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ABSTRACT 

This research in Ethical Control of Unmanned Systems applies precepts of Network 

Optional Warfare (NOW) to develop a three-step Mission Execution Ontology (MEO) 

methodology for validating, simulating, and implementing mission orders for unmanned 

systems. First, mission orders are represented in ontologies that are understandable by humans 

and readable by machines. Next, the MEO is validated and tested for logical coherence using 

Semantic Web standards. The validated MEO is refined for implementation in simulation and 

visualization. This process is iterated until the MEO is ready for implementation. This 

methodology is applied to four Naval scenarios in order of increasing challenges that the 

operational environment and the adversary impose on the Human-Machine Team. The extent of 

challenge to Ethical Control in the scenarios is used to refine the MEO for the unmanned system.  

The research also considers Data-Centric Security and blockchain distributed ledger as 

enabling technologies for Ethical Control. Data-Centric Security is a combination of structured 

messaging, efficient compression, digital signature, and document encryption, in correct order, 

for round-trip messaging. Blockchain distributed ledger has potential to further add integrity 

measures for aggregated message sets, confirming receipt/response/sequencing without 

undetected message loss. When implemented, these technologies together form the end-to-end 

data security that ensures mutual trust and command authority in real-world operational 

environments—despite the potential presence of interfering network conditions, intermittent 

gaps, or potential opponent intercept.  

A coherent Ethical Control approach to command and control of unmanned systems is 

thus feasible. Therefore, this research concludes that maintaining human control of unmanned 

systems at long ranges of time-duration and distance, in denied, degraded, and deceptive 

environments, is possible through well-defined mission orders and data security technologies. 

Finally, as the human role remains essential in Ethical Control of unmanned systems, this 

research recommends the development of an unmanned system qualification process for Naval 

operations, as well as additional research prioritized based on urgency and impact.  
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EXECUTIVE SUMMARY 

As humans proliferate unmanned systems and advance unmanned systems technology 

ahead of emerging policy and guidance, development of unmanned systems autonomy, as well as 

command and control in Human-Machine Teaming, needs to be grounded in ethical and 

responsible-use principles. Human supervision using Ethical Control is required for any 

unmanned systems holding potential for lethal force. In denied, degraded, and deceptive 

operational environments, the human commanders must maintain Ethical Control of unmanned 

systems, and the unmanned systems must perform their missions that require the use of force—

from lifesaving to lethal force, within the assigned operational and ethical constraints. 

This research in Ethical Control of Unmanned Systems develops a three-step Mission 

Execution Ontology (MEO) methodology for implementing, validating, and simulating mission 

orders for unmanned systems. The methodology makes it possible to determine the extent to 

which unmanned systems can handle progressive challenges to command and control (C2) in 

distance and time, in human-machine teams, and in employing lifesaving or lethal force as 

authorized by the commander. The three steps in the MEO methodology are:  

1. Represent orders in ontologies that are human-understandable and machine-readable.  
2. Validate and test the MEO is validated and tested for logical coherence.  
3. Assess the MEO for executability in simulation and visualization. 
As context for the MEO methodology, the research considers multiple Naval scenarios as 

exemplar missions in order of increasing challenges that the operational environment and the 

adversary impose on the Human-Machine Team. These scenarios carefully define and test 

capabilities for Ethical Control of unmanned systems in progressively increasing challenges in 

distance and time, human-machine teams, and the use of force. Mission titles and brief 

descriptions of the unmanned systems assigned tasks are: 

A. Sailor Overboard: Perform recovery operations in concert with shipboard procedures. 
B. Lifeboat Tracking: Provide remote presence for locating, tracking, communications 

and beaconing an adrift lifeboat carrying multiple personnel. 
C. Pirate Boats Attack: Overtake pirates attempting to capture a merchant ship. Provide 

warning and counterattack using lethal force, if escalation of hostilities is warranted. 
D. Hospital Ship Electromagnetic (EM) Decoy: Respond appropriately to EM signatures 

of a warship unexpectedly emitting from a hospital ship due to adversary exploitation. 
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Of note, exemplar mission D (Hospital Ship EM Decoy) presents the most ethically 

challenging scenario for the unmanned system and the Human-Machine Team. Two variations of 

this scenario demonstrate the significance of Ethical Control of unmanned systems:  

• Sense-Decide-Act: Immediate reaction to deploy a robot swarm results in a mistaken 
attack on friendly or neutral shipping, and is consequently a war crime. 

• Observe-Orient-Decide-Act (OODA): Deliberate tactics and Ethical Control 
constraints prevent automatic erroneous counterattack against false flag placed on 
friendly/neutral shipping, improving ship defense and warfighting capabilities. 

By applying MEO methodology in these scenarios, an assessment scale emerges for 

human warfighters qualifying unmanned systems performing missions under Ethical Control: 

Level 1: Basic. Qualified to apply lifesaving force under close coordination with the 
Human Commander, e.g., Sailor Overboard Recovery mission. 
Level 2: Intermediate. Qualified to apply lifesaving force at long distance from the 
Human Commander, e.g., Search and Rescue mission. 
Level 3: Advanced. Qualified to apply organic lifesaving/lethal force over long time 
periods for the mission, emphasizing restraint throughout, e.g., Counter-Piracy mission.  
Level 4: Operational Standard. Qualified to apply organic lifesaving/lethal force in 
contested/deceptive environments, e.g., Force Protection mission. Uses human 
confirmation of Identification Friend, Foe, Neutral, or Unknown (IFFNU) classification 
result to detect spoofing anti-pattern, with authorization required to apply lethal force, 
prevent reflexive automatic counterattack response, and engage with proportional force.  
The research also applies Data-Centric Security to enable end-to-end data security that 

ensures mutual trust and command authority in real-world operational environments— despite 

the potential presence of interfering network conditions, intermittent gaps, or potential opponent 

intercept. Data-Centric Security is a combination of structured messaging, efficient compression, 

digital signature, and document encryption, in correct order, for round-trip messaging. Addition 

of blockchain distributed ledger has potential to further add integrity measures for aggregated 

message sets, confirming receipt/response/sequencing without undetected message loss. 

Maintaining Ethical Control of unmanned systems from long time-duration and physical 

distance—in denied, degraded, and deceptive environments—is now possible through well-

defined mission orders and data security technologies. Furthermore, the MEO methodology 

conveys the mission orders in formats that are readable and sharable by both humans and 

unmanned systems—with validatable syntax and semantics through understandable logical 

constraints. The MEO is also testable and confirmable using simulation and visualization. 

Additional Semantic Web confirmation can ensure that orders are comprehensive and consistent. 
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Therefore, a coherent Ethical Control approach to human command and control of unmanned 

systems such as the MEO methodology supports the development of an unmanned systems 

qualification process for Naval operations.  

The research recommends topics for additional research that are prioritized based on 

urgency and impact. Recommendations are summarized below: 

1. Incorporate Ethical Control in Unmanned Maritime Autonomy Architecture (UMAA) 
and Common Control System (CCS). Action: Brief relevant program managers and 
stakeholders; seek to participate in UMAA. 

2. Determine implications in Integrated Naval Force Structure. Actions: 
a. Engage staffs in Navy Warfare Directorates, Type Commanders, unmanned 

vehicle squadrons, and relevant stakeholders. Topics for engagement include: 
operations, plans, policy, and requirements, and resourcing of unmanned 
systems with due regard to the feasibility of applying Ethical Control in 
enabling them to conduct qualified missions. 

b. Establish an NPS Center for Ethical Warfighting to explore both educational 
and applied capabilities, in order to put theory into practice. 

c. Establish collaboration within the Naval Education Enterprise (e.g., NPS, 
Naval War College, Marine Corps University, and Naval Academy) and other 
institutions, e.g., U.S. Military Academy, on ethical use of unmanned systems. 

3. Establish a process to qualify unmanned systems, i.e., design and develop 
qualification requirements (similar to Naval Warfighter “qualification cards”) for 
various classes of unmanned systems that ensure Ethical and Secure C2 for Naval 
missions in denied/degraded/deceptive environments. Key Actions:  

a. Apply the MEO methodology to test and certify compliance to mission orders. 
b. Integrate Data-Centric Security in a qualification process to ensure Trusted 

Autonomy and Command Authority for the Human-Machine Team. 
c. Use a comprehensive virtual environment with carefully crafted scenarios to 

test key requirements and capabilities, hardware/software in the loop, as well 
as visualization of rehearsal, real-time and replay of realistic missions. 

d. Assess mission logs and scenario outcomes for after-action analysis, lessons 
learned, and continuous improvement. 

4. Continue Canonical Mission development and ontology refinements on tactical 
scenarios that exercise the checkpoints and authorities of ethical control. 

5. Implement planned improvements in Autonomous Vehicle Command Language 
(AVCL) and Autonomous Unmanned Vehicle Workbench (AUV Workbench). 

6. Incorporate Data-Centric Security for system integrity and security of unmanned 
systems command, control, and communications (C3).  
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 1 

I. INTRODUCTION 

A. PROJECT DESCRIPTION 
Researchers and Faculty at the Naval Postgraduate School and the (then) Raytheon 

Company performed this research project within the Raytheon–Naval Postgraduate School 

Cooperative Research and Development Agreement (NCRADA-NPS-19-0227) for Naval 

Warfare Capability Research and Development. The intention of this work is to research 

methods of Undersea Command, Control, and Communications (C3) for ethical human 

supervision of unmanned undersea systems. 

Ethical control of unmanned systems can be accomplished through structured mission 

definitions that are consistently readable, validatable and understandable by humans and robots.  

Responsible humans must remain in charge of lethal/lifesaving force, and then robots become 

more effective. 

 

B. MOTIVATION 
This research is motivated by ethically constrained control of unmanned systems and 

robot missions by human supervisors and warfighters. With the Artificial Intelligence/Machine 

Learning (AI/ML) technologies and proliferation of unmanned systems potentially advancing 

ahead of emerging policy and guidance, clarity and distinction are needed in defining and 

guiding technology development for Human-Machine Teaming that is grounded in principles of 

ethical and responsible use. This research is thus intended to stimulate and shape the 

development of ethical autonomous unmanned undersea weapons systems. Ethical Control is not 

simply an AI problem, rather it is a moral imperative.  Warfighters cannot push “the big red 

shiny AI button” and hope for the best, since indiscriminate actions are immoral and unlawful.  

As expressed by the guiding senior faculty member in this decades-long endeavor,  

Ethical constraints on robot mission execution are possible today. There is no 
need to wait for future developments in Artificial Intelligence (AI). It is a moral 
imperative that ethical constraints in some form be introduced immediately into 
the software of all robots that are capable of inflicting unintended or deliberate 
harm to humans or property. (McGhee, April 2016) 
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C. RESEARCH QUESTIONS AND ANSWERS 
The key research question is: Can qualified robots correctly follow human orders? 

Through this research, the following precept has enabled the Collaborators to answer it in the 

affirmative: Well-structured mission orders can be syntactically and semantically validated to 

give human commanders confidence that offboard systems will do what they are told to do, and 

further will not do what they are forbidden to do. 
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II. OVERVIEW 

A. SUMMARY OF WORK 
Naval Postgraduate School (NPS) and Raytheon co-Principal Investigators researched the 

impacts and limitations of current ethics policies on the design, development, and deployment of 

unmanned undersea weapons. The Collaborators researched current ethics principles and policy 

considerations that impact ethical human supervision of autonomous underwater unmanned 

systems in tactical scenarios; this effort was continuous throughout the research project in order 

to ensure its relevance to current and emerging policies, standards, and practices. They 

investigated how warfighters can effectively and ethically supervise underwater unmanned 

systems at great ranges as trusted participants with distant human supervision. (This report uses 

the terms unmanned systems, robots, and autonomous vehicles interchangeably.)  

The Principal Investigators determined the applicability of the ethics principles and 

policies (e.g., DoD Directive 3000.09, Autonomy in Weapon Systems) to a variety of current and 

in-development U.S. Navy systems, such as Unmanned Undersea Vehicles (UUVs). After 

consideration of appropriate real-world tactical scenarios in maritime operations that might be 

relevant for this research, they selected four unrestricted scenarios as surrogates to their 

respective classified scenarios. Then by applying Semantic Web ontology to scenario goals and 

constraints, they performed logical validation that human-approved mission orders for robots are 

semantically coherent, precise, unambiguous, and without internal contradictions. Mission 

Execution Ontology (MEO) methodology is the term the researchers conceived for the process, 

from defining mission orders to validating them. 

The MEO methodology begins with Mission Definition. The researchers (or operational 

planners and mission analysts in military operations in real-world military operation planning 

organizations) analyze the mission orders by phases of execution and the associated decisions for 

each phase. Mission analysts consider and diagram the flow of mission phases by relationships 

between the phases and the logic state of the decision made at the completion of each phase. 

Analysts use a “tri-state” goal-transition logic to direct the flow of decision between goals. The 

tri-state logic states are: Success, Failure, and Exception, with respect to accomplishing the goal 

for each phase of the mission. For example, if the Deploy phase of the mission is accomplished 

as Success, then the mission would proceed to the next phase. If the state of the Deploy phase 
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results in Failure, then the mission would proceed to a phase to perform troubleshooting or 

failure recovery actions. If the Deploy phase actions result in an Exception logic state, then the 

mission would proceed to a phase to perform holding or awaiting further instructions tasks.  

Once analysts decide on a set of mission orders as defined by a corresponding decision-

flow diagram, the Autonomous Vehicle Command Language (AVCL) can be used for formal 

definition and subsequent generation of code for each unmanned system executing a mission. 

AVCL mission descriptions are expressed using structured Extensible Markup Language (XML) 

that represents human command and control tasks for autonomous unmanned vehicles (AUVs). 

AVCL is used to generate mission scripts, agenda plans and post-mission recorded telemetry. 

Mission analysts or operators can utilize a single achievable and validatable format for robot 

tasking and results that is directly convertible to (and from) a wide variety of different robot 

command languages. As such, analysts now apply the Web Ontology Language (OWL) 

Semantic Web Standards to AVCL representation of the mission orders and thus converts the 

mission orders into ontologies (i.e., the MEO vocabulary) in order to validate the mission orders 

for ethical control—that the orders are semantically coherent, precise, unambiguous, and without 

internal contradictions. Finally, modeling and simulation are used to confirm ethical control of 

mission design and execution.  

In addition to applying the MEO methodology, the Collaborators also have considered 

environmental, geopolitical, security and human life implications for associated anti-

tamper/cyber solutions, and have provided recommended courses of action for further 

development. These relevant elements of the unmanned systems would contribute to the 

effective application of ethical control, forming the foundation of Trusted Command Authority, 

Trusted Mission Orders, and Trusted Mission Execution. 

 

B. REPORT ORGANIZATION 
Chapter 3 describes the background of research on Techniques for Maintaining Human 

Ethical Control of Unmanned Systems that NPS researchers have been conducting since 1994, 

leading up to this current research project. Chapter 4 discusses the methodology the current 

research uses to represent Mission Execution Orders in AVCL and Semantic Web Standards. 

Chapter 5 presents the application of the MEO methodology. Chapter 6 discusses the enabling 

technologies we have considered that would ensure secure, ethical command and control 
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between the human commander/operator and the autonomous systems. Chapter 7 presents 

conclusions from this research.  Chapter 8 offers recommendations for follow-on research in 

order to operationalize ethical control of unmanned systems. 
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III. BACKGROUND 

A. HISTORY AND TRAJECTORY OF RESEARCH 
NPS began research on autonomous underwater vehicles (AUV) in the early 1990s. The 

first vehicle, tested at sea in the mid-1990s, was Phoenix, an AUV that was 6 feet long and 

weighed approximately 600 pounds. At that time, the onboard control system was called RBM 

for “Rational Behavior Model.” RBM was modeled on standard Naval practice for deployment 

and operation of manned submarines at the time. 

