
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2018-02-01

Acoustic noise interferometry in a
time-dependent coastal ocean

Godin, Oleg A.
Acoustical Society of America

Godin, Oleg A. "Acoustic noise interferometry in a time-dependent coastal ocean."
The Journal of the Acoustical Society of America 143.2 (2018): 595-604.
http://hdl.handle.net/10945/61010

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



Acoustic noise interferometry in a time-dependent coastal oceana)

Oleg A. Godinb)

Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943-5216, USA

(Received 14 September 2017; revised 9 January 2018; accepted 11 January 2018; published online
1 February 2018)

Interferometry of underwater noise provides a way to estimate physical parameters of the water col-
umn and the seafloor without employing any controlled sound sources. In applications of acoustic
noise interferometry to coastal oceans, the propagation environment changes appreciably during the
averaging times that are necessary for the Green’s functions to emerge from noise cross-correlations.
Here, a theory is developed to quantify the effects of nonstationarity of the propagation environment
on two-point correlation functions of diffuse noise. It is shown that temporal variability of the ocean
limits from above the frequency range, where noise cross-correlations approximate the Green’s func-
tions. The theoretical predictions are in quantitative agreement with results of the 2012 noise interfer-
ometry experiment in the Florida Straits. The loss of coherence at high frequencies constrains the
passive acoustic remote sensing to exploiting a low-frequency part of measured noise cross-
correlations, thus limiting the resolution of deterministic inversions. On the other hand, the passively
measured coherence loss contains information about statistical characteristics of the ocean dynamics
at unresolved spatial and temporal scales. https://doi.org/10.1121/1.5022287

[JFL] Pages: 595–604

I. INTRODUCTION

Random wave fields that are generated by multiple, spa-
tially distributed, uncorrelated sources maintain coherence at
spatial scales which are much larger than the wavelength.1–8

Time derivative of the cross-correlation function of a diffuse
random wave field sampled at two points approximates the
Green’s functions that describe deterministic wave propagation
in opposite directions between the points. This phenomenon
was theoretically predicted and experimentally demonstrated
for various wave types1–7,9–11 and underlies the passive remote
sensing technique known as noise (or wave) interferometry.8 In
applications of noise interferometry to acoustic oceanography,
the feasibility has been demonstrated of passive tomography12

and thermometry13 in deep water and passive measurements of
current velocity in shallow water.14 Noise interferometry has
been successfully used to probe the seafloor,15–20 synchronize
clocks on autonomous underwater instruments,14,21–24 and
localize acoustic sensors.21,25,26

Wind waves, tides, internal gravity waves, turbulence,
and other dynamic processes make the ocean a nonstationary
acoustic propagation environment. It evolves much faster
than in typical seismic applications of noise interferometry.
Another important source of nonstationarity in noise interfer-
ometry experiments, which is ultimately also a manifestation
of ocean dynamics, is motion of acoustic receivers that are
installed on moorings4,12,13,27 or drifters.29 One might argue
that the long-range coherence of diffuse noise, which is theo-
retically predicted for stationary environments, will be lost
when the noise averaging time exceeds a representative time
scale of the environmental changes. On the other hand, an

argument can be made that small relative changes in ampli-
tudes and travel times of acoustic arrivals should not prevent
retrieval of approximate Green’s functions. In this paper, we
show theoretically that neither of these plausible arguments
is valid. Even small environmental changes impart a coher-
ence loss, which tends to increase with propagation range
and wave frequency albeit not necessarily monotonically.
Rather than preventing passive remote sensing, environment
nonstationarity limits from above the range of frequencies,
where approximate Green’s functions can be retrieved from
noise cross-correlations. In shallow water, changes in the sea
level are found to have disproportionally large effect on the
coherence loss. We will show that the theoretical predictions
are in good agreement with results of the 2012 noise interfer-
ometry experiment in a coastal ocean off Florida.27,28

The 2012 noise interferometry experiment was carried out
in the Straits of Florida. Three autonomous, single-hydrophone
systems were deployed on the continental shelf approximately
along the 100 m isobath 15 km off the Florida Keys.
Hydrophones were located 5 m above the seafloor. Horizontal
separations were 5.01, 9.76, and 14.76 km for the 1–2, 2–3, and
1–3 hydrophone pairs. About six days of concurrent, continuous
records of ambient and shipping noise in the frequency band
10–4000 Hz were obtained on December 13–19, 2012.
Averaging times of about 1.5 days were found necessary for an
accurate measurement of noise cross-correlation functions at
ranges of 50–150 ocean depths. During the measurements, water
temperature variations with depth and sound speed gradients
were rather weak, with the sound speed c¼ 1537.4 6 2.4 m/s
throughout the water column. A detailed description of the
experiment, including discussions of supporting in situ measure-
ments and emergence of approximate Green’s functions from
measured noise cross-correlations, can be found in Refs. 14, 27,
and 28. Specific sound propagation scenarios to be modeled
below are largely motivated by the 2012 Florida Straits
experiment.
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The remainder of the paper is organized as follows. The
effect of random and periodic environmental perturbations on
noise cross-correlation functions in shallow-water waveguide is
studied theoretically in Sec. II using ray and normal-mode rep-
resentations of the acoustic field. Effects of several types of
time-dependent perturbations in the coastal ocean on empirical
Green’s functions retrieved from noise cross-correlations are
modeled in Sec. III. Dependence of coherence losses of the ray
and normal mode components of noise cross-correlations on
sound frequency and geometry of the problem is also investi-
gated in Sec. III. Section IV summarizes our findings.

