall was imposed. Heat transfer was set to total energy and viscous work terms were included. The selected turbulence option was k-epsilon with a scalable wall function, including high-speed (compressible) wall heat transfer model and turbulent flux closure with default options selected. The k-epsilon model was demonstrated to provide the most accuracy by Su [19] in ejector analysis and was used for this simulation.

Solver control options used a high-resolution advection scheme and turbulence numerics. Convergence control was set to a max of 1000 iterations, auto timescale control, conservative length scale, and residual target of $1 e^{-5}$. Solver advanced controls included global dynamic model control, velocity pressure coupling with the Rhie Chow option set to high resolution, compressibility control, and high speed numerics with the total pressure option set to automatic. The velocity pressure coupling scheme was added due to residual variations in mass, momentum, and velocity that could not be resolved. By using this option, residuals dropped an additional 3-4 orders of magnitude and residual stability was much better. Expert parameters was used to set the max continuity loops to three since the ANSYS CFX documentation recommends at least two continuity loops when Mach numbers above 2 are expected to help convergence and resolving areas near a shock [41].

4. Solver Running

The solver was run using double precision and large problem options to ensure the most accurate answer was calculated. The problem was also set to solve for a steady state solution. Getting the problem to run took multiple steps to prevent the solution from diverging. Initially, all advanced options were turned off and the thrust augmenter boundary conditions were changed to a wall vice an inlet, effectively turning off the secondary entrainment. The solver was run until residuals trended down, indicating a converging solution. This produced an approximate solution for the first and second nozzles of the air ejector, and the primary entrainment. Since the airflow is choked at the first nozzle, this solution is accurate enough to re-enable the secondary entrainment. The thrust augmenter's boundary condition was changed back to an inlet and the solver was
allowed to run 1000 iterations. Once this solution was developed, all the options mentioned before were added in one at a time, and the solver ran until the residuals reached a steady state value (or 1000 iterations). Figure 52 shows the residuals over the course of the solution development as individual options were added. The highly oscillating nature was damped out near the end with the addition of pressure velocity coupling.

Figure 52. Residual Convergence Trends

C. ANALYSIS

Convergence of the solution was based on residuals dropping at least three orders of magnitude, all inlet mass flows equaling the outlet mass flow, and the solution modeling observed conditions during testing. Residuals in Figure 53 show a converged solution with residual oscillations damped out and residuals on a downward trend below 10^{-6}.

The results of the final CFX solution are given in Table 4. The difference between the total of the inlet and outlet mass flows is negligible, and the entrained flow of the thrust augmenter is 3 times the mass flow of the inlet motive flow. It also shows improvement in reducing the airflow supplied when compared to the calculated choked flow use of 0.17487 kg / s of the original power drive unit.

Figure 53. Final Solution Residuals

Table 4. CFX Calculated Values of Mass Flow

	Inlet	Primary Ejection	Thrust Augmenter	Total of Inlet Flows	Outlet
Mass Flow $(\mathrm{kg} / \mathrm{s})$	0.0512173	0.00502605	0.154566	0.21080935	-0.210805

$\mathrm{Y}+$ values for the final solution trended as high as 120 in the critical throat regions. Although $\mathrm{Y}+$ values in excess of 100 gives an indication that the CFX solution has not completely reached an accurate solution near the wall, it is only an indicator that the boundary layer has not been completely resolved. Based on the amount of near wall mesh refinement already performed, mass flow totals, and residual trends, the final solution is probably close to reality.

Figure 54 shows the cross sectional pressure distribution with 0 Pa reference to atmospheric pressure. As expected, pressure at the outlet of the primary nozzle drops below
atmospheric pressure, aiding in the entrainment of air into the secondary nozzle. The outlet of the thrust augmenter is at atmospheric pressure, which meets the goal of supplying fully expanded, high velocity, and at or above atmospheric pressure air to the turbine.

Figure 54. Cross Sectional Pressure Distribution

Figure 55 shows the Mach number distribution. As expected, Mach 1 is reached by the throat of the primary nozzle, as evident by the further acceleration of the flow as the nozzle diverges. Based on the idealization of an air ejector as shown by Figure 15, the supersonic flow should slow to subsonic speed prior to exiting the diverging portion of the secondary nozzle. However, in this simulation, the flow maintained supersonic velocity through the throat of the secondary nozzle of the air ejector, and thus accelerates back above Mach 2 when it meets the second diverging portion of the air ejector. This could be due to a number of reasons. In a steam application for which this air ejector was primarily designed, densities vary from air and affect where the flow will go subsonic. Additional sources of difference may also include inaccurate or incomplete measurements of the air ejector and poor manufacturer design or manufacture if we assume the CFD results are
incorrect. If the CFD results are accurate, this deviation from ideal air ejector operation seems to aid the desired effect of supplying the highest velocity air possible with a high mass flow as evident by the successful thrust augmentation.

Figure 55. Cross Sectional Mach Number Distribution

The last way to validate the CFD results is to compare to experimental data. During the last experiments, air consumption was a constant $0.057119 \mathrm{~kg} / \mathrm{s}$ throughout the entire test. This is expected since a constant pressure was maintained throughout the experiment, and the choked condition in the primary nozzle prevents variations in the mass flow. The variation of the CFD solution inlet value mass flow of $0.0512173 \mathrm{~kg} / \mathrm{s}$ to the experimental value is 9.11%, which validates the geometry measured of the primary nozzle throat. Although not performed, measuring the primary suction and thrust augmenter flows would validate the CFD model fully and allow for further, confident development of design changes before implementation.

IV. TESTING AND RESULTS

A. EARLY TESTING

Initial testing sought to identify power drive unit weaknesses and understand where gains could be made to extract more power. The modified power drive unit shown in Figure 56, and the new power drive unit, shown in Figure 57, were first tested and compared. Additionally, the RPM to volt relationship that McLaughlin [14] proposed was validated with using a Genrad 1531-A stroboscope in early testing. The stroboscope measured the RPM of the generator and was compared to the calculated RPM based on voltage and frequency measurements using relationships given by McLaughlin [14] across a range of speed. Electrical conversion during this testing only used a 3-phase rectifier without the assistance of AC transformers.

Figure 56. Modified Power Drive Unit

Figure 57. Final Power Drive Unit Installation

The air supply used in initial testing, a shop air supply with 1in. supply lines, proved to be insufficient to maintain pressure at the air consumption rate of both power drive units. The shop air compressor nominally maintains air pressure at $791 \mathrm{kPa}(100 \mathrm{psig})$ for small air consumption loads, but is unable to maintain this pressure for large loads. Airflow was measured with an Orange Research Inc. 2321-S1035 airflow gage with 1/2in connections. Since the inlet to the new power drive unit is $3 / 4$ in, this was an airflow restriction that will be upgraded to a larger diameter airflow meter in later testing. Data collection was performed with a Keysight MSOS104A oscilloscope with a laptop interface recorded at one second intervals. Some data was not properly recorded by the instrument due to intermittently lost lead connections, but the fidelity of the measurements was excessive for early testing.

The first comparison made was the modified power drive unit to the original testing done by McLaughlin [14]. The original power drive unit was able to reach 11.73VDC in 45 minutes on the second charge cycle. The third charge cycle, an upper limit run, was only
able to reach $15.03 V D C$ in an unspecified amount of time. As Figure 58 shows, the modified power drive unit was able to reach 15.61 VDC in 32 minutes. This is an improvement over the original design since a higher voltage was reach in a shorter time. It 42 SCFM of air while the air compressor was able to maintain pressure at 584 kPa (70 psig). Better results may be possible with constant air pressure maintained at 791 kPa (100 psig) throughout the experiment.

Airflow was read as 42 SCFM from the Orange Research flow gage, but must be corrected for conditions different from the calibration setpoint using Equation 2 [42]. All input values to Equation 2 must be in English units. The Orange Research gage plate data flow meter gives P_{c} as $790 \mathrm{kPa}(100 \mathrm{psig})$ and T_{c} as $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$. Using Equation 2, actual pressure of $584 \mathrm{kPa}(70 \mathrm{psig})$ and actual temperature of $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, K was calculated as 0.86095 . This corrects measured airflow to 36.62 SCFM at $101 \mathrm{kPA}(14.7 \mathrm{psia})$ and $20^{\circ} \mathrm{C}$ $\left(68^{\circ} \mathrm{F}\right)$. Using the density of air $\left(1.1839 \mathrm{~kg} / \mathrm{m}^{3}\right)$ at 1 atm and $20^{\circ} \mathrm{C}$, a final mass flow of $0.0202 \mathrm{~kg} / \mathrm{s}$ is obtained for the modified power drive unit.

$$
\begin{equation*}
K=\sqrt{\left(\frac{\left(P_{a}+14.7\right)}{\left(P_{c}+14.7\right)}\right) *\left(\frac{\left(T_{c}+460\right)}{\left(T_{a}+460\right)}\right)} \tag{2}
\end{equation*}
$$

Missing values are due to erroneous readings from oscilloscope, and were deleted.
Figure 58. 16VDC Supercapacitor Voltage for Charge Cycle Charge Cycle Using Modified Power Drive Unit

As Figure 59 shows, the new power drive unit was able to reach 15.45 VDC in 37 minutes. It used 80 SCFM of air while the air compressor was only able to maintain 515 $\mathrm{kPa}(60 \mathrm{psig})$ at steady state. With updating the actual pressure in Equation 2, the new K value is 0.8085 . This corrects measured airflow to 64.68 SCFM at 101 kPa (14.7psia) and $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. Using the density of air $(1.1839 \mathrm{~kg} / \mathrm{m} 3)$ at 1 atm and $20^{\circ} \mathrm{C}$, a final mass flow of $0.03614 \mathrm{~kg} / \mathrm{s}$ is obtained for the new power drive unit.

While the new system took 5 minutes longer to reach a similar voltage of 15.45 VDC , the shape of the voltage curve of Figure 59 offered promise of better performance. When the supercapacitor charge test was initially started with air bank pressure of $790 \mathrm{kPa}(100 \mathrm{psig})$, the rate of voltage change was greater than the modified power drive unit. This was verified by pausing the experiment around the 17-minute point, allowing the air bank pressure to recover to $790 \mathrm{kPa}(100 \mathrm{psig})$, and then continue the supercapacitor charge. The rate of voltage change, again started off higher, but then
lessoned as the air bank pressure fell to its steady state value of 515 kPa (60psig). This pressure was maintained as the supercapacitor reached full charge.

Missing values are due to erroneous readings from oscilloscope and were deleted.
Figure 59. 16VDC Supercapacitor Voltage for Charge Cycle Using New Power Drive Unit

Other experimentation tested the ability of the 3-phase transformer bank to step up and step down voltage. Figure 60 shows two phases of the 3-phase generator output in blue and yellow, the stepped down voltage in green, and the DC output voltage in red. A steady output DC voltage is produced from the 3-phase DC up to approximately 995 Hz . After 995 Hz , the DC output became unstable due to exceeding the reverse-recovery time of the diodes. The unstable DC voltage also affected the stepped down input AC voltage to the rectifier, shown in green in Figure 61. This effect was isolated to the rectifier since it was also seen with the transformers removed.

Figure 60. Step Down Transformer Configuration

Figure 61. Breakdown in Rectifier Output

The automated switching of the transformer bank through the use of solid state relays was found to not work with the current system configuration. Although the SSR's act as a switch, they also have diodes built into the circuitry which are susceptible to their reverse-recovery time being exceeded. In addition, the SSR's selected contain current limiting, transient protection circuitry, which when exposed to the operating frequencies of this system, would not allow power to be transmitted through the transformer bank. This was audibly noted from rapid turbine speed changes from the unpredictable transient loading the SSR introduced.

B. FINAL TESTING

Final testing was accomplished with a different air supply with an air compressor able to provide the required airflow at a constant 130 psig (896 Kpa). All air lines used were the same size as the air ejector or larger. A 2.54cm (1in) Flo-Gage, part number 1-71-L-300-I, was used to measure the airflow. This data was taken manually at 15 second intervals for the first two minutes and at 30 second intervals for the rest of the run. The same oscilloscope was used for visual analysis of the waveform and frequency analysis. Tests were performed on both the 16VDC and 56VDC supercapacitors. The 16VDC supercapacitor was charged without the use of the transformer bank. The 56VDC supercapacitor was charged without, and later in the charge cycle, with a step up transformer configuration.

The 16 VDC test took 6 minutes to charge to 16 VDC , and produced a max power of 293 watts. The 16VDC charge cycle found one mechanical limitation as the coupling tube from the turbine to generator was broken. A stronger replacement was made with a steel reinforced hydraulic line. There were no limits to either the turbine or charging system. As shown in Figure 62, the voltage increase was near linear, while as shown in Figure 63, the DC charging current was constant. By multiplying the voltage and current, output power was obtained. Because the turbine operates more efficiently at higher RPM, it was expected that the power drive unit would produce more power as the RPM and voltage increased.

Figure 62. 16VDC Supercapacitor Voltage for Charge Cycle

Figure 63. 16VDC Supercapacitor DC Current for Charge Cycle

Figure 64. 16VDC Supercapacitor Power for Charge Cycle

The 56VDC supercapacitor charge cycle took 16 minutes to reach 56VDC, and produced a max power of 448 watts. The charge cycle began without the transformer bank, but was shifted to the step up transformer mode of operation at the 4.5 minute point because an operational limit of the generator was reached. Using the power rating of 4450 watts and current rating of 100 A of Table 2, an operational voltage limit of 44.50 volts can be calculated using the power equation. In testing, the motor began to issue sparks around 37.24 VDC at 4.5 minutes, at which the experiment was paused. The transformer bank was then introduced to step up the voltage. This lowered the turbine speed and continued to charge the supercapacitor to its limit of 56VDC. This point was annotated on Figures 65, 66, and 67. However, looking at Figure 67, the generator might have reached its max operational capability at the 4 minute point, where the peak power output occurred and began to decrease after.

The 56 VDC charge cycle had different voltage rise characteristics due to the fact that the 56VDC supercapacitor has a 130 farad capacity vice the 500 farad capacity of the 16VDC supercapacitor. Due to this, it charged to higher voltages in a shorter amount of time. However, higher voltages in a lower farad rated supercapacitor allow more energy to
be stored. Comparing the 16 VDC supercapacitor to the 56 VDC supercapacitor with Equation 3, it can be noted that the 56VDC supercapacitor stores 3.185 times more energy with less capacitance at its rated voltage [43].

$$
\begin{equation*}
E=\left(\frac{1}{2}\right) C V^{2} \tag{3}
\end{equation*}
$$

Other than reaching the voltage limit of the generator, which was corrected stepping up voltage with a transformer in turn lower the turbine speed, the power drive unit demonstrated reliable power delivery to the 56VDC supercapacitor. If the transformer bank step were implemented at the 35VDC point, safe operation of the generator could be assured.

Figure 65. 56VDC Supercapacitor Voltage for Charge Cycle

Figure 66. 56VDC Supercapacitor DC Current for Charge Cycle

Figure 67. 56VDC Supercapacitor Power for Charge Cycle

Airflow was as a constant 90 SCFM for the 16VDC and 56VDC supercapacitor charging cycles. This measured airflow must be corrected for conditions different from the calibration setpoint using Equation 3 [42]. The RCM gage plate data for the new flow meter gives P_{c} as $791 \mathrm{kPa}(100 \mathrm{psig})$ and T_{c} as $26.7^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$. Using Equation 3, actual pressure of $998 \mathrm{kPa}(130 \mathrm{psig})$, and environmental temperature of $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, K was calculated as 1.13588. This corrects measured airflow to 102.23 SCFM at $101 \mathrm{kPa}(14.7 \mathrm{psia})$ and $20^{\circ} \mathrm{C}$ $\left(68^{\circ} \mathrm{F}\right)$. Using the density of air $\left(1.1839 \mathrm{~kg} / \mathrm{m}^{3}\right)$ at 1 atm and $20^{\circ} \mathrm{C}$, a final mass flow of $0.057119 \mathrm{~kg} / \mathrm{s}$ is obtained.

V. CONCLUSIONS

The benefits of CAES systems make it applicable for large, utility scale projects, and small, off grid applications. The goal of this work was to extract energy from compressed air and charge a 56VDC supercapacitor. Improvements to the airflow of a previous proof of concept, were made by incorporating supersonic fluid flow concepts and changing the automotive turbine design. Electrical generation and conversion elements were improved as well to enable reaching the 56VDC goal. Additional design selections were made to enable automation of the system through control of the supply air and changing the AC flow path through a transformer. CFD simulation showed great potential for thrust augmentation and demonstrated the potential for supplying high velocity air at atmospheric pressure to the turbine. Testing determined 16VDC, 500 farad supercapacitor could be charged in 6 minutes with a maximum power output of 293 watts. Testing also showed the 56VDC, 130 farad supercapacitor could be charged in 16 minutes with a max power output of 448 watts. During the 56VDC supercapacitor charge cycle, it was identified that the AC voltage had to be stepped up in a $5: 1$ ratio with a transformer because the generator was unable to safely charge past 35VDC without a transformer. Compressed airflow, measured during testing, was within 10% of the value calculated from the CFD simulation. The ability to charge high voltage supercapacitors with compressed air provides an inexpensive, capable solution to store energy in support of DoD energy security and resilience goals.

THIS PAGE INTENTIONALLY LEFT BLANK

VI. RECOMMENDATIONS

A. AC TO DC CONVERSION

It was evident that the full wave bridge rectifier operational limits due to the reverse-recovery time were exceeded as shown in Figure 61. Diodes can only switch modes of operation reliably at frequencies less than what this system is operated at. The inefficiency could be rectified by selection a power conversion module capable of operating over variable and high frequencies.

B. GENERATOR SELECTION

Although, the current generator was only capable of a theoretical output voltage of 44.50 VDC , it reached an observed peak power output near 35VDC and by 37VDC had to be stopped due to sparks. To find and allow the turbine to operate at its most efficient speed, a generator with a higher speed rating must be identified and installed to increase the efficiency of the power drive unit.

C. TURBINE SELECTION

Larger turbines are able to more efficiently utilize a given airflow across the entire range of operation. The power drive unit used in this thesis was the smallest ball bearing turbine commercially available due to air supply constraints early in the design phase and since it was a proven design. The turbo machinery lab now has equipment capable of supplying adequate pressurized airflow to test larger turbines, and the design has been proven. By scaling up the power drive unit, larger power outputs will be realized.

D. VIBRATION ISOLATION

As the turbine reached higher speeds, vibration became an issue that had to be accounted for. The turbine and generator were rigidly mounted to a testbed, and caused a number of issues that had to be fixed prior to further testing. Once the turbine mounting bolts all vibrated loose. Lock washers corrected this. Higher RPM, caused the table the test bed was mounted on, to start moving around. Additionally, a wire from the generator
vibrated to the point of mechanical failure. To correct these failures, the test bed was isolated from the table using rubber and dense foam, while the wires near the failure point were damped by wrapping in a large piece of foam. As higher speeds are reached in future design iterations, vibration isolation must become part of the design considerations.

E. MOTOR TO GENERATOR COUPLING

The original power drive unit used a Tygon tube as a coupling device. This was changed to nylon reinforced rubber tubing, which proved adequate for initial testing. Once airflow was adequate and larger power outputs accomplished, the upgraded coupling would not last for one charge cycle. A steel reinforced hydraulic line with the appropriate inside diameter was then used to accomplish all final testing with success. With further development and larger power outputs, the coupling mechanism must also be examined for improvements.

F. DYNAMIC TRANSFORMER OPERATION

The SSR's selected to perform the switching of the transformer bank were not capable of operating with the system due to protective internal circuitry. Other options should be explored if future design iterations require changing transformer modes of operation. The simplest option would be to use a solenoid operated contactor, which mechanically operates a switch to open or close the desired circuit.

G. TEST INSTRUMENTATION

Initial testing was accomplished using a data link to the oscilloscope, but during final testing, this interface had problems that could not be remedied with the manufacturer. Instead, manual data collection was used for the final testing, and human error was introduced into the data acquisition process. To gain the best fidelity in the future, this communication error between the oscilloscope and computer should be corrected.

The current readings DC charging current were read using a Fluke clamp on current instrument. The readings obtained were accurate enough to understand the magnitude of
current flow, but not precise. Follow on testing would benefit from current measurements that can be acquired automatically.

H. CAPACITOR SIZING

Higher voltage capacitors store more energy, and thus should be used. This system safely reached 34.65 VDC before the power curve started to decrease without the step up transformer. Assuming a safety margin of switching to a 5:1 step up at 30VDC, a 150VDC supercapacitor could currently be charge. The same transformer bank can also be reconfigured to step up 10:1. This would allow a 300 VDC capacitor to be used. Future design work should strive to use the highest voltage supercapacitor that is compatible with the MEG it is installed in.

I. EXPLORE PISTON TYPE AIR EXPANSION MOTOR

Although the concepts used to develop the new power drive unit are simple, the system is complex. The ejector has to provide an optimized airflow to the turbine, the turbine has its own efficiency curves which vary based on RPM, the generator has operational limitations, and the power electronics required to reliably convert high frequency AC to DC must also be refined. One way to simplify all of the mentioned complexities would be to slow the system down. Ibrahim [12] explored theoretical efficiencies of using vane type air motors compared to piston type air motors. Although this system is not a vane type motor, piston type motors were found to be almost a constant 70% efficient across a large range of CAES pressures. Ibrahim decided to use "a piston type air motor ...because it is the most mature, reliable, cheap, and allows full use of the polytropic expansion of compressed air "[12]. Piston type air motors would operate at a much lower frequency, which would simplify much of the design selection for the generator and power conversion elements.