The top level of the three-layer RBM software architecture assumed that Artificial 

Intelligence (AI) was required to replace the function of a Submarine Commander. For example, 

mathematical modeling and programming of a Commander’s function would need first-order 

logic (predicate calculus). Therefore, a separate “SPARC” workstation running the “Prolog” 

language was included in Phoenix. RBM functioned well in Phoenix’s at-sea testing. 

In the early 2000s, Phoenix was replaced by a larger vehicle called Aries, which 

contained a more advanced onboard sensor suite, larger batteries, and more powerful main 

propulsion thrusters. Aries was approximately 8 feet long and weighed about 1,000 pounds, and 

was capable of longer duration and more complex missions than its predecessor. Experience with 

Phoenix led the researchers to full practical realization that mission control based on human-style 

reasoning (predicate logic) cannot, in general, be formally proven correct for a given mission. 

Fortunately, the researchers also came to realize that “finite state” logic is adequate for any 

mission control tasks they actually anticipated carrying out by autonomous vehicles. In contrast 

to their experience with Phoenix, Aries researchers were able to prove by exhaustion of all 

possible outcomes that its missions were correctly programmed (that is, that they accomplished 

what we intended). Aries was a success, and was retired after completion of all planned mission 

tasks. All results were published, with references and primary results available at: 

https://savage.nps.edu/EthicalControl/documentation. 

In the early 2010s, NPS researchers began to realize that responsible experimentation 

with larger and more powerful robots (AUVs or others) would require that some run-time ethical 

constraints be incorporated into mission control software. This was not done for Phoenix or 

Aries. As the researchers addressed this requirement, it became apparent to them that inclusion of 

such constraints would require a possible “exception” outcome of execution of a mission phase 



 8 

goal (command) in addition to the “success” and “failure” outcomes we had previously 

considered. This change greatly simplifies mission logic and clarity without loss of generality. 

This understanding was summarized in the 2018 Journal of Oceanic Engineering paper that was 

based on such “tri-state” logic. (Brutzman, Blais, Davis, and McGhee, April 2018) 

Since publication of the 2018 paper, the NPS researchers have been concerned with 

implementation details for tri-state mission logic for autonomous robots and human/robot teams. 

To date, the researchers have demonstrated, in human interactive form, execution of a simulated 

8-phase “Sailor Overboard” recovery mission by a human/robot team, using either Prolog or 

Common Lisp as a programming language. The researchers expect to complete an XML 

implementation soon. 

A key aspect of tri-state logic, including possible violation of an ethical constraint, either 

pending or actual, is the need for constant situational awareness by mission control software. The 

researchers believe that mandating this type of software for mission control could possibly have 

prevented loss of human life in recent passenger aircraft and self-driving car accidents. 

Therefore, further applied research on this issue is critical and is needed as soon as possible. 

 

B. KEY INSIGHTS REGARDING HUMAN ETHICAL CONTROL 
Many years of work have composed multiple fields of study to provide techniques for 

maintaining human ethical control of unmanned systems. In this work, ethical theory meets 

professional practice. A key tenet researchers are keenly mindful of in this project is that each 

step of the research must work for Human Commanders and Unmanned Systems alike. The 

following insights and techniques for maintaining human ethical control of Unmanned Systems 

apply to this project (Davis, Brutzman, Blais, and McGhee, 2016): 

1. Ethical operation of robotic systems requires human accountability. 
In military operations, human Warfighters in military units are able to deal with moral 

challenges without ethical quandaries, by using formally qualified experience, and by following 

mission orders that comply with Rules of Engagement (ROE) and Laws of Armed Conflict 

(LOAC). However, ethical behaviors do not define the mission plan. Instead, ethical constraints 

inform the mission plan. In the context of current and future Naval operations, Naval Forces can 

only command mission orders that are Understandable by (legally culpable) human 

Warfighters—then reliably and safely executed by robots. In both the legal and moral sense, this 
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paradigm implies that human operators must be in a position to understand, and therefore 

control, robot mission outcomes. This level of understanding can be achieved through the 

satisfaction of three requirements: Operator understanding of high-level mission flow; mission 

descriptions understandable to both human operators and robot vehicles being tasked; and 

mission descriptions consisting entirely of trusted behaviors and constraints. 

2. Algorithms cannot replace human responsibility. 
Artificial Intelligence (AI) approaches in general almost invariably make use of easily 

confounded inferential reasoning or statistical pattern recognition. Applying such broad 

abstractions to the innumerable situations that can arise in the real world is inherently 

unpredictable, and also makes unrealistic any assumption of responsibility by human operators. 

It is therefore apparent that the abstract reasoning of general AI approaches is inappropriate, at 

least at the present time, for the highest level of robot mission definition and control. 

By applying the best strengths of human ethical responsibility, repeatable formal logic 

and directable unmanned systems together, these combined capabilities provide a practical 

framework for ethically grounded human supervision of unmanned systems. 

 
C. ETHICAL MISSION DEFINITION AND EXECUTION 

Experts and practitioners have worked long and hard toward achieving functionally 

capable robots. While numerous areas of progress have been achieved, ethical control of 

unmanned systems in a manner that meets legal requirements has been elusive and problematic. 

Common conclusions that treat ethical robots as an always-amoral philosophical conundrum, 

requiring undemonstrated morality-based artificial intelligence (AI) schemes, are simply not 

sensible or repeatable. Patterning after successful practice by human teams shows that precise 

mission definition and task execution using well-defined, syntactically valid vocabularies is a 

necessary first step. Addition of operational constraints enables humans to place limits on robot 

activities, even when operating at a distance under gapped communications. Semantic validation 

can then be provided by a MEO to confirm that no logical or legal contradictions are present in 

mission orders. Thorough simulation, testing, and certification of qualified robot responses are 

necessary to build human authority and trust when directing ethical robot operations at a 

distance. Together these capabilities can provide safeguards for autonomous robots possessing 

the potential for lethal force. This approach appears to have broad usefulness for both civil and 
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military application of unmanned systems at sea. (Brutzman, Blais, Davis, and McGhee, April 

2018) 

In “Semantic Web and Inferencing Technologies for Mission Definition,” (Davis, 2014), 

Davis summarizes that operational commanders and intelligence professionals are provided with 

a continually increasing volume of data from numerous sources. Effective utilization of this data 

can be hampered by difficulties in fusing different data streams for presentation, correlating 

related data from various sources and developing reliable summary and predictive products. An 

opportunity presently exists to improve this situation through the incorporation of Semantic Web 

technologies into Department of Defense (DoD) systems. Earlier work provides a didactic 

overview of Description Logics (DL) and their implementation in Semantic Web languages and 

technologies to include the mathematical properties supporting robust knowledge representation 

to address military applications. Subsequently, the algorithms for automated reasoning and 

inferencing with DLs are discussed. Included in this discussion is a comparison of available 

Semantic Web applications for ontology development and realization or DL reasoning 

capabilities with real-world knowledge bases. Finally, mechanisms for applying AI techniques to 

ontological DL information are presented. 
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IV. METHODOLOGY 

A. MISSION REPRESENTATION USING AUTONOMOUS VEHICLE COMMAND 
LANGUAGE (AVCL) 

Informed by aforementioned research efforts, this research sought to realize a structured 

vocabulary to define unmanned-system missions that is understandable by human commanders 

and useful in multiple programming languages, plus Semantic Web logical queries, in order to 

facilitate formalizing mission ontologies, i.e., MEO. Based on this realization, Autonomous 

Vehicle Command Language (AVCL) is used for the MEO process. 

AVCL is a command and control language for humans supervising autonomous 

unmanned vehicles. Clarity of the ontology represented by AVCL arises from close 

correspondence to human Naval terminology. AVCL has structured vocabulary defining terms 

and relationships for mission planning, execution, conduct, recording and replay across diverse 

robot types. Additionally, AVCL has common-ground Extensible Markup Language (XML) 

representations for mission agenda plans, mission scripts, and post-mission recorded telemetry 

results. Through AVCL, operators have a single archivable, validatable format for robot tasking, 

and results are directly convertible to and from a wide variety of different robot command 

languages. 

A consideration for future work in AVCL is defining unit tests and expected results for 

mission verification and validation. This approach can grow as the basis of robot qualification by 

humans, and formal techniques for verification, validation, and accreditation (VV&A).  The 

following website contains detailed information on AVCL: 

https://savage.nps.edu/Savage/AuvWorkbench/AVCL/AVCL.html 

The MEO methodology applies well-developed Semantic Web Standards that integrate 

queries and reasoning to AVCL for logical consistency checks. This integration of Semantic 

Web Standards and AVCL results in the MEO methodology having an additional benefit of 

laying a foundation for an open system architecture framework for implementing ethical control 

of unmanned systems.  

 

https://savage.nps.edu/Savage/AuvWorkbench/AVCL/AVCL.html
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B. KEY BENEFITS OF APPLYING SEMANTIC WEB STANDARDS IN MISSION 
EXECUTION ONTOLOGY (MEO) 

This section highlights three benefits of the integration of Semantic Web Standards with 

AVCL representations of mission orders that form the basis of MEO. 

1. Improving Semantic Representation 
Knowledge Representation (KR) is an area of AI research and practice focused on 

encoding meaning into data. Academia and industry now have a detailed path toward higher 

levels of machine understanding corresponding to human understanding. Figure 1 depicts the 

Ontology Spectrum in terms of a relationship between search capability into a data set and its 

metadata that would lead to understanding the semantics of the data set. The figure shows that 

semantic representation improves as the search capability increases from simple recovery of data 

to being able to reason from the data. 

 

 
Figure 1. The Ontology Spectrum. Acronyms: Database (DB). Extensible Markup Language (XML). 
Resource Description Format / Schema (RDF/S). Unified Modeling Language (UML). Web Ontology 

Language (OWL). (Orbst and Davis, May 2015) 
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2. Improving Interoperability 
This project defines Interoperability as “the capability of a system to automatically, 

without human intervention, provide services to and accept services from other systems, and to 

use the services so exchanged to enable the systems to work together to achieve a desired 

outcome” (Blais and Lacy, 2004). Academia and industry have laid out a path toward higher 

levels of interoperability. Figure 2 shows the Levels of Conceptual Interoperability Model 

(LCIM) (Tolk et al., January 2006). The LCIM categorizes interoperability in six levels, from 

Level 0 (No Interoperability) to Level 6 (Conceptual Interoperability). The objective is to 

achieve conceptual and pragmatic interoperability such that the systems may be composable. 

 

 
Figure 2. Levels of Conceptual Interoperability Model. (Tolk et al., January 2006) 

 

3. Scalable Application 
Architects of the World Wide Web Consortium (W3C) have laid out a layered set of 

standards to achieve the Semantic Web vision: “not a separate Web but an extension of the 

current one, in which information is given well-defined meaning, better enabling computers and 

people to work in cooperation” (Berners-Lee et al., 2001). The ultimate goal for the Semantic 



 14 

Web is to achieve a scalable trusted information infrastructure where humans and software 

interact meaningfully, in a repeatable environment where expectations of quality and integrity 

are met. Most relevant to the MEO methodology is the scalable approach of the Semantic Web 

standards, which indicates that single (ship + robot) solutions have the potential to grow and 

encompass many simultaneous systems, and achieve improved data sharing, mission de-

confliction, and coordinated operations. 

Figure 3 shows the architecture of the Semantic Web Stack. This architecture extends the 

larger World Wide Web architecture. All of the Semantic Web data languages are approved 

W3C Recommendations, meaning formal standards that have undergone a rigorous process for 

broad inputs and tested results. Examining each of the critical blocks in this figure, it is clear that 

proof and unifying logic are mathematically well-defined. Trust-derived (composed) statements 

in the Semantic Web architecture arise from encryption and digital signature, confirming trusted 

data sources. Formal logic of trust statements is the basis for deriving new information. This 

project exercises every layer of the Semantic Web Stack (“Semantic Web Stack,” 2020). 

 

 
Figure 3. The Semantic Web Stack. (“Semantic Web Stack,” 2020) 
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C. MEO DEVELOPMENT USING SEMANTIC WEB STANDARDS 
This section describes the development of the MEO methodology that leverages these 

aforementioned benefits of Semantic Web standards. The methodology developed in the project 

for MEO—representation of mission orders for robots in ontological forms using Semantic Web 

standards—consists of the following tasks: 

• Define MEO from concepts, properties, relationships using Protégé tool. 

• Create full set of canonical missions in AVCL (XML). 

• Transform AVCL representation of the missions into corresponding subject-predicate-
object triples using Semantic Web standards in OWL. 

• Confirm that AVCL MEO missions validate satisfactorily using Protégé. 

• Automate build process as a suite of repeatable unit-test queries (log). 

• Write SPARQL Protocol and RDF Query Language (SPARQL) metaqueries to test and 
demonstrate MEO concepts and relationships. 

• Write SPARQL queries to test AVCL mission representations in Turtle. 
Specific tasks for developing the MEO methodology above are performed in the Apache 

Ant software building tool. Refer to the project website (link provided in Appendix A) for 

additional documentation. 

 

1. Ontology Definition 
Table 1 summarizes the key elements used in the MEO methodology that work together 

to implement the aforementioned tasks to represent mission orders for unmanned systems. 

 
Table 1. Summary of Relationships in MEO Methodology for Ethical Control of Unmanned Systems in 
Surrogate Scenarios 
Key Element Contribution to MEO Methodology 
Autonomous Vehicle Command Language (AVCL) 

for Missions 

• Declarative XML, years of NPS research. 

Multiple Mission Representations • Imperative commands (orders/waypoints/etc.). 
• Declarative commands (mission goals). 
• Mission results (order log, telemetry etc.). 
• Mission metadata for parameters, settings. 
• Lisp and Prolog examples (Bob McGhee, NPS). 

Autonomous Unmanned Vehicle (AUV) 

Workbench Simulation and Visualization Support 

• Recently restored, debug testing commenced. 
• AVCL 2.1 is prior published version, centered on 

syntactic validation, solo robot operations. 
• AVCL 3.0 is new working version for testing 

range of multi-participant missions. 
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Key Element Contribution to MEO Methodology 
Mission Execution Ontology (MEO) for Semantic 

Validation 

• Semantic Web framework of rules, relationships 
for ethical validation. 

• Initial examples in IEEE JOE paper. 
• Retested using current Protégé, Jena tools. 

Sailor Overboard and Other Missions • Hand-crafted triples using Turtle syntax. 
• Beginning to build unit testing framework. 
• Confirming correlation of AVCL information 

model to existing MEO ontology. 
• Automatic conversion of AVCL missions to 

match, thus accelerating multiple-mission testing 
on diverse systems. 

• Visualization, reporting via AUV Workbench can 
aid understanding, mission planning and further 
progress. 

 

Figure 4 is a diagram of the unmanned vehicle MEO that shows how the aforementioned 

key elements interrelate. The MEO interrelates the mission order to the unmanned vehicle based 

on the concepts of Mission, Goal, Intended Outcome, Constraint, and End Condition, as well as 

Vehicle and Vehicle Feature to perform the mission. The interrelationships between the concepts 

may be Asserted or Inferred. An Asserted relationship is one that is explicitly declared in AVCL 

to represent the corresponding mission execution action. An Inferred relationship is implicit by 

semantic relationships. 

 

 
Figure 4. Unmanned Vehicle MEO 
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2. Ontology Testing 
Once the interrelationships of the MEO are defined, a Semantic Web Standards tool such 

as Protégé is then used to implement and test the ontology for reasonableness and non-

contradiction. Figure 5 is a graphical depiction of MEO in Protégé. 