II. COHERENCE LOSS IN A TIME-DEPENDENT OCEAN

A. Noise interferometry in a random medium

Consider a diffuse noise field that is generated by spa-
tially distributed, uncorrelated random sound sources in an
environment with time-independent parameters. Let

CðRA;RB; tÞ ¼ hpðRA; t1ÞpðRB; t1 þ tÞins (1)

be the correlation function of the time series of the random
acoustic pressure, p(RA, t) and p(RB, t), that are measured at
points RA and RB in fluid; h%ins denotes averaging over the
statistical ensemble of the noise sources. The correlation
function is predicted to satisfy

d

dt
CðRA;RB;tÞ¼DðtÞ& g RA;RB;tð Þ'g RB;RA;'tð Þ½ ); (2)

where & denotes convolution and function D(t) is controlled
by the power spectrum of noise sources. For a perfectly dif-
fuse noise field, such as thermal noise, in fluid1,2,5,6 and
fluid-solid7 environments, g(RA, RB, t) is the transient
Green’s function, i.e., the acoustic pressure at RA due to an
impulsive point source of volume velocity at RB. The
Green’s functions g(RA, RB, t) and g(RB, RA, t), which
describe wave propagation in opposite directions between
RA and RB, are identical in motionless environments due to
reciprocity and distinct in the presence of fluid flows. In the
case of imperfectly diffuse, anisotropic noise field, Eq. (2) is
valid asymptotically at sufficiently large separations between
RA and RB, and g(RA, RB, t) is an approximation to the
Green’s function, which consists of ray and normal-mode
arrivals with the same travel time and phase, as in the
Green’s function, but with amplitudes of the arrivals that
depend on noise directionality.3–5,11,30–32

Now, consider noise fields in a random medium. The
medium is characterized by a set l of random parameters,
which are statistically independent of the set of random noise
sources. In every sample of the random medium, define

E RA;RB; t; t1; lð Þ ¼
d

dt
p RA; t1; lð Þp RB; t1 þ t; lð Þ½ )

'DðtÞ & g RA;RB; t; lð Þ½
'g RB;RA; t; lð Þ): (3)

Here, E is a random function of receiver positions RA and
RB as well as the time t of measurements at point RA and the

time delay t1 between the pressure measurements by the two
receivers. In arguments of various functions in Eq. (3), l
indicates that the noise fields and Green’s functions refer to
a particular realization of the random medium. We assume
that a statistical ensemble of noise sources is observed in
each sample of the random medium. In each sample of the
random medium, averaging over the statistical ensemble of
noise sources gives hEins¼ 0 according to Eq. (2).

Let the noise correlation function be defined as an aver-
age over noise sources and variations of environmental
parameters: CðRA;RB; tÞ ¼ hhpðRA; t1ÞpðRB; t1 þ tÞiins: Here
and below, h%i stands for the average over realizations of the
random medium. Due to statistical independence of the ran-
dom noise sources and the environmental variations, the order
of averaging does not matter: hh%iins¼ hh%insi. In particular,
hhEiins¼ hhEinsi¼ 0 since hEins¼ 0. We now average Eq. (3)
over l and then over random noise sources. The left-hand
side averages to zero, while the average of the product in the
first square brackets in the right-hand side of Eq. (3) gives the
noise correlation function C(RA, RB, t). Thus, we find

d

dt
CðRA;RB; tÞ ¼ DðtÞ & hg RA;RB; tð Þi

!

'hg RB;RA; tð Þi): (4)

The right-hand side of Eq. (4) contains averaging only
over realizations of the environment, and hgi is the mean
field due to a deterministic point source. The mean field
attenuates with propagation range in a random medium
because of energy transfer to the random component of the
field.33,34 For the noise cross-correlation function, Eq. (4)
indicates that an evolution of the propagation environment
during noise averaging results in a frequency-dependent
loss of coherence between the noise fields recorded at spa-
tially separated points. Equation (4) and its derivation
remain unchanged if, instead of a random medium, noise
fields are measured in an environment with time-
dependent parameters as long as the temporal scale of
environmental variations is large compared to the acoustic
travel time, so that acoustic propagation can be accurately
described in the “frozen medium” or quasi-static approxi-
mations.35 Similarly, Eq. (4) also applies when the average
over random noise sources is replaced by averaging over
time, provided the statistics of the noise sources are not
affected by environmental changes during the noise aver-
aging period.

In Sec. II B and Sec. II C below, we quantify the coher-
ence loss under conditions of the 2012 Noise Interferometry
Experiment in the Straits of Florida.

B. Mean field in the ray approximation

Here we introduce a Cartesian coordinate system
R¼ (x, y, z) with horizontal coordinates x and y and vertical
coordinate z increasing upward (Fig. 1). All interfaces are
parallel to the horizontal plane xy.