THIS PAGE INTENTIONALLY LEFT BLANK

Date
2017/12/18 15:10:28

Contents

1. File Report

Table 1 File Information for CFX
2. Mesh Report

Table 2 Mesh Information for CFX
3. Physics Report

Table 3 Domain Physics for CFX
Table 4 Boundary Physics for CFX
4. Solution Report

Table 5 Boundary Flows for CFX

1. File Report

Table 1. File Information for CFX

Case	CFX
File Path	C: \Users\nspellet\AppData\Local\Temp\5\Ejector Rev 1.tmp\Ejector Rev 1_files\dpO\CFX\CFX\Fluid Flow CFX_040.res
File Date	18 December 2017
File Time	02:53:24 PM
File Type	CFX5
File Version	17.2

2. Mesh Report

Table 2. Mesh Information for CFX Domain Nodes Elements

Default Domain 146077461913

3. Physics Report

Table 3. Domain Physics for CFX

Domain - Default Domain

Type	Fluid
Materials	
Location	
Air Ideal Gas Fluid Definition Morphology Material Library Continuous Fluid Buoyancy Model Non Buoyant Domain Motion Stationary Reference Pressure Total Energy Heat Transfer Model On Include Viscous Work Term k epsilon Turbulence Model Scalable Turbulent Wall Functions On High Speed Model	

Table 4. Boundary Physics for CFX

Domain	Boundaries Default Domain Type	
	Boundary - I nlet	
	Location	INLET
		Air Supply
	Flow Direction	Settings
	Flow Regime	Normal to Boundary Condition
	Heat Transfer	Subsonic

	Total Temperature	$3.0000 \mathrm{e}+02$ [K]
	Mass And Momentum	Total Pressure
	Relative Pressure	$6.8900 \mathrm{e}+02$ [kPa]
	Turbulence	High Intensity and Eddy Viscosity Ratio
	Boundary - Primary Ejection	
	Type	INLET
	Location	Primary Suction
	Settings	
	Flow Direction	Normal to Boundary Condition
	Flow Regime	Subsonic
	Heat Transfer	Total Temperature
	Total Temperature	$3.0000 \mathrm{e}+02$ [K]
	Mass And Momentum	Total Pressure
	Relative Pressure	$0.0000 \mathrm{e}+00$ [Pa]
	Turbulence	High Intensity and Eddy Viscosity Ratio
	Boundary - Thrust Augmentor	
	Type	INLET
	Location	Thrust Augmentor
	Settings	
	Flow Direction	Normal to Boundary Condition
	Flow Regime	Subsonic
	Heat Transfer	Total Temperature
	Total Temperature	$3.0000 \mathrm{e}+02$ [K]
	Mass And Momentum	Total Pressure
	Relative Pressure	$0.0000 \mathrm{e}+00$ [Pa]
	Turbulence	Medium Intensity and Eddy Viscosity Ratio

Boundary - Outlet	
Type	OPENING
Location	Outlet
Settings	
Flow Direction	Normal to Boundary Condition
Flow Regime	Subsonic
Heat Transfer	Opening Temperature
Opening Temperature	$3.0000 \mathrm{e}+02$ [K]
Mass And Momentum	Opening Pressure and Direction
Relative Pressure	$0.0000 \mathrm{e}+00$ [Pa]
Turbulence	Medium Intensity and Eddy Viscosity Ratio
Boundary - Default Domain Default	
Type	WALL
Location	$\begin{gathered} \text { F729.713, F730.713, F731.713, F732.713, } \\ \text { F733.713, F734.713, F735.713, F736.713, } \\ \text { F737.713, F739.713, F741.713, F743.713, } \\ \text { F744.713, F745.713, F746.713, F747.713, } \\ \text { F755.713, F756.713 } \end{gathered}$
Settings	
Heat Transfer	Adiabatic
Mass And Momentum	No Slip Wall
Wall Roughness	Smooth Wall

4. Solution Report

Table 5. Boundary Flows for CFX

Location	Type	Mass Flow	Momentum			
			X	Y	Z	
Default Domain Default	Boundary	$0.0000 \mathrm{e}+00$		$1.2718 \mathrm{e}+02$	$-3.0411 \mathrm{e}-$	$2.7658 \mathrm{e}-$
02	02					
Inlet	Boundary	$5.1217 \mathrm{e}-02$	$1.4800 \mathrm{e}+02$	$-1.6578 \mathrm{e}-$	$9.2712 \mathrm{e}-$	
06						

Outlet	Boundary	$\begin{array}{r} -2.1080 \mathrm{e}- \\ 01 \end{array}$	$2.0106 \mathrm{e}+01$	$\begin{array}{r} 3.0845 \mathrm{e}- \\ 02 \end{array}$	$\begin{array}{r} -2.9160 \mathrm{e}- \\ 02 \end{array}$
Primary Ejection	Boundary	$5.0260 \mathrm{e}-03$	-1.7204e-03	$\begin{array}{r} -3.4600 \mathrm{e}- \\ 04 \end{array}$	$\begin{array}{r} 1.4716 \mathrm{e}- \\ 03 \end{array}$
Thrust Augmentor	Boundary	1.5457e-01	-7.0852e-01	$\begin{array}{r} -3.1238 \mathrm{e}- \\ 05 \end{array}$	$\begin{array}{r} -3.9002 \mathrm{e}- \\ 05 \end{array}$

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B. MODIFIED POWER DRIVE UNIT TEST DATA

NOTE: Discontinuous readings appear as blank entries.

Recorded Time (h:mm:ss)	Normalized Time (h:mm:ss)	Capacitor Voltage (VDC)	$\begin{aligned} & \hline 12: 17: 26 \\ & \hline 12: 17: 27 \end{aligned}$	$\begin{array}{\|c\|} \hline 0: 00: 36 \\ \hline 0: 00: 37 \end{array}$	
12:16:50	0:00:00		12:17:28	0:00:38	
12:16:51	0:00:01		12:17:29	0:00:39	0.592241
12:16:52	0:00:02		12:17:30	0:00:40	
12:16:53	0:00:03		12:17:31	0:00:41	
12:16:54	0:00:04		12:17:32	0:00:42	
12:16:55	0:00:05	0.170293	12:17:33	0:00:43	
12:16:56	0:00:06	0.152981	12:17:34	0:00:44	
12:16:57	0:00:07		12:17:35	0:00:45	
12:16:58	0:00:08	0.196712	12:17:36	0:00:46	0.686634
12:16:59	0:00:09		12:17:37	0:00:47	0.697936
12:17:04	0:00:14		12:17:38	0:00:48	0.708432
12:17:04	0:00:14		12:17:39	0:00:49	0.731632
12:17:04	0:00:14		12:17:40	0:00:50	
12:17:04	0:00:14		12:17:41	0:00:51	0.743338
12:17:04	0:00:14	0.264346	12:17:42	0:00:52	0.7615
12:17:05	0:00:15	0.278073	12:17:43	0:00:53	0.769007
12:17:06	0:00:16	0.295218	12:17:44	0:00:54	0.771564
12:17:07	0:00:17		12:17:45	0:00:55	0.772522
12:17:08	0:00:18		12:17:46	0:00:56	
12:17:09	0:00:19		12:17:47	0:00:57	
12:17:10	0:00:20		12:17:48	0:00:58	
12:17:14	0:00:24		12:17:49	0:00:59	
12:17:14	0:00:24		12:17:52	0:01:02	
12:17:14	0:00:24		12:17:52	0:01:02	
12:17:14	0:00:24		12:17:54	0:01:04	
12:17:15	0:00:25	0.410837	12:17:54	0:01:04	
12:17:16	0:00:26		12:17:54	0:01:04	
12:17:17	0:00:27		12:17:55	0:01:05	
12:17:18	0:00:28		12:17:56	0:01:06	
12:17:19	0:00:29	0.467133	12:17:57	0:01:07	
12:17:20	0:00:30		12:17:58	0:01:08	
12:17:21	0:00:31	0.488822	12:17:59	0:01:09	
12:17:22	0:00:32		12:18:00	0:01:10	
12:17:23	0:00:33		12:18:01	0:01:11	
12:17:24	0:00:34		12:18:02	0:01:12	
12:17:25	0:00:35				

12:18:03	0:01:13	12:18:46	0:01:56	
12:18:04	0:01:14	12:18:47	0:01:57	
12:18:05	0:01:15	12:18:48	0:01:58	
12:18:06	0:01:16	12:18:49	0:01:59	
12:18:07	0:01:17	12:18:50	0:02:00	
12:18:08	0:01:18	12:18:51	0:02:01	
12:18:09	0:01:19	12:18:52	0:02:02	
12:18:10	0:01:20	12:18:53	0:02:03	
12:18:11	0:01:21	12:18:54	0:02:04	
12:18:12	0:01:22	12:18:55	0:02:05	
12:18:13	0:01:23	12:18:56	0:02:06	
12:18:14	0:01:24	12:18:57	0:02:07	
12:18:15	0:01:25	12:18:58	0:02:08	
12:18:16	0:01:26	12:18:59	0:02:09	
12:18:17	0:01:27	12:19:00	0:02:10	
12:18:18	0:01:28	12:19:01	0:02:11	
12:18:19	0:01:29	12:19:02	0:02:12	
12:18:20	0:01:30	12:19:03	0:02:13	1.8556
12:18:21	0:01:31	12:19:04	0:02:14	
12:18:22	0:01:32	12:19:05	0:02:15	
12:18:23	0:01:33	12:19:06	0:02:16	
12:18:24	0:01:34	12:19:07	0:02:17	
12:18:25	0:01:35	12:19:08	0:02:18	
12:18:26	0:01:36	12:19:09	0:02:19	
12:18:27	0:01:37	12:19:10	0:02:20	
12:18:28	0:01:38	12:19:11	0:02:21	
12:18:29	0:01:39	12:19:12	0:02:22	
12:18:30	0:01:40	12:19:13	0:02:23	
12:18:31	0:01:41	12:19:14	0:02:24	
12:18:32	0:01:42	12:19:15	0:02:25	
12:18:33	0:01:43	12:19:16	0:02:26	
12:18:34	0:01:44	12:19:17	0:02:27	
12:18:35	0:01:45	12:19:18	0:02:28	
12:18:36	0:01:46	12:19:19	0:02:29	
12:18:37	0:01:47	12:19:20	0:02:30	
12:18:38	0:01:48	12:19:21	0:02:31	
12:18:39	0:01:49	12:19:22	0:02:32	
12:18:40	0:01:50	12:19:23	0:02:33	
12:18:41	0:01:51	12:19:24	0:02:34	
12:18:42	0:01:52	12:19:25	0:02:35	
12:18:43	0:01:53	12:19:26	0:02:36	
12:18:44	0:01:54	12:19:27	0:02:37	
12:18:45	0:01:55	12:19:28	0:02:38	

12:19:29	0:02:39		12:20:12	0:03:22	
12:19:30	0:02:40		12:20:13	0:03:23	
12:19:31	0:02:41		12:20:14	0:03:24	2.77805
12:19:32	0:02:42		12:20:15	0:03:25	
12:19:33	0:02:43		12:20:16	0:03:26	
12:19:34	0:02:44		12:20:17	0:03:27	
12:19:35	0:02:45		12:20:18	0:03:28	
12:19:36	0:02:46		12:20:19	0:03:29	
12:19:37	0:02:47		12:20:20	0:03:30	
12:19:38	0:02:48		12:20:21	0:03:31	
12:19:39	0:02:49		12:20:22	0:03:32	
12:19:40	0:02:50		12:20:23	0:03:33	
12:19:41	0:02:51		12:20:24	0:03:34	
12:19:42	0:02:52		12:20:25	0:03:35	
12:19:43	0:02:53		12:20:26	0:03:36	
12:19:44	0:02:54		12:20:27	0:03:37	
12:19:45	0:02:55	2.40603	12:20:28	0:03:38	
12:19:46	0:02:56		12:20:29	0:03:39	
12:19:47	0:02:57		12:20:30	0:03:40	
12:19:48	0:02:58		12:20:31	0:03:41	2.98956
12:19:49	0:02:59		12:20:32	0:03:42	
12:19:50	0:03:00		12:20:33	0:03:43	
12:19:51	0:03:01		12:20:34	0:03:44	3.02571
12:19:52	0:03:02		12:20:35	0:03:45	
12:19:53	0:03:03		12:20:36	0:03:46	3.05132
12:19:54	0:03:04		12:20:37	0:03:47	
12:19:55	0:03:05		12:20:38	0:03:48	3.07689
12:19:56	0:03:06		12:20:39	0:03:49	
12:19:57	0:03:07		12:20:40	0:03:50	
12:19:58	0:03:08	1.9833	12:20:41	0:03:51	3.11371
12:19:59	0:03:09		12:20:42	0:03:52	
12:20:00	0:03:10		12:20:43	0:03:53	3.14028
12:20:01	0:03:11		12:20:44	0:03:54	
12:20:02	0:03:12		12:20:45	0:03:55	3.16413
12:20:03	0:03:13		12:20:46	0:03:56	3.17833
12:20:04	0:03:14	2.65089	12:20:47	0:03:57	
12:20:05	0:03:15		12:20:48	0:03:58	
12:20:06	0:03:16		12:20:49	0:03:59	
12:20:07	0:03:17		12:20:50	0:04:00	
12:20:08	0:03:18		12:20:51	0:04:01	
12:20:09	0:03:19		12:20:52	0:04:02	
12:20:10	0:03:20		12:20:53	0:04:03	
12:20:11	0:03:21		12:20:54	0:04:04	

[^0]| 12:20:55 | 0:04:05 | 3.28457 | 12:21:38 | 0:04:48 | 3.7742 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12:20:56 | 0:04:06 | 3.29842 | 12:21:39 | 0:04:49 | 3.78634 |
| 12:20:57 | 0:04:07 | 3.30983 | 12:21:40 | 0:04:50 | |
| 12:20:58 | 0:04:08 | 3.32248 | 12:21:41 | 0:04:51 | 3.80835 |
| 12:20:59 | 0:04:09 | | 12:21:42 | 0:04:52 | |
| 12:21:00 | 0:04:10 | 3.34582 | 12:21:43 | 0:04:53 | |
| 12:21:01 | 0:04:11 | 3.35811 | 12:21:44 | 0:04:54 | 3.84589 |
| 12:21:02 | 0:04:12 | 3.37354 | 12:21:45 | 0:04:55 | 3.85026 |
| 12:21:03 | 0:04:13 | 3.38588 | 12:21:46 | 0:04:56 | 3.86377 |
| 12:21:04 | 0:04:14 | | 12:21:47 | 0:04:57 | |
| 12:21:05 | 0:04:15 | 3.40478 | 12:21:48 | 0:04:58 | 3.8857 |
| 12:21:06 | 0:04:16 | 3.41747 | 12:21:49 | 0:04:59 | 3.89712 |
| 12:21:07 | 0:04:17 | 3.42832 | 12:21:50 | 0:05:00 | 3.90875 |
| 12:21:08 | 0:04:18 | 3.44096 | 12:21:51 | 0:05:01 | 3.91776 |
| 12:21:09 | 0:04:19 | | 12:21:52 | 0:05:02 | 3.93413 |
| 12:21:10 | 0:04:20 | 3.46322 | 12:21:53 | 0:05:03 | 3.94497 |
| 12:21:11 | 0:04:21 | | 12:21:54 | 0:05:04 | 3.95312 |
| 12:21:12 | 0:04:22 | | 12:21:55 | 0:05:05 | 3.96428 |
| 12:21:13 | 0:04:23 | | 12:21:56 | 0:05:06 | 3.98014 |
| 12:21:14 | 0:04:24 | 3.51016 | 12:21:57 | 0:05:07 | 3.98935 |
| 12:21:15 | 0:04:25 | 3.52538 | 12:21:58 | 0:05:08 | 4.00127 |
| 12:21:16 | 0:04:26 | 3.53096 | 12:21:59 | 0:05:09 | 4.01227 |
| 12:21:17 | 0:04:27 | | 12:22:00 | 0:05:10 | 4.02431 |
| 12:21:18 | 0:04:28 | 3.55302 | 12:22:01 | 0:05:11 | 4.03412 |
| 12:21:19 | 0:04:29 | 3.56392 | 12:22:02 | 0:05:12 | 4.04537 |
| 12:21:20 | 0:04:30 | 3.57582 | 12:22:03 | 0:05:13 | 4.05734 |
| 12:21:21 | 0:04:31 | | 12:22:04 | 0:05:14 | 4.07112 |
| 12:21:22 | 0:04:32 | 3.59996 | 12:22:05 | 0:05:15 | 4.08008 |
| 12:21:23 | 0:04:33 | 3.60946 | 12:22:06 | 0:05:16 | 4.09676 |
| 12:21:24 | 0:04:34 | 3.62052 | 12:22:07 | 0:05:17 | 4.10767 |
| 12:21:25 | 0:04:35 | | 12:22:08 | 0:05:18 | 4.12097 |
| 12:21:26 | 0:04:36 | | 12:22:09 | 0:05:19 | 4.13129 |
| 12:21:27 | 0:04:37 | 3.65152 | 12:22:10 | 0:05:20 | 4.14511 |
| 12:21:28 | 0:04:38 | 3.66446 | 12:22:11 | 0:05:21 | 4.14831 |
| 12:21:29 | 0:04:39 | 3.67526 | 12:22:12 | 0:05:22 | 4.16874 |
| 12:21:30 | 0:04:40 | | 12:22:13 | 0:05:23 | 4.17634 |
| 12:21:31 | 0:04:41 | 3.69893 | 12:22:14 | 0:05:24 | 4.1886 |
| 12:21:32 | 0:04:42 | 3.70712 | 12:22:15 | 0:05:25 | 4.19829 |
| 12:21:33 | 0:04:43 | 3.71979 | 12:22:16 | 0:05:26 | 4.211 |
| 12:21:34 | 0:04:44 | | 12:22:17 | 0:05:27 | 4.221 |
| 12:21:35 | 0:04:45 | 3.73898 | 12:22:18 | 0:05:28 | 4.23276 |
| 12:21:36 | 0:04:46 | 3.75621 | 12:22:19 | 0:05:29 | 4.24479 |
| 12:21:37 | 0:04:47 | 3.76367 | 12:22:20 | 0:05:30 | 4.25644 |

12:22:21	0:05:31	4.26705	12:23:04	0:06:14	4.75559
12:22:22	0:05:32	4.28553	12:23:05	0:06:15	4.76426
12:22:23	0:05:33	4.29057	12:23:06	0:06:16	4.77379
12:22:24	0:05:34	4.30592	12:23:07	0:06:17	4.78731
12:22:25	0:05:35	4.3139	12:23:08	0:06:18	4.79706
12:22:26	0:05:36	4.32541	12:23:09	0:06:19	4.81145
12:22:27	0:05:37	4.3373	12:23:10	0:06:20	4.82212
12:22:28	0:05:38	4.34521	12:23:11	0:06:21	
12:22:29	0:05:39	4.35674	12:23:12	0:06:22	4.84357
12:22:30	0:05:40	4.35674	12:23:13	0:06:23	4.85355
12:22:31	0:05:41	4.35674	12:23:14	0:06:24	4.85552
12:22:32	0:05:42	4.35674	12:23:15	0:06:25	4.8793
12:22:33	0:05:43	4.35674	12:23:16	0:06:26	4.88887
12:22:34	0:05:44	4.41701	12:23:17	0:06:27	4.89692
12:22:35	0:05:45	4.42965	12:23:18	0:06:28	4.90749
12:22:36	0:05:46	4.44644	12:23:19	0:06:29	4.91577
12:22:37	0:05:47	4.45276	12:23:20	0:06:30	4.92769
12:22:38	0:05:48	4.46211	12:23:21	0:06:31	4.92769
12:22:39	0:05:49	4.47605	12:23:22	0:06:32	4.92769
12:22:40	0:05:50	4.48485	12:23:23	0:06:33	4.92769
12:22:41	0:05:51	4.49669	12:23:24	0:06:34	4.97568
12:22:42	0:05:52	4.50646	12:23:25	0:06:35	4.98182
12:22:43	0:05:53	4.52073	12:23:26	0:06:36	4.99832
12:22:44	0:05:54	4.53223	12:23:27	0:06:37	5.0059
12:22:45	0:05:55	4.53223	12:23:28	0:06:38	5.01783
12:22:46	0:05:56	4.53223	12:23:29	0:06:39	5.02341
12:22:47	0:05:57	4.53223	12:23:30	0:06:40	5.02341
12:22:48	0:05:58	4.57555	12:23:31	0:06:41	5.05005
12:22:49	0:05:59	4.58691	12:23:32	0:06:42	5.06513
12:22:50	0:06:00	4.59848	12:23:33	0:06:43	5.07494
12:22:51	0:06:01	4.60781	12:23:34	0:06:44	5.08497
12:22:52	0:06:02	4.62251	12:23:35	0:06:45	5.09718
12:22:53	0:06:03	4.63108	12:23:36	0:06:46	5.10748
12:22:54	0:06:04	4.64392	12:23:37	0:06:47	5.11651
12:22:55	0:06:05	4.65421	12:23:38	0:06:48	5.12625
12:22:56	0:06:06	4.66375	12:23:39	0:06:49	5.1417
12:22:57	0:06:07	4.68188	12:23:40	0:06:50	5.15061
12:22:58	0:06:08	4.68822	12:23:41	0:06:51	5.16128
12:22:59	0:06:09	4.69944	12:23:42	0:06:52	5.17416
12:23:00	0:06:10	4.70823	12:23:43	0:06:53	5.18831
12:23:01	0:06:11	4.71995	12:23:44	0:06:54	5.19116
12:23:02	0:06:12	4.73151	12:23:45	0:06:55	5.205
12:23:03	0:06:13	4.75121	12:23:46	0:06:56	5.21498

12:23:47	0:06:57	5.22897	12:24:30	0:07:40	5.68018
12:23:48	0:06:58	5.23864	12:24:31	0:07:41	5.68831
12:23:49	0:06:59	5.24818	12:24:32	0:07:42	5.70201
12:23:50	0:07:00	5.26013	12:24:33	0:07:43	5.71146
12:23:51	0:07:01	5.26704	12:24:34	0:07:44	5.72122
12:23:52	0:07:02	5.27742	12:24:35	0:07:45	5.73133
12:23:53	0:07:03	5.28625	12:24:36	0:07:46	5.7413
12:23:54	0:07:04	5.29733	12:24:37	0:07:47	5.75574
12:23:55	0:07:05	5.31404	12:24:38	0:07:48	5.7612
12:23:56	0:07:06	5.32221	12:24:39	0:07:49	5.77169
12:23:57	0:07:07	5.33494	12:24:40	0:07:50	5.78291
12:23:58	0:07:08	5.34284	12:24:41	0:07:51	5.79052
12:23:59	0:07:09	5.35253	12:24:42	0:07:52	5.80138
12:24:00	0:07:10	5.36904	12:24:43	0:07:53	5.81599
12:24:01	0:07:11	5.37424	12:24:44	0:07:54	5.82032
12:24:02	0:07:12	5.38098	12:24:45	0:07:55	5.83646
12:24:03	0:07:13	5.39339	12:24:46	0:07:56	5.84229
12:24:04	0:07:14	5.40323	12:24:47	0:07:57	5.85393
12:24:05	0:07:15	5.41271	12:24:48	0:07:58	5.86071
12:24:06	0:07:16	5.4237	12:24:49	0:07:59	5.87433
12:24:07	0:07:17	5.4364	12:24:50	0:08:00	5.88599
12:24:08	0:07:18	5.44563	12:24:51	0:08:01	5.89645
12:24:09	0:07:19	5.46468	12:24:52	0:08:02	5.90069
12:24:10	0:07:20	5.47179	12:24:53	0:08:03	5.91182
12:24:11	0:07:21	5.47894	12:24:54	0:08:04	5.92223
12:24:12	0:07:22	5.48712	12:24:55	0:08:05	5.93315
12:24:13	0:07:23	5.50203	12:24:56	0:08:06	5.94126
12:24:14	0:07:24	5.5081	12:24:57	0:08:07	5.95053
12:24:15	0:07:25	5.52728	12:24:58	0:08:08	5.95821
12:24:16	0:07:26	5.53552	12:24:59	0:08:09	5.96375
12:24:17	0:07:27	5.54208	12:25:00	0:08:10	5.97834
12:24:18	0:07:28	5.55419	12:25:01	0:08:11	5.99285
12:24:19	0:07:29	5.56303	12:25:02	0:08:12	5.99285
12:24:20	0:07:30	5.57571	12:25:03	0:08:13	6.00885
12:24:21	0:07:31	5.58186	12:25:04	0:08:14	6.01585
12:24:22	0:07:32	5.60001	12:25:05	0:08:15	6.0205
12:24:23	0:07:33	5.60667	12:25:06	0:08:16	6.03161
12:24:24	0:07:34	5.61714	12:25:07	0:08:17	6.04603
12:24:25	0:07:35	5.63126	12:25:08	0:08:18	6.04883
12:24:26	0:07:36	5.63888	12:25:09	0:08:19	6.05896
12:24:27	0:07:37	5.65	12:25:10	0:08:20	6.06907
12:24:28	0:07:38	5.66002	12:25:11	0:08:21	6.07812
12:24:29	0:07:39	5.66787	12:25:12	0:08:22	6.09215