 
Figure 5. MEO Testing Using Protégé Tool 

3. Ontology Confirmation and Validation 
Semantic query language is used to confirm the mission ontology. This research uses 

SPARQL, standardized as a W3C recommendation, to express queries in RDF/ OWL or Turtle 

syntax against the missions represented in AVCL. The query results of the MEO reveal 

interesting properties about the missions that are otherwise difficult to determine. Inferences in 

MEO can also be combined and correlated. The goal of MEO confirmation using semantic query 

language is to express in-depth mission-related queries that determine whether all logical mission 

prerequisites and constraints are satisfied, and whether tactical policies and Rules of Engagement 

(ROE) are met.  

After the MEO of the mission order is implemented and tested for reasonableness and 

non-contradiction, a Semantic Web Standards tool can be used to validate the MEO. Figure 6 is a 

graphical example of a mission validation using the Protégé tool. 
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Figure 6. Example Mission Validation Using Protégé Tool 

 

For the same scenario, Figure 7 contains examples of relationship definitions of the MEO 

expressed in Subject-Predicate-Object form using Turtle Syntax of Semantic Web Standards. 

This form of MEO expression facilitates validation and queries for logical coherence. 

 
Figure 7. Examples of MEO Relationship Definitions Expressed in Turtle Syntax of Subject-Predicate-Object 

Triples 
 

4. Ontology Implementation 
Once the MEO of the mission order is validated, it is now ready for implementation in a 

mission for the assigned unmanned systems. Figure 8 is a graphical representation of the Sailor 

Overboard recovery mission for an unmanned system that is defined using the MEO 

methodology. 
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Figure 8. Ethical Control of Unmanned Systems in a Surrogate Scenario: Sailor Overboard Recovery Mission 

Defined Using the MEO Methodology 
 

Refer to the project website (link provided in Appendix A) for additional documentation 

of the result of this MEO confirmation using SPARQL. 

The next chapter presents applications of the MEO methodology in the design, 

development, and testing of a set of exemplar missions in Naval operations. 
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V. APPLICATION OF THE MEO METHODOLOGY 

Lifesaving missions—and missions accomplished with lethal force—are complementary 

in military operations. Human-robot activity can result in lethal or lifesaving outcomes. 

Continuing refinement and clarity in mission design are opening the path to repeatability, and 

hence a methodology for implementing ethical control of unmanned systems. This section 

discusses application of the Observe-Orient-Decide-Act (OODA) Loop decision paradigm to 

unmanned system mission design in order to harmonize unmanned system missions with human 

operations. 

 

A. ENABLING TECHNOLOGIES AND CONCEPTS 
Artificial Intelligence (AI), conceptual chunking (of information), and algorithm loop 

management are relevant in the development and design of missions for unmanned systems. 

1. Artificial Intelligence (AI) 
AI turns data into information for use by humans. AI systems do not have capacity for 

rational thought or morality. Unmanned systems require sophisticated control across time and 

space. A large and involved body of internationally accepted law comprises Law of Armed 

Conflict (LOAC), bounding Rules of Engagement (ROE). Only professional warfighters have 

moral capacity, legal culpability, and societal authority to direct actions applying lethal force. 

Humans must be able to trust that systems under their direction will do what they are told to do, 

and not do what they are forbidden to do.  

2. Conceptual Chunking 
Conceptual Chunking includes the following characteristics (“Chunking (psychology),” 

2020):  

• In cognitive psychology, chunking is a process by which individual pieces of an 
information set are broken down and then grouped together. 

• A chunk is a collection of basic familiar units that have been grouped together and 
stored in a person’s memory. These chunks are able to be retrieved more easily due to 
their coherent familiarity. 

• It is believed that individuals create higher order cognitive representations of the 
items within the chunk. The items are more easily remembered as a group than as the 
individual items themselves. 
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• These chunks can be highly subjective because they rely on an individual’s 
perceptions and past experiences that are able to be linked to the information set. The 
size of the chunks generally range anywhere from two to six items, but often differ 
based on language and culture. 

Design experience in this research has demonstrated Conceptual Chunking for mission 

design by grouping goal tasks within specific mission phases.  

3. Algorithm Loop Management 
Proper algorithms always include one or more termination conditions. A sequence of 

operations proceeds through a finite number of steps, otherwise the system is performing an 

infinite loop without end. Infinite-loop sequencing or unterminated recursion are common 

computational failure modes and must be protected against for reliable operations. Nevertheless, 

a frequent characteristic of at-sea operations is to perform repeated tasks in an interactive fashion 

until complete—either via task success or a terminating condition that forces halting of the 

process.  

The presence of termination conditions can be verified in mission logic and tested in 

simulation. Example terminating conditions, some fixed/adaptive, and some 

iterative/exceptional, are: 

• Reach maximum number of iterations 

• Point of diminishing returns (e.g., unchanging search effectiveness) 

• Time-out deadline reached, or else no longer feasible to continue 

• Insufficient power remains, conduct graceful shutdown for recovery 

• Equipment damage or unexpected software failure; log and shutdown 

• Interfering operational conditions (e.g., potential hazard to friendlies) 

• Human direction asserts higher priority and overrides decision logic 
A recommended future work is to express precisely in AVCL all termination conditions 

such as those listed above as constraints in MEO for algorithm loop management. 

 

B. MISSION ORDER DESIGN CONSIDERATIONS 
1. Mission Order Clarity 
Clarity is paramount when giving or receiving mission orders. It is especially important 

for human Commanders providing clear directions to Human-Machine teams. Commanders must 

avoid the danger of ambiguity, or even anthropomorphizing robots as human-like. Simplicity of 
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success, failure, and (rare) exception outcomes encourages well-defined tasks and unambiguous, 

measurable criteria for continuation. Furthermore, the following set of complementary questions 

applies as an incisive determination for clarity in Human-Machine missions: A wrong question 

to ask first when planning a tactical operation for a Human-Machine team is: “What are my 

robots doing out there?” Rather, the right question to ask first when planning a tactical operation 

would be: “What is my human-robot team doing out there?” Human-robot team missions first 

have to be understood! Indeed, robots complement humans, who must remain in charge 

throughout.  

There is an added benefit of mission order clarity: Mission orders that are clearly 

readable/runnable by humans and robots can be further composed and checked by Command and 

Control (C2) planning tools to test for group operational-space management, e.g., force 

movement coordination, avoid mutual interference, weapon engagement zone assignments, etc. 

2. Mission Order Validation 
Mission orders must be both clear and validatable prior to dissemination and execution. 

Clear mission orders in this context are understandable by humans and readable by unmanned 

systems. They are validatable as syntactically correct, having no typographic errors or gaps, and 

avoiding non-sequitur “Garbage In. Garbage Out” (GIGO). Clear mission orders are also 

validatable as semantically correct, having no prerequisite omissions or contradictions. For 

example, upon review of a mission order, a Tactical Action Officer (or Commanding Officer) 

validates the mission order when he/she can confidently say: “Yes, I understand and approve this 

human-robot mission”; or, equivalently: “Yes, I understand this mission and my team has the 

ability to carry it out themselves.” Conversely, if a mission order is organized and/or presented 

such that a Human Commander/Operator cannot fully review, understand, and/or approve such 

mission, then it is likely that the received mission order is ill-defined and needs further 

clarification anyway. 

3. Application of Conceptual Chunking for Mission Order Clarity and 
Validation 

Aspects of AVCL-represented mission orders are designed to support chunking for 

clarity. These AVCL attributes include a well-defined, structured vocabulary that can describe a 

hierarchy of distinct, familiar goals. This project shows that it is feasible to group (i.e., by 

chunking) mission goal tasks within specific mission phase definitions to achieve mission order 
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clarity. A recommended future work for applying conceptual chunking for mission order clarity 

is to demonstrate best practices for characterizing common mission phases in order to establish 

testable design patterns for mission orders as templates that aid operators in issuing clear and 

validatable mission orders. 

4. Mission Execution Decision Process: The “Observe-Orient-Decide-Act 
(OODA)” Loop 

With respect to mission order clarity, if the Human Commander/decision maker does not 

apply a decision model such as an OODA Loop, the Human Commander does not have a 

competent decision model through which to execute the assigned mission order, no matter the 

clarity and validity of the order. “The OODA loop is the cycle Observe–Orient–Decide–Act, 

developed by military strategist and USAF Colonel John Boyd. Boyd applied the concept to the 

combat operations process, often at the operational level during military campaigns. It is now 

also often applied to understand commercial operations and learning processes. The approach 

explains how agility can overcome raw power in dealing with human opponents.” (“OODA 

loop,” 2020) All effective purposeful military activity can be conceived in terms of the OODA 

Loop process, especially at tactical/operational levels. Based on its succinctness in describing the 

decision process, the MEO methodology aligns its mission design with the phases of the OODA 

Loop in order to ensure that unmanned systems will be able to emulate the decision process of 

the human operator/team member within the Human-Machine team. 

The reason for applying the OODA Loop in mission design for ethical control of 

unmanned systems is that the classical, robotic Sense-Decide-Act cycle for closed-loop control 

of unmanned systems is insufficient for proper delegation of lethal (or lifesaving) force to the 

unmanned systems. The OODA Loop decision model is essential for coherent operations in 

Human-Machine Teams.  

In the OODA Loop for unmanned systems, the Observe phase is the beginning of the 

decision process and includes direct sensing and communication inputs. The Orient phase 

includes thorough Rules of Engagement (ROE) constraints and IFFNU (identification, friend, 

foe, neutral, unknown) of all relevant contacts. The Decision phase implements the logic of 

unmanned system tactics, techniques, and procedures (TTP), including authorization and 

confirmation by human supervisors, either in real-time or in advance (pre-planned and/or stored 

in memory), for critical decision steps leading to use of lethal force. The Act phase is 
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implemented in tandem with direct or intermittent human supervisory commands that enable 

effective Ethical Control of remote systems. The process repeats as the unmanned system 

observes and senses the impact of its actions. This feedback loop is essential for decision making 

and refinement, and generally leading to, without surprise, more effective military operations. 

Therefore, unmanned system activity must complement, not contradict, human decision 

processes such as the OODA Loop paradigm. 

5. Mission Order Coherence 
Application of ROE and LOAC requirements in MEO may be a part of the Mission 

Definition step of the MEO methodology (described in Section III.B.4), where relationships and 

requirements for mission execution are defined. For example, typically, an ROE requirement 

may be represented as Goal success/failure criteria, preset authorities, or time-outs for 

delegation, etc., and as Constraints on mission conduct, e.g., safe zones, permission 

periods/requirements, etc. When human Commanders confirm correct inclusion of ROE 

requirements in mission orders, they essentially perform an audit of doctrine and TTPs. Similar 

audit confirmation can be applied to well-structured orders. As previously mentioned in Section 

III.C.5, AVCL has demonstrated that it can be used to develop and express well-defined mission 

goals for unmanned systems. The mission analyst can then perform SPARQL queries of the 

MEO for logic-confirmation checks. The resulting mission orders are thus coherent from the 

OODA perspective. 

6. Tactical Span of Control 
Span of control is number of subordinates reporting to a supervisor. In effect, multiple 

offboard unmanned systems supervised by a ship comprise its span of control across the tactical 

battlespace. Tactical span of control is required for any Commander who commands 

subordinates. Greater tactical presence across distances of time and space means the ship 

commanders have greater ability to influence their assigned area of operation. Clear mission 

guidance on human-checkpoint requirements reduces dependency on communication links (i.e., 

Network Optional Warfare). Figure 9 illustrates how such increased ability to project power 

enables the ship to maintain chosen standoff location while focusing direct attention and actions 

in multiple locations at once. 
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Figure 9. Example Scenario of Ethical Conundrum for Unmanned System Mission Execution. 

 

C. CANONICAL MISSION SCENARIO DEVELOPMENT 
Unmanned systems working in tandem with human forces, authorized by the commander 

for lifesaving or lethal force, can handle progressive challenges in distance and time. This 

research project has developed four categories of mission scenarios in progressive sophistication 

to test and evaluate Ethical Control design: 

1. Basic: Show flow-logic of ternary control in a simple, real-time scenario. 
2. Intermediate: Adds looping logic and long-time duration activity at long-distance but 

with real-time communication. 
3. Advanced: Adds long duration with possible loss of communication. 
4. Operational Standard: Encounters deceptive and unconventional adversary and 

responds with proportional force.  
Each category has an exemplar mission from representative Naval operations. The 

missions themselves are carefully crafted in a narrow sense in order to illustrate and test specific 

characteristics of the Ethical Control methodology. These exemplar missions form the set of 

canonical missions for this study: 

Exemplar Mission A: Sailor Overboard. The Unmanned System is assigned to apply 
lifesaving force under close coordination to recover the sailor. 
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Exemplar Mission B: Lifeboat Tracking. The Unmanned System is tasked to apply 
lifesaving force to search and track lifeboats at long distance from the Human 
Commander. 
Exemplar Mission C: Pirate Boats Attack. The Unmanned System equipped with 
lifesaving and lethal force is assigned to overtake a pirate small-boat gang attempting to 
capture a threatened evading merchant ship in order to protect the merchant ship. The 
Unmanned System must operate over a long time period for the mission, emphasizing 
restraint throughout.  
Exemplar Mission D: Hospital Ship EM Decoy. The Unmanned System equipped with 
lifesaving and lethal force is assigned to patrol the perimeter of the task force and 
encounters a deceptive and unconventional adversary. For comparison, two variations 
show the fundamental importance of ethical constraints on mission execution.   

• Sense-Decide-Act Loop. This commonplace pathology illustrates lack of ethical 
control. Adversary exploits the Unmanned System’s rudimentary Sense-Decide-Act 
capabilities as vulnerabilities, and provokes it to immediately react with a 
counterattack on a False-Flagged Hospital Ship. 

• Observe-Orient-Decide-Act (OODA) Loop. This scenario demonstrates that addition 
of ethical control to Sense-Decide-Act overcomes limitations of independent machine 
response, and indeed leads to more effective warfighting. OODA Loop tactics and 
Ethical Control constraints prevent automatic erroneous counterattack against false 
flag placed on friendly ship, and thus improves defense. Human confirmation of the 
Unmanned System’s Identification Friend, Foe, Neutral, or Unknown (IFFNU) 
classification result to detect spoofing anti-pattern, and authorization for the 
Unmanned System to apply lethal force prior to use, prevents reflexive automatic 
counterattack and accelerates defense of the force. 

A range of functionality that tests the majority of Ethical Control capabilities currently 

envisioned has been demonstrated in this project. These canonical mission capabilities also set 

the stage for further research in missions and scenarios of interest, e.g., Human-Machine Teams 

in a Counter-Swarming mission. 