Consider a point source in a uniform fluid layer with a
sound speed c and density q between a free surface z¼H
and a boundary at z¼ 0, which represents the seafloor. The
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boundary is characterized by a plane-wave reflection coeffi-
cient V, which is a function of the incidence angle. In the ray
approximation, frequency-domain acoustic Green’s function
is36

G RA;RB;xð Þ ¼
X

m

Gm ;

Gm ¼
xq

4ipLm
'1ð Þsm Vbm exp ikLmð Þ: (5)

Here, summation is over the eigenrays connecting the points
RA¼ (xA, yA, zA) and RB¼ (xB, yB, zB); sm¼ 0, 1, 2,… and
bm¼ sm 6 1 * 0 are the number of surface and bottom reflec-
tions; Lm is the length of the eigenray; x and k¼x/c are the
wave frequency and wavenumber. Time dependence
exp('ixt) of continuous waves is assumed and suppressed.
The time-domain (transient) Green’s function g(RA, RB, t)
can be calculated as the Fourier transform of the frequency-
domain Green’s function G(RA, RB, x). The eigenray is
straight between surface and bottom reflections (Fig. 1).
From simple geometric considerations it follows that

Lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2smH6zA6zBð Þ2

q
; hm ¼ arcsin

r

Lm
; (6)

where r ¼ ½ðxA ' xBÞ2 þ ðyA ' yBÞ2) 1=2 is the horizontal sep-
aration of the points RA and RB and hm is the incidence angle
of the ray. The signs in front of zA and zB in Eq. (6) are posi-
tive (negative) when at propagation from RB to RA the last
and, respectively, the first reflection is from the seafloor
(from the ocean surface) (Fig. 1).

Let the ocean depth experience small variations around
a mean value H0,

H ¼ H0 þ eH1; hH1i ¼ 0; e2hH2
1i ¼ r2

H: (7)

Here, e is a dimensionless small parameter and rH + H0.
When kr ,1, small changes in environmental parameters
affect the acoustic field predominantly through perturbations
in the eikonals kLm. Neglecting small variations in the eigen-
ray amplitudes, from Eqs. (5)–(7) we find

Gm ¼ Gm0 exp iexTm1 þ ie2xTm2 þ Oðe3Þ
! #

; (8)

where

Tm1¼
2sm 2smH06zA6zBð Þ

cLm0
H1¼

2smH1

c
coshm0 ;

Tm2¼
2s2

mr2

cL3
m0

H2
1¼

2s2
mH2

1

cr
sin3hm0; (9)

and hm0, Lm0, and Gm0 have the meaning of the incidence
angle, the length of, and the acoustic field on the mth eigen-
ray in the average, or unperturbed, environment. Lm0, hm0,
and Gm0 are given by Eqs. (5) and (6) with H being replaced
with H0. By using Eq. (6), our derivation takes into account
the variation of the incidence angle of the eigenray as long
as the number of surface reflections in the perturbed and
unperturbed environments is the same. To leading order in e,
eTm1 gives the perturbation dTm in the ray travel time
Tm¼ Lm/c, while e2 hTm2i gives the travel time bias, i.e., the
difference in the average travel time and the travel time Tm0

in the average (unperturbed) environment

h dTmð Þ2i-r2
T ¼

4s2
mr2

H

c2
cos2hm0 þ O e3ð Þ ;

hTmi' Tm0 ¼
2s2

mr2
H

cr
sin3hm0 þ O e3ð Þ: (10)

Unlike at sound scattering from a rough surface,37 the travel-
time bias is always positive.

At long-range sound propagation, where r is large com-
pared to the ray skip distance 2H tanhm0, the number of sur-
face reflections

sm .0:5rH'1
0 cothm0: (11)

For rays with a fixed angle of incidence, Eq. (10) shows that
the travel time bias and variance rapidly increase with the
propagation range: hTmi' Tm0 / r and r2

T / r2: In contrast,
for rays with a fixed number of surface reflections, hTmi
'Tm0 / r'1 and r2

T / r'2: Travel time fluctuations decrease
with range for such rays because their grazing angles tend to
zero when r!1.

To find the average value of the field Gm, we first con-
sider the case where the exponent in Eq. (8) is small com-
pared to unity. By developing the exponential in Eq. (8) in
powers of the exponent, averaging, and discarding terms of
the third and higher order in e, we obtain

hGmi ¼ Gm0 exp ðiU2 ' 0:5U2
1Þ; U1 ¼ xrT ;

U2 ¼ xðhTmi' Tm0Þ; (12)

where U1 and U2 are, respectively, the standard deviation
and bias of the wave field phase. The imaginary and real
parts of the exponent in Eq. (12) are proportional to the vari-
ance rH

2 of the ocean depth fluctuations and describe,
respectively, the phase difference between the average and
unperturbed wave field and attenuation of the mean field due
to the ray-travel-time fluctuations.

When the ocean depth perturbations have a Gaussian
statistical distribution, one can calculate the average of Eq.
(8) in a closed form without the assumption that the travel-
time fluctuations are small. Neglecting terms of the fourth
and higher order in e, we obtain

FIG. 1. (Color online) Geometry of the problem. Two hydrophones are
located at points RA and RB in a shallow-water waveguide. Water depth H
varies in time due to tides and wind waves on the ocean surface.
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hGmi ¼
Gm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1' 2iU2

p exp ' 0:5U2
1

1' 2iU2

 !