12:25:13	0:08:23	6.09944	12:25:56	0:09:06	6.50019
12:25:14	0:08:24	6.11085	12:25:57	0:09:07	6.50743
12:25:15	0:08:25	6.22457	12:25:58	0:09:08	6.51267
12:25:16	0:08:26	6.22454	12:25:59	0:09:09	6.52382
12:25:17	0:08:27	6.14474	12:26:00	0:09:10	6.53371
12:25:18	0:08:28	6.15051	12:26:01	0:09:11	6.54519
12:25:19	0:08:29	6.15806	12:26:02	0:09:12	6.56012
12:25:20	0:08:30	6.15806	12:26:03	0:09:13	
12:25:21	0:08:31	6.15806	12:26:04	0:09:14	6.57229
12:25:22	0:08:32		12:26:05	0:09:15	6.58121
12:25:23	0:08:33		12:26:06	0:09:16	6.58822
12:25:24	0:08:34		12:26:07	0:09:17	6.59813
12:25:25	0:08:35		12:26:08	0:09:18	6.60577
12:25:26	0:08:36		12:26:09	0:09:19	6.61396
12:25:27	0:08:37		12:26:10	0:09:20	
12:25:28	0:08:38		12:26:11	0:09:21	6.64289
12:25:29	0:08:39	6.25686	12:26:12	0:09:22	6.6447
12:25:30	0:08:40		12:26:13	0:09:23	6.64631
12:25:31	0:08:41		12:26:14	0:09:24	6.6651
12:25:32	0:08:42		12:26:15	0:09:25	6.67311
12:25:33	0:08:43		12:26:16	0:09:26	6.68039
12:25:34	0:08:44		12:26:17	0:09:27	
12:25:35	0:08:45		12:26:18	0:09:28	6.70541
12:25:36	0:08:46		12:26:19	0:09:29	6.71399
12:25:37	0:08:47		12:26:20	0:09:30	6.71949
12:25:38	0:08:48	6.34138	12:26:21	0:09:31	6.72755
12:25:39	0:08:49		12:26:22	0:09:32	6.73584
12:25:40	0:08:50		12:26:23	0:09:33	
12:25:41	0:08:51	6.3717	12:26:24	0:09:34	6.75581
12:25:42	0:08:52		12:26:25	0:09:35	6.77397
12:25:43	0:08:53		12:26:26	0:09:36	6.77465
12:25:44	0:08:54	6.39852	12:26:27	0:09:37	6.78494
12:25:45	0:08:55		12:26:28	0:09:38	6.79028
12:25:46	0:08:56	6.40785	12:26:29	0:09:39	6.80149
12:25:47	0:08:57	6.42015	12:26:30	0:09:40	6.81226
12:25:48	0:08:58	6.59315	12:26:31	0:09:41	6.8187
12:25:49	0:08:59	6.59313	12:26:32	0:09:42	6.82964
12:25:50	0:09:00	6.43929	12:26:33	0:09:43	6.83666
12:25:51	0:09:01		12:26:34	0:09:44	6.84724
12:25:52	0:09:02	6.4572	12:26:35	0:09:45	6.85698
12:25:53	0:09:03	6.47006	12:26:36	0:09:46	6.86475
12:25:54	0:09:04	6.48087	12:26:37	0:09:47	6.87366
12:25:55	0:09:05	6.48636	12:26:38	0:09:48	6.88279

12:26:39	0:09:49		12:27:22	0:10:32	7.2855
12:26:40	0:09:50	6.90593	12:27:23	0:10:33	7.29423
12:26:41	0:09:51	6.91346	12:27:24	0:10:34	7.30122
12:26:42	0:09:52	6.91876	12:27:25	0:10:35	7.31878
12:26:43	0:09:53	6.92798	12:27:26	0:10:36	7.32531
12:26:44	0:09:54	6.947	12:27:27	0:10:37	7.32434
12:26:45	0:09:55	6.95096	12:27:28	0:10:38	7.33584
12:26:46	0:09:56	6.95917	12:27:29	0:10:39	7.35406
12:26:47	0:09:57		12:27:30	0:10:40	7.35924
12:26:48	0:09:58	6.98384	12:27:31	0:10:41	7.36487
12:26:49	0:09:59	6.98873	12:27:32	0:10:42	7.37594
12:26:50	0:10:00	6.9943	12:27:33	0:10:43	7.38501
12:26:51	0:10:01	7.00301	12:27:34	0:10:44	7.39165
12:26:52	0:10:02	7.00942	12:27:35	0:10:45	7.4014
12:26:53	0:10:03	7.02343	12:27:36	0:10:46	
12:26:54	0:10:04	7.03297	12:27:37	0:10:47	
12:26:55	0:10:05	7.04708	12:27:38	0:10:48	7.43164
12:26:56	0:10:06	7.04881	12:27:39	0:10:49	7.44366
12:26:57	0:10:07	7.05557	12:27:40	0:10:50	7.45087
12:26:58	0:10:08	7.07078	12:27:41	0:10:51	
12:26:59	0:10:09	7.07842	12:27:42	0:10:52	7.46235
12:27:00	0:10:10	7.0838	12:27:43	0:10:53	7.47159
12:27:01	0:10:11	7.09388	12:27:44	0:10:54	7.47737
12:27:02	0:10:12	7.10104	12:27:45	0:10:55	7.49145
12:27:03	0:10:13	7.10759	12:27:46	0:10:56	7.49948
12:27:04	0:10:14	7.1255	12:27:47	0:10:57	
12:27:05	0:10:15	7.1286	12:27:48	0:10:58	7.52253
12:27:06	0:10:16	7.14229	12:27:49	0:10:59	7.52445
12:27:07	0:10:17	7.14737	12:27:50	0:11:00	7.53606
12:27:08	0:10:18	7.15395	12:27:51	0:11:01	7.5367
12:27:09	0:10:19	7.16353	12:27:52	0:11:02	7.56156
12:27:10	0:10:20		12:27:53	0:11:03	7.56434
12:27:11	0:10:21	7.18888	12:27:54	0:11:04	7.5739
12:27:12	0:10:22	7.18966	12:27:55	0:11:05	7.57972
12:27:13	0:10:23	7.19915	12:27:56	0:11:06	7.58587
12:27:14	0:10:24	7.21131	12:27:57	0:11:07	7.59622
12:27:15	0:10:25	7.22495	12:27:58	0:11:08	7.60659
12:27:16	0:10:26	7.23166	12:27:59	0:11:09	7.61422
12:27:17	0:10:27	7.23745	12:28:00	0:11:10	7.61982
12:27:18	0:10:28	7.24861	12:28:01	0:11:11	
12:27:19	0:10:29	7.25697	12:28:02	0:11:12	7.64101
12:27:20	0:10:30	7.26893	12:28:03	0:11:13	7.65283
12:27:21	0:10:31	7.27494	12:28:04	0:11:14	7.65895

12:28:05	0:11:15	7.67298	12:28:48	0:11:58	8.04028
12:28:06	0:11:16	7.67634	12:28:49	0:11:59	8.04702
12:28:07	0:11:17	7.68977	12:28:50	0:12:00	8.05554
12:28:08	0:11:18	7.6929	12:28:51	0:12:01	8.06134
12:28:09	0:11:19	7.70366	12:28:52	0:12:02	8.06725
12:28:10	0:11:20	7.7047	12:28:53	0:12:03	8.07817
12:28:11	0:11:21	7.71949	12:28:54	0:12:04	8.08843
12:28:12	0:11:22	7.73679	12:28:55	0:12:05	8.09514
12:28:13	0:11:23	7.73905	12:28:56	0:12:06	8.10238
12:28:14	0:11:24	7.74488	12:28:57	0:12:07	8.10682
12:28:15	0:11:25	7.75403	12:28:58	0:12:08	8.11549
12:28:16	0:11:26	7.76265	12:28:59	0:12:09	
12:28:17	0:11:27	7.77341	12:29:00	0:12:10	8.12865
12:28:18	0:11:28	7.78652	12:29:01	0:12:11	
12:28:19	0:11:29	7.79158	12:29:02	0:12:12	8.148
12:28:20	0:11:30	7.79949	12:29:03	0:12:13	8.15997
12:28:21	0:11:31	7.80521	12:29:04	0:12:14	8.17051
12:28:22	0:11:32	7.81663	12:29:05	0:12:15	8.17176
12:28:23	0:11:33	7.82744	12:29:06	0:12:16	8.1851
12:28:24	0:11:34	7.83329	12:29:07	0:12:17	8.19066
12:28:25	0:11:35	7.84987	12:29:08	0:12:18	8.19802
12:28:26	0:11:36	7.85462	12:29:09	0:12:19	8.20958
12:28:27	0:11:37	7.86464	12:29:10	0:12:20	8.21128
12:28:28	0:11:38		12:29:11	0:12:21	8.21269
12:28:29	0:11:39	7.88287	12:29:12	0:12:22	8.22393
12:28:30	0:11:40	7.88793	12:29:13	0:12:23	8.23359
12:28:31	0:11:41	7.89152	12:29:14	0:12:24	8.23842
12:28:32	0:11:42	7.89724	12:29:15	0:12:25	
12:28:33	0:11:43	7.9035	12:29:16	0:12:26	8.25802
12:28:34	0:11:44	7.92712	12:29:17	0:12:27	8.26397
12:28:35	0:11:45	7.9277	12:29:18	0:12:28	8.27151
12:28:36	0:11:46	7.93562	12:29:19	0:12:29	8.27646
12:28:37	0:11:47	7.94345	12:29:20	0:12:30	8.28157
12:28:38	0:11:48	7.95701	12:29:21	0:12:31	8.29638
12:28:39	0:11:49	7.95997	12:29:22	0:12:32	8.30035
12:28:40	0:11:50	7.96867	12:29:23	0:12:33	8.30633
12:28:41	0:11:51	7.97803	12:29:24	0:12:34	8.31593
12:28:42	0:11:52	7.99057	12:29:25	0:12:35	8.32896
12:28:43	0:11:53	7.99359	12:29:26	0:12:36	8.33234
12:28:44	0:11:54	8.00292	12:29:27	0:12:37	8.33316
12:28:45	0:11:55	8.00991	12:29:28	0:12:38	8.34476
12:28:46	0:11:56	8.02547	12:29:29	0:12:39	8.354
12:28:47	0:11:57	8.02691	12:29:30	0:12:40	8.35903

12:29:31	0:12:41	8.3672	12:30:14	0:13:24	8.70872
12:29:32	0:12:42	8.38062	12:30:15	0:13:25	8.71501
12:29:33	0:12:43	8.38363	12:30:16	0:13:26	8.72217
12:29:34	0:12:44	8.39007	12:30:17	0:13:27	8.74042
12:29:35	0:12:45	8.40376	12:30:18	0:13:28	8.74269
12:29:36	0:12:46		12:30:19	0:13:29	8.75305
12:29:37	0:12:47	8.41381	12:30:20	0:13:30	8.76077
12:29:38	0:12:48	8.42466	12:30:21	0:13:31	8.76327
12:29:39	0:12:49	8.42939	12:30:22	0:13:32	8.77156
12:29:40	0:12:50	8.43579	12:30:23	0:13:33	8.78063
12:29:41	0:12:51	8.44533	12:30:24	0:13:34	8.79188
12:29:42	0:12:52	8.46001	12:30:25	0:13:35	8.79527
12:29:43	0:12:53	8.45515	12:30:26	0:13:36	8.80105
12:29:44	0:12:54	8.46989	12:30:27	0:13:37	8.81084
12:29:45	0:12:55		12:30:28	0:13:38	8.8181
12:29:46	0:12:56	8.48588	12:30:29	0:13:39	8.82806
12:29:47	0:12:57	8.49553	12:30:30	0:13:40	8.84096
12:29:48	0:12:58	8.50111	12:30:31	0:13:41	8.84294
12:29:49	0:12:59	8.51144	12:30:32	0:13:42	8.84308
12:29:50	0:13:00	8.52208	12:30:33	0:13:43	8.8663
12:29:51	0:13:01	8.52821	12:30:34	0:13:44	8.86626
12:29:52	0:13:02	8.53403	12:30:35	0:13:45	8.87224
12:29:53	0:13:03	8.54481	12:30:36	0:13:46	8.87965
12:29:54	0:13:04	8.54176	12:30:37	0:13:47	
12:29:55	0:13:05	8.56361	12:30:38	0:13:48	8.89547
12:29:56	0:13:06	8.575	12:30:39	0:13:49	8.9077
12:29:57	0:13:07	8.57836	12:30:40	0:13:50	8.91392
12:29:58	0:13:08	8.58623	12:30:41	0:13:51	8.92318
12:29:59	0:13:09	8.58828	12:30:42	0:13:52	
12:30:00	0:13:10	8.60265	12:30:43	0:13:53	
12:30:01	0:13:11	8.60753	12:30:44	0:13:54	
12:30:02	0:13:12	8.61708	12:30:45	0:13:55	8.95519
12:30:03	0:13:13	8.61944	12:30:46	0:13:56	
12:30:04	0:13:14	8.62815	12:30:47	0:13:57	8.96921
12:30:05	0:13:15	8.6337	12:30:48	0:13:58	8.98254
12:30:06	0:13:16	8.6412	12:30:49	0:13:59	8.98563
12:30:07	0:13:17	8.65427	12:30:50	0:14:00	8.99606
12:30:08	0:13:18	8.65747	12:30:51	0:14:01	9.00106
12:30:09	0:13:19	8.66873	12:30:52	0:14:02	9.00475
12:30:10	0:13:20	8.67623	12:30:53	0:14:03	9.01708
12:30:11	0:13:21	8.68246	12:30:54	0:14:04	9.02376
12:30:12	0:13:22	8.6922	12:30:55	0:14:05	9.03046
12:30:13	0:13:23	8.69706	12:30:56	0:14:06	9.04327

12:30:57	0:14:07	9.04831	12:31:40	0:14:50	9.38092
12:30:58	0:14:08	9.05629	12:31:41	0:14:51	9.39164
12:30:59	0:14:09	9.06416	12:31:42	0:14:52	9.39201
12:31:00	0:14:10	9.07888	12:31:43	0:14:53	9.39686
12:31:01	0:14:11	9.0768	12:31:44	0:14:54	9.42174
12:31:02	0:14:12	9.08699	12:31:45	0:14:55	9.42723
12:31:03	0:14:13	9.09562	12:31:46	0:14:56	9.41939
12:31:04	0:14:14	9.10801	12:31:47	0:14:57	9.43517
12:31:05	0:14:15	9.1096	12:31:48	0:14:58	9.44144
12:31:06	0:14:16	9.11252	12:31:49	0:14:59	9.4481
12:31:07	0:14:17	9.12609	12:31:50	0:15:00	9.45977
12:31:08	0:14:18	9.14164	12:31:51	0:15:01	9.46312
12:31:09	0:14:19	9.14385	12:31:52	0:15:02	9.47385
12:31:10	0:14:20	9.14537	12:31:53	0:15:03	9.48721
12:31:11	0:14:21	9.15673	12:31:54	0:15:04	9.49343
12:31:12	0:14:22	9.1654	12:31:55	0:15:05	9.50228
12:31:13	0:14:23	9.17416	12:31:56	0:15:06	9.5124
12:31:14	0:14:24	9.18568	12:31:57	0:15:07	9.51397
12:31:15	0:14:25	9.1943	12:31:58	0:15:08	9.52239
12:31:16	0:14:26	9.19713	12:31:59	0:15:09	
12:31:17	0:14:27	9.1992	12:32:00	0:15:10	9.53029
12:31:18	0:14:28	9.20933	12:32:01	0:15:11	9.54509
12:31:19	0:14:29		12:32:02	0:15:12	9.55306
12:31:20	0:14:30		12:32:03	0:15:13	9.55283
12:31:21	0:14:31	9.23279	12:32:04	0:15:14	9.5691
12:31:22	0:14:32	9.24143	12:32:05	0:15:15	9.57689
12:31:23	0:14:33	9.24309	12:32:06	0:15:16	9.58372
12:31:24	0:14:34	9.25818	12:32:07	0:15:17	9.58496
12:31:25	0:14:35	9.2663	12:32:08	0:15:18	9.59622
12:31:26	0:14:36	9.28073	12:32:09	0:15:19	9.60834
12:31:27	0:14:37	9.28082	12:32:10	0:15:20	9.61955
12:31:28	0:14:38	9.28933	12:32:11	0:15:21	9.63026
12:31:29	0:14:39	9.29784	12:32:12	0:15:22	9.6293
12:31:30	0:14:40	9.31432	12:32:13	0:15:23	9.63975
12:31:31	0:14:41	9.31116	12:32:14	0:15:24	9.64263
12:31:32	0:14:42	9.31973	12:32:15	0:15:25	9.66027
12:31:33	0:14:43	9.32697	12:32:16	0:15:26	9.66121
12:31:34	0:14:44	9.33748	12:32:17	0:15:27	9.66914
12:31:35	0:14:45	9.33972	12:32:18	0:15:28	9.67568
12:31:36	0:14:46	9.34588	12:32:19	0:15:29	9.67781
12:31:37	0:14:47	9.36012	12:32:20	0:15:30	9.69576
12:31:38	0:14:48	9.36463	12:32:21	0:15:31	9.69631
12:31:39	0:14:49	9.37433	12:32:22	0:15:32	9.71668

12:32:23	0:15:33	9.72223	12:33:06	0:16:16	10.0369
12:32:24	0:15:34		12:33:07	0:16:17	10.0441
12:32:25	0:15:35	9.73212	12:33:08	0:16:18	10.0451
12:32:26	0:15:36	9.73959	12:33:09	0:16:19	10.0491
12:32:27	0:15:37	9.74544	12:33:10	0:16:20	10.0636
12:32:28	0:15:38	9.75294	12:33:11	0:16:21	10.075
12:32:29	0:15:39	9.76077	12:33:12	0:16:22	10.077
12:32:30	0:15:40	9.76894	12:33:13	0:16:23	10.084
12:32:31	0:15:41	9.77599	12:33:14	0:16:24	10.0984
12:32:32	0:15:42	9.78493	12:33:15	0:16:25	10.1032
12:32:33	0:15:43	9.78893	12:33:16	0:16:26	10.1106
12:32:34	0:15:44	9.79539	12:33:17	0:16:27	10.1111
12:32:35	0:15:45	9.80571	12:33:18	0:16:28	10.1191
12:32:36	0:15:46	9.81142	12:33:19	0:16:29	10.1209
12:32:37	0:15:47	9.81344	12:33:20	0:16:30	10.1373
12:32:38	0:15:48	9.83441	12:33:21	0:16:31	10.1396
12:32:39	0:15:49	9.84215	12:33:22	0:16:32	10.1454
12:32:40	0:15:50	9.84984	12:33:23	0:16:33	10.1471
12:32:41	0:15:51	9.85344	12:33:24	0:16:34	10.1582
12:32:42	0:15:52	9.85692	12:33:25	0:16:35	10.1648
12:32:43	0:15:53	9.86531	12:33:26	0:16:36	10.1728
12:32:44	0:15:54	9.87589	12:33:27	0:16:37	10.1822
12:32:45	0:15:55	9.88476	12:33:28	0:16:38	10.1839
12:32:46	0:15:56	9.89077	12:33:29	0:16:39	10.197
12:32:47	0:15:57	9.9034	12:33:30	0:16:40	10.197
12:32:48	0:15:58	9.9172	12:33:31	0:16:41	10.2031
12:32:49	0:15:59	9.9117	12:33:32	0:16:42	10.2042
12:32:50	0:16:00	9.92237	12:33:33	0:16:43	10.2221
12:32:51	0:16:01	9.93308	12:33:34	0:16:44	10.2321
12:32:52	0:16:02		12:33:35	0:16:45	10.23
12:32:53	0:16:03	9.94987	12:33:36	0:16:46	10.2399
12:32:54	0:16:04	9.94318	12:33:37	0:16:47	10.2374
12:32:55	0:16:05	9.95234	12:33:38	0:16:48	10.255
12:32:56	0:16:06	9.95757	12:33:39	0:16:49	10.251
12:32:57	0:16:07	9.97207	12:33:40	0:16:50	10.2642
12:32:58	0:16:08	9.98138	12:33:41	0:16:51	10.2711
12:32:59	0:16:09	9.98394	12:33:42	0:16:52	10.2792
12:33:00	0:16:10	9.99295	12:33:43	0:16:53	10.2874
12:33:01	0:16:11	9.99767	12:33:44	0:16:54	10.2946
12:33:02	0:16:12	10.0075	12:33:45	0:16:55	10.2977
12:33:03	0:16:13	10.014	12:33:46	0:16:56	10.3052
12:33:04	0:16:14	10.0191	12:33:47	0:16:57	10.3202
12:33:05	0:16:15	10.0208	12:33:48	0:16:58	10.3265

12:33:49	0:16:59	10.3292	12:34:32	0:17:42	10.6374
12:33:50	0:17:00	10.335	12:34:33	0:17:43	10.6446
12:33:51	0:17:01	10.3384	12:34:34	0:17:44	10.6513
12:33:52	0:17:02	10.3454	12:34:35	0:17:45	10.6577
12:33:53	0:17:03	10.3528	12:34:36	0:17:46	10.6705
12:33:54	0:17:04	10.3633	12:34:37	0:17:47	10.6707
12:33:55	0:17:05	10.3779	12:34:38	0:17:48	10.6883
12:33:56	0:17:06	10.3767	12:34:39	0:17:49	10.6866
12:33:57	0:17:07	10.3816	12:34:40	0:17:50	10.6905
12:33:58	0:17:08	10.3924	12:34:41	0:17:51	10.699
12:33:59	0:17:09	10.3999	12:34:42	0:17:52	10.7028
12:34:00	0:17:10	10.4036	12:34:43	0:17:53	
12:34:01	0:17:11	10.4155	12:34:44	0:17:54	10.7181
12:34:02	0:17:12	10.4221	12:34:45	0:17:55	10.7284
12:34:03	0:17:13	10.4218	12:34:46	0:17:56	10.7365
12:34:04	0:17:14	10.4324	12:34:47	0:17:57	10.7434
12:34:05	0:17:15	10.4434	12:34:48	0:17:58	10.7469
12:34:06	0:17:16	10.4603	12:34:49	0:17:59	10.7562
12:34:07	0:17:17	10.4589	12:34:50	0:18:00	10.7725
12:34:08	0:17:18	10.4674	12:34:51	0:18:01	10.7735
12:34:09	0:17:19	10.4779	12:34:52	0:18:02	10.7724
12:34:10	0:17:20	10.4774	12:34:53	0:18:03	10.7884
12:34:11	0:17:21	10.4927	12:34:54	0:18:04	10.8045
12:34:12	0:17:22	10.4948	12:34:55	0:18:05	10.807
12:34:13	0:17:23	10.4985	12:34:56	0:18:06	10.8045
12:34:14	0:17:24	10.512	12:34:57	0:18:07	
12:34:15	0:17:25	10.5137	12:34:58	0:18:08	10.8292
12:34:16	0:17:26	10.5227	12:34:59	0:18:09	10.8339
12:34:17	0:17:27	10.5335	12:35:00	0:18:10	10.8436
12:34:18	0:17:28	10.532	12:35:01	0:18:11	10.8505
12:34:19	0:17:29	10.5414	12:35:02	0:18:12	10.8508
12:34:20	0:17:30	10.5497	12:35:03	0:18:13	10.8597
12:34:21	0:17:31	10.5658	12:35:04	0:18:14	10.8718
12:34:22	0:17:32	10.5602	12:35:05	0:18:15	10.872
12:34:23	0:17:33	10.5798	12:35:06	0:18:16	10.8847
12:34:24	0:17:34	10.5759	12:35:07	0:18:17	10.8892
12:34:25	0:17:35	10.5859	12:35:08	0:18:18	10.8937
12:34:26	0:17:36	10.5944	12:35:09	0:18:19	10.893
12:34:27	0:17:37	10.606	12:35:10	0:18:20	10.9173
12:34:28	0:17:38	10.6054	12:35:11	0:18:21	10.9083
12:34:29	0:17:39	10.6135	12:35:12	0:18:22	10.9155
12:34:30	0:17:40	10.6226	12:35:13	0:18:23	10.9324
12:34:31	0:17:41	10.6321	12:35:14	0:18:24	10.9368