Completing this initial set of canonical missions demonstrates both logical soundness and 

human comprehensibility of the Ethical Control methodology, for both lifesaving and lethal 

force. This initial set of missions “tuned up” the AVCL vocabulary for mission orders, revealing 

good practices and repeatable design patterns for common activities in diverse missions. The 

AVCL representations of various mission orders are subsequently translated into corresponding 

Semantic Web Standards ontology representations in order to perform semantic validation of 

correctness of ethical constraints. Then, using the AVCL representation of the mission orders, 

simulation of the mission is performed in the AUV Workbench tool to show that the mission 

executes in simulation, or else reveals hidden flaws.  
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Table 2 summarizes the five canonical missions and the tasks the unmanned systems 

would need to perform in each phase of the OODA Loop. 
Table 2. Tasks Assigned to Unmanned Systems in Each Phase of the OODA Loop  

for Four Canonical Missions in Naval Operations 
 

Exemplar 
Missions 

Observe Orient Decide  Act 

Sailor Overboard Find Sailor Report status Avoid interference Track sailor until rescued or 
relieved 

Lifeboat Tracking Find lifeboat Report status Two-way 
communication 

Track lifeboat until relieved 

Pirate Boats 
Attack 

Find merchant 
ship, pirate small 
boats 

• Identify Friend, 
Foe, Neutral, 
Unknown 
(IFFNU) 

• Issue warnings 

Human commander 
authorization to use 
lethal force 

Attack to defend ship if 
provoked, stay with 
merchant 

Hospital Ship EM 
Decoy: Sense-
Decide-Act Loop 

EM threat signals 
detected 

(no orientation 
step in Sense-
Decide-Act) 

Reflex-response 
weapons attack 

Mistaken attack on friendly 
or neutral forces equals a 
war crime 

Hospital Ship EM 
Decoy: OODA 
Loop 

EM threat signals 
detected 

IFFNU(including 
correlation)  

Human requirement 
for lethal force 
unmet, attack 
avoided 

Report threat alert, 
commence search for 
hostile actors  

 

Based on the research accomplished in this project, a recommended future work is to 

prepare and develop comprehensive testing of unmanned systems mission orders across the 

range of assigned mission requirements that constitute the operational qualification process for 

the unmanned system. By applying the MEO methodology in the aforementioned scenarios, a 

scale for qualifying unmanned systems for performing missions under Ethical Control emerges: 

Level 1: Basic. Qualified to apply lifesaving force under close coordination with the 
Human Commander, e.g., Sailor Overboard Recovery mission. 
Level 2: Intermediate. Qualified to apply lifesaving force at long distance from the 
Human Commander, e.g., Search and Rescue mission. 
Level 3: Advanced. Qualified to apply organic lifesaving/lethal force over long time 
periods for the mission, emphasizing restraint throughout, e.g., Counter-Piracy mission.  
Level 4: Operational Standard. Qualified to apply organic lifesaving/lethal force in 
contested/deceptive environments, e.g., Force Protection mission. Uses human 
confirmation of Identification Friend, Foe, Neutral, or Unknown (IFFNU) classification 
result to detect spoofing anti-pattern, with authorization required to apply lethal force, 
prevent reflexive automatic counterattack response, and engage with proportional force.  
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Each of the four canonical missions has the following structure: 

a. Design and Description 

b. Mission Decision-Flow Diagram 

c. AVCL implementation source: version control, XML Spy table 

d. Semantic Web Mission MEO .ttl Turtle representation 

e. SPARQL semantic queries 

f. Lisp and Prolog autocode 

g. AUV Workbench simulation 

 

1. Basic Mission for Unmanned Systems: Sailor Overboard for Lifesaving 
Force under Close Coordination 

The scenario is a single unmanned air/surface vehicle performing lifesaving actions to 

complement human responses during “Sailor Overboard” recovery operations. Robot actions are 

carried out in direct concert with formal shipboard emergency procedures. Multiple Unmanned 

Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs) might be employed in parallel 

with ships and aircraft, and must avoid mutual interference by each following de-conflicted 

mission orders. The Phases of mission are: Deploy/Launch, Rendezvous, Track Sailor until Safe, 

and Return/Recovery. The Human Supervisory Role is to order the responding unmanned 

systems to standoff should they become interfering, and possibly take manual control due to 

proximity. Rescuers can communicate to the sailor overboard via loudspeaker or beacon light. 

a. Design and Description 
This scenario is used to show that mission design can complement shipboard 

procedures. The scenario explores how lifesaving force is complementary to lethal force, with 

many similar considerations for remote supervision. This scenario is the first one studied in this 

project in order to demonstrate human-system teaming in close proximity to the ship in 

command, where direct override of robot control by human operator is possible. There would be 

no temporal delays in mission execution—all actions and reactions must be immediate. These 

operational requirements form the basic level of ethical control and constraints on the unmanned 

system.  
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b. Mission Decision-Flow Diagram 
Figure 10 is the Mission Decision-Flow Diagram for the Sailor Overboard 

mission. 

 
Figure 10. Sailor Overboard Mission Decision-Flow Diagram 

  

A lesson learned from implementing the MEO methodology for this scenario is the need 

for good mission design patterns that visually represent the AVCL mission satisfactorily, and 

diagramming missions into decision phases using a temporal flow representation (left to right, 

e.g., Gantt chart). Hence, the Mission Decision-Flow diagram is an important step in the analysis 

of the mission in a particular scenario. 

c. AVCL Implementation Source: Version Control, XML Spy Table 
The AVCL representation of the Unmanned Systems’ mission order for this 

scenario may be reviewed here: 

https://gitlab.nps.edu/Savage/EthicalControl/blob/master/missions/avcl/SailorOverboard.xml 

https://gitlab.nps.edu/Savage/EthicalControl/blob/master/missions/avcl/SailorOverboard.xml
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d. Semantic Web Mission MEO .ttl Turtle representation 
The Semantic Web Standards in Terse RDF Triple (.ttl) format of the MEO for 

the scenario may be reviewed here: https://gitlab.nps.edu/Savage/EthicalControl/-

/blob/master/ontologies/MissionExecutionOntology3.0.ttl 

e. SPARQL Semantic Queries 
For confirmation and validation, the SPARQL queries of the MEO may be 

reviewed here: 

https://gitlab.nps.edu/Savage/EthicalControl/blob/master/queries/MissionQuery_01_GoalBranch

es.rq 

f. Lisp and Prolog Autocode 
The query results in Lisp and Prolog form may be reviewed here: 

https://gitlab.nps.edu/Savage/EthicalControl/-

/blob/master/queries/SailorOverboardConverted.MissionQuery_01_GoalBranches.rq.txt 

g. AUV Workbench Simulation 
Figure 11 is a screenshot of the graphical layout of the simulation of the scenario 

in the simulation environment in the AUV Workbench tool. 

 

 
Figure 11. Sailor Overboard Mission Scenario as Simulated Using AUV Workbench (AUVW) 
 

https://gitlab.nps.edu/Savage/EthicalControl/-/blob/master/ontologies/MissionExecutionOntology3.0.ttl
https://gitlab.nps.edu/Savage/EthicalControl/-/blob/master/ontologies/MissionExecutionOntology3.0.ttl
https://gitlab.nps.edu/Savage/EthicalControl/blob/master/queries/MissionQuery_01_GoalBranches.rq
https://gitlab.nps.edu/Savage/EthicalControl/blob/master/queries/MissionQuery_01_GoalBranches.rq
https://gitlab.nps.edu/Savage/EthicalControl/-/blob/master/queries/SailorOverboardConverted.MissionQuery_01_GoalBranches.rq.txt
https://gitlab.nps.edu/Savage/EthicalControl/-/blob/master/queries/SailorOverboardConverted.MissionQuery_01_GoalBranches.rq.txt
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For brevity, this report presents the Mission Design and Description, as well as the 

Mission Decision-Flow Diagram for each of the subsequent scenarios. The NPS project website 

contains the MEO in AVCL, the Semantic Web SPARQL queries for confirmation and 

validation and the respective results, as well as the AUV Workbench simulation. These results 

for all missions are posted here: https://gitlab.nps.edu/Savage/EthicalControl/-/tree/master  

2. Intermediate Mission: Lifeboat Tracking and Lifesaving Force Application 
under Remote Condition 

This mission is similar to Sailor Overboard in demonstrating use of lifesaving force, but 

with far greater distances, over the horizon, and increases the ship Commander’s tactical span of 

control. Potential for intermittent or lost communications in real time requires advance guidance 

for default behaviors desired by the human controller. Consideration of possible transfer of 

supervisory control mid-mission to another cooperating vessel appears feasible. The lessons 

learned from this scenario include Vertical grouping of related subtasks in a mission phase helps 

in structuring mission goal sets, without requiring a change to the ternary logic of AVCL mission 

goals. Also, coexistence of multiple constraints is possible, but requires careful thought to design 

and implement. 

a. Design and Description 
The mission for the unmanned system in this scenario is to provide remote 

presence for locating, tracking, communicating, and beaconing. The mission Phases are: 

Deploy/Launch, Rendezvous, Track Lifeboat, Beacon/Communicate, and Return/Recovery. The 

Human Supervisory Role and Constraints are to monitor, communicate, respond or coordinate 

rescue effort. Considerations for a low fuel condition and graceful-degradation response are 

included in the MEO. The mission presents an intermediate level of ethical challenge for the 

unmanned system and the Human operator due to the increased physical distance and tactical 

span of control.  

b. Mission Decision-Flow Diagram 
Figure 12 is the Mission Decision-Flow Diagram for this mission. 

https://gitlab.nps.edu/Savage/EthicalControl/-/tree/master
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Figure 12. Decision-Flow Diagram for Lifeboat Tracking Mission 

 

3. Advanced Mission: Deter Pirate Boats Seizing Merchant Ship with Ability 
for Steady Escalation to Lethal Force  

The motivations for the design of this mission are the necessity to apply lethal force 

against pirates distant from ownship, and corresponding lifesaving force potential for the hostage 

merchant crew. In the scenario, unmanned systems must operate over a long time period, 

emphasizing restraint throughout. Additionally, supervisory checkpoints for human operator 

control of the unmanned systems are soft and strict. The lessons learned from this scenario 

include the concept of phases helps organize overall mission structure sensibly (e.g., approach, 

warning, attack, recovery). Additionally, decision looping is necessary, with human control as 

checkpoints to help avoid deadlock (i.e., algorithm loop management). 

a. Design and Description 
The unmanned systems’ mission in this scenario is to overtake a pirate small-boat 

gang attempting to capture a threatened evading merchant ship. The mission has the following 

phases: Deploy/Launch, Search, Approach and Track, Warning, and Attack. For Human 

Supervisory Role and Constraints, the Human Commander controls the pace of engagement, and 
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the role of careful, deliberate escalation in the use of force. The Human Commander/Operator 

must also confirm IFFNU classification, and must order lethal force prior to use. The scenario 

includes a low-fuel condition for the unmanned system and consequent graceful-degradation 

response for realism. Additionally, the scenario presents an ethical conundrum for the Human-

Machine Team with low ammunition condition in the Unmanned Systems, with consideration for 

the team to assign the Unmanned Systems to fight to the finish, or stand in reserve.  

b. Mission Decision-Flow Diagrams 
Figures 13 through 15 are the Mission Decision-Flow Diagrams for the counter-

piracy scenario covering the Approach, Escalation, and Counterattack phases of the mission. 

 

 
Figure 13. Decision-Flow Diagram for Pirate Boats Attack Mission—Approach Phases 
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Figure 14. Decision-Flow Diagram for Escalation Phases of the Pirate Boats Attack Mission 

 

 
Figure 15. Decision-Flow Diagram for Counterattack Phase of Pirate Boats Attack Mission 
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This Counter-Piracy scenario presents an advanced challenge for the Human-Machine 

Team, as it adds criteria for the unmanned system to use lethal force in order to achieve its 

assigned mission. However, while the scenario is considered advanced for an unmanned system 

to perform, the scenario does not include the very real possibility of operations in an 

environment that is denied, degraded, and even deceptive, due to an adversary’s actions. Having 

unmanned systems capable of maintain ethical control in such an environment is the operational 

standard, and so the next scenario is developed. 

 

4. Operational Standard for Ethical Control of Unmanned Systems: Respond to 
Hospital Ship EM Decoy with Proportional Force 

This scenario highlights that simplistic Sense-Decide-Act responses of unmanned 

systems in the Human-Machine Team are exploitable easily by an adversary. Failure to operate 

with ethical control in this scenario results in blue-on-blue damage, self-inflicted war crime, and 

likely stand-down of all unmanned systems. In this scenario, two unmanned systems mission 

operations methods are used for comparison—one with and one without ethical control. 

Comparison with OODA Loop principles ensures that human-robot teamed operations are well 

understood and tactically effective. 

a. Design and Description 
The purpose of this mission is for comparison. Immediate reaction by a robot 

swarm using only the Sense-Decide-Act cycle results in unintended blue-on-blue war crime. 

Ethical Control constraints (OODA Loop and using IFFNU for correlation) prevent automatic 

counterattack and accelerate defense. The Phases of the mission are: Set response thresholds, 

detect threat, and counterattack ship or threat. For this mission, the Human Supervisory Role is: 

Confirm IFFNU classification and must permit lethal force prior to use. 

b. Mission Decision-Flow Diagram 
Since the adversary “gets a vote” in the decision process in the real world, this 

scenario incorporates the adversary’s decision flow. Figure 16 is the Adversary’s decision-flow 

diagram to deceive and exploit the Friendly Human-Machine Team. 
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Figure 16. Adversary’s Decision-Flow Diagram for Hospital Ship EM Decoy Mission 

 

 Figure 17 presents a comparison of ethically controlled responses of the unmanned 

systems in this scenario. The decision-flow diagram in the top half of the figure shows the 

possibility and consequence of a reflexive response by the unmanned system. Were the 

unmanned system to execute the mission based on “Sense-Decide-Act” decision flow—i.e., the 

unmanned system is equipped with a simplistic “Orient” phase that performs little to no IFFNU 

processing—it would be deceived into responding in such a way that ultimately results in blue-

on-blue engagements. Conversely, the operational standard for ethically controlled unmanned 

system mission execution is shown in the bottom half of the figure. The incorporation of 

additional and/or advanced IFFNU and confirmation actions in the “Orient” phase in the 

unmanned system’s decision algorithms contributes to successful mission accomplishment that is 

compliant with ethical constraints. 
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Figure 17. Decision-Flow Comparison between Mission Orders with and without Robust OODA Loop 

Paradigm in Hospital Ship EM Decoy Mission 
 

There is historical context for “false flag” scenarios and similar applications of 

operational deception in maritime operations where a contact appears friendly or neutral, or even 

suspicious, but in reality has hostile intent and is ready to engage in a hostile act. The USS 

COLE bombing on 12 October 2000 in Yemen is an example of such a deceptive suicide attack 

by al-Qaeda terrorists, who disguised a small boat laden with explosives for a suicide attack on 

the COLE. Furthermore, the Rules of Engagement for the crew of the COLE hindered her 

response to the approaching suspicious small boat.  

Real-world operations and scenarios in which Command and Control in a Denied or 

Degraded [or Deceptive, as this research has studied] Environment (C2D2E) are essential, have 

contributed to increasing considerations for applications of unmanned systems and Human-

Machine Teams (Chief of Naval Operations, 2019; see also “Network Optional Warfare,” 2020). 

Therefore, it is paramount that an unmanned system with lethal effects be capable of operating 

and maintaining within ethical control as defined in its mission while it performs its assigned 
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mission in scenarios similar to this one. A rigorous qualification process of unmanned systems 

with lethal effects for operations in this type of environment is thus recommended. 

 

D. ITERATION FOR REFINEMENT 
The MEO methodology adopts many SecDevOps practices (Miller 2019) to support 

iterative improvement. Consequently, several new AVCL mission goal types are developed. 

The current mission-goal vocabulary seems sufficient for most tasks considered. Prior 

work consolidated 12 goal types from multiple data models. For example, the AVCL goal task of 

SampleEnvironment is awkwardly phrased when applied to scanning for vessels. Another AVCL 

goal task, MonitorTransmissions, needs to distinguish transmit and/or receive. Additional goal 

categories can help establish good design patterns for tasks. Precise definitions of AVCL 

configuration settings for missions also need improvement. A checkpoint will help to clarify 

decision branching, including via external communication. Additionally, if algorithm loop 

branching is enabled, termination conditions must be provided in order to avoid infinite loop or 

deadlock conditions. 

The current AVCL version, AVCL3, has mission designs that descriptively apply 

existing goal types, and confirms that these further types are indeed necessary. 

Demonstrations of the MEO methodology are now needed for all missions. In addition to 

AVCL representations of the respective mission orders, the demonstration needs to include 

Semantic Web ethical validation for proven capability and adding depth/breadth. AUV 

Workbench simulation confirmation is also advancing steadily.  