: (13)

It is easy to check that Eq. (13) reduces to Eq. (12) when U1

+ 1 and jU2j+ 1, as expected.
It follows from Eqs. (6) and (10) that 2Tm0ðhTmi' Tm0Þ

¼ r2
T tan2hm0; or 2xTm0U2 ¼ U2

1 tan2hm0: Hence, with the
exception of very small grazing angles p=2' hm0

/ ðxTm0Þ'1=2; the phase differences between hGmi and Gm0 in
Eqs. (12) and (13) are much smaller than amplitude differences,
when sound propagates over ranges that are large compared to
its wavelength. When the travel-time bias is negligible, jU2j+ 1
and Eq. (13) simplifies to

hGmi ¼ Gm0 exp ð'U2
1=2Þ: (14)

Hence, the effect of travel-time fluctuations reduces to an
exponential attenuation of the mean field. The attenuation
rate is proportional to the wave frequency squared. In the
case of a single reflection (sm¼ 1) from a fluctuating bound-
ary, Eqs. (10) and (14) with rT

2 from Eq. (10) are consistent
with the well-known result for the mean field reflection coef-
ficient38 derived in the tangent plane approximation.

Some of the results that are derived above for the special
case of an acoustic waveguide with a moving upper bound-
ary remain valid under more general conditions. In particu-
lar, it is clear from the above reasoning that, whether travel
time fluctuations dTm at long-range propagation are due to
fluctuations in the refraction index or geometry of the prob-
lem, the mean field attenuation and coherence loss on a par-
ticular eigenray are described by Eq. (14) provided the root-
mean-square (rms) travel time fluctuations are either small
compared to the wave period or have a Gaussian statistical
distribution. This result is well known34 for the mean field of
a compact source in an unbounded medium with a fluctuat-
ing refraction index.

Moreover, Eqs. (10)–(14) apply also in the case of peri-
odic, rather than random, variations in the environmental
parameters. In this case, h.i means time averaging over the
period of environmental changes. It should be emphasized
that, unless the mean field attenuation is weak, the frequency
dependence of the latter is not universal and instead contains
information about the probability distribution of the environ-
mental fluctuations or, in the case of periodic variations, on
their time-dependence. For instance, in the case of harmonic
variation of depth with time, when H ¼ H0 þ 21=2rH cos Xt;
assuming jU2j+ 1 and neglecting terms of the third and
higher order in e, we obtain

hGmi ¼ Gm0J0ð
ffiffiffi
2
p

U1Þ; (15)

from Eqs. (8) and (9). As expected, Eq. (15) is consistent
with Eq. (12) when U1 + 1. For moderate and large values
of the phase variance, Eq. (15) predicts much smaller coher-
ence losses than Eq. (14).

Equation (10) for the ray travel time variance was
obtained assuming that the ocean surface remains horizontal
when the ocean depth changes. This is a reasonable

assumption, when horizontal spatial scales of the ocean sur-
face elevations are large compared to the propagation range,
e.g., for the depth changes due to oceanic tides or changes in
the barometric pressure caused by weather systems or atmo-
spheric tides. In the opposite case of small-scale variations,
the correlation length of the ocean surface elevations is small
compared to the ray skip distance. Then, the travel-time per-
turbations due to successive surface reflections are uncorre-
lated. This is typically the case for the surface elevations due
to wind waves. The contribution of surface elevations with
variance rh

2 and a small correlation length into the ray-
travel-time variance equals ~r2

T ¼ 4smr2
hc'2 cos2hm0 þ Oðe3Þ:

It contains sm instead of sm
2 in Eq. (10) for rT

2. Note that,
when U1 ¼ x~rT ; our Eq. (14) is consistent with the mean
field attenuation due to wind waves, which was first calcu-
lated by Clay;39 see Eqs. (13) and (14) in Ref. 39. When
rh

20rH
2, the effect of large-scale surface elevations on the

travel time fluctuations and the mean field attenuation domi-
nates the effect of small-scale surface elevations on rays
with several or many surface reflections.

C. Mean field in the normal mode representation

Consider a range-independent waveguide, where a fluid
occupies the half-space –1< z<H with a free surface at
z¼H. Sound speed c and density q of the fluid are functions
of the vertical coordinate z. Neglecting contributions of the
continuous spectrum, the frequency-domain acoustic
Green’s function is given by the sum of normal modes36

G RA;RB;xð Þ ¼
X

n

Gn ;

Gn ¼
x
4

fn zAð Þfn zBð ÞH 1ð Þ
0 nnrð Þ:

(16)

Here, H0
(1)(%) is a Hankel function, nn and fn(z) are the propa-

gation constant and shape function of the nth normal mode,
and the shape functions are normalized by the condition

ðH

'1

dz

q zð Þ
f 2
n zð Þ ¼ 1: (17)

The shape function fn(z) gives the vertical dependence of
acoustic pressure in the nth normal mode.