12:35:15	0:18:25	10.9449	12:35:58	0:19:08	11.2506
12:35:16	0:18:26	10.9562	12:35:59	0:19:09	11.2561
12:35:17	0:18:27	10.957	12:36:00	0:19:10	11.269
12:35:18	0:18:28	10.9618	12:36:01	0:19:11	11.271
12:35:19	0:18:29	10.9776	12:36:02	0:19:12	11.2757
12:35:20	0:18:30	10.9782	12:36:03	0:19:13	11.2849
12:35:21	0:18:31	10.9869	12:36:04	0:19:14	11.296
12:35:22	0:18:32	10.9871	12:36:05	0:19:15	11.3019
12:35:23	0:18:33	11.0022	12:36:06	0:19:16	11.3016
12:35:24	0:18:34	11.0046	12:36:07	0:19:17	11.3108
12:35:25	0:18:35	11.0202	12:36:08	0:19:18	11.3212
12:35:26	0:18:36	11.0229	12:36:09	0:19:19	11.325
12:35:27	0:18:37	11.0222	12:36:10	0:19:20	11.3317
12:35:28	0:18:38	11.0333	12:36:11	0:19:21	11.3397
12:35:29	0:18:39	11.0454	12:36:12	0:19:22	11.3473
12:35:30	0:18:40	11.0479	12:36:13	0:19:23	11.3509
12:35:31	0:18:41	11.0554	12:36:14	0:19:24	11.3606
12:35:32	0:18:42	11.0656	12:36:15	0:19:25	11.3762
12:35:33	0:18:43	11.0743	12:36:16	0:19:26	11.3767
12:35:34	0:18:44	11.0849	12:36:17	0:19:27	11.3814
12:35:35	0:18:45	11.0958	12:36:18	0:19:28	11.3922
12:35:36	0:18:46	11.0953	12:36:19	0:19:29	11.3905
12:35:37	0:18:47	11.1017	12:36:20	0:19:30	11.4066
12:35:38	0:18:48	11.1078	12:36:21	0:19:31	11.4178
12:35:39	0:18:49	11.112	12:36:22	0:19:32	11.4141
12:35:40	0:18:50	11.1208	12:36:23	0:19:33	11.4211
12:35:41	0:18:51	11.1291	12:36:24	0:19:34	11.4291
12:35:42	0:18:52	11.1403	12:36:25	0:19:35	11.4382
12:35:43	0:18:53	11.1396	12:36:26	0:19:36	11.4475
12:35:44	0:18:54	11.15	12:36:27	0:19:37	11.4489
12:35:45	0:18:55	11.1522	12:36:28	0:19:38	
12:35:46	0:18:56	11.1645	12:36:29	0:19:39	11.4619
12:35:47	0:18:57	11.1631	12:36:30	0:19:40	11.4705
12:35:48	0:18:58	11.1771	12:36:31	0:19:41	11.488
12:35:49	0:18:59	11.1775	12:36:32	0:19:42	11.4852
12:35:50	0:19:00	11.191	12:36:33	0:19:43	11.4857
12:35:51	0:19:01	11.2018	12:36:34	0:19:44	11.4918
12:35:52	0:19:02	11.2076	12:36:35	0:19:45	11.5106
12:35:53	0:19:03	11.2156	12:36:36	0:19:46	11.5153
12:35:54	0:19:04	11.2131	12:36:37	0:19:47	11.5228
12:35:55	0:19:05	11.2282	12:36:38	0:19:48	
12:35:56	0:19:06	11.2367	12:36:39	0:19:49	11.5262
12:35:57	0:19:07	11.2415	12:36:40	0:19:50	11.5395

12:36:41	0:19:51		12:37:24	0:20:34	11.8288
12:36:42	0:19:52	11.5551	12:37:25	0:20:35	11.8347
12:36:43	0:19:53	11.5578	12:37:26	0:20:36	11.8418
12:36:44	0:19:54	11.5664	12:37:27	0:20:37	11.8483
12:36:45	0:19:55	11.5744	12:37:28	0:20:38	
12:36:46	0:19:56	11.5789	12:37:29	0:20:39	11.8627
12:36:47	0:19:57	11.5877	12:37:30	0:20:40	11.874
12:36:48	0:19:58	11.5941	12:37:31	0:20:41	11.8661
12:36:49	0:19:59	11.6075	12:37:32	0:20:42	11.8813
12:36:50	0:20:00		12:37:33	0:20:43	11.8745
12:36:51	0:20:01	11.616	12:37:34	0:20:44	11.8963
12:36:52	0:20:02	11.6237	12:37:35	0:20:45	11.8963
12:36:53	0:20:03	11.6231	12:37:36	0:20:46	11.8978
12:36:54	0:20:04	11.6442	12:37:37	0:20:47	11.9011
12:36:55	0:20:05	11.6442	12:37:38	0:20:48	11.9114
12:36:56	0:20:06	11.6561	12:37:39	0:20:49	11.9145
12:36:57	0:20:07	11.6605	12:37:40	0:20:50	11.9279
12:36:58	0:20:08	11.6602	12:37:41	0:20:51	11.9279
12:36:59	0:20:09	11.6737	12:37:42	0:20:52	11.9429
12:37:00	0:20:10	11.673	12:37:43	0:20:53	11.9396
12:37:01	0:20:11	11.6786	12:37:44	0:20:54	11.9431
12:37:02	0:20:12	11.69	12:37:45	0:20:55	11.9532
12:37:03	0:20:13	11.7061	12:37:46	0:20:56	11.9589
12:37:04	0:20:14	11.7062	12:37:47	0:20:57	11.9713
12:37:05	0:20:15	11.7089	12:37:48	0:20:58	11.9681
12:37:06	0:20:16	11.7141	12:37:49	0:20:59	11.9678
12:37:07	0:20:17	11.7262	12:37:50	0:21:00	11.9812
12:37:08	0:20:18	11.7307	12:37:51	0:21:01	11.9977
12:37:09	0:20:19	11.7339	12:37:52	0:21:02	11.9949
12:37:10	0:20:20	11.7415	12:37:53	0:21:03	
12:37:11	0:20:21	11.7566	12:37:54	0:21:04	11.9997
12:37:12	0:20:22	11.7562	12:37:55	0:21:05	12.0132
12:37:13	0:20:23	11.7615	12:37:56	0:21:06	12.014
12:37:14	0:20:24	11.7675	12:37:57	0:21:07	12.0271
12:37:15	0:20:25	11.7822	12:37:58	0:21:08	12.0283
12:37:16	0:20:26	11.7919	12:37:59	0:21:09	12.0468
12:37:17	0:20:27	11.7877	12:38:00	0:21:10	12.0446
12:37:18	0:20:28	11.7932	12:38:01	0:21:11	12.0505
12:37:19	0:20:29	11.7991	12:38:02	0:21:12	12.0585
12:37:20	0:20:30	11.806	12:38:03	0:21:13	
12:37:21	0:20:31	11.8216	12:38:04	0:21:14	12.0658
12:37:22	0:20:32		12:38:05	0:21:15	12.072
12:37:23	0:20:33	11.8245	12:38:06	0:21:16	12.0783

12:38:07	0:21:17	12.091	12:38:50	0:22:00	
12:38:08	0:21:18	12.0931	12:38:51	0:22:01	12.3703
12:38:09	0:21:19	12.0906	12:38:52	0:22:02	12.3782
12:38:10	0:21:20	12.1074	12:38:53	0:22:03	12.3773
12:38:11	0:21:21	12.1047	12:38:54	0:22:04	12.3954
12:38:12	0:21:22	12.1176	12:38:55	0:22:05	12.3975
12:38:13	0:21:23	12.1248	12:38:56	0:22:06	12.3944
12:38:14	0:21:24		12:38:57	0:22:07	12.4011
12:38:15	0:21:25	12.1337	12:38:58	0:22:08	12.4171
12:38:16	0:21:26	12.1439	12:38:59	0:22:09	12.4193
12:38:17	0:21:27	12.1498	12:39:00	0:22:10	12.4288
12:38:18	0:21:28	12.1653	12:39:01	0:22:11	12.4352
12:38:19	0:21:29	12.1619	12:39:02	0:22:12	12.437
12:38:20	0:21:30	12.1696	12:39:03	0:22:13	
12:38:21	0:21:31		12:39:04	0:22:14	12.4537
12:38:22	0:21:32		12:39:05	0:22:15	12.4602
12:38:23	0:21:33		12:39:06	0:22:16	12.4662
12:38:24	0:21:34		12:39:07	0:22:17	12.4833
12:38:25	0:21:35		12:39:08	0:22:18	12.479
12:38:26	0:21:36		12:39:09	0:22:19	12.4826
12:38:27	0:21:37		12:39:10	0:22:20	12.5013
12:38:28	0:21:38		12:39:11	0:22:21	12.5107
12:38:29	0:21:39		12:39:12	0:22:22	12.5116
12:38:30	0:21:40		12:39:13	0:22:23	12.5119
12:38:31	0:21:41		12:39:14	0:22:24	12.5172
12:38:32	0:21:42	12.2406	12:39:15	0:22:25	12.5275
12:38:33	0:21:43	12.2508	12:39:16	0:22:26	12.5253
12:38:34	0:21:44		12:39:17	0:22:27	12.5304
12:38:35	0:21:45	12.2643	12:39:18	0:22:28	12.5437
12:38:36	0:21:46	12.2713	12:39:19	0:22:29	12.549
12:38:37	0:21:47	12.2698	12:39:20	0:22:30	
12:38:38	0:21:48	12.2871	12:39:21	0:22:31	12.572
12:38:39	0:21:49	12.285	12:39:22	0:22:32	12.5702
12:38:40	0:21:50	12.2941	12:39:23	0:22:33	12.5724
12:38:41	0:21:51	12.3134	12:39:24	0:22:34	12.5882
12:38:42	0:21:52	12.3142	12:39:25	0:22:35	12.5876
12:38:43	0:21:53	12.3093	12:39:26	0:22:36	12.5938
12:38:44	0:21:54	12.3176	12:39:27	0:22:37	12.5968
12:38:45	0:21:55	12.3278	12:39:28	0:22:38	12.6001
12:38:46	0:21:56	12.3409	12:39:29	0:22:39	12.621
12:38:47	0:21:57		12:39:30	0:22:40	12.6234
12:38:48	0:21:58	12.3492	12:39:31	0:22:41	12.6262
12:38:49	0:21:59	12.3604	12:39:32	0:22:42	12.6323

12:39:33	0:22:43	12.6394	12:40:16	0:23:26	12.9056
12:39:34	0:22:44	12.651	12:40:17	0:23:27	12.9113
12:39:35	0:22:45	12.6525	12:40:18	0:23:28	12.9208
12:39:36	0:22:46	12.662	12:40:19	0:23:29	
12:39:37	0:22:47	12.6595	12:40:20	0:23:30	12.9389
12:39:38	0:22:48	12.6701	12:40:21	0:23:31	12.9361
12:39:39	0:22:49	12.675	12:40:22	0:23:32	12.9428
12:39:40	0:22:50	12.6802	12:40:23	0:23:33	12.9568
12:39:41	0:22:51	12.6874	12:40:24	0:23:34	12.9534
12:39:42	0:22:52	12.6885	12:40:25	0:23:35	
12:39:43	0:22:53	12.704	12:40:26	0:23:36	12.9761
12:39:44	0:22:54	12.7093	12:40:27	0:23:37	
12:39:45	0:22:55	12.7145	12:40:28	0:23:38	12.9819
12:39:46	0:22:56	12.7273	12:40:29	0:23:39	12.9883
12:39:47	0:22:57		12:40:30	0:23:40	12.9961
12:39:48	0:22:58	12.7306	12:40:31	0:23:41	13.0014
12:39:49	0:22:59	12.7416	12:40:32	0:23:42	13.0048
12:39:50	0:23:00	12.746	12:40:33	0:23:43	13.0051
12:39:51	0:23:01	12.7518	12:40:34	0:23:44	13.0193
12:39:52	0:23:02		12:40:35	0:23:45	13.0222
12:39:53	0:23:03		12:40:36	0:23:46	13.0361
12:39:54	0:23:04	12.7721	12:40:37	0:23:47	13.0463
12:39:55	0:23:05	12.7879	12:40:38	0:23:48	13.039
12:39:56	0:23:06	12.7865	12:40:39	0:23:49	
12:39:57	0:23:07	12.797	12:40:40	0:23:50	13.0524
12:39:58	0:23:08	12.8031	12:40:41	0:23:51	13.0656
12:39:59	0:23:09	12.803	12:40:42	0:23:52	
12:40:00	0:23:10	12.8182	12:40:43	0:23:53	13.0718
12:40:01	0:23:11	12.8118	12:40:44	0:23:54	13.0872
12:40:02	0:23:12	12.8243	12:40:45	0:23:55	13.0862
12:40:03	0:23:13	12.8358	12:40:46	0:23:56	13.0912
12:40:04	0:23:14	12.8357	12:40:47	0:23:57	13.1009
12:40:05	0:23:15	12.8453	12:40:48	0:23:58	13.1018
12:40:06	0:23:16	12.843	12:40:49	0:23:59	13.1145
12:40:07	0:23:17	12.8507	12:40:50	0:24:00	13.1186
12:40:08	0:23:18	12.8576	12:40:51	0:24:01	13.1244
12:40:09	0:23:19	12.8663	12:40:52	0:24:02	
12:40:10	0:23:20	12.8629	12:40:53	0:24:03	13.1363
12:40:11	0:23:21	12.8733	12:40:54	0:24:04	13.1424
12:40:12	0:23:22	12.8792	12:40:55	0:24:05	13.1473
12:40:13	0:23:23	12.891	12:40:56	0:24:06	13.152
12:40:14	0:23:24	12.8888	12:40:57	0:24:07	13.1582
12:40:15	0:23:25	12.9061	12:40:58	0:24:08	13.164

12:40:59	0:24:09	13.1715	12:41:42	0:24:52	13.4163
12:41:00	0:24:10	13.1734	12:41:43	0:24:53	13.4241
12:41:01	0:24:11	13.1826	12:41:44	0:24:54	13.4214
12:41:02	0:24:12	13.1895	12:41:45	0:24:55	13.4335
12:41:03	0:24:13	13.1938	12:41:46	0:24:56	13.4343
12:41:04	0:24:14	13.2028	12:41:47	0:24:57	13.4437
12:41:05	0:24:15	13.211	12:41:48	0:24:58	
12:41:06	0:24:16	13.2142	12:41:49	0:24:59	13.4548
12:41:07	0:24:17	13.2215	12:41:50	0:25:00	13.4626
12:41:08	0:24:18	13.2264	12:41:51	0:25:01	
12:41:09	0:24:19	13.2434	12:41:52	0:25:02	
12:41:10	0:24:20	13.2505	12:41:53	0:25:03	13.483
12:41:11	0:24:21	13.2484	12:41:54	0:25:04	13.4792
12:41:12	0:24:22	13.2551	12:41:55	0:25:05	13.4811
12:41:13	0:24:23	13.2584	12:41:56	0:25:06	13.4875
12:41:14	0:24:24	13.2662	12:41:57	0:25:07	13.497
12:41:15	0:24:25	13.2649	12:41:58	0:25:08	13.4954
12:41:16	0:24:26	13.276	12:41:59	0:25:09	13.5034
12:41:17	0:24:27	13.2817	12:42:00	0:25:10	13.5124
12:41:18	0:24:28	13.2882	12:42:01	0:25:11	13.5138
12:41:19	0:24:29	13.2905	12:42:02	0:25:12	13.5182
12:41:20	0:24:30	13.3072	12:42:03	0:25:13	13.5262
12:41:21	0:24:31	13.3077	12:42:04	0:25:14	13.533
12:41:22	0:24:32	13.3072	12:42:05	0:25:15	13.5384
12:41:23	0:24:33	13.3149	12:42:06	0:25:16	13.5404
12:41:24	0:24:34	13.3234	12:42:07	0:25:17	13.5495
12:41:25	0:24:35	13.3345	12:42:08	0:25:18	13.5545
12:41:26	0:24:36	13.3269	12:42:09	0:25:19	13.5563
12:41:27	0:24:37	13.3379	12:42:10	0:25:20	13.5669
12:41:28	0:24:38	13.3461	12:42:11	0:25:21	13.5682
12:41:29	0:24:39	13.3507	12:42:12	0:25:22	13.5778
12:41:30	0:24:40	13.3626	12:42:13	0:25:23	13.5831
12:41:31	0:24:41	13.3659	12:42:14	0:25:24	13.5877
12:41:32	0:24:42	13.3657	12:42:15	0:25:25	13.5943
12:41:33	0:24:43	13.371	12:42:16	0:25:26	13.6084
12:41:34	0:24:44		12:42:17	0:25:27	13.6057
12:41:35	0:24:45	13.3742	12:42:18	0:25:28	13.6182
12:41:36	0:24:46	13.3837	12:42:19	0:25:29	13.6168
12:41:37	0:24:47	13.391	12:42:20	0:25:30	13.6267
12:41:38	0:24:48	13.395	12:42:21	0:25:31	13.6271
12:41:39	0:24:49	13.3989	12:42:22	0:25:32	13.6342
12:41:40	0:24:50	13.4069	12:42:23	0:25:33	13.6405
12:41:41	0:24:51		12:42:24	0:25:34	13.6441

12:42:25	0:25:35	13.6513	12:43:08	0:26:18	13.8994
12:42:26	0:25:36	13.6515	12:43:09	0:26:19	13.9049
12:42:27	0:25:37	13.6681	12:43:10	0:26:20	13.9098
12:42:28	0:25:38	13.6701	12:43:11	0:26:21	13.9244
12:42:29	0:25:39	13.6724	12:43:12	0:26:22	13.9314
12:42:30	0:25:40	13.6811	12:43:13	0:26:23	13.9307
12:42:31	0:25:41		12:43:14	0:26:24	13.9408
12:42:32	0:25:42	13.6925	12:43:15	0:26:25	13.9367
12:42:33	0:25:43	13.6951	12:43:16	0:26:26	13.9451
12:42:34	0:25:44	13.7007	12:43:17	0:26:27	13.9471
12:42:35	0:25:45	13.7099	12:43:18	0:26:28	13.9564
12:42:36	0:25:46	13.7131	12:43:19	0:26:29	13.9607
12:42:37	0:25:47	13.7185	12:43:20	0:26:30	13.9683
12:42:38	0:25:48	13.7325	12:43:21	0:26:31	13.969
12:42:39	0:25:49	13.729	12:43:22	0:26:32	13.9777
12:42:40	0:25:50	13.7362	12:43:23	0:26:33	13.9847
12:42:41	0:25:51	13.7463	12:43:24	0:26:34	13.9925
12:42:42	0:25:52	13.7501	12:43:25	0:26:35	13.9901
12:42:43	0:25:53	13.7605	12:43:26	0:26:36	14.0025
12:42:44	0:25:54	13.7617	12:43:27	0:26:37	14.0096
12:42:45	0:25:55	13.7756	12:43:28	0:26:38	14.022
12:42:46	0:25:56	13.7749	12:43:29	0:26:39	14.0284
12:42:47	0:25:57	13.7855	12:43:30	0:26:40	14.0223
12:42:48	0:25:58	13.7929	12:43:31	0:26:41	14.0395
12:42:49	0:25:59	13.7923	12:43:32	0:26:42	14.0373
12:42:50	0:26:00	13.7959	12:43:33	0:26:43	14.0386
12:42:51	0:26:01	13.8026	12:43:34	0:26:44	14.0491
12:42:52	0:26:02	13.8062	12:43:35	0:26:45	14.0534
12:42:53	0:26:03	13.8103	12:43:36	0:26:46	14.0568
12:42:54	0:26:04	13.8207	12:43:37	0:26:47	14.0614
12:42:55	0:26:05	13.8262	12:43:38	0:26:48	14.0635
12:42:56	0:26:06	13.8343	12:43:39	0:26:49	14.0831
12:42:57	0:26:07	13.8381	12:43:40	0:26:50	14.0824
12:42:58	0:26:08	13.8396	12:43:41	0:26:51	14.0959
12:42:59	0:26:09	13.849	12:43:42	0:26:52	14.0989
12:43:00	0:26:10	13.8496	12:43:43	0:26:53	14.1072
12:43:01	0:26:11	13.8656	12:43:44	0:26:54	14.1123
12:43:02	0:26:12	13.8735	12:43:45	0:26:55	14.1042
12:43:03	0:26:13	13.8775	12:43:46	0:26:56	14.1134
12:43:04	0:26:14	13.8757	12:43:47	0:26:57	14.1239
12:43:05	0:26:15	13.876	12:43:48	0:26:58	14.1277
12:43:06	0:26:16	13.8867	12:43:49	0:26:59	14.1306
12:43:07	0:26:17	13.898	12:43:50	0:27:00	14.1403

12:43:51	0:27:01	14.1488	12:44:34	0:27:44	14.3798
12:43:52	0:27:02	14.148	12:44:35	0:27:45	14.3873
12:43:53	0:27:03	14.1621	12:44:36	0:27:46	14.3935
12:43:54	0:27:04	14.154	12:44:37	0:27:47	14.4009
12:43:55	0:27:05	14.1673	12:44:38	0:27:48	14.4009
12:43:56	0:27:06	14.1703	12:44:39	0:27:49	14.4198
12:43:57	0:27:07	14.1841	12:44:40	0:27:50	14.4172
12:43:58	0:27:08	14.1822	12:44:41	0:27:51	14.4202
12:43:59	0:27:09	14.1842	12:44:42	0:27:52	14.4351
12:44:00	0:27:10	14.1919	12:44:43	0:27:53	14.4301
12:44:01	0:27:11	14.1933	12:44:44	0:27:54	14.4352
12:44:02	0:27:12	14.1984	12:44:45	0:27:55	14.4421
12:44:03	0:27:13	14.2197	12:44:46	0:27:56	14.4472
12:44:04	0:27:14	14.2144	12:44:47	0:27:57	14.4522
12:44:05	0:27:15	14.2212	12:44:48	0:27:58	14.4698
12:44:06	0:27:16	14.2266	12:44:49	0:27:59	14.4686
12:44:07	0:27:17	14.2359	12:44:50	0:28:00	14.4683
12:44:08	0:27:18	14.2391	12:44:51	0:28:01	14.4695
12:44:09	0:27:19	14.2546	12:44:52	0:28:02	14.4787
12:44:10	0:27:20	14.2465	12:44:53	0:28:03	14.4844
12:44:11	0:27:21	14.2559	12:44:54	0:28:04	14.491
12:44:12	0:27:22	14.2698	12:44:55	0:28:05	14.4981
12:44:13	0:27:23	14.2677	12:44:56	0:28:06	14.5128
12:44:14	0:27:24	14.2738	12:44:57	0:28:07	14.5078
12:44:15	0:27:25	14.2781	12:44:58	0:28:08	14.5127
12:44:16	0:27:26	14.2788	12:44:59	0:28:09	14.5228
12:44:17	0:27:27	14.2899	12:45:00	0:28:10	14.5202
12:44:18	0:27:28	14.2983	12:45:01	0:28:11	14.5374
12:44:19	0:27:29	14.2989	12:45:02	0:28:12	14.5419
12:44:20	0:27:30	14.3063	12:45:03	0:28:13	14.5429
12:44:21	0:27:31	14.3083	12:45:04	0:28:14	14.5439
12:44:22	0:27:32	14.3162	12:45:05	0:28:15	14.5556
12:44:23	0:27:33	14.3214	12:45:06	0:28:16	14.5522
12:44:24	0:27:34	14.329	12:45:07	0:28:17	14.5575
12:44:25	0:27:35	14.3378	12:45:08	0:28:18	14.5672
12:44:26	0:27:36	14.3417	12:45:09	0:28:19	14.569
12:44:27	0:27:37	14.3452	12:45:10	0:28:20	14.5726
12:44:28	0:27:38	14.3483	12:45:11	0:28:21	14.5863
12:44:29	0:27:39	14.3634	12:45:12	0:28:22	14.5889
12:44:30	0:27:40	14.36	12:45:13	0:28:23	14.6042
12:44:31	0:27:41	14.3739	12:45:14	0:28:24	14.6034
12:44:32	0:27:42	14.3727	12:45:15	0:28:25	14.6063
12:44:33	0:27:43	14.3758	12:45:16	0:28:26	14.6159

12:45:17	0:28:27	14.625
12:45:18	0:28:28	14.6166
12:45:19	0:28:29	14.6375
12:45:20	0:28:30	14.6344
12:45:21	0:28:31	14.6406
12:45:22	0:28:32	14.6456
12:45:23	0:28:33	14.6474
12:45:24	0:28:34	14.664
12:45:25	0:28:35	14.6638
12:45:26	0:28:36	14.666
12:45:27	0:28:37	14.6758
12:45:28	0:28:38	14.68
12:45:29	0:28:39	14.6924
12:45:30	0:28:40	14.687
12:45:31	0:28:41	14.6943
12:45:32	0:28:42	14.6961
12:45:33	0:28:43	14.7082
12:45:34	0:28:44	14.7034
12:45:35	0:28:45	14.719
12:45:36	0:28:46	14.7118
12:45:37	0:28:47	14.7189
12:45:38	0:28:48	14.7267
12:45:39	0:28:49	14.7283
12:45:40	0:28:50	14.7435
12:45:41	0:28:51	14.7415
12:45:42	0:28:52	14.753
12:45:43	0:28:53	14.7521
12:45:44	0:28:54	14.7468
12:45:45	0:28:55	14.7608
12:45:46	0:28:56	14.7616
12:45:47	0:28:57	14.7767
12:45:48	0:28:58	14.7789
12:45:49	0:28:59	14.7858
12:45:50	0:29:00	14.7812
12:45:51	0:29:01	14.7828
12:45:52	0:29:02	14.7996
12:45:53	0:29:03	14.7879
12:45:54	0:29:04	14.7977
12:45:55	0:29:05	14.7969
12:45:56	0:29:06	
12:45:57	0:29:07	14.8146
12:45:58	0:29:08	14.8132
12:45:59	0:29:09	14.8223