With the aforementioned additions and improvements, and with simulated evidence of 

correctness for all exemplar missions, the MEO methodology for ethical control of unmanned 

systems is now grounded at a higher Technical Readiness Level (TRL) than before the project 

began. These considerations and recommendations for future work are discussed in Chapters 7 

and 8, respectively. 

 



 40 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 

 



 41 

VI. ENABLING TECHNOLOGIES TO OPERATIONALIZE MEO FOR 
ETHICAL CONTROL OF UNMANNED SYSTEMS 

This chapter discusses some technologies that can be used to operationalize ethical 

control in real-world military operations—specifically, technologies that assure secure and 

trusted communication of mission orders in the end-to-end command and control process 

between the Human-Machine Team. These enabling technologies together comprise Data-

Centric Security, which incorporates technologies for Compression, Authentication, Encryption, 

Composability, Blockchain Ledger, and Asymmetric Advantages to enable group 

communication of secure mission orders and responses. Additionally, technologies in 

Programming Languages enable interoperability; furthermore, simulation and visualization 

techniques are relevant for validation and qualification of MEOs. AI/ML is again discussed with 

respect to relevance in ethical control of unmanned systems.  

 

A. DATA-CENTRIC SECURITY 
Data-Centric Security provides a Chain of Trust for distributed Command Authority. This 

Chain of Trust for the security of data consists of Data Structure, Data Compression, Efficient 

Messaging, Digital Signature, and Encryption. Furthermore, Extensible Markup Language 

(XML) is used for security of data in order to accomplish this Chain of Trust. 

1. XML Security for Data 
a. Data Structure 
XML provides formal structure for data models and information exchange. “XML 

is a markup language that defines a set of rules for encoding documents in a format that is both 

human-readable and machine-readable (“XML,” 2020). XML provides declarative and self-

describing data structures, not program source code. Data validation through XML schema 

includes strong typing of values and correct parent-child hierarchical relationships. This avoids 

GIGO pathologies when communicating between multiple systems and across related protocols. 

Similarly applicable are data structures using JavaScript Object Notation (JSON) and other 

formats. XML offers complete precision of expressive power when defining human orders and 

system responses, e.g., via AVCL. 
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b. Data Compression 
Efficient XML Interchange (EXI) provides best-possible compression of XML 

documents, reducing size and speeding up decompression. There have been years of work by an 

exceptionally competent working group, with proven results. EXI has recommendations by the 

World Wide Web Consortium (W3C), with multiple open-source and commercial 

implementations in Java and C++. EXI preserves sufficient structure for lossless composition of 

compressed XML. Thus, even signed and encrypted data documents shown in this work can get 

best-proven compression for use on limited, disadvantaged and challenged communications links 

facing deployed Naval forces. 

c. XML-Enabled Efficient Messaging 
“Efficiency” for smaller data size and computationally simpler loading is 

compatible with Data-Centric Security. Demonstrated thesis work has shown that digital 

signature (for authentication) and XML Encryption (privacy and access control) can coexist with 

efficient compression, when applied in the correct order. Such interoperability for Information 

Assurance (IA) is necessary when working with coalition partners, as well as for safeguarding 

data within deployed unmanned systems that are beyond the reach of network-centric security. 

Navy networks afloat are very different than networks ashore. Bandwidth is a precious 

and finite resource, latency can be huge, connectivity can be intermittent, environmental effects 

dominate, channels are limited in varying ways, and mobile relays are rare. Manned and 

unmanned Naval systems need efficient messaging for networks afloat—but rarely have it. 

Failing to properly utilize communications capacity directly limits tactical effectiveness. 

Efficient messaging is needed to take maximum advantage of severely constrained data 

links. The key to our strategies for achieving efficient messaging is first to use XML for 

structured data languages, and then use EXI for compressing XML. Since XML provides a 

flexible and validatable way to define regular data structures for any language, it provides a 

practical opportunity to compatibly capture and convert all manner of diverse data formats used 

for military messaging. The economics of Web technologies are undeniable and usually provide 

industry-wide best practices as well. As a result, this use of open standards is scalable and 

repeatable, avoiding the “stovepipes” which commonly prevent system-wide interoperability 

between Navy platforms and coalition partners. 
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“Efficiency” means both size and speed. EXI has demonstrated compaction that always 

meets or beats the most commonly used compression techniques (zip and gzip). Additionally, 

because EXI decompression goes straight into memory rather than string characters, which then 

require significant additional parsing, decoding EXI is many times faster than other techniques. 

This approach also reduces memory requirements and power consumption on small devices. 

Because Navy tactical traffic is usually highly structured and highly numeric, EXI provides 

major advantages that might well impact all afloat Navy communications. Alternative bit-centric 

compression schemes cannot take full advantage of those characteristics. 

d. Digital Signature 
XML Digital Signature (DS) defines XML syntax for digital signatures 

promulgated as a W3C Recommendation, stable since 2013, with international adoption 

(https://www.w3.org/TR/xmldsig-core1). Public-private key pairs for signature/authentication 

and key distribution are separate. The technique is applicable to entire documents or to fragments 

(subsections). DS requires XML Canonicalization of input documents to regularize formatting so 

that identical documents are uniquely expressed. DS can sign any data resource for identity 

verification, and non-repudiability for confirmation that original information has not been 

tampered with, etc. DS is completely compatible for data handling within trusted networks. In 

2019, NPS adapted an open-source Java version of Apache Santuario as utility classes and test 

suite for XML Security capabilities (“Apache SantuarioTM,” 2020). Prior project examples of 

XML Encryption and XML Digital Signature from years ago still work.  

e. Encryption 
XML Encryption (XML-Enc) defines how to encrypt XML data. It is available as 

a W3C Recommendation, stable since 2013, with international adoption 

(https://www.w3.org/TR/xmlenc-core1). Public-private (i.e., shared-secret) key pairs and key 

distribution are separate. XML Encryption is applicable to entire documents or to fragments 

(subsections). It is different from Transport Layer Security (TLS), which is used by http/https for 

sending encrypted traffic over the Internet. Some vulnerabilities were reported publicly, but each 

was performed via exhaustive attacks against the server, incrementally analyzing error responses. 

It is not a likely or practical mode of attack against unmanned systems. XML-Enc is completely 

compatible for data handling within already-trusted networks, providing additional security for 

data at rest or data collected in deployed unmanned systems. 

https://www.w3.org/TR/xmldsig-core1
https://www.w3.org/TR/xmlenc-core1
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f. XML-Enabled Secure Data Composition 
EXI Compression, XML Digital Signature, and XML Encryption can be 

composed for applying to data in single files/documents/messages. Each technology works on 

data formatted as valid XML. Multiple NPS theses have examined EXI characteristics in 

combination with XML Security. Such composition is partially demonstrated and appears 

completely feasible. An example of this composition is in Document-based Message-centric 

Security using XML Authentication and Encryption for Coalition and Interagency Operations 

(Williams, 2009). Each technique is usable in concert for Data-Centric Security, compatibly 

within any secure network or within fixed/mobile data storage of unmanned systems. Figure 18 

depicts the Chain of security for data using XML composition. 

 

 
Figure 18. Composition of EXI Compression, XML Digital Signature, and XML Encryption as 

Recommended Best Practice for Secure and Efficient Messaging of Mission Orders to Unmanned Systems 
 

g. Operationalization 
Data-Centric Security that includes authentication of ordered missions for 

unmanned systems provides a military, legal, ethical and moral basis for non-repudiability and 

accountability of human commanders. Authorized humans remain in charge, accountable for 

robot actions. Collected robot data is encrypted in asymmetric manner, greatly reducing 

vulnerabilities following any robot capture or compromise. Data-Centric Security can coexist 

within all levels of network security. Such reliability provides an excellent rationale to link Data-
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Centric Security to design considerations for Ethical Control, compatibly across all networks. 

Once again, Ethical Control leads to more-effective warfighting. 

2. Blockchain Distributed Ledger 
“A distributed ledger is a consensus of replicated, shared, and synchronized digital data 

geographically spread across multiple sites, countries, or institutions. There is no central 

administrator or centralized data storage” (“Distributed ledger,” 2020). Design characteristics of 

a distributed ledger can be tuned to match system needs and include strict sequencing of ledger 

entries, non-repudiability of message sequences, consensus algorithm (proof of work or stake), 

etc. Implementation is often accomplished via a blockchain system.  Characteristics of interest 

follow. 

a. Application of Blockchain Distributed Ledger for Mission Orders 
Significant protections of mission order data from hostile takeover are possible for 

deployed friendly-force robots.  

Accountability for actions requires a traceable, provable decision tree. 

The following vulnerability “anti-pattern” provides an interesting use case, whereby non-

repudiability of mission orders can prevent an opponent from falsely claiming a “rogue robot” or 

“rogue commander” scenario: 

Opponent captures control of a friendly unmanned system (physically or through 
cyber attack). Opponent has no key, and is unable to decrypt previously recorded 
sensor data. Opponent disables onboard security interlocks, directs unmanned 
system to execute hostile act (e.g., attack on friendly or neutral force). Post-
incident investigation reveals and proves that mission orders were not 
authenticated or authorized by original friendly commander. Blockchain ledger of 
all issued authenticated orders reveals that no gaps occurred in shipboard records 
of approved missions. 

Based on the results of this project and prior research, as well as the scenario described 

above, a concept of operation for Data-Centric Security to enable ethical control of unmanned 

systems is for ships, aircraft and ground systems to maintain a strong distributed ledger of all 

XML-enabled secure messages sent and received. This process will reduce the risk of spoofing 

or counterfeit messages compromising unmanned systems. The development of this concept is a 

recommended future work as an extension to this project. 
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b. Blockchain Ledger for Distributed Accountability 
Given a trusted chain of message exchange among participating human 

commands and distributed systems, there are additional vulnerabilities that still need to be 

considered. Blockchain technology is relevant. An obvious tactical accountability issue is 

missing gaps or jammed messages. Failure to receive even one message (perhaps requiring 

human permissions) can invalidate any subsequent actions, thereby resulting in an effective loss 

of control of lethal force. Extrapolation of further needs includes investigation and improvement 

of all aspects required for after-action analysis. Having a ledger of all received/sent messages can 

provide accountability and verifiable chain of trust for authoritative reconstruction and progress. 

Important future work includes a custom blockchain providing assurances that scale among 

diverse participants and over time, without needing a central hub. 

3. Data-Centric Security and Command Authority 
The aforementioned assertion is re-emphasized: Data-Centric Security that includes 

authentication of ordered missions for unmanned systems provides a military, legal, ethical and 

moral basis for non-repudiability and accountability of human commanders. Authorized humans 

remain in charge, accountable for robot actions. Collected robot data is encrypted in asymmetric 

manner, greatly reducing vulnerabilities following any robot capture or compromise. Data-

Centric Security can coexist within all levels of network security. Such reliability provides 

excellent rationale to link Data-Centric Security to design considerations for Ethical Control, 

compatibly across all networks. Once again, Ethical Control leads to more-effective warfighting. 

a. Trust 
In the context of human-machine teaming for Naval operations, the chain of trust 

of the mission orders originates from the Human Commander to the Unmanned Systems in 

hostile environments, in which communication between friendly forces is denied and/or 

degraded. As the Human Commander of Unmanned Systems expects mission execution as 

ordered; the unmanned system would need authentic, uncompromised mission orders. This 

research describes Trust imparted in this context as Trusted Mission Orders and Trusted Mission 

Execution. 
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b. Trusted Mission Orders 
Characteristics of Trusted Mission Orders include:  

• Formal shared meaning between robots and human commanders 

• Controlled vocabulary of terms with well-defined conditions and 
outcomes 

• Syntax validation, well-formed data 

• Numerical validation, in bounds 

• Semantic confirmation of tactical prerequisites, coordination steps 

• No logical contradictions present 

c. Trusted Mission Execution 
Trusted Mission Execution has the following characteristics:  

• Portable tasking across diverse unmanned systems, C4I networks 

• Data-centric encryption for transmission across any network 

• Digital-signature authentication that confirms command identity 

• Blockchain ledger authoritatively confirms completeness, no gaps 

• Testable in simulation, eventually formalized as robot qualification   

4. Zero Trust Architecture (ZTA) 
“Zero trust refers to an evolving set of network security paradigms that narrows defenses 

from wide network perimeters to individual resources. Its focus on protecting resources rather 

than network segments is a response to enterprise trends that include remote users and cloud-

based assets that are not located within an enterprise-owned network boundary.” (Rose, et al., 

2020). ZTA is relevant to Data-Centric Security, as it seems like a logical conclusion of such an 

approach to network security in a denied/degraded environment. 

 

B. MULTIPLE PROGRAMMING LANGUAGES 
Ethical control of unmanned systems should have the qualities of interoperability and 

modular open system architecture. Interoperability of MEO across programming languages is 

foundational. Current missions are available in multiple data forms and programming languages, 

together maintained in version control in the following website:  

https://gitlab.nps.edu/Savage/EthicalControl/tree/master/missions  

https://gitlab.nps.edu/Savage/EthicalControl/tree/master/missions
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1. Autonomous Vehicle Control Language (AVCL) 
AVCL mission parsers using multiple programming languages have been demonstrated 

to show that Ethical Control can be supported by any unmanned system. Implementing AVCL 

mission parsers in multiple programming languages encourages potential deployment of Ethical 

Control across many robots. 

2. Java for AUV Workbench 
The NPS AUV Workbench is implemented in Java. AUV Workbench is experimental 

open-source software that supports physics-based mission rehearsal, real-time task-level control 

of robot missions, and replay of recorded results in support of autonomous unmanned 

underwater, surface and air vehicles. AUV Workbench encompasses multiple Java-based 

simulation programs that can parse and execute AVCL missions with controllers getting 

feedback from a high-fidelity 6 degrees of freedom (6-DOF) hydrodynamics model. The Java 

custom library parses AVCL XML directly without requiring any further conversion; it also 

validates mission correctness. A recommended action for future work includes extracting a 

simple standalone AVCL parser for general Java use. 

3. Extensible Stylesheet Language for Transformations (XSLT) 
This project uses XSLT for mission conversion via multiple “AvclToLanguage” 

stylesheets. XSLT is an XML-based language used for transforming XML documents into other 

text-based forms (for example, transforming AVCL XML into a variety of alternatives, such as 

RDF/OWL). XSLT does not change the original document while producing a new one. It takes 

advantage of strictly defined vocabularies and well-validated structure. Additionally, XSLT is an 

open standard recommended by the World Wide Web Consortium (W3C). It is well-suited for 

diverse conversion tasks. 

4. Lisp 
Lisp is a functional programming language for AI research. This project uses Lisp 

programming for AVCL mission logic implementation and conversion. AvclToLisp.xslt 

stylesheet reads AVCL XML to produce Lisp source code. The initial section provides the 

Mission Execution Engine (MEE) goal-traversal algorithm. The next section allows operator 

testing of mission-goal decision tree logic. The Sailor Overboard mission includes example 

operator test sequences. Lisp enables a simple test routine that shows how to run all possible 



 49 

choice sequences. Recommended Future work includes automating exhaustive testing of all 

choices in all missions as an initial exemplar for exhaustive verification of mission logic. 

5. Prolog for Logic Conversions of AVCL Missions 
The ANSI Prolog is a logic programming language associated with AI research and 

computational linguistics. AvclToProlog.xslt stylesheet reads AVCL XML to produce Prolog 

source code. The initial section is the Mission Execution Engine (MEE) goal-traversal algorithm. 