Fluctuations in the position of the free surface [see Eq.
(7)] lead to small perturbations in the mode shape functions
and propagation constants. Retaining only the phase pertur-
bations, which accumulate with range, and using an asymp-
totic expansion of the Hankel function for large arguments,36

from Eq. (16) we find a relation

Gn ¼ Gn0 exp ienn1r þ ie2nn2r þ O e3ð Þ
! #

;

nn1 ¼
@nn

@H

% &

H¼H0

H1; nn2 ¼
@2nn

@H2

% &

H¼H0

H2
1

2
(18)

between the fields of a normal mode in the perturbed and the
average (unperturbed) waveguides in the far field, where nnr
,1. In shallow-water oceanic waveguides jnn1j¼ nn0O(H1/
H0) and jnn2j¼ nn0O[(H1/H0)2], where nn0 is the propagation
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constant in the unperturbed waveguide. The ratios nn1/nn0

and nn2/nn0 are typically frequency-dependent. Note that, in
contrast to the assumptions made in the numerical modeling
reported in Ref. 40, neither the Green’s function nor a modal
arrival in the perturbed medium is a time-shifted replica of
the Green’s function or the modal arrival in the unperturbed
medium.

The derivative @nn/@H and, therefore, the first-order per-
turbations in Eq. (18) can be calculated analytically in terms
of the unperturbed shape functions and propagation con-
stants as follows:41

@nn

@H

% &

H¼H0

¼ ' 1

2nn0q H0ð Þ
@fn0

@z

''''
z¼H0

 !2

: (19)

Equations (16) and (19) remain valid in the more general
case of a fluid-solid waveguide42 provided the points RA and
RB are situated in a fluid layer 0< z<H overlying a solid
half-space z<H. The solid can be either isotropic or trans-
versally anisotropic with a vertical axis of symmetry. In the
fluid-solid waveguide, the normalization condition Eq. (17)
should be replaced with

ðH

0

q'1f 2
n dzþ x

nn

ð0

'1
sxzvz ' sxxvxð Þdz ¼ 1; (20)

where sxx and sxz are components of the stress tensor and vx

and vz are components of the particle velocity v¼ (vx, 0, vz)
in the nth normal mode with the dependence exp(innx) of its
field on horizontal coordinates.42

Averaging of Eq. (18) for a normal-mode field is analo-
gous to averaging of Eq. (8) for a ray arrival. The results dif-
fer only by the values of the phase variance and bias in Eqs.
(12)–(15). For normal modes, from Eq. (18) we find

U1 ¼
''''
@nn

@H

% &

H¼H0

''''rHr; U2 ¼
@2nn

@H2

% &

H¼H0

r2
Hr

2
: (21)

In contrast to ray arrivals, the normal mode’s phase bias is
not necessarily positive. It follows from Eq. (21) that jU2j
/ U2

1=nnr + U2
1 just as in the case of rays with a fixed, non-

zero grazing angle (see Sec. II B). The mode phase variance
and bias both increase with propagation range but U2

1

becomes large and the mean field is extinguished before the
phase bias reaches O(1) values. This justifies using the sim-
pler Eq. (14) for the average field of a normal mode instead
of the more complicated Eq. (13).

The results that are obtained in the ray and normal-
mode terms are expected to be equivalent for high-order nor-
mal modes.36 To show that this is indeed the case for the
coherence loss, we need to demonstrate that the general
expression, Eq. (21), for the mode phase variance reduces to
the phase variance, Eqs. (10)–(12), of the corresponding ray
arrival under assumptions made in Sec. II B. In the simple
waveguide considered in Sec. II B, the unperturbed mode
shape function fn0 ¼ A sin ½xðz' H0Þc'1 cos hn0) in the
water column, and nn0 ¼ xc'1 sin hn0. Here A is a constant,
which is to be determined from the normalization conditions

Eq. (17) or Eq. (20), and hn0 is the incidence angle of rays
corresponding to the normal mode. In high-order normal
modes, the shape function experiences many oscillations in
the water column and rapidly attenuates with depth in the
ocean bottom. Therefore, integration in Eqs. (17) and (20)
can be restricted to 0< z<H, and fn0

2 in the integrand can
be replaced with its depth-averaged value A2/2, which gives
A2¼ 2H0

'1q(H0). Then, from Eqs. (19) and (21) we find

U1 ¼
xrHr cos2hn0

cH0 sin hn0
: (22)

Comparison of Eq. (22) to Eqs. (10) and (11) shows that the
ray and normal-mode considerations indeed give equivalent
results for the phase variance and, hence, the mean field
attenuation.

Equation (22) indicates that coherence loss increases
with propagation range and wave frequency and decreases
with increasing hn0. At fixed frequency, the normal mode’s
phase speed increases and the angle hn0 decreases with
increasing mode order n. This leads to a rapid increase of
phase variance with increasing n. As propagation range
increases, the mean field is progressively stripped of the
higher-order modes.