12:46:00	0:29:10	14.8265
12:46:01	0:29:11	14.8284
12:46:02	0:29:12	14.8331
12:46:03	0:29:13	14.8408
12:46:04	0:29:14	14.8462
12:46:05	0:29:15	14.8505
12:46:06	0:29:16	14.8587
12:46:07	0:29:17	14.8653
12:46:08	0:29:18	14.8641
12:46:09	0:29:19	14.8747
12:46:10	0:29:20	14.8693
12:46:11	0:29:21	14.8828
12:46:12	0:29:22	14.8833
12:46:13	0:29:23	14.8871
12:46:14	0:29:24	14.8974
12:46:15	0:29:25	14.8933
12:46:16	0:29:26	14.9076
12:46:17	0:29:27	14.9004
12:46:18	0:29:28	14.9059
12:46:19	0:29:29	14.9226
12:46:20	0:29:30	14.9248
12:46:21	0:29:31	14.9205
12:46:22	0:29:32	14.9363
12:46:23	0:29:33	14.9259
12:46:24	0:29:34	14.9454
12:46:25	0:29:35	14.9432
12:46:26	0:29:36	14.9468
12:46:27	0:29:37	14.9495
12:46:28	0:29:38	14.9556
12:46:29	0:29:39	14.9597
12:46:30	0:29:40	14.9618
12:46:31	0:29:41	14.9637
12:46:32	0:29:42	14.9815
12:46:33	0:29:43	14.9797
12:46:34	0:29:44	14.9825
12:46:35	0:29:45	14.9923
12:46:36	0:29:46	14.9976
12:46:37	0:29:47	15.002
12:46:38	0:29:48	15.0008
12:46:39	0:29:49	15.0045
12:46:40	0:29:50	15.0147
12:46:41	0:29:51	15.0178
12:46:42	0:29:52	15.0309

12:46:43	0:29:53		12:47:26	0:30:36	15.2389
12:46:44	0:29:54	15.0317	12:47:27	0:30:37	15.2471
12:46:45	0:29:55	15.0419	12:47:28	0:30:38	15.2629
12:46:46	0:29:56	15.0508	12:47:29	0:30:39	15.2567
12:46:47	0:29:57	15.054	12:47:30	0:30:40	15.2704
12:46:48	0:29:58	15.0589	12:47:31	0:30:41	15.2676
12:46:49	0:29:59	15.0596	12:47:32	0:30:42	15.2691
12:46:50	0:30:00	15.0679	12:47:33	0:30:43	15.283
12:46:51	0:30:01	15.0732	12:47:34	0:30:44	15.292
12:46:52	0:30:02	15.077	12:47:35	0:30:45	15.2882
12:46:53	0:30:03	15.0884	12:47:36	0:30:46	15.2907
12:46:54	0:30:04	15.0848	12:47:37	0:30:47	15.3032
12:46:55	0:30:05		12:47:38	0:30:48	15.3135
12:46:56	0:30:06	15.1058	12:47:39	0:30:49	15.3104
12:46:57	0:30:07	15.0969	12:47:40	0:30:50	15.3158
12:46:58	0:30:08	15.1066	12:47:41	0:30:51	15.3211
12:46:59	0:30:09	15.1072	12:47:42	0:30:52	15.3214
12:47:00	0:30:10	15.1119	12:47:43	0:30:53	15.3232
12:47:01	0:30:11	15.1172	12:47:44	0:30:54	15.3397
12:47:02	0:30:12	15.1283	12:47:45	0:30:55	15.3422
12:47:03	0:30:13	15.1293	12:47:46	0:30:56	15.3498
12:47:04	0:30:14	15.1343	12:47:47	0:30:57	15.3355
12:47:05	0:30:15	15.1401	12:47:48	0:30:58	15.346
12:47:06	0:30:16	15.1525	12:47:49	0:30:59	15.3538
12:47:07	0:30:17	15.1569	12:47:50	0:31:00	15.3674
12:47:08	0:30:18	15.152	12:47:51	0:31:01	15.3707
12:47:09	0:30:19	15.1538	12:47:52	0:31:02	15.3754
12:47:10	0:30:20	15.1593	12:47:53	0:31:03	15.3808
12:47:11	0:30:21	15.1724	12:47:54	0:31:04	15.3871
12:47:12	0:30:22	15.1762	12:47:55	0:31:05	15.3914
12:47:13	0:30:23	15.1832	12:47:56	0:31:06	15.3842
12:47:14	0:30:24	15.188	12:47:57	0:31:07	15.3943
12:47:15	0:30:25	15.1903	12:47:58	0:31:08	15.4038
12:47:16	0:30:26	15.1914	12:47:59	0:31:09	15.4087
12:47:17	0:30:27	15.1968	12:48:00	0:31:10	15.4052
12:47:18	0:30:28	15.2131	12:48:01	0:31:11	15.4135
12:47:19	0:30:29	15.2096	12:48:02	0:31:12	15.4179
12:47:20	0:30:30	15.2183	12:48:03	0:31:13	15.4317
12:47:21	0:30:31	15.2126	12:48:04	0:31:14	15.4258
12:47:22	0:30:32	15.223	12:48:05	0:31:15	15.4307
12:47:23	0:30:33	15.2384	12:48:06	0:31:16	15.4333
12:47:24	0:30:34	15.2306	12:48:07	0:31:17	15.4338
12:47:25	0:30:35	15.2362	12:48:09	0:31:19	15.4338

$12: 48: 10$	$0: 31: 19$	15.4338
$12: 48: 10$	$0: 31: 20$	15.4513
$12: 48: 13$	$0: 31: 22$	15.4513
$12: 48: 13$	$0: 31: 22$	15.4513
$12: 48: 13$	$0: 31: 23$	15.4696
$12: 48: 16$	$0: 31: 25$	15.4696
$12: 48: 16$	$0: 31: 25$	15.4696
$12: 48: 16$	$0: 31: 26$	15.4823
$12: 48: 18$	$0: 31: 28$	15.4823
$12: 48: 18$	$0: 31: 28$	15.4823
$12: 48: 19$	$0: 31: 29$	15.4972
$12: 48: 21$	$0: 31: 31$	15.4972
$12: 48: 21$	$0: 31: 31$	15.4972
$12: 48: 22$	$0: 31: 32$	15.5172
$12: 48: 24$	$0: 31: 34$	15.5172
$12: 48: 24$	$0: 31: 34$	15.5172
$12: 48: 25$	$0: 31: 35$	15.5261

$12: 48: 29$	$0: 31: 39$	15.5261
$12: 48: 29$	$0: 31: 39$	15.5261
$12: 48: 29$	$0: 31: 39$	15.5261
$12: 48: 29$	$0: 31: 39$	15.5261
$12: 48: 30$	$0: 31: 40$	15.5515
$12: 48: 31$	$0: 31: 41$	15.5559
$12: 48: 32$	$0: 31: 42$	15.5648
$12: 48: 33$	$0: 31: 43$	15.5639
$12: 48: 34$	$0: 31: 44$	15.5677
$12: 48: 35$	$0: 31: 45$	15.568
$12: 48: 36$	$0: 31: 46$	15.5746
$12: 48: 37$	$0: 31: 47$	15.5923
$12: 48: 38$	$0: 31: 48$	15.5871
$12: 48: 39$	$0: 31: 49$	15.5968
$12: 48: 40$	$0: 31: 50$	15.5901
$12: 48: 41$	$0: 31: 51$	15.6009
$12: 48: 42$	$0: 31: 52$	15.6074

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C. NEW POWER DRIVE UNIT INITIAL TEST DATA

NOTE: Discontinuous readings appear as blank entries.

Recorded Time (h:mm:ss)	Normalized Time (h:mm:ss)	Capacitor Voltage (VDC)
13:59:48	0:00:00	
13:59:49	0:00:01	
13:59:50	0:00:02	0.546905
13:59:51	0:00:03	0.66819
13:59:52	0:00:04	0.702486
13:59:53	0:00:05	0.73224
13:59:54	0:00:06	
13:59:55	0:00:07	
13:59:56	0:00:08	0.826348
13:59:57	0:00:09	0.832438
13:59:58	0:00:10	0.868167
13:59:59	0:00:11	0.909986
14:00:02	0:00:14	
14:00:02	0:00:14	0.909986
14:00:02	0:00:14	0.909986
14:00:04	0:00:16	
14:00:04	0:00:16	
14:00:05	0:00:17	
14:00:06	0:00:18	
14:00:07	0:00:19	
14:00:08	0:00:20	
14:00:09	0:00:21	
14:00:10	0:00:22	
14:00:11	0:00:23	
14:00:12	0:00:24	
14:00:13	0:00:25	
14:00:14	0:00:26	
14:00:15	0:00:27	1.37016
14:00:16	0:00:28	1.37955
14:00:17	0:00:29	
14:00:18	0:00:30	
14:00:19	0:00:31	

14:00:22	0:00:34	
14:00:22	0:00:34	
14:00:22	0:00:34	
14:00:23	0:00:35	1.46417
14:00:24	0:00:36	1.49032
14:00:25	0:00:37	1.50818
14:00:26	0:00:38	1.53665
14:00:27	0:00:39	1.55919
14:00:28	0:00:40	1.58386
14:00:29	0:00:41	1.60275
14:00:30	0:00:42	1.63135
14:00:31	0:00:43	1.64714
14:00:32	0:00:44	1.67485
14:00:33	0:00:45	1.69706
14:00:34	0:00:46	1.72367
14:00:35	0:00:47	1.74735
14:00:36	0:00:48	1.76711
14:00:37	0:00:49	1.79565
14:00:38	0:00:50	1.81367
14:00:39	0:00:51	1.83706
14:00:40	0:00:52	1.86384
14:00:41	0:00:53	1.87739
14:00:42	0:00:54	1.9038
14:00:43	0:00:55	1.9206
14:00:44	0:00:56	1.94383
14:00:45	0:00:57	1.97004
14:00:46	0:00:58	1.98996
14:00:47	0:00:59	2.01168
14:00:48	0:01:00	2.0331
14:00:49	0:01:01	2.05303
14:00:50	0:01:02	2.07454
14:00:51	0:01:03	2.09315
14:00:52	0:01:04	2.11852
14:00:53	0:01:05	2.13803

14:00:54	0:01:06	2.16397
14:00:55	0:01:07	2.17906
14:00:56	0:01:08	2.1954
14:00:57	0:01:09	2.21696
14:00:58	0:01:10	2.23763
14:00:59	0:01:11	2.25587
14:01:00	0:01:12	2.282
14:01:01	0:01:13	2.29474
14:01:02	0:01:14	2.32273
14:01:03	0:01:15	2.34278
14:01:04	0:01:16	2.35517
14:01:05	0:01:17	2.37466
14:01:06	0:01:18	2.39385
14:01:07	0:01:19	2.41531
14:01:08	0:01:20	2.42655
14:01:09	0:01:21	2.45607
14:01:10	0:01:22	2.47988
14:01:11	0:01:23	2.5046
14:01:12	0:01:24	2.51613
14:01:13	0:01:25	2.53649
14:01:14	0:01:26	2.55434
14:01:15	0:01:27	2.57988
14:01:16	0:01:28	2.59777
14:01:17	0:01:29	2.60897
14:01:18	0:01:30	2.63181
14:01:19	0:01:31	2.65548
14:01:20	0:01:32	2.66831
14:01:21	0:01:33	2.68386
14:01:22	0:01:34	2.70327
14:01:23	0:01:35	2.72485
14:01:24	0:01:36	2.7486
14:01:25	0:01:37	2.75762
14:01:26	0:01:38	2.78107
14:01:27	0:01:39	2.79272
14:01:28	0:01:40	2.81712
14:01:29	0:01:41	2.83284
14:01:30	0:01:42	2.84886
14:01:31	0:01:43	2.8656

14:01:32	0:01:44	2.89209
14:01:33	0:01:45	2.9006
14:01:34	0:01:46	2.92048
14:01:35	0:01:47	2.93845
14:01:36	0:01:48	2.9569
14:01:37	0:01:49	2.96681
14:01:38	0:01:50	2.98847
14:01:39	0:01:51	3.00657
14:01:40	0:01:52	3.02443
14:01:41	0:01:53	3.04051
14:01:42	0:01:54	3.05392
14:01:43	0:01:55	3.07187
14:01:44	0:01:56	3.09215
14:01:45	0:01:57	3.10727
14:01:46	0:01:58	3.1312
14:01:47	0:01:59	3.14272
14:01:48	0:02:00	3.15905
14:01:49	0:02:01	3.17678
14:01:50	0:02:02	3.19234
14:01:51	0:02:03	3.20608
14:01:52	0:02:04	3.21926
14:01:53	0:02:05	3.24483
14:01:54	0:02:06	3.25269
14:01:55	0:02:07	3.2728
14:01:56	0:02:08	3.29514
14:01:57	0:02:09	3.30851
14:01:58	0:02:10	3.31906
14:01:59	0:02:11	3.33779
14:02:00	0:02:12	3.35127
14:02:01	0:02:13	3.37349
14:02:02	0:02:14	3.38323
14:02:03	0:02:15	3.39917
14:02:04	0:02:16	3.41351
14:02:05	0:02:17	3.43021
14:02:06	0:02:18	3.44543
14:02:07	0:02:19	3.46106
14:02:08	0:02:20	3.47629
14:02:09	0:02:21	3.48921

14:02:10	0:02:22	3.50879
14:02:11	0:02:23	3.52423
14:02:12	0:02:24	3.53962
14:02:13	0:02:25	3.55486
14:02:14	0:02:26	3.57063
14:02:15	0:02:27	3.5904
14:02:16	0:02:28	3.59872
14:02:17	0:02:29	3.61529
14:02:18	0:02:30	3.63336
14:02:19	0:02:31	3.64786
14:02:20	0:02:32	3.66415
14:02:21	0:02:33	3.67459
14:02:22	0:02:34	3.69138
14:02:23	0:02:35	3.70364
14:02:24	0:02:36	3.71988
14:02:25	0:02:37	3.73555
14:02:26	0:02:38	3.75034
14:02:27	0:02:39	3.77244
14:02:28	0:02:40	3.78664
14:02:29	0:02:41	3.79404
14:02:30	0:02:42	3.80522
14:02:31	0:02:43	3.82377
14:02:32	0:02:44	3.83591
14:02:33	0:02:45	3.84898
14:02:34	0:02:46	3.86563
14:02:35	0:02:47	3.87806
14:02:36	0:02:48	3.89221
14:02:37	0:02:49	3.90789
14:02:38	0:02:50	3.92063
14:02:39	0:02:51	3.93631
14:02:40	0:02:52	3.9522
14:02:41	0:02:53	3.96543
14:02:42	0:02:54	3.97666
14:02:43	0:02:55	3.9926
14:02:44	0:02:56	4.00734
14:02:45	0:02:57	4.02034
14:02:46	0:02:58	4.03517
14:02:47	0:02:59	4.04579

$14: 02: 48$	$0: 03: 00$	4.06137
$14: 02: 49$	$0: 03: 01$	4.07397
$14: 02: 50$	$0: 03: 02$	4.08767
$14: 02: 51$	$0: 03: 03$	4.10183
$14: 02: 52$	$0: 03: 04$	4.11468
$14: 02: 53$	$0: 03: 05$	4.12873
$14: 02: 54$	$0: 03: 06$	4.14318
$14: 02: 55$	$0: 03: 07$	4.15589
$14: 02: 56$	$0: 03: 08$	4.17239
$14: 02: 57$	$0: 03: 09$	4.18216
$14: 03: 22$	$0: 03: 58$	$0: 03: 10$

14:03:26	0:03:38	4.54811
14:03:27	0:03:39	4.55995
14:03:28	0:03:40	4.5735
14:03:29	0:03:41	4.58391
14:03:30	0:03:42	4.59645
14:03:31	0:03:43	4.60725
14:03:32	0:03:44	4.61982
14:03:33	0:03:45	4.63092
14:03:34	0:03:46	4.64081
14:03:35	0:03:47	4.65338
14:03:36	0:03:48	4.66515
14:03:37	0:03:49	4.67798
14:03:38	0:03:50	
14:03:39	0:03:51	
14:03:40	0:03:52	
14:03:41	0:03:53	4.72395
14:03:42	0:03:54	4.73659
14:03:43	0:03:55	4.74812
14:03:44	0:03:56	4.75691
14:03:45	0:03:57	4.76685
14:03:46	0:03:58	4.77907
14:03:47	0:03:59	4.79692
14:03:48	0:04:00	
14:03:49	0:04:01	4.81394
14:03:50	0:04:02	4.82858
14:03:51	0:04:03	4.83741
14:03:52	0:04:04	
14:03:53	0:04:05	4.8622
14:03:54	0:04:06	4.87448
14:03:55	0:04:07	4.88467
14:03:56	0:04:08	4.89556
14:03:57	0:04:09	
14:03:58	0:04:10	4.91836
14:03:59	0:04:11	4.92923
14:04:00	0:04:12	
14:04:01	0:04:13	4.95237
14:04:02	0:04:14	4.96281
14:04:03	0:04:15	4.97191

14:04:04	0:04:16	4.98303
14:04:05	0:04:17	4.99332
14:04:06	0:04:18	5.00357
14:04:07	0:04:19	5.01461
14:04:08	0:04:20	5.02663
14:04:09	0:04:21	5.03511
14:04:10	0:04:22	
14:04:11	0:04:23	
14:04:12	0:04:24	5.06851
14:04:13	0:04:25	5.07228
14:04:14	0:04:26	5.08703
14:04:15	0:04:27	5.0995
14:04:16	0:04:28	
14:04:17	0:04:29	5.12215
14:04:18	0:04:30	5.13062
14:04:19	0:04:31	5.1434
14:04:20	0:04:32	5.15637
14:04:21	0:04:33	5.16783
14:04:22	0:04:34	5.17676
14:04:23	0:04:35	
14:04:24	0:04:36	5.19519
14:04:25	0:04:37	5.20719
14:04:26	0:04:38	
14:04:27	0:04:39	
14:04:28	0:04:40	5.23953
14:04:29	0:04:41	5.24605
14:04:30	0:04:42	5.26079
14:04:31	0:04:43	5.2729
14:04:32	0:04:44	
14:04:33	0:04:45	
14:04:34	0:04:46	
14:04:35	0:04:47	
14:04:36	0:04:48	
14:04:37	0:04:49	5.32617
14:04:38	0:04:50	
14:04:39	0:04:51	
14:04:40	0:04:52	
14:04:41	0:04:53	5.3682

14:04:42	0:04:54	
14:04:43	0:04:55	5.38588
14:04:44	0:04:56	5.39684
14:04:45	0:04:57	
14:04:46	0:04:58	5.414
14:04:47	0:04:59	
14:04:48	0:05:00	5.43221
14:04:49	0:05:01	
14:04:50	0:05:02	
14:04:51	0:05:03	
14:04:52	0:05:04	
14:04:53	0:05:05	
14:04:54	0:05:06	
14:04:55	0:05:07	
14:04:56	0:05:08	
14:04:57	0:05:09	
14:04:58	0:05:10	
14:04:59	0:05:11	
14:05:00	0:05:12	5.55566
14:05:01	0:05:13	
14:05:02	0:05:14	5.57499
14:05:03	0:05:15	5.58137
14:05:04	0:05:16	5.59155
14:05:05	0:05:17	
14:05:06	0:05:18	
14:05:07	0:05:19	5.6192
14:05:08	0:05:20	5.6307
14:05:09	0:05:21	
14:05:10	0:05:22	
14:05:11	0:05:23	5.66044
14:05:12	0:05:24	
14:05:13	0:05:25	5.67631
14:05:14	0:05:26	5.68349
14:05:15	0:05:27	
14:05:16	0:05:28	5.70149
14:05:17	0:05:29	
14:05:18	0:05:30	
14:05:19	0:05:31	5.73134

14:05:20	0:05:32	5.74049
14:05:21	0:05:33	5.74595
14:05:22	0:05:34	
14:05:23	0:05:35	5.76816
14:05:24	0:05:36	
14:05:25	0:05:37	
14:05:26	0:05:38	
14:05:27	0:05:39	
14:05:28	0:05:40	
14:05:29	0:05:41	
14:05:30	0:05:42	
14:05:31	0:05:43	
14:05:32	0:05:44	
14:05:33	0:05:45	
14:05:34	0:05:46	5.87181
14:05:35	0:05:47	
14:05:36	0:05:48	
14:05:37	0:05:49	
14:05:38	0:05:50	
14:05:39	0:05:51	
14:05:40	0:05:52	
14:05:41	0:05:53	
14:05:42	0:05:54	
14:05:43	0:05:55	
14:05:44	0:05:56	
14:05:45	0:05:57	
14:05:46	0:05:58	
14:05:47	0:05:59	
14:05:48	0:06:00	
14:05:49	0:06:01	6.00773
14:05:50	0:06:02	
14:05:51	0:06:03	
14:05:52	0:06:04	
14:05:53	0:06:05	6.04189
14:05:54	0:06:06	
14:05:55	0:06:07	
14:05:56	0:06:08	
14:05:57	0:06:09	

111

14:05:58	0:06:10	
14:05:59	0:06:11	
14:06:00	0:06:12	
14:06:01	0:06:13	
14:06:02	0:06:14	
14:06:03	0:06:15	
14:06:04	0:06:16	
14:06:05	0:06:17	
14:06:06	0:06:18	
14:06:07	0:06:19	
14:06:08	0:06:20	
14:06:09	0:06:21	
14:06:10	0:06:22	
14:06:11	0:06:23	
14:06:12	0:06:24	
14:06:13	0:06:25	
14:06:14	0:06:26	
14:06:15	0:06:27	
14:06:16	0:06:28	
14:06:17	0:06:29	6.24461
14:06:18	0:06:30	
14:06:19	0:06:31	
14:06:20	0:06:32	6.26946
14:06:21	0:06:33	
14:06:22	0:06:34	6.28375
14:06:23	0:06:35	
14:06:24	0:06:36	
14:06:25	0:06:37	
14:06:26	0:06:38	
14:06:27	0:06:39	6.31974
14:06:28	0:06:40	
14:06:29	0:06:41	6.34077
14:06:30	0:06:42	
14:06:31	0:06:43	
14:06:32	0:06:44	
14:06:33	0:06:45	
14:06:34	0:06:46	
14:06:35	0:06:47	

14:06:36	0:06:48	6.39522
14:06:37	0:06:49	
14:06:38	0:06:50	
14:06:39	0:06:51	
14:06:40	0:06:52	
14:06:41	0:06:53	6.43613
14:06:42	0:06:54	
14:06:43	0:06:55	6.44977
14:06:44	0:06:56	
14:06:45	0:06:57	
14:06:46	0:06:58	
14:06:47	0:06:59	
14:06:48	0:07:00	
14:06:49	0:07:01	
14:06:50	0:07:02	
14:06:51	0:07:03	
14:06:52	0:07:04	6.53283
14:06:53	0:07:05	
14:06:54	0:07:06	
14:06:55	0:07:07	
14:06:56	0:07:08	
14:06:57	0:07:09	6.56501
14:06:58	0:07:10	
14:06:59	0:07:11	
14:07:00	0:07:12	6.58929
14:07:01	0:07:13	6.59606
14:07:02	0:07:14	6.60722
14:07:03	0:07:15	
14:07:04	0:07:16	
14:07:05	0:07:17	
14:07:06	0:07:18	6.63496
14:07:07	0:07:19	6.64178
14:07:08	0:07:20	
14:07:09	0:07:21	
14:07:10	0:07:22	
14:07:11	0:07:23	
14:07:12	0:07:24	6.6743
14:07:13	0:07:25	