The next section allows operator testing of mission-goal decision tree logic. The MEE holds 

common code for the Sailor Overboard mission accompanied by a console log of example 

operator test sequences. Future work includes developing a test routine showing how to build all 

possible choice sequences and automating exhaustive testing of all choices in all missions as an 

initial exemplar for exhaustive verification of mission logic. 

6. “Your Programming Language Here”: An Ecosystem of Rigorous Parsers 
Robot software tends to be highly specialized, idiosyncratic, and evolving. Despite rapid 

change, programmers want library reuse and flexible repeatability. The Robot Operating System 

(ROS) is steadily gaining usage with a hardened ROS-Military (ROS-M) version available. 

Creating a family of AVCL parsers that can read XML-based missions opens the door to 

interoperability and shared support. Automating the production of these parsers from the AVCL 

schema ensures that all systems can have rigorous and consistent support. Individual robot logic 

may vary widely in implementation details, but core semantics of AVCL goals and nomenclature 

remain well defined. Future work includes establishing qualification testing for software or 

hardware running “in the loop” that can confirm individual robots are operating safely and with 

abilities to follow AVCL missions. 

 

C. SIMULATION AND VISUALIZATION FOR VALIDATION AND 
QUALIFICATION OF MISSION EXECUTION ONTOLOGIES 

Rehearsal, real-time runs and replay are possible using AVCL constructs across multiple 

representations and programming languages. This is a path towards achieving interoperability. 

This section discusses considerations in applying simulation and visualization for validation and 

qualification of MEO. 

Robotic systems tend to be complex codebases with implementations that require strict, 

idiosyncratic, language-specific programming logic. In general, system designers can say, “Here 
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are the requirements.” Also, in general, programmers can say, “Here’s how we wrote that code.” 

However, these assertions are not the same—they often do not even share the same terms of 

reference! Traceable predictability of software logic is difficult and not portable across systems. 

Nevertheless, confirming code capabilities is testable and repeatable across systems. This is the 

key point: strict validation of mission syntax and semantics are both possible! Patterns of 

implementation then become demonstrable in different systems. Human confirmation of mission 

definitions remains central throughout. 

1. Scalability of Simulation and Visualization Technologies and Environments 
MEO simulation and visualization would need multiple implementations for scalability. 

Given the broad diversity of robotic software and hardware systems under development, no 

single reference codebase is either possible or desirable. Nevertheless, systems can easily parse 

and utilize well-defined data (orders). Focusing on formal mission definition for both humans 

and systems provides a testable middle ground that each can use effectively. Implementing and 

evaluating using multiple software implementations also provides strong evidence that design 

capabilities all work as planned. In turn, they produce corresponding worklists of needed 

improvements, to help both mission-design clarity and software-implementation correctness. 

This project uses multiple programming paths in tandem, in order to demonstrate that multiple 

kinds of unmanned systems can adopt it on their own terms. 

2. Data Representation Languages of Interest 
As previously discussed, Extensible Markup Language (XML) provides declarative basis 

for customized, strictly defined data definitions of interest. Autonomous Vehicle Command 

Language (AVCL) is defined using XML schema for strict validation of syntax, particularly 

hierarchical data modeling relationships, strictly defined enumerations and legal values for 

numerical values. 

Semantic Web languages add the ability to perform queries and reasoning. Turtle (Terse 

Triple Language) deconstructs AVCL into primitives. Similarly, RDF/OWL expresses logical 

conditions and constraints of Mission Execution Ontology (MEO) corresponding to AVCL. 

SPARQL query language enables further inspection and verification of logical relationships. 

The JavaScript Object Notation (JSON) syntax is also available, but was not used in this 

project. JSON has common use and has potential to match XML expressiveness, but currently 

has lesser validation maturity.  Deployment of original orders via JSON translations is an option. 
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3. Programming Languages of Interest 
Java is primary language used for exemplar robot controllers. It is used in AUV 

Workbench and various build processes. C++ and C# (C sharp) have similar expressiveness but 

are not currently used in this project. Lisp and Prolog are used for testing AVCL mission-tasking 

logic. Both are well suited for AI applications. Earlier thesis work similarly applied CLIPS 

expert-system rule bases. Of note: AVCL missions can be used to auto-generate exemplar source 

code in various alternative languages by creating XLST conversion stylesheets, thus showing an 

interoperability path to all manner of robotic systems. 

4. Presentation Languages of Interest 
HTML5 can be used for mission reports as portable, archival Web pages. Also, HTML5 

has Cascading Style Sheets (CSS) for consistency and quality. KML is an XML language for 

annotated, animated place marks on maps and globes. KML examples are: 

OpenStreetMap/OpenSeaMap, Google maps, etc. Extensible 3D (X3D) Graphics is an XML 

language for 3D visualization and animation. Future publication of missions is expected in the 

SPIDERS3D virtual environments (VE). 

5. Simulation: AUV Workbench 
The AUV Workbench supports underwater, surface and air vehicles modeling and 

simulation. NPS researchers have used AUV Workbench for rehearsal of physics-based mission 

response, real-time task-level control of robot missions, and replay of recorded results. AUV 

Workbench software is under the industry-friendly open-source license, Sourceforge. AUV 

Workbench is also based on the RBM 3-level architecture and AVCL commands. Additionally, 

AUV Workbench is used to rehearse strategic-level agenda missions (see 

https://savage.nps.edu/AuvWorkbench).  

Figure 19 is a visualization of the unmanned system mission layouts for the four 

exemplar missions. 

 

https://savage.nps.edu/AuvWorkbench
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Figure 19. Visualization of the Four Exemplar Missions for Unmanned Systems Using AUV Workbench 

 
Refer to the project website (link provided in Appendix A) for additional information on 

the implementation of AUV Workbench and associated lessons learned. 

 

D. ARTIFICIAL INTELLIGENCE/MACHINE LEARNING (AI/ML) 
AI algorithms for Machine Learning (ML) and Data Mining are often based on 

statistically training against large datasets to find patterns for filters, e.g., convolutional neural 

networks, genetic algorithms, reinforcement learning, etc. The techniques often require 

identifying right/wrong matches within large search spaces. Such predictive analytics are useful 

for classification models using detailed and noisy sensor data. Given the central importance of 

Identification, Friend, Foe, Neutral, or Unknown (IFFNU) and some conditional communications 

to ethical control, ML filters can be helpful—if carefully applied. Nevertheless, such approaches 

are not appropriate for carefully following Rules of Engagement (ROE), Laws of Armed Conflict 

(LOAC) or other ethical prerequisites, especially when human expertise and judgement is 

essential for robot teams. Similarly, massive computation or Quantum Computing approaches 

might be useful in some problems, but are not of practical use for Ethical Control mission orders 

given by human commanders judiciously guiding remote mobile robots. 

In context, Naval history has long shown that sound human judgement is crucial for 

assessing best strategies and courses of action in ill-structured contexts. Therefore, based on the 
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aforementioned assessments of AI/ML and Semantic Web approaches, this research concludes 

that Semantic Web approaches are more preferable and actionable for Ethical Control of 

unmanned systems than AI/ML. 
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VII. CONCLUSIONS 

This project has made much progress toward achieving a methodology for implementing 

ethical control of unmanned systems in an integrated, validatable framework. Many 

opportunities are becoming possible as follow-on to our research. Therefore, a comprehensive 

pursuit of multiple integrated capabilities is essential to implementation of ethical control. 

 

A. SUMMARY OF CRADA PROJECT ACCOMPLISHMENTS 
 This project accomplished all tasks set forth in the NPS-Raytheon CRADA Project 1 

Statement of Work: 

1. NPS Tasks 
 Review existing and emerging policy guidance of the US Department of Defense and 

related international organizations.  
 Design and apply remote ethical human supervision capabilities to one or more scenarios 

and systems of mutual interest. Approach: 
 Define mission tasking and mission constraints for a short set of specific 

operations. 
 Model entities similarly for unclassified/open and more-sensitive missions of 

interest, as appropriate. 
 Show syntactic validation of mission correctness using existing tools. 
 Show semantic confirmation of task completeness and non-contradictory 

constraints. 
 Provide constructive approaches suggesting how to apply results in related 

problems. 
 Show working simulations that illustrate how Semantic Web technologies can be 

applied for robot-agnostic trusted tasking by human warfighters. 
 Consider environmental, geopolitical, security and human life implications for associated 

anti-tamper/cyber solutions and provide recommended courses of action for further 
development. 

2. Raytheon Tasks 
 Provide information on specific undersea weapon system capabilities and developments 

of interest, in order to bound design considerations. 
 Provide information on acoustic command, control, and communications (C3) methods 

relevant to problem of interest. 
 Provide information on system integrity technologies relevant to problem of interest. 
 Provide scenarios and identify systems of shared interest suitable for designing and 

applying remote ethical human supervision. 
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3. Joint Raytheon-NPS Tasks 
 Develop estimates of emerging of undersea weapon system capability maturity based on 

policy (impact and limitations). 
 Plan and participate in Technical Interchange Meetings.  
 Consider/identify technology and functional capability shortfalls in relevant systems. 
 Participate in monthly progress meetings via appropriate remote methods. 
 Review, analyze and iteratively improve the scenario-based results. 
 Disseminate results. 

 
B. SUMMARY OF CONCLUSIONS 

Ultimately, Ethical Control Leads to Better Warfighting. Through this research and 

development of the MEO methodology, the main conclusion is that Human supervision is 

required for any unmanned system holding potential for lethal force. Humans, especially 

Warfighters, cannot presumptuously push the “big red shiny AI button” and hope for best—that 

is immoral and unlawful. Similar imperatives for command and control exist for supervising 

systems holding lifesaving potential. Moreover, human control of unmanned systems is possible 

at long ranges of time-duration and distance through well-defined mission orders. It cannot be 

overemphasized that both Human Operators and Commanders in Human-Machine Teams remain 

essential for lifesaving and potentially lethal scenarios. 

Structured mission orders are the crucial bridge for ethical control. The mission orders 

must be Readable and sharable by both humans and unmanned systems. The mission orders 

should have Validatable syntax and semantics through understandable logical constraints. The 

orders also should be Testable and confirmable using simulation, visualization, and perhaps 

qualification. Such a Coherent human-system team approach is feasible and repeatable. By 

applying the MEO methodology to mission orders and applying Semantic Web Standards for 

confirmation, commanders and mission planners can ensure that mission orders for unmanned 

maritime systems are comprehensive and consistent.  

 

C. DETAILED DISCUSSION 
This section discusses in detail the conclusions from this research. 

1. Mission Command of Unmanned Systems 
The paradigm of command relationship the Joint Force implements is Mission Command. 

According to Joint Publication 3-32, Joint Maritime Operations, Mission Command summarily 

has the following characteristics: 
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• “Mission Command is the conduct of military operations through decentralized execution 
based upon mission-type orders. Commanders issue mission-type orders focused on the 
purpose of the operation rather than on the details of how to perform assigned tasks.” 

• “Mission-type orders enable continued operations allowing subordinates to exercise 
initiative consistent with the higher commander’s intent and act independently to 
accomplish the mission in conditions where communications are restricted, 
compromised, or denied.”  

• “Naval command relationships are based on a philosophy of mission command involving 
centralized guidance, collaborative planning, and decentralized control and execution. 
With a long-standing practice of using mission-type orders, Naval C2 practices are 
intended to achieve relative advantage through organizational ability to rapidly observe, 
orient, decide, and act.”  

• “The joint force maritime component commander (JFMCC) must have the capability to 
exercise command and control (C2) of maritime forces and to accomplish a broad range 
of missions in denied or degraded environments. Subordinate commanders execute 
operations independently with a thorough understanding of the commander’s intent. Joint 
maritime operations tend to be decentralized, and unity of effort is made possible via 
mission command.” 
This research and development of Mission Execution Ontology (MEO) methodology led 

to the conclusion that the Human-Machine Team can have a Mission Command relationship: 

The Human Commander issues mission-type orders to the assigned unmanned systems, and the 

unmanned systems in turn perform the assigned mission autonomously in accordance with the 

mission orders. A Chain of Trust enables this relationship as the mission orders are conceived, 

disseminated, and executed.  

2. Trusted Command Authority and Trusted Autonomy 
The Human-Machine Team in Naval operations must have a command relationship that 

is robust and resilient in the maritime domain as characterized above—through long distance, 

latency in communication due to physical limitations of the environment, and with the adversary 

applying disruptive and deceptive means that deny or degrade the means to maintain command 

and control. At the ends of the chain of trust in this Mission Command relationship are the 

Trusted Command Authority and the Trusted Autonomy. The Command Authority in the 

Human-Machine Team is deemed trustworthy when it clearly articulates its Commander’s Intent 

in its mission orders to the unmanned systems. This project has demonstrated that the MEO 

methodology is able to validate and confirm the mission order before it is issued. The receiving 

Autonomous system is considered trustworthy when it is deemed competent to execute the 

mission-type orders it receives. As a result, testing of the ability of unmanned systems to execute 
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exemplar missions can be accomplished using simulation. A recommendation for future work is 

to advance the research through field experimentations and additional exemplar missions.  

3. Data-Centric Security 
The Chain of Trust connecting the Trusted Command Authority and the Trusted 

Autonomy in the Human-Machine Team may be accomplished by Data-Centric Security for the 

mission orders—using XML-based structure for compression, digital signature, and encryption 

of data models and information exchange. We recommend the following next steps in developing 

Data-Centric Security: implement it for Human-Machine Teams; evaluate its efficacy; and 

deploy tests to determine its effectiveness. Data-Centric Security can provide guarantees of 

command authority over the application of lethal or lifesaving force by unmanned systems. Open 

standards and implementations in XML exist for each component: compression, signature, 

encryption, assertion metadata, etc. Alternative technologies are also available. Composition 

testing with robots during field experimentation (FX) can extend laboratory results with real-

world experience, risk analysis and red-team testing. Further work is recommended. 

4. Compliance of Ethical Control of Unmanned Systems with Governing 
Policies, Guidelines, and Doctrine 

Researchers for this project reviewed existing and emerging policy guidance of the US 

Department of Defense (DoD) and related international organizations. The Reference Section of 

this report contains descriptions of the policies, directives, and guidance considered for this 

project. Noteworthy is the fact that the MEO methodology is consistent with DoD AI Strategy 

and adoption of the Defense Innovation Board (DIB) Recommendations for AI Ethics Principles: 

Responsible, Equitable, Traceable, Reliable, and Governable. The MEO methodology first 

represents mission orders in AVCL, a structured vocabulary for unmanned-system missions and 

a command and control language for humans supervising autonomous unmanned vehicles. Its 

Clarity arises from close correspondence to human Naval terminology. AVCL-structured 

vocabulary defines terms and relationships for mission planning, execution, conduct, recording 

and replay across diverse robot types. Decision-flow diagrams expressed as mission orders are 

issued to task the unmanned system, and the formal mission orders are validated using Semantic 

Web Standards. Conduct of each mission order is then confirmed by performing simulation of 

the mission. 
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5. System Architecture and Design: Modular Open System Architecture 
Researchers for this project deliberately chose to use XML-based AVCL and Semantic 

Web Standards for their open standards characteristics. Additionally, missions represented in 

AVCL can be used to autogenerate exemplar source code in various alternative languages by 

creating conversion stylesheets. These open and modular characteristics of the MEO 

methodology show an interoperability path to all manner of robotic systems. 
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VIII. RECOMMENDED FUTURE WORK 

The following topics are recommended for future research. The topics are prioritized 

based on urgency and impact relative to implementing the MEO methodology for Ethical 

Control of Unmanned Systems. 