The frequency fC, above which a significant coherence
loss occurs, can be estimated by requiring that U1¼ 21/2. Then,

fC ¼ cH0 sin hn0=
ffiffiffi
2
p

prHr cos2hn0: (23)

According to Eqs. (14) and (15), at this frequency, the mean
field is attenuated by the factor e in the case of normally dis-
tributed random perturbations and the factor 1=J0ð2Þ .4:47
in the case of a harmonic time variation of the ocean depth.
Under conditions of the 2012 Florida Straits experiment,
incidence angles of normal modes were larger than about
601, see Ref. 27, and the magnitude of tidal variations of the
ocean depth was about 60.5 m from the mean.27 With
rH¼ 0.5/21/2 m, hn0¼ 601, and H0¼ 100 m, Eq. (23) gives fC
.68 Hz at r¼ 5 km, which is in a good agreement with the
empirically determined value27 fC¼ 70 Hz. For the reasons
explained in Sec. II B, wind waves, which had a similar or
smaller surface elevation variance, made a negligible contri-
bution to the coherence loss compared to the tidal
contribution.

The normal mode attenuation in the mean acoustic field
due to tidally induced ocean depth variations is described by
Eq. (14) for Gaussian random variations and Eq. (15) for
harmonic depth variation in time. In these equations, the rms
phase fluctuations U1, Eq. (21), is proportional to the propa-
gation range r. Our results should be contrasted with the pre-
dictions of exponential attenuation of normal modes,39,43–48

which is equivalent to the propagation constants of the nor-
mal modes of the mean field having an imaginary part. The
exponential attenuation is obtained under implicit43,44 or
explicit39,45–48 assumption that the correlation length of the
random variations of the waveguide’s parameters is small
compared to the skip distance of the ray that corresponds to
the normal mode. As discussed in Sec. II B, our analysis also
gives exponential attenuation in the case of a small
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correlation length provided phase fluctuations are either
Gaussian or weak. When the correlation length of the ocean
depth variations is on the order of the propagation range or
larger, as is the case for tidally induced depth changes in the
2012 noise interferometry experiment in the Florida Straits,
the normal mode attenuation in the mean field cannot be
described by any complex mode propagation constant nn.
Potentially, this can be used to distinguish between contribu-
tions of tides and sound absorption in the bottom into the
observed coherence loss.

III. LOSS OF NOISE COHERENCE IN A PEKERIS
WAVEGUIDE WITH A TIME-DEPENDENT OCEAN
SURFACE

In this section, the theory developed in Sec. II is applied
to a Pekeris waveguide, which serves as a simple model of
the coastal ocean. We consider cross-correlations of diffuse
noise recorded by two near-bottom hydrophones in a wave-
guide with a homogeneous water layer overlying a homoge-
neous fluid half-space, which represents the ocean bottom.
Water depth varies in time and possibly spatially. Spatial
scales of the ocean surface variations are either large (tides)
or small (wind seas) compared to the horizontal separation r
of the hydrophones. The noise averaging time that is used to
retrieve empirical Green’s functions from two-point correla-
tion function of noise is large compared to the representative
time scale of the ocean surface variations. In the simulations
presented below, the choice of specific parameters of the
waveguide, time-dependent ocean surface perturbations, and
propagation ranges is motivated by the environmental

conditions and geometry of the 2012 noise interferometry
experiment in the Straits of Florida.14,27

We characterize effects of the ocean time-dependence
on ray and normal mode arrivals in the empirical Green’s
functions by the ratio

K ¼ jKj exp ð2pijÞ ¼ hGmi=Gm0: (24)

Here jKj01 and '0.50j00.5; jKj has the meaning of
amplitude of the contribution of mth ray or normal mode
arrival into the empirical Green’s function relative to its con-
tribution in the case of stationary ocean. The factor jKj quan-
tifies the decrease of signal-to-noise ratio (SNR) in
interferometric measurements due time-dependent perturba-
tions. The SNR decrease is generally accompanied by a
phase distortion, which is quantified by j. When K¼ 1, there
are no coherence losses and no phase distortions; K¼ 0 rep-
resents the total loss of coherence.

Figure 2 illustrates effects of large- and small-scale ocean
surface perturbations on ray arrivals as predicted by Eqs. (10),
(14), and (15). Tides result in a much bigger loss of coherence
than wind waves with the same rms amplitude, even for rays
with as few as five surface reflections [Fig. 2(a)]. For random
surface elevations with Gaussian statistics, the coherence loss
exhibits a steady and rapid increase with frequency. In con-
trast, temporally periodic changes in water depth lead to an
oscillatory dependence of K on sound frequency [Fig. 2(b)].
The trend of the coherence loss increasing with frequency
remains but is much slower than for random Gaussian pertur-
bations. For a given horizontal separation of hydrophones,
increase in the incidence angles of rays contributes to a rapid