14:07:14	0:07:26	6.6891
14:07:15	0:07:27	6.6964
14:07:16	0:07:28	6.71338
14:07:17	0:07:29	
14:07:18	0:07:30	6.72022
14:07:19	0:07:31	6.72279
14:07:20	0:07:32	6.73396
14:07:21	0:07:33	6.73942
14:07:22	0:07:34	6.75606
14:07:23	0:07:35	6.75234
14:07:24	0:07:36	6.76276
14:07:25	0:07:37	
14:07:26	0:07:38	6.77455
14:07:27	0:07:39	6.78484
14:07:28	0:07:40	
14:07:29	0:07:41	6.79746
14:07:30	0:07:42	6.79941
14:07:31	0:07:43	
14:07:32	0:07:44	
14:07:33	0:07:45	
14:07:34	0:07:46	
14:07:35	0:07:47	6.84102
14:07:36	0:07:48	
14:07:37	0:07:49	
14:07:38	0:07:50	6.86365
14:07:39	0:07:51	6.87257
14:07:40	0:07:52	
14:07:41	0:07:53	
14:07:42	0:07:54	
14:07:43	0:07:55	6.89755
14:07:44	0:07:56	6.9066
14:07:45	0:07:57	
14:07:46	0:07:58	
14:07:47	0:07:59	
14:07:48	0:08:00	
14:07:49	0:08:01	
14:07:50	0:08:02	
14:07:51	0:08:03	

14:07:52	0:08:04	
14:07:53	0:08:05	
14:07:54	0:08:06	
14:07:55	0:08:07	6.98807
14:07:56	0:08:08	
14:07:57	0:08:09	7.00367
14:07:58	0:08:10	7.00932
14:07:59	0:08:11	
14:08:00	0:08:12	7.02722
14:08:01	0:08:13	7.02887
14:08:02	0:08:14	
14:08:03	0:08:15	
14:08:04	0:08:16	7.05213
14:08:05	0:08:17	7.06157
14:08:06	0:08:18	7.06776
14:08:07	0:08:19	
14:08:08	0:08:20	
14:08:09	0:08:21	
14:08:10	0:08:22	7.09805
14:08:11	0:08:23	7.10089
14:08:12	0:08:24	
14:08:13	0:08:25	
14:08:14	0:08:26	
14:08:15	0:08:27	7.12841
14:08:16	0:08:28	
14:08:17	0:08:29	
14:08:18	0:08:30	
14:08:19	0:08:31	7.15481
14:08:20	0:08:32	7.16806
14:08:21	0:08:33	7.16904
14:08:22	0:08:34	
14:08:23	0:08:35	7.18221
14:08:24	0:08:36	
14:08:25	0:08:37	7.19678
14:08:26	0:08:38	
14:08:27	0:08:39	7.2092
14:08:28	0:08:40	
14:08:29	0:08:41	7.2249

14:08:30	0:08:42	
14:08:31	0:08:43	
14:08:32	0:08:44	
14:08:33	0:08:45	
14:08:34	0:08:46	
14:08:35	0:08:47	
14:08:36	0:08:48	7.27219
14:08:37	0:08:49	
14:08:38	0:08:50	7.28773
14:08:39	0:08:51	7.29401
14:08:40	0:08:52	
14:08:41	0:08:53	7.31093
14:08:42	0:08:54	
14:08:43	0:08:55	
14:08:44	0:08:56	
14:08:45	0:08:57	
14:08:46	0:08:58	7.34492
14:08:47	0:08:59	7.35398
14:08:48	0:09:00	7.36105
14:08:49	0:09:01	7.36867
14:08:50	0:09:02	
14:08:51	0:09:03	
14:08:52	0:09:04	7.39586
14:08:53	0:09:05	
14:08:54	0:09:06	7.40496
14:08:55	0:09:07	7.41733
14:08:56	0:09:08	7.42173
14:08:57	0:09:09	7.42847
14:08:58	0:09:10	7.42756
14:08:59	0:09:11	
14:09:00	0:09:12	7.44242
14:09:01	0:09:13	7.44991
14:09:02	0:09:14	
14:09:03	0:09:15	
14:09:04	0:09:16	
14:09:05	0:09:17	
14:09:06	0:09:18	
14:09:07	0:09:19	

14:09:08	0:09:20	7.4975
14:09:09	0:09:21	7.50377
14:09:10	0:09:22	7.50746
14:09:11	0:09:23	
14:09:12	0:09:24	7.52196
14:09:13	0:09:25	7.5321
14:09:14	0:09:26	
14:09:15	0:09:27	7.54152
14:09:16	0:09:28	7.54558
14:09:17	0:09:29	
14:09:18	0:09:30	
14:09:19	0:09:31	
14:09:20	0:09:32	
14:09:21	0:09:33	
14:09:22	0:09:34	7.58474
14:09:23	0:09:35	7.59321
14:09:24	0:09:36	7.59748
14:09:25	0:09:37	7.60476
14:09:26	0:09:38	7.61013
14:09:27	0:09:39	7.62375
14:09:28	0:09:40	
14:09:29	0:09:41	7.62867
14:09:30	0:09:42	7.63499
14:09:31	0:09:43	7.64147
14:09:32	0:09:44	7.64889
14:09:33	0:09:45	7.66222
14:09:34	0:09:46	7.66969
14:09:35	0:09:47	7.66959
14:09:36	0:09:48	7.67568
14:09:37	0:09:49	7.68803
14:09:38	0:09:50	7.68982
14:09:39	0:09:51	7.69792
14:09:40	0:09:52	
14:09:41	0:09:53	7.71788
14:09:42	0:09:54	
14:09:43	0:09:55	7.72269
14:09:44	0:09:56	
14:09:45	0:09:57	7.73537

14:09:46	0:09:58	7.75102
14:09:47	0:09:59	7.74965
14:09:48	0:10:00	7.756
14:09:49	0:10:01	7.76171
14:09:50	0:10:02	7.77293
14:09:51	0:10:03	7.77432
14:09:52	0:10:04	7.78097
14:09:53	0:10:05	
14:09:54	0:10:06	7.78991
14:09:55	0:10:07	7.8
14:09:56	0:10:08	7.80963
14:09:57	0:10:09	7.81078
14:09:58	0:10:10	7.81853
14:09:59	0:10:11	7.82189
14:10:00	0:10:12	7.82864
14:10:01	0:10:13	7.83782
14:10:02	0:10:14	7.84093
14:10:03	0:10:15	7.84684
14:10:04	0:10:16	
14:10:05	0:10:17	
14:10:06	0:10:18	7.8672
14:10:07	0:10:19	7.87361
14:10:08	0:10:20	7.87926
14:10:09	0:10:21	7.88367
14:10:10	0:10:22	7.89007
14:10:11	0:10:23	7.89737
14:10:12	0:10:24	7.90043
14:10:13	0:10:25	7.90683
14:10:14	0:10:26	
14:10:15	0:10:27	7.91989
14:10:16	0:10:28	
14:10:17	0:10:29	
14:10:18	0:10:30	
14:10:19	0:10:31	
14:10:20	0:10:32	
14:10:21	0:10:33	7.9661
14:10:22	0:10:34	7.96117
14:10:23	0:10:35	7.97046

14:10:24	0:10:36	7.98394
14:10:25	0:10:37	
14:10:26	0:10:38	
14:10:27	0:10:39	7.99318
14:10:28	0:10:40	
14:10:29	0:10:41	8.01107
14:10:30	0:10:42	8.01474
14:10:31	0:10:43	8.01864
14:10:32	0:10:44	
14:10:33	0:10:45	8.03688
14:10:34	0:10:46	8.03761
14:10:35	0:10:47	8.04686
14:10:36	0:10:48	
14:10:37	0:10:49	8.06612
14:10:38	0:10:50	8.07329
14:10:39	0:10:51	8.07026
14:10:40	0:10:52	
14:10:41	0:10:53	8.08592
14:10:42	0:10:54	
14:10:43	0:10:55	8.09844
14:10:44	0:10:56	8.1013
14:10:45	0:10:57	8.10923
14:10:46	0:10:58	
14:10:47	0:10:59	8.12052
14:10:48	0:11:00	8.12576
14:10:49	0:11:01	8.13053
14:10:50	0:11:02	8.13721
14:10:51	0:11:03	
14:10:52	0:11:04	
14:10:53	0:11:05	8.15904
14:10:54	0:11:06	
14:10:55	0:11:07	
14:10:56	0:11:08	8.17301
14:10:57	0:11:09	
14:10:58	0:11:10	8.18471
14:10:59	0:11:11	8.19071
14:11:00	0:11:12	8.19487
14:11:01	0:11:13	8.20033

115

14:11:02	0:11:14	8.21128
14:11:03	0:11:15	8.21581
14:11:04	0:11:16	
14:11:05	0:11:17	8.22424
14:11:06	0:11:18	8.23609
14:11:07	0:11:19	8.23254
14:11:08	0:11:20	8.23847
14:11:09	0:11:21	8.24591
14:11:10	0:11:22	8.25166
14:11:11	0:11:23	
14:11:12	0:11:24	
14:11:13	0:11:25	8.26848
14:11:14	0:11:26	8.2778
14:11:15	0:11:27	8.28071
14:11:16	0:11:28	8.28737
14:11:17	0:11:29	8.29104
14:11:18	0:11:30	
14:11:19	0:11:31	8.31263
14:11:20	0:11:32	8.31142
14:11:21	0:11:33	8.31626
14:11:22	0:11:34	8.32248
14:11:23	0:11:35	8.3271
14:11:24	0:11:36	8.33422
14:11:25	0:11:37	
14:11:26	0:11:38	8.34542
14:11:27	0:11:39	8.35188
14:11:28	0:11:40	
14:11:29	0:11:41	8.36951
14:11:30	0:11:42	8.37308
14:11:31	0:11:43	
14:11:32	0:11:44	
14:11:33	0:11:45	
14:11:34	0:11:46	8.39354
14:11:35	0:11:47	
14:11:36	0:11:48	8.41329
14:11:37	0:11:49	
14:11:38	0:11:50	8.41936
14:11:39	0:11:51	

14:11:40	0:11:52	8.43129
14:11:41	0:11:53	8.43473
14:11:42	0:11:54	8.4405
14:11:43	0:11:55	
14:11:44	0:11:56	
14:11:45	0:11:57	
14:11:46	0:11:58	8.46174
14:11:47	0:11:59	8.46738
14:11:48	0:12:00	
14:11:49	0:12:01	
14:11:50	0:12:02	
14:11:51	0:12:03	8.48958
14:11:52	0:12:04	
14:11:53	0:12:05	8.50201
14:11:54	0:12:06	8.50654
14:11:55	0:12:07	8.51191
14:11:56	0:12:08	
14:11:57	0:12:09	8.52385
14:11:58	0:12:10	8.53658
14:11:59	0:12:11	8.53304
14:12:00	0:12:12	8.53789
14:12:01	0:12:13	
14:12:02	0:12:14	8.55063
14:12:03	0:12:15	8.55719
14:12:04	0:12:16	8.56518
14:12:05	0:12:17	8.56846
14:12:06	0:12:18	
14:12:07	0:12:19	8.58037
14:12:08	0:12:20	8.59433
14:12:09	0:12:21	8.59036
14:12:10	0:12:22	8.59546
14:12:11	0:12:23	
14:12:12	0:12:24	8.60826
14:12:13	0:12:25	8.61426
14:12:14	0:12:26	
14:12:15	0:12:27	8.62268
14:12:16	0:12:28	8.63151
14:12:17	0:12:29	

116

14:12:18	0:12:30	
14:12:19	0:12:31	
14:12:20	0:12:32	8.65352
14:12:21	0:12:33	8.65921
14:12:22	0:12:34	8.6666
14:12:23	0:12:35	
14:12:24	0:12:36	
14:12:25	0:12:37	8.68327
14:12:26	0:12:38	8.68846
14:12:27	0:12:39	8.69263
14:12:28	0:12:40	8.69924
14:12:29	0:12:41	
14:12:30	0:12:42	
14:12:31	0:12:43	8.71779
14:12:32	0:12:44	8.72325
14:12:33	0:12:45	8.72941
14:12:34	0:12:46	8.74005
14:12:35	0:12:47	
14:12:36	0:12:48	8.74417
14:12:37	0:12:49	
14:12:38	0:12:50	8.76353
14:12:39	0:12:51	8.76295
14:12:40	0:12:52	8.76759
14:12:41	0:12:53	8.77899
14:12:42	0:12:54	8.77569
14:12:43	0:12:55	8.78755
14:12:44	0:12:56	8.79156
14:12:45	0:12:57	8.79744
14:12:46	0:12:58	8.80274
14:12:47	0:12:59	8.81791
14:12:48	0:13:00	8.81593
14:12:49	0:13:01	8.81999
14:12:50	0:13:02	8.82922
14:12:51	0:13:03	8.83011
14:12:52	0:13:04	8.83817
14:12:53	0:13:05	
14:12:54	0:13:06	8.85348
14:12:55	0:13:07	8.85469

14:12:56	0:13:08	8.85591
14:12:57	0:13:09	8.86345
14:12:58	0:13:10	8.86643
14:12:59	0:13:11	8.87428
14:13:00	0:13:12	
14:13:01	0:13:13	8.88188
14:13:02	0:13:14	
14:13:03	0:13:15	8.89468
14:13:04	0:13:16	8.89902
14:13:05	0:13:17	
14:13:06	0:13:18	8.90863
14:13:07	0:13:19	8.91593
14:13:08	0:13:20	
14:13:09	0:13:21	8.92471
14:13:10	0:13:22	8.93336
14:13:11	0:13:23	
14:13:12	0:13:24	8.94098
14:13:13	0:13:25	
14:13:14	0:13:26	
14:13:15	0:13:27	8.95773
14:13:16	0:13:28	8.96326
14:13:17	0:13:29	
14:13:18	0:13:30	8.97413
14:13:19	0:13:31	8.97868
14:13:20	0:13:32	
14:13:21	0:13:33	8.99871
14:13:22	0:13:34	
14:13:23	0:13:35	
14:13:24	0:13:36	9.01451
14:13:25	0:13:37	9.01077
14:13:26	0:13:38	
14:13:27	0:13:39	9.02265
14:13:28	0:13:40	9.02895
14:13:29	0:13:41	
14:13:30	0:13:42	
14:13:31	0:13:43	
14:13:32	0:13:44	9.05052
14:13:33	0:13:45	

117

14:13:34	0:13:46	9.06168
14:13:35	0:13:47	9.06595
14:13:36	0:13:48	9.07298
14:13:37	0:13:49	9.07686
14:13:38	0:13:50	9.08395
14:13:39	0:13:51	9.09625
14:13:40	0:13:52	
14:13:41	0:13:53	9.0994
14:13:42	0:13:54	9.10401
14:13:43	0:13:55	
14:13:44	0:13:56	
14:13:45	0:13:57	9.11801
14:13:46	0:13:58	9.13249
14:13:47	0:13:59	9.13028
14:13:48	0:14:00	9.13661
14:13:49	0:14:01	9.14399
14:13:50	0:14:02	9.14478
14:13:51	0:14:03	
14:13:52	0:14:04	9.15564
14:13:53	0:14:05	9.15977
14:13:54	0:14:06	9.17259
14:13:55	0:14:07	9.17881
14:13:56	0:14:08	9.17861
14:13:57	0:14:09	
14:13:58	0:14:10	9.18852
14:13:59	0:14:11	9.192
14:14:00	0:14:12	9.2047
14:14:01	0:14:13	
14:14:02	0:14:14	9.20871
14:14:03	0:14:15	9.21092
14:14:04	0:14:16	9.21852
14:14:05	0:14:17	9.22842
14:14:06	0:14:18	
14:14:07	0:14:19	9.23163
14:14:08	0:14:20	9.23663
14:14:09	0:14:21	9.24274
14:14:10	0:14:22	
14:14:11	0:14:23	

14:14:12	0:14:24	9.25859
14:14:13	0:14:25	9.26919
14:14:14	0:14:26	9.2755
14:14:15	0:14:27	
14:14:16	0:14:28	
14:14:17	0:14:29	9.28164
14:14:18	0:14:30	9.28998
14:14:19	0:14:31	9.292
14:14:20	0:14:32	9.29894
14:14:21	0:14:33	9.30374
14:14:22	0:14:34	
14:14:23	0:14:35	
14:14:24	0:14:36	
14:14:25	0:14:37	9.32303
14:14:26	0:14:38	9.33134
14:14:27	0:14:39	9.33484
14:14:28	0:14:40	9.3389
14:14:29	0:14:41	9.34563
14:14:30	0:14:42	9.35152
14:14:31	0:14:43	9.35805
14:14:32	0:14:44	9.36062
14:14:33	0:14:45	
14:14:34	0:14:46	9.37397
14:14:35	0:14:47	9.38427
14:14:36	0:14:48	9.3847
14:14:37	0:14:49	9.3888
14:14:38	0:14:50	
14:14:39	0:14:51	9.39845
14:14:40	0:14:52	9.40369
14:14:41	0:14:53	
14:14:42	0:14:54	9.41489
14:14:43	0:14:55	9.41882
14:14:44	0:14:56	
14:14:45	0:14:57	9.43089
14:14:46	0:14:58	
14:14:47	0:14:59	9.43856
14:14:48	0:15:00	9.44504
14:14:49	0:15:01	9.45741

118

14:14:50	0:15:02	9.45539
14:14:51	0:15:03	9.46912
14:14:52	0:15:04	
14:14:53	0:15:05	9.47189
14:14:54	0:15:06	
14:14:55	0:15:07	9.47803
14:14:56	0:15:08	
14:14:57	0:15:09	9.48738
14:14:58	0:15:10	9.49359
14:14:59	0:15:11	9.5006
14:15:00	0:15:12	
14:15:01	0:15:13	9.50914
14:15:02	0:15:14	9.51441
14:15:03	0:15:15	9.52196
14:15:04	0:15:16	
14:15:05	0:15:17	
14:15:06	0:15:18	
14:15:07	0:15:19	9.45771
14:15:08	0:15:20	9.54575
14:15:09	0:15:21	
14:15:10	0:15:22	9.55472
14:15:11	0:15:23	9.55889
14:15:12	0:15:24	9.56914
14:15:13	0:15:25	9.56661
14:15:14	0:15:26	9.57451
14:15:15	0:15:27	9.57811
14:15:16	0:15:28	9.5852
14:15:17	0:15:29	9.5893
14:15:18	0:15:30	
14:15:19	0:15:31	
14:15:20	0:15:32	9.60136
14:15:21	0:15:33	9.60725
14:15:22	0:15:34	
14:15:23	0:15:35	9.6186
14:15:24	0:15:36	9.6205
14:15:25	0:15:37	9.62615
14:15:26	0:15:38	
14:15:27	0:15:39	

$14: 15: 28$	$0: 15: 40$	9.64745
$14: 15: 29$	$0: 15: 41$	
$14: 15: 30$	$0: 15: 42$	9.6498
$14: 15: 31$	$0: 15: 43$	9.65608
$14: 15: 32$	$0: 15: 44$	
$14: 15: 33$	$0: 15: 45$	9.66621
$14: 15: 34$	$0: 15: 46$	9.63
$14: 15: 35$	$0: 15: 47$	9.66922
$14: 15: 36$	$0: 15: 48$	9.67611
$14: 15: 37$	$0: 15: 49$	9.68852
$14: 15: 38$	$0: 15: 50$	9.68635
$14: 14: 01$	$0: 16: 03$	$0: 16: 16$

14:16:06	0:16:18	9.83477
14:16:07	0:16:19	
14:16:08	0:16:20	9.83953
14:16:09	0:16:21	9.84262
14:16:10	0:16:22	9.84556
14:16:11	0:16:23	9.85335
14:16:12	0:16:24	9.8543
14:16:13	0:16:25	
14:16:14	0:16:26	9.86475
14:16:15	0:16:27	9.86921
14:16:16	0:16:28	9.87448
14:16:17	0:16:29	
14:16:18	0:16:30	9.88321
14:16:19	0:16:31	
14:16:20	0:16:32	9.89946
14:16:21	0:16:33	
14:16:22	0:16:34	9.90134
14:16:23	0:16:35	
14:16:24	0:16:36	
14:16:25	0:16:37	9.92176
14:16:26	0:16:38	9.92751
14:16:27	0:16:39	
14:16:28	0:16:40	9.92909
14:16:29	0:16:41	9.93368
14:16:30	0:16:42	
14:16:31	0:16:43	9.94474
14:16:32	0:16:44	9.95511
14:16:33	0:16:45	
14:16:34	0:16:46	
14:16:35	0:16:47	9.96598
14:16:36	0:16:48	
14:16:37	0:16:49	9.96957
14:16:38	0:16:50	9.97934
14:16:39	0:16:51	9.98197
14:16:40	0:16:52	9.91505
14:16:41	0:16:53	9.99736
14:16:42	0:16:54	9.99787
14:16:43	0:16:55	10.0009

14:16:44	0:16:56	10.0084
14:16:45	0:16:57	
14:16:46	0:16:58	10.016
14:16:47	0:16:59	10.0196
14:16:48	0:17:00	10.0238
14:16:49	0:17:01	
14:16:50	0:17:02	10.0351
14:16:51	0:17:03	
14:16:52	0:17:04	10.0531
14:27:26	0:17:04	
14:27:27	0:17:05	9.85175
14:27:28	0:17:06	
14:27:29	0:17:07	
14:27:30	0:17:08	
14:27:31	0:17:09	
14:27:32	0:17:10	
14:27:33	0:17:11	10.0608
14:27:34	0:17:12	
14:27:35	0:17:13	
14:27:36	0:17:14	
14:27:37	0:17:15	10.131
14:27:38	0:17:16	10.1414
14:27:39	0:17:17	10.1577
14:27:40	0:17:18	10.1748
14:27:41	0:17:19	10.1917
14:27:42	0:17:20	10.2073
14:27:43	0:17:21	10.2309
14:27:44	0:17:22	10.2455
14:27:45	0:17:23	10.2598
14:27:46	0:17:24	10.2727
14:27:47	0:17:25	10.2915
14:27:48	0:17:26	10.3046
14:27:49	0:17:27	10.3272
14:27:50	0:17:28	10.3456
14:27:51	0:17:29	10.3572
14:27:52	0:17:30	10.3756
14:27:53	0:17:31	10.3875
14:27:54	0:17:32	10.4063

$14: 27: 55$	$0: 17: 33$	10.4242
$14: 27: 56$	$0: 17: 34$	10.4352
$14: 27: 57$	$0: 17: 35$	10.4504
$14: 27: 58$	$0: 17: 36$	10.4693
$14: 27: 59$	$0: 17: 37$	10.4819
$14: 28: 00$	$0: 17: 38$	10.4973
$14: 28: 01$	$0: 17: 39$	10

14:28:33	0:18:11	
14:28:34	0:18:12	10.9718
14:28:35	0:18:13	10.9836
14:28:36	0:18:14	10.9978
14:28:37	0:18:15	11.0108
14:28:38	0:18:16	11.0248
14:28:39	0:18:17	11.0363
14:28:40	0:18:18	11.0467
14:28:41	0:18:19	11.0561
14:28:42	0:18:20	11.0848
14:28:43	0:18:21	11.0834
14:28:44	0:18:22	11.1043
14:28:45	0:18:23	11.1136
14:28:46	0:18:24	11.1259
14:28:47	0:18:25	11.1371
14:28:48	0:18:26	11.1498
14:28:49	0:18:27	11.1656
14:28:50	0:18:28	11.1723
14:28:51	0:18:29	11.1848
14:28:52	0:18:30	11.198
14:28:53	0:18:31	11.2058
14:28:54	0:18:32	11.2199
14:28:55	0:18:33	11.2303
14:28:56	0:18:34	11.2446
14:28:57	0:18:35	11.2528
14:28:58	0:18:36	11.2639
14:28:59	0:18:37	11.2769
14:29:00	0:18:38	11.2892
14:29:01	0:18:39	11.2966
14:29:02	0:18:40	11.3095
14:29:03	0:18:41	11.3208
14:29:04	0:18:42	11.3298
14:29:05	0:18:43	11.3395
14:29:06	0:18:44	11.3499
14:29:07	0:18:45	11.3622
14:29:08	0:18:46	11.3726
14:29:09	0:18:47	11.3824
14:29:10	0:18:48	11.3971