 

A. ENGAGE NAVY STAKEHOLDERS FOR ETHICAL CONTROL OF 
UNMANNED SYSTEMS 

1. Incorporate Ethical Control in Unmanned Maritime Autonomy Architecture 
(UMAA) and Common Control System (CCS) 

The Navy is standardizing autonomy interfaces for unmanned systems as a part of the 

Unmanned Maritime Autonomy Architecture (UMAA) and to standardize unmanned systems 

vehicle planning and control as a part of the Common Control System (CCS) acquisition and 

design efforts. (Small, 2019) This project on Ethical Control of Unmanned Systems using the 

MEO methodology would contribute to Navy’s effort of standardizing unmanned and 

autonomous technologies. Recommendation: Brief PMS 406 on the findings of the project, and 

participate in activities in its Core Technology Enabler for Autonomy. 

2. Determine Implications in Integrated Naval Force Structure 
The pending 2020 Integrated Naval Force Structure Assessment (INFSA) considers a 

combination of manned and unmanned vessels for Naval missions. (O’Rourke, 2020) The 

operationalization of large unmanned surface and undersea vehicles conducting Naval missions 

needs to implement ethical command and control of these unmanned systems.  

Recommendations:  

• Engage staffs of Navy Warfare Directorates, Type Commanders, and unmanned vehicle 
squadrons, in addition to PMS 406. Recommended topics of the engagements are: 
operations, plans, policy, and requirements, and resourcing of unmanned systems with 
due regard to the feasibility of applying ethical control in enabling the unmanned systems 
to conduct qualified missions. 

• Establish an NPS Center for Ethical Warfighting to explore both educational and applied 
capabilities, in order to put theory into practice. 

• Establish collaboration within the Naval Education Enterprise (e.g., NPS, Naval War 
College, Marine Corps University, and Naval Academy) and other institutions (e.g., U.S. 
Military Academy) on ethical use of unmanned systems. 
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3. Establish Qualifications Process of Unmanned Systems for Naval Operations 
This project has demonstrated the feasibility of establishing a qualification process for 

ethical control of unmanned systems. By applying the MEO methodology, Semantic Web and 

Data-Centric Security technologies, the Navy can establish a Verification, Validation, and 

Accreditation (VV&A) program to qualify unmanned systems for Naval missions, in order to 

ensure Ethical and Secure C2 in denied/deceptive environments. The VV&A program needs to 

include certification of unmanned systems compliance to mission orders and constraints—this 

can be done using Semantic Web standards for unmanned systems Mission Execution 

Ontologies, testing in comprehensive virtual environments, with hardware/software in the loop, 

in scenarios stressing requirements and capabilities of the unmanned system for the mission. 

Integrating Data-Centric Security ensures Trusted Autonomy and Command Authority for the 

Human-Machine Team. 

Recommendation: Develop a rigorous qualification process of unmanned systems 

with lethal effects for operations in denied/degraded/deceptive environments. Similar to 

how Human Warfighters confirm understanding and trust through qualification processes, the 

following elements pertain to qualifying unmanned systems for assigned missions: 

• Design, construct “qualification card” for testing unmanned systems. 

• Comprehensive virtual environment, hardware/software in the loop. 

• Carefully crafted scenario testing of key requirements and capabilities. 

• Anti-pattern tests to provoke and confirm constraints are not violated. 

• Record all unit-test decision trees, decision-branching traces, and results as a certification 
record for each hardware/software version of robots. 

• Visualize realistic rehearsal, real-time and replay of robot operations repeatably using 
shared Web-based SPIDERS3D virtual environment. 

• Humans assess mission logs and scenario outcomes for after-action analysis, lessons 
learned, and continuous improvement via suite of unit tests. 

B. CONTINUE CANONICAL MISSION DEVELOPMENT AND ONTOLOGY 
REFINEMENTS 

This project has shown that the MEO methodology is an effective methodology for 

expressing mission orders in a way that is validatable with respect to ethical control of the 

unmanned systems that would perform the mission. Nevertheless, the ontology can be refined so 

as to formalize the Vehicle, Vehicle Feature, Constraint, etc., and like concepts and relationships 

in the ontology. This refinement is recommended as a future research effort.  
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Recommendations for continuing MEO development and refinement:  

• Prepare and develop comprehensive testing of unmanned systems mission orders across 
the range of assigned mission requirements that constitute the operational qualification 
process for the unmanned system. 

• Formalize Vehicle, Vehicle Feature, Constraint, etc., and like concepts and relationships 
in the ontology. 

• Demonstrate best practices for characterizing common mission phases in order to 
establish testable design patterns for mission orders as templates that aid operators in 
issuing clear and validatable mission orders. 

• Express precisely in AVCL all termination conditions as constraints in MEO for 
algorithm loop management. 
 

C. IMPLEMENT PLANNED IMPROVEMENTS IN AVCL AND AUV 
WORKBENCH 

Even as this project uses AVCL to represent mission orders for unmanned systems, AUV 

Workbench is also used for simulating unmanned system missions. The AUV Workbench 

supports underwater, surface and air vehicles. It has the capability to enable rehearsal of physics-

based mission response. AUV Workbench allows for real-time task-level control of robot 

missions, and replay of recorded results. It has industry-friendly open-source license, 

Sourceforge, and has been used to rehearse strategic-level agenda missions. The basis of AUV 

Workbench is the RBM 3-level architecture and AVCL commands.  

Recommendation: Improve AVCL and AUV Workbench as follows:  

• Upgrade legacy codebase and libraries to latest versions of Java. 

• Upgrade AUV Workbench to support AVCL version 3 missions. 

• Near term remains quite simple, backwards compatibility via AVCL3  AVCL2 
conversion. 

• Display conduct of canonical missions developed in this project. 

• Manually record videos of mission demonstrations and playbacks. 

• Update mission production of HTML reports, KML maps, X3D graphics. 

• Support project report and multiple peer-review presentations. 

• Define unit tests and expected results for verification and validation. 

• Extract a simple standalone AVCL parser for general Java use. 

• Develop a test routine showing how to build all possible choice sequences and 
automating exhaustive testing of all choices in all missions as an initial exemplar for 
exhaustive verification of mission logic. 
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• Establish design patterns for qualification testing of software and hardware running “in 
the loop” to confirm that individual robots operate safely, and so qualify their abilities to 
follow AVCL missions. 
 

D. INCORPORATE DATA-CENTRIC SECURITY FOR SYSTEM INTEGRITY 
AND SECURITY OF UNMANNED SYSTEMS C3 

This project has considered environmental, geopolitical, security and human life 

implications for associated anti-tamper/cyber solutions, and recommends courses of action for 

further development. Data-Centric Security is one instantiation of system security practices.  

Recommendations for continuing research and consideration as follow: 

• Develop a Distributed Ledger of all messages sent and received to reduce the risk of 
spoofing or counterfeit messages compromising unmanned systems (IV.A). 

• Apply Blockchain technology to Ethical Control of unmanned systems, providing 
assurances that scale among diverse participants and over time, without needing a central 
hub (IV.A). 

• Continue advancement of Data-Centric Security through field experimentations and 
additional exemplar missions (V.A.1). 

• Implement Data-Centric Security for Human-Machine Teams; evaluate its efficacy; and 
deploy tests to determine its effectiveness. 

• Implement physical security/integrity of edge processors onboard the unmanned systems 
(Unmanned System Hardware). 

• Apply efficient messaging and keying algorithms, including asymmetric techniques 
(Unmanned System Software). 

• Implement SecDevOps process to analyze threats and identify/resolve 
weakness/vulnerability (System Architecture). 
These continuing research topics will inform and influence cyber strategy and 

cybersecurity policy for unmanned systems and Human-Machine Teaming. 
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APPENDIX A.  ONLINE DOCUMENTATION 

The NPS Ethical Control of Unmanned Systems website contains the documentation for this 
research and report. Link to the website is: https://savage.nps.edu/EthicalControl  
 
Documentation: 

• Ethical Control of Unmanned Systems overview presentations that describe all aspects of 
this project, along with related work and relevant resources. The presentations are in pdf 
files and mp4 video recordings. 

• Ethical Control flyer and project quad chart (.pdf). 

• Network Optional Warfare (NOW) for deliberate, stealthy, minimalist tactical 
communications. 

• Network Optional Warfare (NOW): Ethical Control of Unmanned Systems overview. 

• Presentations, papers, figures, flyers and reports are all available in the documentation 
section of the project archive. Also available: mission diagrams (.pdf). 

https://savage.nps.edu/EthicalControl/
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LIST OF ABBREVIATIONS AND ACRONYMS 

6-DOF 6 Degrees of Freedom 
A/IS Autonomous and Intelligent Systems 
AI Artificial Intelligence 
AI/ML Artificial Intelligence/Machine Learning 
AVCL Autonomous Vehicle Command Language 
AUV Autonomous Unmanned Vehicle 
AUVW AUV Workbench 
C2 Command and Control 
C3 Command, Control, and Communications 
C2D2E Command and Control in a Denied or Degraded Environment 
CCS Common Control System 
CRADA Cooperative Research and Development Agreement 
CRUSER Consortium for Robotics and Unmanned Systems Research and Education 
CSS Cascading Style Sheet 
DB Database 
DIB Defense Innovation Board 
DoD Department of Defense 
DL Description Logic 
DS Digital Signature 
EM Electromagnetic 
EXI Efficient XML Interchange 
FX Field Experimentation 
GIGO Garbage In. Garbage Out. 
HTML Hypertext Markup Language 
IA Information Assurance 
IEEE Institute of Electrical and Electronics Engineers 
IFFNU Identification Friend, Foe, Neutral, or Unknown 
INFSA Integrated Naval Force Structure Assessment 
JAIC Joint Artificial Intelligence Center 
JFMCC Joint Force Maritime Component Commander 
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JSON JavaScript Object Notation 
KR Knowledge Representation 
LCIM Levels of Conceptual Interoperability Model 
LOAC Laws of Armed Conflict 
MEE Mission Execution Engine 
MEO Mission Execution Ontology 
NAML Naval Applications of Machine Learning 
NPS Naval Postgraduate School 
NOW Network Optional Warfare 
OODA Observe-Orient-Decide-Act 
OWL Web Ontology Language 
RDF Resource Description Format 
RDF/S Resource Description Format/Schema 
ROE Rules of Engagement 
ROS Robot Operating System 
ROS-M Robot Operating System-Military 
RST Rich Semantic Track 
SISO Simulation Interoperability Standards Organization 
SPARQL SPARQL Protocol and RDF Query Language 
TLS Transport Layer Security 
TRL Technology Readiness Level 
TTP Tactics, Techniques, and Procedures 
Turtle Terse Triple Language 
UAS Unmanned Air System 
UAV Unmanned Aerial Vehicle (synonymous with Unmanned Air Vehicle) 
UMAA Unmanned Maritime Autonomous Architecture 
UML Unified Markup Language 
USV Unmanned Surface Vessel (or Vehicle) 
UUV Unmanned Undersea Vehicle (or Vessel) 
VE Virtual Environments 
VV&A Verification, Validation, and Accreditation 
W3C World Wide Web Consortium 
X3D Extensible 3D Graphics International Standard 
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XML Extensible Markup Language 
XML-Enc XML Encryption 
XSLT Extensible Stylesheet Language for Transformation 
ZTA Zero Trust Architecture 
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ANNOTATED BIBLIOGRAPHY 

A. RELATED ETHICAL RESEARCH ACTIVITIES 
Ethics of lethality and unmanned systems is an active area of work. The following 

forums, with synopses distilled from each, are particularly important in this emerging area of 

research . 

1. The Campaign To Stop Killer Robots. (2020). Retrieved from 

https://www.stopkillerrobots.org   

Fully autonomous weapons are a fundamental change to the nature of war. 
Problem aspects include: lethal force without human intervention, destabilizing robotics arms 
race, lower threshold to decide on war, lack of human judgement for proportionality, lack of 
accountability or culpability, further use against populations by oppressive regimes. 
Their proposed solution: development, production and use of fully autonomous weapons must be 
banned. Retain meaningful human control through laws and treaty, international commitment to 
ban by countries, pledge by technology companies/organizations/individuals to never contribute 
to development of fully autonomous weapons. 
Includes notable endorsements. 
2. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems (A/IS). (2020). 

Retrieved from https://ethicsinaction.ieee.org 
Resources include Ethically Aligned Design, First Edition, the culmination of a three-year, 
globally open and iterative process involving thousands of global experts. 
“The most comprehensive, crowd-sourced global treatise regarding the Ethics of Autonomous 
and Intelligent Systems available today.” 
It is time to move “From Principles to Practice” in society regarding the governance of emerging 
autonomous and intelligent systems. The implementation of ethical principles must be validated 
by dependable applications of A/IS in practice.  
3. IEEE Standards Association Project P7007—Ontological Standard for Ethically Driven 

Robotics and Automation Systems. (2020). Retrieved from 
https://standards.ieee.org/project/7007.html 

The standard establishes a set of ontologies with different abstraction levels that contain 
concepts, definitions and axioms which are necessary to establish ethically driven methodologies 
for the design of Robots and Automation Systems. 
Working Group EDRA - Ontologies for Ethically Driven Robotics and Automation. (IEEE 
membership and patent-policy compliance required for participation.) 
Active Work: Align several Ethical Control terms, concepts, use cases.  

https://www.stopkillerrobots.org/
https://ethicsinaction.ieee.org/
https://standards.ieee.org/project/7007.html
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4. Unmanned Maritime Autonomy Architecture (UMAA). UMAA is the proposed critical path 
forward for continuing efforts in Ethical Control of unmanned maritime systems. Several 
Navy publications, presentations, and announcements regarding UMAA are relevant: 

Burges, R. R. (2019, February 20). “Navy Requests Information for Unmanned Maritime 
Autonomy Architecture.” Retrieved from https://seapowermagazine.org/navy-requests-
information-for-unmanned-maritime-autonomy-architecture 
Small, P. (2019, January 15). Unmanned Maritime Systems Update. Retrieved from 
https://www.navsea.navy.mil/Portals/103/Documents/Exhibits/SNA2019/UnmannedMaritimeSy
s-Small.pdf 
Automated Management of Maritime Navigation Safety, Navy SBIR 2020.1—Topic N201-059. 
Retrieved from: https://www.navysbir.com/n20_1/N201-059.htm 

 

B. RELATED RESOURCES OF INTEREST 
This project draws on multiple relevant activities and capabilities. The following 

resources, with synopses distilled from each, were particularly important to the writing of this 

report and are highly recommended for further reading. 

Autonomous Vehicle Command Language (AVCL). AVCL is a command and control language 
for autonomous unmanned vehicles, enabling common XML-based representations for mission 
scripts, agenda plans and post-mission recorded telemetry. Operators can utilize a single 
archivable and validatable format for robot tasking and results that is directly convertible to and 
from a wide variety of different robot command languages. Retrieved from 
https://savage.nps.edu/Savage/AuvWorkbench/AVCL/AVCL.html  
Don Brutzman, Curtis L. Blais, Duane T. Davis, and Robert B. McGhee, “Ethical Mission 
Definition and Execution for Maritime Robots Under Human Supervision," IEEE Journal Of 
Oceanic Engineering, vol. 43, no. 2, April 2018, pp. 427-443. 
Davis, Duane T., Brutzman, Donald P., Blais, Curtis L. and McGhee, Robert B., “Ethical 
Mission Definition and Execution for Maritime Robotic Vehicles: A Practical Approach,” 
MTS/IEEE OCEANS 2016 Conference, Monterey California, 19-23 September 2016. 
Duane T. Davis, Semantic Web and Inferencing Technologies for Mission Definition, Technical 
Report, Naval Postgraduate School (NPS), Monterey California, 2014. 
Chief of Naval Operations. Navy Concept for Distributed Maritime Operations. January 2019. 
(Classified Document) 
Conceptual Chunking. Based on the concept in cognitive psychology. Chunking (psychology). In 
Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Chunking_(psychology)  
Data-Centric Security 

• Digital Signature.  Apache SantuarioTM enables digital signature for implementing 
security for XML. In Apache Santuario. Retrieved from https://santuario.apache.org 

• Distributed Ledger. An enabling technology that contributes to Data-Centric Security. In 
Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Distributed_ledger  

https://seapowermagazine.org/navy-requests-information-for-unmanned-maritime-autonomy-architecture/
https://seapowermagazine.org/navy-requests-information-for-unmanned-maritime-autonomy-architecture/
https://www.navsea.navy.mil/Portals/103/Documents/Exhibits/SNA2019/UnmannedMaritimeSys-Small.pdf
https://www.navsea.navy.mil/Portals/103/Documents/Exhibits/SNA2019/UnmannedMaritimeSys-Small.pdf
https://www.navysbir.com/n20_1/N201-059.htm
https://savage.nps.edu/Savage/AuvWorkbench/AVCL/AVCL.html
https://en.wikipedia.org/wiki/Chunking_(psychology)
https://santuario.apache.org/
https://en.wikipedia.org/wiki/Distributed_ledger
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• Williams, Jeffrey S. Document-based Message-centric Security using XML 
Authentication and Encryption for Coalition and Interagency Operations (Master’s 
thesis). Naval Postgraduate School, Monterey, California, 2009. 