FIG. 2. (Color online) Loss of coherence of surface-reflected ray arrivals in noise cross-correlations. Coherence loss K due to ocean surface motion is shown as a
function of sound frequency for rays with different numbers of surface reflections: m¼ 5 (curves marked 1), 10 (2), 15 (3), 20 (4), and 30 (5). Diffuse ambient
noise is recorded by near-bottom hydrophones. Average water depth is 100 m; sound speed in water is 1537.4 m/s. (a) The ocean surface varies randomly in time
due to tides (solid lines) or tides and wind waves (dashed lines). Gaussian statistics of random surface elevations are assumed. The surface elevations due to tides
and wind waves are statistically independent and have rms values of 0.5 m. Horizontal separation of hydrophones is 5 km. (b) Tidal changes in the water depth are
either random with Gaussian statistics (solid lines) or periodic with sinusoidal time dependence (dashed lines). The rms values of random and periodic surface ele-
vations is 0.5 m. Horizontal separation of hydrophones is 5 km. (c) Same as in panel (b) but for 10 km horizontal separation of hydrophones.
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decrease of coherence with increasing number of surface
reflections [Figs. 2(a), and 2(b)]. Comparison of Figs. 2(b)
and 2(c) shows that, as expected, for rays with fixed incidence
angles, coherence loss increases with propagation range.
Simultaneously, oscillations of K with sound frequency
become faster for periodic in time surface perturbations. This
should lead to stronger distortions of acoustic waveforms at
larger horizontal separations of hydrophones.

When ocean surface deviations from the mean with
equal amplitude and opposite signs have equal probability, K
is real but can become negative [Figs. 2(b) and 2(c)], which
is manifested as a switch in polarity of respective ray arrival
in the empiric Green’s function, mimicking an effect of an
extra surface reflection. Values of j other than 0 and 60.5
become possible when positive and negative surface dis-
placements are not symmetric about the mean (Fig. 3).

Non-periodic oscillations of water depth around the mean
level occur in a typical situation where solar and lunar tides
are present. In Fig. 3, it is assumed that dominant contribu-
tions to ocean tides are due to their principle lunar semi-
diurnal (M2) and principle solar semi-diurnal (S2) constitu-
ents, which have periods of TM2¼ 12.42 h and TS2¼ 12 h and
surface elevation amplitudes AM2 and AS2, respectively. Then
acoustic travel time perturbation at time t is

eTm1 ¼
Q

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

M2 þ A2
S2

q AM2 sin
2pt

TM2

% &(

þAS2 sin
2pt

TS2
þ b

% &)
; (25)

Q ¼ 2xsm

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

M2 þ A2
S2

q
cos hm0: (26)

according to Eq. (9). Here, b is phase of the solar tide rela-
tive to the moon tide at t¼ 0; Q has the meaning of the
amplitude of acoustic phase perturbations of the mth ray
arrival.

When sound frequency is low or tide amplitudes are
small, Q + 1 and loss of coherence is negligible (Fig. 3).
With Q larger than about 0.4, tidal effects are no longer negli-
gible; phase distortion 2pj and especially the coherence loss
jKj become sensitive to amplitudes and the relative phase of
tidal components. The phase distortion takes all possible val-
ues between 'p and p but for most acoustic frequencies, j is
close to either 0 or 60.5, and jIm Kj + jRe Kj. Comparison
of Figs. 3(a), 3(b), and 3(c) indicates that empirical acoustic
Green’s functions carry information about amplitude and
modal composition of tides. The initial relative phase b of the
tidal components determines whether constructive or destruc-
tive interference of the solar and lunar tides is prevalent dur-
ing the noise observation period. Sensitivity of the empiric
Green’s function to b is highest when tidal amplitudes AM2

and AS2 are close [Fig. 3(a)] and lowest when one tidal com-
ponent dominates [Fig. 3(c)]. If frequency dependencies of
the coherence loss and phase distortion were measured for a
few ray arrivals, it would provide sufficient information to
determine the main components of tides and their amplitudes.

Depending on the amplitude of time-dependent environ-
mental perturbations and the horizontal separation of receivers,
coherence losses may prevent retrieval of empirical Green’s

FIG. 3. (Color online) Coherence loss and phase shift of surface-reflected ray arrivals in noise cross-correlations in the presence of a superposition of lunar
and solar tides. The coherence loss and phase shift are shown as a function of the amplitude Q, Eq. (26), of the time-dependent phase perturbation in the ray
arrival due to tidally induced depth variation. The coherence loss jKj and the phase change 2pj are calculated assuming different ratios AM2/AS2¼ 1 (a), 2 (b),
and 8 (c) of amplitudes of lunar and solar tides and different initial phase shifts of 0 (curves marked 1), p/2 (2) and p radians (3) between the two dominant
tidal components. jKj and j are shown by solid and dashed lines, respectively. Amplitudes of the lunar and solar tides are assumed to be constant during the
noise averaging time of 6 days. For a given incidence angle of a ray, Q is proportional to the acoustic frequency, propagation range, and tide amplitude and
inversely proportional to water depth.
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functions from noise cross-correlations at the relatively high
frequencies, where the ray approximation is justified. In the
normal mode representation of the acoustic field, effects of
ocean nonstationarity on noise cross-correlations can be mod-
eled using theoretical results of Sec. II C. These results can be
applied, for instance, to determine proper “shading” of normal
modes when predicting empirical Green’s functions for com-
parison with observed cross-correlation functions of underwater
noise.20,28 Theoretical predictions of the normal mode coher-
ence loss can be directly compared to experimental measure-
ments when observed noise cross-correlations are separated
into their normal mode components49 using the warping
transform.50,51