$14: 29: 11$	$0: 18: 49$	11.406
$14: 29: 12$	$0: 18: 50$	11.4148
$14: 29: 13$	$0: 18: 51$	11.4259
$14: 29: 14$	$0: 18: 52$	11.4382
$14: 29: 15$	$0: 18: 53$	11.451
$14: 29: 16$	$0: 18: 54$	11.4595
$14: 29: 17$	$0: 18: 55$	11.4685
$14: 29: 18$	$0: 18: 56$	11

14:29:49	0:19:27	11.7734
14:29:50	0:19:28	11.7979
14:29:51	0:19:29	11.7937
14:29:52	0:19:30	11.8031
14:29:53	0:19:31	11.8132
14:29:54	0:19:32	11.8325
14:29:55	0:19:33	11.8264
14:29:56	0:19:34	11.8388
14:29:57	0:19:35	11.8534
14:29:58	0:19:36	11.8572
14:29:59	0:19:37	11.8658
14:30:00	0:19:38	
14:30:01	0:19:39	11.8823
14:30:02	0:19:40	11.8876
14:30:03	0:19:41	11.8959
14:30:04	0:19:42	11.9051
14:30:05	0:19:43	11.9173
14:30:06	0:19:44	11.9213
14:30:07	0:19:45	11.9304
14:30:08	0:19:46	11.9371
14:30:09	0:19:47	11.9437
14:30:10	0:19:48	11.9579
14:30:11	0:19:49	11.9682
14:30:12	0:19:50	11.9711
14:30:13	0:19:51	11.9749
14:30:14	0:19:52	11.984
14:30:15	0:19:53	11.993
14:30:16	0:19:54	11.999
14:30:17	0:19:55	12.0134
14:30:18	0:19:56	12.0137
14:30:19	0:19:57	
14:30:20	0:19:58	
14:30:21	0:19:59	12.0369
14:30:22	0:20:00	12.0464
14:30:23	0:20:01	12.0534
14:30:24	0:20:02	12.0672
14:30:25	0:20:03	12.0684
14:30:26	0:20:04	12.0815

$14: 30: 27$	$0: 20: 05$	12.0829
$14: 30: 28$	$0: 20: 06$	12.0905
$14: 30: 29$	$0: 20: 07$	12.1008
$14: 30: 30$	$0: 20: 08$	12.1049
$14: 30: 31$	$0: 20: 09$	12.1216
$14: 30: 32$	$0: 20: 10$	12.1293
$14: 30: 33$	$0: 20: 11$	12.1308
$14: 30: 34$	$0: 20: 12$	$12: 20: 12$

14:31:05	0:20:43	12.347
14:31:06	0:20:44	12.3455
14:31:07	0:20:45	12.3535
14:31:08	0:20:46	12.3607
14:31:09	0:20:47	12.3658
14:31:10	0:20:48	12.3767
14:31:11	0:20:49	12.3752
14:31:12	0:20:50	12.3869
14:31:13	0:20:51	12.3939
14:31:14	0:20:52	
14:31:15	0:20:53	12.394
14:31:16	0:20:54	12.3993
14:31:17	0:20:55	12.3941
14:31:18	0:20:56	12.3968
14:31:19	0:20:57	12.4088
14:31:20	0:20:58	12.4082
14:31:21	0:20:59	12.4136
14:31:22	0:21:00	12.437
14:31:23	0:21:01	12.4465
14:31:24	0:21:02	12.4486
14:31:25	0:21:03	12.4704
14:31:26	0:21:04	12.4655
14:31:27	0:21:05	12.4695
14:31:28	0:21:06	12.4745
14:31:29	0:21:07	12.4799
14:31:30	0:21:08	12.4879
14:31:31	0:21:09	12.4873
14:31:32	0:21:10	12.4961
14:31:33	0:21:11	12.4959
14:31:34	0:21:12	12.5173
14:31:35	0:21:13	12.5158
14:31:36	0:21:14	12.5122
14:31:37	0:21:15	12.5259
14:31:38	0:21:16	12.5336
14:31:39	0:21:17	12.5428
14:31:40	0:21:18	12.5443
14:31:41	0:21:19	12.5507
14:31:42	0:21:20	12.5583

123

$14: 31: 43$	$0: 21: 21$	12.5661
$14: 31: 44$	$0: 21: 22$	12.5694
$14: 31: 45$	$0: 21: 23$	12.5745
$14: 31: 46$	$0: 21: 24$	12.5831
$14: 31: 47$	$0: 21: 25$	12.5867
$14: 31: 48$	$0: 21: 26$	12.5932
$14: 31: 49$	$0: 21: 27$	12.6015
$14: 31: 50$	$0: 21: 28$	$12: 21: 21$

$14: 32: 21$	$0: 21: 59$	12.7726
$14: 32: 22$	$0: 22: 00$	12.7799
$14: 32: 23$	$0: 22: 01$	12.7831
$14: 32: 24$	$0: 22: 02$	12.79
$14: 32: 25$	$0: 22: 03$	12.7945
$14: 32: 26$	$0: 22: 04$	12.759
$14: 32: 27$	$0: 22: 05$	12.7602
$14: 32: 28$	$0: 22: 06$	$12: 22: 32$

14:32:59	0:22:37	12.9584
14:33:00	0:22:38	12.9658
14:33:01	0:22:39	12.9734
14:33:02	0:22:40	12.9771
14:33:03	0:22:41	12.9816
14:33:04	0:22:42	12.9801
14:33:05	0:22:43	12.9926
14:33:06	0:22:44	12.9939
14:33:07	0:22:45	13.0013
14:33:08	0:22:46	13.0059
14:33:09	0:22:47	13.0173
14:33:10	0:22:48	13.0122
14:33:11	0:22:49	13.0139
14:33:12	0:22:50	13.032
14:33:13	0:22:51	
14:33:14	0:22:52	13.0415
14:33:15	0:22:53	13.039
14:33:16	0:22:54	13.0368
14:33:17	0:22:55	13.0584
14:33:18	0:22:56	13.0541
14:33:19	0:22:57	13.0548
14:33:20	0:22:58	13.0651
14:33:21	0:22:59	13.0647
14:33:22	0:23:00	
14:33:23	0:23:01	13.0692
14:33:24	0:23:02	13.0781
14:33:25	0:23:03	13.0873
14:33:26	0:23:04	
14:33:27	0:23:05	13.0889
14:33:28	0:23:06	13.0973
14:33:29	0:23:07	13.0992
14:33:30	0:23:08	13.1058
14:33:31	0:23:09	13.1204
14:33:32	0:23:10	13.1157
14:33:33	0:23:11	13.1185
14:33:34	0:23:12	13.1247
14:33:35	0:23:13	13.1265
14:33:36	0:23:14	13.1336

$14: 33: 37$	$0: 23: 15$	13.1378
$14: 33: 38$	$0: 23: 16$	13.1421
$14: 33: 39$	$0: 23: 17$	13.1446
$14: 33: 40$	$0: 23: 18$	13.1518
$14: 33: 41$	$0: 23: 19$	13.1548
$14: 33: 42$	$0: 23: 20$	13.1599
$14: 33: 43$	$0: 23: 21$	13.1623
$14: 33: 44$	$0: 23: 22$	13

125

14:34:15	0:23:53	13.3033
14:34:16	0:23:54	
14:34:17	0:23:55	13.3155
14:34:18	0:23:56	13.3163
14:34:19	0:23:57	13.3181
14:34:20	0:23:58	13.3273
14:34:21	0:23:59	13.3272
14:34:22	0:24:00	
14:34:23	0:24:01	13.3409
14:34:24	0:24:02	13.3424
14:34:25	0:24:03	
14:34:26	0:24:04	13.3492
14:34:27	0:24:05	13.3534
14:34:28	0:24:06	13.36
14:34:29	0:24:07	13.3616
14:34:30	0:24:08	
14:34:31	0:24:09	13.3811
14:34:32	0:24:10	13.3731
14:34:33	0:24:11	13.3776
14:34:34	0:24:12	13.384
14:34:35	0:24:13	13.3848
14:34:36	0:24:14	13.3897
14:34:37	0:24:15	13.3967
14:34:38	0:24:16	13.3965
14:34:39	0:24:17	13.4019
14:34:40	0:24:18	13.4067
14:34:41	0:24:19	13.4183
14:34:42	0:24:20	13.4134
14:34:43	0:24:21	13.4181
14:34:44	0:24:22	13.4221
14:34:45	0:24:23	13.4249
14:34:46	0:24:24	13.428
14:34:47	0:24:25	13.433
14:34:48	0:24:26	13.4354
14:34:49	0:24:27	13.4434
14:34:50	0:24:28	13.4457
14:34:51	0:24:29	13.4554
14:34:52	0:24:30	13.4509

14:34:53	0:24:31	13.455
14:34:54	0:24:32	13.4645
14:34:55	0:24:33	13.4665
14:34:56	0:24:34	13.4672
14:34:57	0:24:35	13.4734
14:34:58	0:24:36	13.4739
14:34:59	0:24:37	13.4771
14:35:00	0:24:38	13.4794
14:35:01	0:24:39	13.485
14:35:02	0:24:40	13.4892
14:35:03	0:24:41	13.4886
14:35:04	0:24:42	13.4977
14:35:05	0:24:43	13.5033
14:35:06	0:24:44	13.5062
14:35:07	0:24:45	13.5046
14:35:08	0:24:46	13.5138
14:35:09	0:24:47	13.516
14:35:10	0:24:48	13.5196
14:35:11	0:24:49	13.5222
14:35:12	0:24:50	13.5379
14:35:13	0:24:51	
14:35:14	0:24:52	
14:35:15	0:24:53	13.5472
14:35:16	0:24:54	13.5417
14:35:17	0:24:55	13.5447
14:35:18	0:24:56	
14:35:19	0:24:57	13.5515
14:35:20	0:24:58	13.5582
14:35:21	0:24:59	13.5612
14:35:22	0:25:00	13.5656
14:35:23	0:25:01	13.5669
14:35:24	0:25:02	13.5739
14:35:25	0:25:03	
14:35:26	0:25:04	
14:35:27	0:25:05	13.5895
14:35:28	0:25:06	13.5914
14:35:29	0:25:07	13.5961
14:35:30	0:25:08	13.6007

14:35:31	0:25:09	
14:35:32	0:25:10	13.6065
14:35:33	0:25:11	13.6125
14:35:34	0:25:12	13.6176
14:35:35	0:25:13	13.6199
14:35:36	0:25:14	13.623
14:35:37	0:25:15	13.6242
14:35:38	0:25:16	13.6274
14:35:39	0:25:17	13.6343
14:35:40	0:25:18	13.6378
14:35:41	0:25:19	13.6409
14:35:42	0:25:20	13.6425
14:35:43	0:25:21	13.6484
14:35:44	0:25:22	13.6504
14:35:45	0:25:23	13.6568
14:35:46	0:25:24	13.6577
14:35:47	0:25:25	13.6638
14:35:48	0:25:26	13.6656
14:35:49	0:25:27	13.6714
14:35:50	0:25:28	13.6708
14:35:51	0:25:29	13.6761
14:35:52	0:25:30	13.68
14:35:53	0:25:31	13.6843
14:35:54	0:25:32	13.6865
14:35:55	0:25:33	13.692
14:35:56	0:25:34	13.6935
14:35:57	0:25:35	
14:35:58	0:25:36	13.6979
14:35:59	0:25:37	13.7024
14:36:00	0:25:38	13.705
14:36:01	0:25:39	13.7102
14:36:02	0:25:40	
14:36:03	0:25:41	
14:36:04	0:25:42	13.7229
14:36:05	0:25:43	13.7227
14:36:06	0:25:44	13.7281
14:36:07	0:25:45	13.7297
14:36:08	0:25:46	13.7345

14:36:09	0:25:47	13.738
14:36:10	0:25:48	13.7406
14:36:11	0:25:49	13.7461
14:36:12	0:25:50	13.7482
14:36:13	0:25:51	13.7532
14:36:14	0:25:52	13.755
14:36:15	0:25:53	13.7571
14:36:16	0:25:54	13.7636
14:36:17	0:25:55	13.7695
14:36:18	0:25:56	13.7696
14:36:19	0:25:57	13.7752
14:36:20	0:25:58	13.7746
14:36:21	0:25:59	13.7779
14:36:22	0:26:00	13.7827
14:36:23	0:26:01	13.7866
14:36:24	0:26:02	13.7895
14:36:25	0:26:03	13.7932
14:36:26	0:26:04	13.7959
14:36:27	0:26:05	13.7976
14:36:28	0:26:06	13.8032
14:36:29	0:26:07	13.8086
14:36:30	0:26:08	13.8109
14:36:31	0:26:09	13.8116
14:36:32	0:26:10	13.8186
14:36:33	0:26:11	13.8194
14:36:34	0:26:12	13.8227
14:36:35	0:26:13	13.8276
14:36:36	0:26:14	13.8297
14:36:37	0:26:15	
14:36:38	0:26:16	
14:36:39	0:26:17	
14:36:40	0:26:18	
14:36:41	0:26:19	13.8447
14:36:42	0:26:20	13.8488
14:36:43	0:26:21	13.8524
14:36:44	0:26:22	13.856
14:36:45	0:26:23	13.8609
14:36:46	0:26:24	13.8615

14:36:47	0:26:25	13.8661
14:36:48	0:26:26	13.8696
14:36:49	0:26:27	13.8726
14:36:50	0:26:28	13.8791
14:36:51	0:26:29	13.8814
14:36:52	0:26:30	13.8829
14:36:53	0:26:31	13.8849
14:36:54	0:26:32	13.889
14:36:55	0:26:33	13.893
14:36:56	0:26:34	13.8958
14:36:57	0:26:35	13.9013
14:36:58	0:26:36	13.9029
14:36:59	0:26:37	13.9073
14:37:00	0:26:38	
14:37:01	0:26:39	13.9144
14:37:02	0:26:40	13.915
14:37:03	0:26:41	13.9203
14:37:04	0:26:42	13.9237
14:37:05	0:26:43	13.9313
14:37:06	0:26:44	13.9277
14:37:07	0:26:45	13.9309
14:37:08	0:26:46	
14:37:09	0:26:47	13.9382
14:37:10	0:26:48	13.9416
14:37:11	0:26:49	13.9441
14:37:12	0:26:50	13.9471
14:37:13	0:26:51	13.9528
14:37:14	0:26:52	13.9567
14:37:15	0:26:53	13.958
14:37:16	0:26:54	13.9651
14:37:17	0:26:55	13.9676
14:37:18	0:26:56	13.9699
14:37:19	0:26:57	13.9732
14:37:20	0:26:58	13.9777
14:37:21	0:26:59	13.9807
14:37:22	0:27:00	13.9808
14:37:23	0:27:01	
14:37:24	0:27:02	13.9869

14:37:25	0:27:03	13.9995
14:37:26	0:27:04	13.9918
14:37:27	0:27:05	13.9959
14:37:28	0:27:06	13.9988
14:37:29	0:27:07	14.0013
14:37:30	0:27:08	14.0059
14:37:31	0:27:09	14.0083
14:37:32	0:27:10	14.0122
14:37:33	0:27:11	14.0119
14:37:34	0:27:12	14.0147
14:37:35	0:27:13	14.0204
14:37:36	0:27:14	14.0222
14:37:37	0:27:15	14.025
14:37:38	0:27:16	14.0296
14:37:39	0:27:17	14.0308
14:37:40	0:27:18	
14:37:41	0:27:19	
14:37:42	0:27:20	14.0421
14:37:43	0:27:21	14.0475
14:37:44	0:27:22	14.0482
14:37:45	0:27:23	14.0519
14:37:46	0:27:24	14.0551
14:37:47	0:27:25	14.0659
14:37:48	0:27:26	14.0603
14:37:49	0:27:27	
14:37:50	0:27:28	14.0662
14:37:51	0:27:29	14.0704
14:37:52	0:27:30	14.0761
14:37:53	0:27:31	14.0727
14:37:54	0:27:32	14.0763
14:37:55	0:27:33	14.0807
14:37:56	0:27:34	14.0846
14:37:57	0:27:35	14.0889
14:37:58	0:27:36	14.0897
14:37:59	0:27:37	14.0965
14:38:00	0:27:38	14.0957
14:38:01	0:27:39	14.1027
14:38:02	0:27:40	14.1032

14:38:03	0:27:41	14.1098
14:38:04	0:27:42	14.1082
14:38:05	0:27:43	14.1117
14:38:06	0:27:44	14.1187
14:38:07	0:27:45	14.1178
14:38:08	0:27:46	14.1222
14:38:09	0:27:47	
14:38:10	0:27:48	14.1288
14:38:11	0:27:49	14.1347
14:38:12	0:27:50	
14:38:13	0:27:51	14.1365
14:38:14	0:27:52	14.1417
14:38:15	0:27:53	14.1437
14:38:16	0:27:54	14.1468
14:38:17	0:27:55	14.1498
14:38:18	0:27:56	14.1536
14:38:19	0:27:57	14.1575
14:38:20	0:27:58	14.16
14:38:21	0:27:59	
14:38:22	0:28:00	
14:38:23	0:28:01	14.1706
14:38:24	0:28:02	14.1721
14:38:25	0:28:03	14.1771
14:38:26	0:28:04	14.1808
14:38:27	0:28:05	14.1798
14:38:28	0:28:06	14.1857
14:38:29	0:28:07	14.1908
14:38:30	0:28:08	14.1907
14:38:31	0:28:09	14.1946
14:38:32	0:28:10	
14:38:33	0:28:11	14.2004
14:38:34	0:28:12	14.2036
14:38:35	0:28:13	14.207
14:38:36	0:28:14	14.2078
14:38:37	0:28:15	14.2133
14:38:38	0:28:16	14.2161
14:38:39	0:28:17	14.2206
14:38:40	0:28:18	14.2227

14:38:41	0:28:19	14.2235
14:38:42	0:28:20	14.2261
14:38:43	0:28:21	14.2322
14:38:44	0:28:22	14.2445
14:38:45	0:28:23	
14:38:46	0:28:24	14.2408
14:38:47	0:28:25	14.2432
14:38:48	0:28:26	14.2493
14:38:49	0:28:27	14.248
14:38:50	0:28:28	
14:38:51	0:28:29	14.2558
14:38:52	0:28:30	14.2595
14:38:53	0:28:31	14.2626
14:38:54	0:28:32	14.2633
14:38:55	0:28:33	14.2639
14:38:56	0:28:34	14.2706
14:38:57	0:28:35	14.2733
14:38:58	0:28:36	14.2776
14:38:59	0:28:37	14.2789
14:39:00	0:28:38	14.2801
14:39:01	0:28:39	14.2869
14:39:02	0:28:40	
14:39:03	0:28:41	14.2897
14:39:04	0:28:42	14.2932
14:39:05	0:28:43	14.2967
14:39:06	0:28:44	14.2997
14:39:07	0:28:45	
14:39:08	0:28:46	14.3034
14:39:09	0:28:47	
14:39:10	0:28:48	
14:39:11	0:28:49	14.3133
14:39:12	0:28:50	14.3162
14:39:13	0:28:51	14.3211
14:39:14	0:28:52	14.3239
14:39:15	0:28:53	14.3251
14:39:16	0:28:54	14.3293
14:39:17	0:28:55	
14:39:18	0:28:56	14.3353

14:39:19	0:28:57	
14:39:20	0:28:58	14.339
14:39:21	0:28:59	14.3418
14:39:22	0:29:00	14.3472
14:39:23	0:29:01	14.3496
14:39:24	0:29:02	14.3519
14:39:25	0:29:03	14.3518
14:39:26	0:29:04	
14:39:27	0:29:05	14.3617
14:39:28	0:29:06	
14:39:29	0:29:07	
14:39:30	0:29:08	
14:39:31	0:29:09	14.3704
14:39:32	0:29:10	
14:39:33	0:29:11	14.3782
14:39:34	0:29:12	14.38
14:39:35	0:29:13	14.391
14:39:36	0:29:14	14.3864
14:39:37	0:29:15	14.3898
14:39:38	0:29:16	14.3915
14:39:39	0:29:17	
14:39:40	0:29:18	14.3955
14:39:41	0:29:19	14.4018
14:39:42	0:29:20	14.4032
14:39:43	0:29:21	14.4045
14:39:44	0:29:22	14.5246
14:39:45	0:29:23	14.4121
14:39:46	0:29:24	
14:39:47	0:29:25	14.4183
14:39:48	0:29:26	14.4185
14:39:49	0:29:27	14.4247
14:39:50	0:29:28	14.4252
14:39:51	0:29:29	14.4315
14:39:52	0:29:30	14.4338
14:39:53	0:29:31	14.4341
14:39:54	0:29:32	14.438
14:39:55	0:29:33	14.44
14:39:56	0:29:34	

14:39:57	0:29:35	14.444
14:39:58	0:29:36	14.4466
14:39:59	0:29:37	14.4529
14:40:00	0:29:38	14.4568
14:40:01	0:29:39	
14:40:02	0:29:40	
14:40:03	0:29:41	14.464
14:40:04	0:29:42	14.4665
14:40:05	0:29:43	14.468
14:40:06	0:29:44	14.4709
14:40:07	0:29:45	14.4742
14:40:08	0:29:46	14.4753
14:40:09	0:29:47	14.476
14:40:10	0:29:48	14.4808
14:40:11	0:29:49	14.4844
14:40:12	0:29:50	14.4859
14:40:13	0:29:51	14.4895
14:40:14	0:29:52	14.4913
14:40:15	0:29:53	14.4976
14:40:16	0:29:54	
14:40:17	0:29:55	14.502
14:40:18	0:29:56	14.5027
14:40:19	0:29:57	14.5064
14:40:20	0:29:58	14.5127
14:40:21	0:29:59	14.5098
14:40:22	0:30:00	14.5126
14:40:23	0:30:01	14.5165
14:40:24	0:30:02	14.5219
14:40:25	0:30:03	14.5205
14:40:26	0:30:04	14.5243
14:40:27	0:30:05	14.5308
14:40:28	0:30:06	
14:40:29	0:30:07	14.5353
14:40:30	0:30:08	14.5365
14:40:31	0:30:09	14.5407
14:40:32	0:30:10	14.5385
14:40:33	0:30:11	14.5437
14:40:34	0:30:12	14.5472

14:40:35	0:30:13	14.5494
14:40:36	0:30:14	14.5566
14:40:37	0:30:15	14.5556
14:40:38	0:30:16	14.5596
14:40:39	0:30:17	14.5598
14:40:40	0:30:18	14.5636
14:40:41	0:30:19	14.5678
14:40:42	0:30:20	14.5684
14:40:43	0:30:21	14.5707
14:40:44	0:30:22	14.5751
14:40:45	0:30:23	14.5787
14:40:46	0:30:24	14.5832
14:40:47	0:30:25	14.5832
14:40:48	0:30:26	14.5872
14:40:49	0:30:27	14.5882
14:40:50	0:30:28	14.5902
14:40:51	0:30:29	14.593
14:40:52	0:30:30	
14:40:53	0:30:31	14.5978
14:40:54	0:30:32	
14:40:55	0:30:33	14.6068
14:40:56	0:30:34	14.6049
14:40:57	0:30:35	14.6093
14:40:58	0:30:36	14.6129
14:40:59	0:30:37	14.6161
14:41:00	0:30:38	
14:41:01	0:30:39	14.6203
14:41:02	0:30:40	14.6218
14:41:03	0:30:41	14.6215
14:41:04	0:30:42	14.6255
14:41:05	0:30:43	14.6315
14:41:06	0:30:44	
14:41:07	0:30:45	14.6427
14:41:08	0:30:46	14.6396
14:41:09	0:30:47	14.6421
14:41:10	0:30:48	14.6458
14:41:11	0:30:49	14.6475
14:41:12	0:30:50	14.6496