• Miller, Shaurice S., Compile To Combat In Twenty-Four Hours (C2c24): The New 
Normal (Master’s thesis). Naval Postgraduate School, Monterey, California, 2019. 

• XML. In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/XML 

• Zero Trust. Rose, Borchert, Mitchell, and Connelly. (2020). Retrieved from 
https://csrc.nist.gov/publications/detail/sp/800-207/draft 

DoD Directive 3000.09, “Autonomy in Weapon Systems,” November 21, 2012, with change 1, 
May 8, 2017. This directive is the controlling reference overall for the research project. 

• Establishes DoD policy and assigns responsibilities for the development and use of 
autonomous and semi-autonomous functions in weapon systems, including manned and 
unmanned platforms. 

• Establishes guidelines designed to minimize the probability and consequences of failures 
in autonomous and semi-autonomous weapon systems that could lead to unintended 
engagements. 

• Autonomous and semi-autonomous weapon systems shall be designed to allow 
commanders and operators to exercise appropriate levels of human judgment over the use 
of force. 

• Persons who authorize the use of, direct the use of, or operate autonomous and semi-
autonomous weapon systems must do so with appropriate care and in accordance with the 
law of war, applicable treaties, weapon system safety rules, and applicable rules of 
engagement (ROE). 

Hughes, W., & Girrier, R. (2018). Fleet Tactics and Naval Operations (3rd ed.). Annapolis, MD: 
Naval Institute Press.  

• “At the most fundamental level, [Information Warfare] IW is about how to employ and 
protect the ability to sense, assimilate, decide, communicate, and act—while confounding 
those same processes that support the adversary.”  

• “Information Warfare broadly conceived is orthogonal to naval tactics. As a 
consequence, IW is having major effects on all six processes of naval tactics used in fleet 
combat—scouting and antiscouting, command-and-control, C2 countermeasures, delivery 
of fire, and confounding enemy fire.” 

• “Indeed there is a mounting wave of concern about how far automation will expand and 
what its impact will be on the continuum of cognition from data to information to 
knowledge. […] Navies are facing similar uncertainties.” 

Note: The late Wayne Hughes coined the term “Network Optional Warfare” after many 
discussion sessions, directly contrasting it to Network Centric Warfare. The authors of this 
research are grateful for his tremendous contribution to Naval Warfare. 

John Boyd and OODA Loop. 
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• John Boyd (military strategist). (2020, May 16). In Wikipedia. Retrieved from  
https://en.wikipedia.org/wiki/John_Boyd_(military_strategist)  

• OODA loop. (2020, May 11). In Wikipedia. Retrieved from 
https://en.wikipedia.org/wiki/OODA_loop  

• Coram, R. (2004). Boyd: The Fighter Pilot Who Changed the Art of War. New York, NY: 
Back Bay Books. 

Network Optional Warfare (NOW) 

• Brutzman, D. P., & Wyatt, T. D. (2020, January 2). In Network Optional Warfare. 
Retrieved from https://wiki.nps.edu/display/NOW/Network%20Optional%20Warfare 

• Naval forces do not have to be engaged in constant centralized communication. 
Deployed Navy vessels have demonstrated independence of action in stealthy 
coordinated operations for hundreds of years. 

• Littoral operations, deployable unmanned systems, and a refactored force mix for surface 
ships pose a growing set of naval challenges and opportunities. Network-optional warfare 
(NOW) precepts include Efficient Messaging, Optical Signaling, Semantic Coherence, 
and Ethical Human Supervision of Autonomy for deliberate, stealthy, minimalist tactical 
communications. 

Rich Semantic Track (RST.) RST is related work on sharing and collective understanding for 
track data. 

• DoD mandates data-sharing practices, but practices have been mixed and uneven, 
resulting in perpetuation of system-centric data practices. 

• Sharing and collective understanding of track data—collections of time-stamped 
perceptions of the state of objects of interest—are critical to warfighting systems. 

• Shared understanding requires common semantics. 

• RST ontology provides a foundation for shared understanding of track data. 

• Blais, C. L. (2015, May 20). Rich Semantic Track: Formalizing the semantics and 
pragmatics of track data for interchange and common processing, Presentation to the 
2015 MOVES Academic Working Group (MAWG), Naval Postgraduate School. 

• Tolk, Andreas, Saikou Y. Diallo, Charles D. Turnitsa, and Leslie S. Winters. 2006 
"Composable M&S Web Services for Net-centric Applications." Journal for Defense 
Modeling & Simulation 3, no. 1 (January): 27-44. 

• Blais, Curtis, and Lee W. Lacy. 2004. “Semantic Web: Implications for Modeling and 
Simulation System Interoperability.” Paper presented at the Fall 2004 Simulation 
Interoperability Workshop, Orlando, FL. 

Note: It is time to change the way DoD manages data and engineers systems, starting with 
adoption of the RST ontology and moving toward the vision of a Web of linked track data. 

Military Ethics and Justice. Publications and organizations that constitute, inform, educate, and 
advocate for military ethics and justice. 

https://en.wikipedia.org/wiki/John_Boyd_(military_strategist)
https://en.wikipedia.org/wiki/OODA_loop
https://wiki.nps.edu/display/NOW/Network%20Optional%20Warfare
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Oxford University Press. 
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simulations. DIS facilitates simulation interoperability through a consistent over-the-wire 
format for information, widely agreed upon constant enumeration values, and 
community-consensus semantics.” Retrieved from https://www.web3d.org/event/iitsec-
2019-tutorial-distributed-interactive-simulation-dis-101 

• Github Open-DIS Software Archive (2020). Retrieved from https://github.com/open-dis 

• Brennenstuhl, T. (2019, December 2). Repeatable Unit Testing of Distributed Interactive 
Simulation (DIS) Protocol Behavior Streams using Web Standards. Interservice Industry 
Training Simulation and Education Conference, 2019, Orlando, FL. Retrieved from 
https://www.web3d.org/sites/default/files/attachment/node/2437/edit/BrennenstuhlThesis
OpenDisStreamsUnitTesting.2019DEC2.pdf 

Simulation Interoperability Standards Organization (SISO). SISO is an international organization 
dedicated to the promotion of modeling and simulation interoperability and reuse for the benefit 
of a broad range of Modeling and Simulation communities. Several SISO working groups are 
relevant to Ethical Control proposed plan to establish virtual environment for unmanned systems 
qualification. Retrieved from https://www.sisostds.org 

• C2SIM PDG/PSG. The Command and Control Systems - Simulation Systems 
Interoperation (C2SIM) Product Development Group (PDG) and Product Support Group 
(PSG) uses ontology-governed compatible message interchange, especially focused on 
NATO forces. Retrieved from 
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/C2SIMPDGPSG-
CommandandControlSystems.aspx 

• DIS/RPR FOM. The Distributed Interactive Simulation / Real-time Platform Reference 
Federation Object Model (DIS / RPR FOM) PSG is a forum and library for DIS-related 
information for distributed simulation networks. Retrieved from 
https://www.sisostds.org/StandardsActivities/SupportGroups/DISRPRFOMPSG.aspx 

• VV&A PSG. The Verification, Validation and Accreditation/Acceptance (VV&A) PSG 
emphasizes requirements and metrics within larger Systems Engineering spirals. 
Retrieved from 
https://www.sisostds.org/StandardsActivities/SupportGroups/VVAProductsPSG.aspx 

Recommended Reading and Resources in Human-Machine Teaming and AI relevant to Ethical 
Control of unmanned systems. 

• Brutzman, D. P., & Fitzpatrick, C. R. (January 2020). Creating Virtual Environments for 
Evaluating Human-Machine Teaming. Naval Research Program (NRP) Project NPS-19-
M285-A. Retrieved from https://calhoun.nps.edu/handle/10945/64266 

• Johnson, M., & Vera, A. (Spring 2019). “No AI is an Island: The Case for Teaming 
Intelligence.” AI Magazine, vol. 40, no. 1. Proposes AI will reach its full potential only 
if, as part of its intelligence, it also has enough teaming intelligence to work well with 
people. The concepts Coactive Design and Interdependency Analysis have strong 
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resonances with Ethical Control that deserve further exploration. Retrieved from 
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2842 

• Naval Research Advisory Committee (NRAC) (September 2017). Autonomous and 
Unmanned Systems in the Department of Navy. NRAC Technical Report. The Number 1 
Recommendation of the report is “create comprehensive data plan to field autonomy… 
DoN must urgently develop an organizational data plan… In the future, data will win 
wars… Data is the ultimate “component” for AI systems and must be controlled.” 
Retrieved from https://www.senedia.org/wp-content/uploads/2018/01/NRAC-Report-
Autonomous-and-Unmanned-Systems-in-the-Department-of-Navy.pdf 

• Naval Application of Machine Learning (NAML) Workshop. The 2018 Plenary 
roundtable discussion recognized value and need to establish a machine learning (ML) 
data strategy, for both inputs and outputs. The focus for 2020 “is on identifying future 
directions of ML and AI research needed to address mission priorities of both the Navy 
and the broader national security community.” Retrieved from 
https://sites.google.com/go.spawar.navy.mil/naml 

• Summary of the 2018 Department of Defense Artificial Intelligence Strategy: 
“Harnessing AI to Advance Our Security and Prosperity.” (2019 February). “Leading in 
military ethics and AI safety. The Department will articulate its vision and guiding 
principles for using AI in a lawful and ethical manner to promote our values. We will 
consult with leaders from across academia, private industry, and the international 
community to advance AI ethics and safety in the military context. We will invest in the 
research and development of AI systems that are resilient, robust, reliable, and secure; we 
will continue to fund research into techniques that produce more explainable AI; and we 
will pioneer approaches for AI test, evaluation, verification, and validation. We will also 
seek opportunities to use AI to reduce unintentional harm and collateral damage via 
increased situational awareness and enhanced decision support. As we improve the 
technology and our use of it, we will continue to share our aims, ethical guidelines, and 
safety procedures to encourage responsible AI development and use by other nations.” 
Retrieved from https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-
OF-DOD-AI-STRATEGY.PDF 

• Defense Innovation Board (DIB) AI Principles Project. (2019, October 31). AI 
Principles: Recommendations on the Ethical Use of Artificial Intelligence by the 
Department of Defense. The DIB members voted to approve the proposed AI Principles: 
Responsible, Equitable, Traceable, Reliable, Governable. Retrieved from 
https://media.defense.gov/2019/Oct/31/2002204458/-1/-
1/0/DIB_AI_PRINCIPLES_PRIMARY_DOCUMENT.PDF 

• Joint Artificial Intelligence Center (JAIC). Retrieved from https://www.ai.mil. The JAIC 
is tasked to execute DoD AI Strategy.  

• Department of Defense Prototyping Guidebook (2019 November). Version 2.0. Office of 
the Under Secretary of Defense for Research and Engineering (Prototypes and 
Experiments).  

• CTF 151: Counter-Piracy. “In accordance with United Nations Security Council 
Resolutions, and in cooperation with CMF coastal states, CTF 151’s mission is to deter, 
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disrupt and suppress piracy and armed robbery at sea and to engage with regional and 
other partners to strengthen relevant capabilities in order to protect global maritime 
commerce and secure freedom of navigation.” Retrieved from 
https://combinedmaritimeforces.com/ctf-151-counter-piracy 

Feedback guidance from William “Doc” Bundy, Ph.D., CAPT, USN (Ret.), Naval War College, 
Newport Rhode Island on UUV Autonomy and this project (December 18, 2019).  

• UUVs will need to operate by mission command, like submarines, given broad missions 
and the UUV will decide what targets need to be engaged. 

• To follow this ethical argument, must build Mission Command capabilities into your 
intelligent agent controller. 

• High-confidence Automated Target recognition will be required. 

• We need to let machines kill things. 

• Relevant: Unrestricted submarine warfare in WWII. Recommended reading: “Execute 
Against Japan:” The US Decision to Conduct Unrestricted Submarine Warfare by 
Joel Holwitt (ibid.) 

• Noted “collaborative mission autonomy” as important concept / capability. 

• Recommendation: need to engage LTG Shanahan of Joint AI Command.  
Integrated Naval Force Structure Assessment (INFSA). The INFSA considers the implications of 
unmanned systems as parts of the overall Naval Force Structure. 

• Clark, B., & Walton, T. (2019, December 31). Taking Back the Seas: Transforming the 
U.S. Surface Fleet for Decision-Centric Warfare. Center for Strategic and Budgetary 
Assessments. “The U.S. Navy’s surface fleet is at a crossroads. Today’s force lacks the 
size, resilience, and offensive capacity to contribute effectively to degrading, delaying, or 
denying aggression. These shortfalls are especially problematic in light of the fact that the 
surface fleet will play an increasingly important role in the U.S. Navy’s ability to counter 
enemy attacks. The current fleet is also fiscally unsustainable due to growing operations 
and support costs for today’s highly integrated and manpower-intensive surface 
combatants. New technologies for unmanned systems, sensors, weapons, C3, and 
countermeasures could allow significant improvements in the surface fleet’s ability to 
create complexity for an adversary and harden surface forces from attack while 
improving surface force’s capacity for maritime or land strike.” Retrieved from 
https://csbaonline.org/research/publications/taking-back-the-seas-transforming-the-u.s-
surface-fleet-for-decision-centric-warfare 

• O’Rourke, R. (2020, February 4). Navy Force Structure and Shipbuilding Plans: 
Background and Issues for Congress (RL32665). Congressional Research Service. 
“DON officials suggest that the INFSA could shift the fleet to a more distributed 
architecture that includes a reduced proportion of larger ships, an increased proportion of 
smaller ships, and a newly created category of large unmanned surface vehicles 
(USVs) and large unmanned underwater vehicles (UUVs). Such a change in fleet 
architecture could alter, perhaps substantially, the mix of ships to be procured for the 
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Navy and the distribution of Navy shipbuilding work among the nation’s shipyards.” 
Retrieved from https://crsreports.congress.gov/product/pdf/RL/RL32665/284 

• Eckstein, M. (2020, February 3). SECNAV Modly: Path to 355 Ships Will Rely on New 
Classes of Warships, USNI News. “You look at the frigate program: we think, because of 
the way we’ve approached that program, we’ve probably taken three years off the 
product development lifecycle for that. So we have to start doing the same type of thing: 
looking at proven hulls, things that can be adaptable for different areas. I understand the 
Hill’s concerns about unmanned, and we get that. … We have to convince them with 
data: we have to wargame this, we have to iterate it over and over again.”  
— Honorable Thomas Modly, Acting Secretary of the Navy. 
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