14:41:13	0:30:51	
14:41:14	0:30:52	
14:41:15	0:30:53	14.6657
14:41:16	0:30:54	14.658
14:41:17	0:30:55	14.6615
14:41:18	0:30:56	14.6638
14:41:19	0:30:57	
14:41:20	0:30:58	14.6686
14:41:21	0:30:59	14.6725
14:41:22	0:31:00	
14:41:23	0:31:01	14.6781
14:41:24	0:31:02	14.679
14:41:25	0:31:03	14.6844
14:41:26	0:31:04	14.6878
14:41:27	0:31:05	14.689
14:41:28	0:31:06	14.6917
14:41:29	0:31:07	14.696
14:41:30	0:31:08	14.6967
14:41:31	0:31:09	14.7106
14:41:32	0:31:10	
14:41:33	0:31:11	14.7033
14:41:34	0:31:12	14.7094
14:41:35	0:31:13	14.7074
14:41:36	0:31:14	14.7071
14:41:37	0:31:15	14.7216
14:41:38	0:31:16	14.7169
14:41:39	0:31:17	14.7197
14:41:40	0:31:18	14.724
14:41:41	0:31:19	
14:41:42	0:31:20	14.7309
14:41:43	0:31:21	14.7304
14:41:44	0:31:22	14.7451
14:41:45	0:31:23	14.7449
14:41:46	0:31:24	14.7391
14:41:47	0:31:25	14.7426
14:41:48	0:31:26	14.7427
14:41:49	0:31:27	14.7553
14:41:50	0:31:28	14.7473

14:41:51	0:31:29	14.7467
14:41:52	0:31:30	14.7514
14:41:53	0:31:31	14.7435
14:41:54	0:31:32	14.7587
14:41:56	0:31:34	14.7717
14:41:58	0:31:36	14.7717
14:41:58	0:31:36	14.7806
14:41:58	0:31:36	14.7717
14:42:02	0:31:40	14.7827
14:42:02	0:31:40	14.7806
14:42:02	0:31:40	14.7806
14:42:02	0:31:40	14.7806
14:42:05	0:31:43	14.7883
14:42:05	0:31:43	14.7827
14:42:07	0:31:45	14.7896
14:42:07	0:31:45	14.7883
14:42:07	0:31:45	14.7883
14:42:10	0:31:48	14.8079
14:42:10	0:31:48	14.7896
14:42:10	0:31:48	14.7896
14:42:12	0:31:50	14.8155
14:42:12	0:31:50	14.8079
14:42:13	0:31:51	14.8063
14:42:14	0:31:52	14.8097
14:42:15	0:31:53	14.8133
14:42:16	0:31:54	14.8161
14:42:17	0:31:55	14.8296
14:42:18	0:31:56	14.8187
14:42:19	0:31:57	14.8236
14:42:20	0:31:58	14.8254
14:42:21	0:31:59	
14:42:22	0:32:00	14.8395
14:42:23	0:32:01	
14:42:24	0:32:02	14.8464
14:42:25	0:32:03	14.8401
14:42:26	0:32:04	14.8393
14:42:27	0:32:05	14.8424
14:42:28	0:32:06	

14:42:29	0:32:07	14.8476
14:42:30	0:32:08	14.8504
14:42:31	0:32:09	14.8533
14:42:32	0:32:10	14.8656
14:42:33	0:32:11	14.8575
14:42:34	0:32:12	14.87
14:42:35	0:32:13	14.8714
14:42:36	0:32:14	14.8769
14:42:37	0:32:15	14.8771
14:42:38	0:32:16	14.8808
14:42:39	0:32:17	14.8719
14:42:40	0:32:18	14.8803
14:42:41	0:32:19	14.8889
14:42:42	0:32:20	14.8787
14:42:43	0:32:21	14.883
14:42:44	0:32:22	14.8746
14:42:45	0:32:23	
14:42:46	0:32:24	14.892
14:42:47	0:32:25	
14:42:48	0:32:26	14.894
14:42:49	0:32:27	
14:42:50	0:32:28	14.902
14:42:51	0:32:29	14.9029
14:42:52	0:32:30	14.9012
14:42:53	0:32:31	
14:42:54	0:32:32	14.9074
14:42:55	0:32:33	14.9205
14:42:56	0:32:34	14.9136
14:42:57	0:32:35	14.9163
14:42:58	0:32:36	14.9198
14:42:59	0:32:37	
14:43:00	0:32:38	14.9241
14:43:01	0:32:39	14.9236
14:43:02	0:32:40	
14:43:03	0:32:41	14.9303
14:43:04	0:32:42	14.9334
14:43:05	0:32:43	
14:43:06	0:32:44	

14:43:07	0:32:45	14.9497
14:43:08	0:32:46	14.9428
14:43:09	0:32:47	14.9489
14:43:10	0:32:48	14.9559
14:43:11	0:32:49	
14:43:12	0:32:50	14.959
14:43:13	0:32:51	
14:43:14	0:32:52	14.9572
14:43:15	0:32:53	14.9592
14:43:16	0:32:54	14.9496
14:43:17	0:32:55	14.9482
14:43:18	0:32:56	14.954
14:43:19	0:32:57	
14:43:20	0:32:58	
14:43:21	0:32:59	14.9805
14:43:22	0:33:00	14.9804
14:43:23	0:33:01	14.9566
14:43:24	0:33:02	14.9488
14:43:25	0:33:03	14.9626
14:43:26	0:33:04	
14:43:27	0:33:05	14.9785
14:43:28	0:33:06	
14:43:29	0:33:07	
14:43:30	0:33:08	
14:43:31	0:33:09	14.9857
14:43:32	0:33:10	
14:43:33	0:33:11	14.9923
14:43:34	0:33:12	14.9972
14:43:35	0:33:13	
14:43:36	0:33:14	14.9985
14:43:37	0:33:15	
14:43:38	0:33:16	15.0063
14:43:39	0:33:17	15.008
14:43:40	0:33:18	15.0094
14:43:41	0:33:19	15.0224
14:43:42	0:33:20	15.0129
14:43:43	0:33:21	15.0181
14:43:44	0:33:22	

14:43:45	0:33:23	15.0222
14:43:46	0:33:24	15.0217
14:43:47	0:33:25	15.0258
14:43:48	0:33:26	
14:43:49	0:33:27	15.1073
14:43:50	0:33:28	
14:43:51	0:33:29	
14:43:52	0:33:30	
14:43:53	0:33:31	
14:43:54	0:33:32	
14:43:55	0:33:33	
14:43:56	0:33:34	
14:43:57	0:33:35	15.0528
14:43:58	0:33:36	
14:43:59	0:33:37	
14:44:00	0:33:38	
14:44:01	0:33:39	
14:44:02	0:33:40	
14:44:03	0:33:41	
14:44:04	0:33:42	
14:44:05	0:33:43	15.08
14:44:06	0:33:44	
14:44:07	0:33:45	
14:44:08	0:33:46	15.0789
14:44:09	0:33:47	15.0809
14:44:10	0:33:48	
14:44:11	0:33:49	
14:44:12	0:33:50	
14:44:13	0:33:51	
14:44:14	0:33:52	15.0904
14:44:15	0:33:53	
14:44:16	0:33:54	
14:44:17	0:33:55	15.098
14:44:18	0:33:56	
14:44:19	0:33:57	15.1058
14:44:20	0:33:58	
14:44:21	0:33:59	
14:44:22	0:34:00	15.1123

14:44:23	0:34:01	
14:44:24	0:34:02	
14:44:25	0:34:03	
14:44:26	0:34:04	15.1175
14:44:27	0:34:05	
14:44:28	0:34:06	
14:44:29	0:34:07	
14:44:30	0:34:08	
14:44:31	0:34:09	15.1315
14:44:32	0:34:10	
14:44:33	0:34:11	
14:44:34	0:34:12	15.1379
14:44:35	0:34:13	
14:44:36	0:34:14	
14:44:37	0:34:15	
14:44:38	0:34:16	
14:44:39	0:34:17	
14:44:40	0:34:18	15.1479
14:44:41	0:34:19	
14:44:42	0:34:20	
14:44:43	0:34:21	15.2393
14:44:44	0:34:22	
14:44:45	0:34:23	
14:44:46	0:34:24	
14:44:47	0:34:25	
14:44:48	0:34:26	
14:44:49	0:34:27	
14:44:50	0:34:28	
14:44:51	0:34:29	
14:44:52	0:34:30	
14:44:53	0:34:31	
14:44:54	0:34:32	15.2712
14:44:55	0:34:33	
14:44:56	0:34:34	
14:44:57	0:34:35	
14:44:58	0:34:36	
14:44:59	0:34:37	
14:45:00	0:34:38	

14:45:01	0:34:39	
14:45:02	0:34:40	
14:45:03	0:34:41	
14:45:04	0:34:42	
14:45:05	0:34:43	
14:45:06	0:34:44	
14:45:07	0:34:45	15.2161
14:45:08	0:34:46	
14:45:09	0:34:47	
14:45:10	0:34:48	
14:45:11	0:34:49	
14:45:12	0:34:50	
14:45:13	0:34:51	
14:45:14	0:34:52	
14:45:15	0:34:53	
14:45:16	0:34:54	15.2301
14:45:17	0:34:55	
14:45:18	0:34:56	
14:45:19	0:34:57	
14:45:20	0:34:58	
14:45:21	0:34:59	
14:45:22	0:35:00	
14:45:23	0:35:01	15.2543
14:45:24	0:35:02	
14:45:25	0:35:03	
14:45:26	0:35:04	15.2604
14:45:27	0:35:05	
14:45:28	0:35:06	
14:45:29	0:35:07	
14:45:30	0:35:08	
14:45:31	0:35:09	
14:45:32	0:35:10	
14:45:33	0:35:11	
14:45:34	0:35:12	
14:45:35	0:35:13	
14:45:36	0:35:14	
14:45:37	0:35:15	
14:45:38	0:35:16	

14:45:39	0:35:17	15.2872
14:45:40	0:35:18	
14:45:41	0:35:19	
14:45:42	0:35:20	15.2996
14:45:43	0:35:21	15.3007
14:45:44	0:35:22	
14:45:45	0:35:23	
14:45:46	0:35:24	15.3074
14:45:47	0:35:25	
14:45:48	0:35:26	
14:45:49	0:35:27	15.3127
14:45:50	0:35:28	
14:45:51	0:35:29	
14:45:52	0:35:30	15.3202
14:45:53	0:35:31	15.3196
14:45:54	0:35:32	
14:45:55	0:35:33	
14:45:56	0:35:34	
14:45:57	0:35:35	
14:45:58	0:35:36	
14:45:59	0:35:37	
14:46:00	0:35:38	
14:46:01	0:35:39	
14:46:02	0:35:40	15.3375
14:46:03	0:35:41	
14:46:04	0:35:42	15.3478
14:46:05	0:35:43	
14:46:06	0:35:44	
14:46:07	0:35:45	
14:46:08	0:35:46	15.3568
14:46:09	0:35:47	
14:46:10	0:35:48	
14:46:11	0:35:49	15.3632
14:46:12	0:35:50	15.3616
14:46:13	0:35:51	
14:46:14	0:35:52	15.37
14:46:15	0:35:53	
14:46:16	0:35:54	

14:46:17	0:35:55	
14:46:18	0:35:56	
14:46:19	0:35:57	
14:46:20	0:35:58	
14:46:21	0:35:59	
14:46:22	0:36:00	15.3744
14:46:23	0:36:01	
14:46:24	0:36:02	
14:46:25	0:36:03	15.3869
14:46:26	0:36:04	
14:46:27	0:36:05	
14:46:28	0:36:06	
14:46:29	0:36:07	
14:46:30	0:36:08	
14:46:31	0:36:09	15.4022
14:46:32	0:36:10	
14:46:33	0:36:11	15.401
14:46:34	0:36:12	15.5164
14:46:35	0:36:13	15.4097
14:46:36	0:36:14	
14:46:37	0:36:15	
14:46:38	0:36:16	
14:46:39	0:36:17	
14:46:40	0:36:18	
14:46:41	0:36:19	15.4219
14:46:42	0:36:20	
14:46:43	0:36:21	15.4254
14:46:44	0:36:22	15.4282
14:46:45	0:36:23	15.4295
14:46:46	0:36:24	
14:46:47	0:36:25	15.4308
14:46:48	0:36:26	15.4347
14:46:49	0:36:27	15.436
14:46:50	0:36:28	
14:46:51	0:36:29	15.4412
14:46:52	0:36:30	15.4432
14:46:53	0:36:31	15.445

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D. FINAL TEST 16VDC CAPACITOR CHARGE DATA

Time (min)	Capacitor Voltage (VDC)	DC Current (A)	Power (W)
0.00	1.63	21.03	34.2789
0.25	2.18	21.01	45.8018
0.50	3.01	21	63.21
0.75	3.88	21.13	81.9844
1.00	4.53	20.8	94.224
1.25	5.28	20.33	107.3424
1.50	5.91	20.18	119.2638
1.75	6.59	20.21	133.1839
2.00	7.28	20.24	147.3472
2.50	8.53	19.73	168.2969
3.00	9.73	19.7	191.681
3.50	10.88	19.34	210.4192
4.00	11.98	19.38	232.1724
4.50	13.03	18.84	245.4852
5.00	14.05	18.57	260.9085
5.50	15.01	18.34	275.2834
6.00	15.97	18.33	292.7301

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E. FINAL TEST 56VDC CAPACITOR CHARGE DATA

Time (min)	DC Capacitor Voltage (VDC)	DC Current (A)	Power (W)
0.00	1.99	20.4	40.596
0.25	4.38	20.45	89.571
0.50	7.23	20	144.6
0.75	9.88	19.9	196.612
1.00	12.42	18.98	235.7316
1.25	14.89	18.2	270.998
1.50	17.08	17.36	296.5088
1.75	20	17.06	341.2
2.00	21.39	16.37	350.1543
2.50	25.15	15.2	382.28
3.00	28.46	14.65	416.939
3.50	32.08	13.75	441.1
4.00	34.65	12.93	448.0245
4.50	37.24	11.75	437.57
5.00	39.34	8.88	349.3392
5.50	39.17	4.23	165.6891
6.00	40.14	4.28	171.7992
6.50	41.06	4.22	173.2732
7.00	41.98	3.57	149.8686
7.50	42.85	4.35	186.3975
8.00	43.7	4.26	186.162
8.50	44.57	4.31	192.0967
9.00	45.42	4.27	193.9434
9.50	46.22	4.23	195.5106
10.00	47.02	4.24	199.3648
10.50	47.84	4.25	203.32
11.00	48.62	4.27	207.6074
11.50	49.42	4.23	209.0466
12.00	50.22	4.22	211.9284
12.50	50.98	4.19	213.6062
13.00	51.75	4.25	219.9375
13.50	52.48	4.17	218.8416
14.00	53.23	4.2	223.566
14.50	53.97	4.15	223.9755
15.00	54.69	4.12	225.3228
15.50	55.39	4.11	227.6529
16.00	56.1	4.1	230.01

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF REFERENCES

[1] X. Luo, J. Wang, M. Dooner, "Overview of current development in electrical energy storage technologies and the application potential in power system operation," App. Energy, vol. 137, pp. 511-536, Jan. 1, 2015.
[2] J. Sayer, "Mini-compressed air energy storage for transmission congestion relief and wind shaping applications," New York State Energy Research and Development Authority, Albany, NY, USA, Rep. 08-05, 2008.
[3] Electrical Energy Storage Project Team, "Electrical energy storage white paper," Int. Elect. Comm., Geneva, Switzerland, 2011. [Online]. Available: https://www.iec.ch/whitepaper/pdf/iecWP-energystorage-LR-en.pdf
[4] J. Wang, K. Lu, L. Ma, J. Wang, M. Dooner, S. Miao, J. Li, and D. Wang, "Overview of compressed energy storage and technology development." Energies, vol. 10, issue 7, art. 991, pp. 1-22, Jul. 13, 2017.
[5] H. Sameer and L. Johannes, "A review of large-scale electrical energy storage," Int. J. Energy Res., vol. 39, pp. 1179-1195, Feb. 5, 2015.
[6] J. Milewski, K. Badyda, and L. Szablowski, "Compressed air energy storage systems," J. of Pow. Tech., vol. 96, no. 4, pp. 245-260, 2016.
[7] M. J. Tessier, M. C. Floros, L. Bouzidi, and S. S. Narine, "Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials," Energy. vol. 106, pp. 528-534, Apr. 11, 2016.
[8] V. Tola, V. Meloni, F. Spadaccini, and G. Cau, "Performance assessment of adiabatic compressed air energy storage (A-CAES) power plants integrated with packed-bed thermocline storage systems," Energy Conv. and Manag., vol. 151, pp. 343-356, Nov. 1, 2017.
[9] K. Tweed, "Toronto Hydro pilots world's first offshore compressed-air energy storage project," Green Tech Media, November 25, 2015. [Online]. Available: https://www.greentechmedia.com/articles/read/toronto-hydro-pilots-worlds-first-offshore-compressed-air-energy-storage\#gs.oYV72ng.
[10] A. Fuentes, Hydrostor, Hydrostor advanced compressed air energy storage, [Brochure]. n.d.. [Online]. Available: https://docs.wixstatic.com/ugd/79b839_3fc57b72211a4faab338977589a3af7c.pdf
[11] Sandia National Laboratories, "DOE global energy storage database, CAES projects," October 15, 2018, [Online]. Available:
http://www.energystorageexchange.org/projects/global_search?q=CAES
[12] H. Ibrahim, A. Ilinca, J. Perron, and A. Merabet, "Modeling and simulation of a novel small-scale compressed air hybrid system for stand-alone off-grid applications," in IEEE Elect. Pow. \& Energy Conf., Halifax, NS, Canada, 2013, pp. 1-7.
[13] S. Mei, R. Li, X. Xue, Y. Chen, Q. Lu, X. Chen, C. D. Ahrens, R. Li, and L. Chen, "Paving the way to smart micro energy grid: concepts, design principles, and engineering practices," CSEE J. of Power and Energy Syst., vol. 3, no. 4, pp. 440-449, Dec. 25, 2017.
[14] C. S. McLaughlin, "Small-scale air-driven generator," M.S. thesis, Dept. of Mech. Eng., NPS, Monterey, CA, USA, 2016. Available:
https://calhoun.nps.edu/handle/10945/51580
[15] T. M. Vranas, "Control system development for power generation from smallscale compressed air energy storage," M.S. thesis, Dept. of Mech. Eng., NPS, Monterey, CA, USA, 2017. Available: https://calhoun.nps.edu/handle/10945/55549
[16] F.M. White, Fluid Mechanics, New York, NY, USA: McGraw Hill, 2011.
[17] McMaster-Carr, "Compressed air flow booster," n.d.. [Online]. Available: https://www.mcmaster.com/5571k12
[18] Nortel Manufacturing Limited, "What are air movers?," 2012. [Online]. Available: http://www.nortelglass.com/airmoversdetail.shtml
[19] L. Su, "CFD simulation and shape optimization of supersonic ejectors for refrigeration and desalination applications," M.S. thesis, Dept. Mech. Eng., Washington University, St. Louis, MS, USA, 2015. Available: https://doi.org/10.7936/K75X2733
[20] Pentair Valves and Controls, Jet pump technical data; pumping gases, Section 1000, Bulletin 1300, Issued 9/87. [Online]. Available: http://www.arcoengineering.com/pen/Penberthy_LM_ELL_FL_GL_GH_U_L_2 NC_Pumping_Gases_AE.pdf
[21] Diesel Hub. "How a turbocharger wastegate works," October 15, 2018, [Online]. Available: http://www.dieselhub.com/tech/wastegate.html
[22] ATP Turbo, "Turbine housing garrett GT2554R/GT2560R T25 inlet flange, 5 bolt discharge, . 64 A/R," 2018, [Online]. Available:
https://www.atpturbo.com/mm5/merchant.mvc?Screen=PROD\&Product_Code=A TP-HSG-369\&Store_Code=tp
[23] ATP Turbo, "V-band in/out turbine housing for GT2554R and GT2560R (aka GT28R), . 64 AR," 2018, [Online]. Available:
https://www.atpturbo.com/mm5/merchant.mvc?Screen=PROD\&Product_Code=A TP-HSG-282\&Store_Code=tp
[24] Garret Motion, "GT2554R turbocharger," 2018, [Online]. Available: https://www.garrettmotion.com/racing-and-performance/performancecatalog/turbo/gt2554r/
[25] Garret Motion, "GT3071R turbocharger," 2018, [Online]. Available: https://www.garrettmotion.com/racing-and-performance/performancecatalog/turbo/gt3071r/
[26] Garret Motion, "GTW3884R turbocharger," 2018, [Online]. Available: https://www.garrettmotion.com/racing-and-performance/performancecatalog/turbo/gtw3884r/
[27] Honeywell Garrett, Turbo systems 102 advanced, 2017.
[28] Innov8tive Designs, "Scorpion HKII-4525-520 ultimate brushless motor," 2018. [Online]. Available: http://innov8tivedesigns.com/scorpion-hkii-4525-520-ultimate-brushless-motor-kv-520
[29] Innov8tive Designs, "Scorpion HKIII-4035-560 brushless motor," 2018. [Online]. Available: http://innov8tivedesigns.com/scorpion-hkiii-4035-560-brushless-motor-kv-560
[30] Electronics Tutorials, "Transformer basics," 2018. [Online]. Available: https://www.electronics-tutorials.ws/transformer/transformer-basics.html.
[31] Emerson, Industrial control transformers, SOLA HD, 2016. [Online]. Available: https://www.emerson.com/documents/automation/product-guide-sbe-encapsulated-transformers-en-us-163794.pdf
[32] Electronics Tutorials, "Three phase transformers," 2018. [Online]. Available: https://www.electronics-tutorials.ws/transformer/three-phase-transformer.html.
[33] Microsemi Shanghai, Glass passivated three phase rectifier bridge; MSD-100Rev 1, 2009. [Online]. Available: https://www.microsemi.com/document-portal/doc_download/10532-msd100-rev1-datasheet
[34] IXYS, VUO86-16NO7 standard rectifier module; 3~ rectifier bridge, 2013. [Online]. Available: http://ixapps.ixys.com/DataSheet/VUO86-16NO7.pdf
[35] Maxwell Technologies, "16 volt large module," 2018. [Online]. Available: http://www.maxwell.com/products/ultracapacitors/16v-large-modules
[36] Maxwell Technologies, " 56 volt UPS module," 2018. [Online]. Available: http://www.maxwell.com/products/ultracapacitors/56v-modules
[37] Parker, "Pneumatic solenoid valve - B6 series," 2018. [Online]. Available: http://ph.parker.com/us/en/pneumatic-solenoid-valve-b6-series
[38] Valworx, Direct mount solenoid valve, series 5291, Doc: 5291.0217, 2018. [Online]. Available: https://s3.amazonaws.com/cdn.valworx.com/downloads/datasheets/valworx/5291. pdf
[39] Valworx, Air actuated stainless ball valves, series 5235/5236, Doc: 5235.5236.1014, 2018. [Online]. Available: https://s3.amazonaws.com/cdn.valworx.com/downloads/datasheets/valworx/5235 5236.pdf
[40] Crydom, 53TP series IP00 data sheet, 2017. [Online]. Available: http://www.crydom.com/en/products/catalog/53tp-series-ip00-ac-panel-mount.pdf
[41] ANSYS, Canonsburg, Pennsylvania, USA. 2017. CFX, ver. 17.0.
[42] Installation, Operation, and Maintenance of Threaded and Wafer Style Flowmeters, M1 Rev I, RCM Industries, Concord, CA, USA, 2018. [Online]. Available: https://cdn-cms.fstatic.com/uploads/931728/normal_5b7ee66d17a06.pdf
[43] Electronics Tutorials, "Ultracapacitors," 2018. [Online]. Available: https://www.electronics-tutorials.ws/capacitor/ultracapacitors.html.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center Ft. Belvoir, Virginia
2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

[^0]: 85