Figure 4 illustrates the influence of time-dependent,
large-scale perturbations of the ocean surface, such as tides,
on normal-mode components of the noise cross-correlation
function. For simplicity, surface elevations are modelled as a
Gaussian random process. Similar to ray arrivals [see solid
lines in Figs. 2(b) and 2(c)], the coherence loss of individual
normal mode components rapidly increases with range [Figs.
4(a) and 4(b)]. The trend of the coherence loss increase with
mode order in Figs. 4(a) and 4(b) is similar to the increase in
coherence loss with angle of incidence of surface-reflected
ray arrivals (Fig. 2). However, frequency dependence of the
coherence loss is rather different for rays and normal modes.
For Gaussian random surface elevations, the coherence loss
steadily increases with frequency (Fig. 2) and, according to
Eqs. (10)–(12), scales with frequency and horizontal separa-
tion of receivers as xr. Comparison of Figs. 4(a) and 4(b)

clearly shows that there is no such scaling for normal modes.
Moreover, the frequency dependence is distinctly non-
monotone, with zero coherence loss at the cutoff frequency
and in the high-frequency limit, with a pronounced maxi-
mum of the coherence loss at frequencies slightly above the
cutoff.

The somewhat unexpected frequency dependence of the
coherence loss reflects the sensitivity of the mode phase to
water depth variations as represented by the product
rð@nn=@HÞH¼H0

; see Eq. (21). Sound frequency x and water
depth H enter the dispersion relation for phase speeds of nor-
mal modes in the Pekeris waveguide only in the combination
xH.36 Using this fact, it is easy to show that

@nm

@H

% &

x
¼ x

@c'1
m

@H

% &

x
¼ x2

H

@c'1
m

@x

% &

H

¼ x
H

1

um
' 1

cm

% &
; (27)

where cm¼x/nm and um ¼ ð@nm=@xÞ'1
H are the phase and

group speeds, respectively, of the mth normal mode. The
phase speed equals sound speed in the bottom at the cutoff
frequency and then steadily decreases with x to its high-
frequency limit, equal to the sound speed in water.36 The
group speed is equal to the bottom sound speed at cutoff,
then rapidly decreases with frequency to its minimum value,
and after that steadily increases towards the high-frequency
limit, which equals the sound speed in water.36 Equation
(27) shows that these well-known properties of phase and

FIG. 4. (Color online) Loss of coherence of normal mode components of noise cross-correlations in a Pekeris waveguide. Coherence loss jKj due to ocean sur-
face motion and sound attenuation in the ocean bottom is shown as a function of sound frequency for five lowest-order normal modes. Each curve is marked
by the order m¼ 1, 2, 3, 4, 5 of the respective normal mode. Tidal changes of water depth are modeled as a Gaussian random process with rms elevation of
0.5 m. The following waveguide parameters are assumed in simulations: water depth is 100 m; sound speeds in water and fluid bottom are 1537.4 m/s and
1800 m/s; the ratio of bottom and water densities is 2.2. (a) Coherence loss due to ocean surface motion. Sound attenuation is negligible. Horizontal separation
of hydrophones is 5 km in panels (a), (c), and (d). (b) Same as in (a) but for 10 km horizontal separation of hydrophones. (c) Coherence loss due to sound atten-
uation in the bottom in the absence of tides. Sound attenuation in the bottom is 0.2 dB/wavelength in panels (c) and (d). (d) Combined effect of bottom attenua-
tion and moving ocean surface on the coherence of diffuse noise.
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group speeds in the Pekeris waveguide explain the frequency
dependence of coherence loss depicted in Figs. 4(a) and 4(b)
assuming that sound absorption is negligible.

Attenuation of sound in the bottom leads to exponential
decay with range of normal mode amplitudes in both
Green’s function and the empirical Green’s function
retrieved from noise cross-correlations. In the Pekeris wave-
guide, normal mode penetration into the bottom is largest at
cutoff and steadily decreases with frequency; at a given fre-
quency, bottom penetration increases with the normal mode
order.36 These properties of normal modes are reflected in
the dependencies of their attenuation [Fig. 4(c)] on sound
frequency and mode order. Note the sharp contrast between
frequency dependencies of the coherence loss due to ocean
nonstationarity [Fig. 4(a)] and bottom attenuation [Fig. 4(c)]
near the mode cutoff. In a more realistic scenario, where the
bottom attenuation and ocean surface nonstationarity are
present simultaneously, the two mechanisms of coherence
loss combine and, for the waveguide parameters and the
hydrophone separation considered, result in the coherence
losses that steadily decrease with frequency and increase
with mode order [Fig. 4(d)]. Comparison of Figs. 4(a), 4(c),
and 4(d) shows that relative significance of the two mecha-
nisms varies depending on x an m. However, the relative
significance of tides vs bottom attenuation always increases
with increasing horizontal separation of hydrophones (not
shown).

The ray theory predicts that, for each ray arrival, the
coherence loss increases with sound frequency, while coher-
ence loss decreases with frequency for each normal mode
[Fig. 4(d)]. This apparent contradiction is resolved by noting
that, as frequency increases, the number of propagating nor-
mal modes grows through addition of higher-order modes
with bigger coherence losses.

IV. CONCLUSION

Acoustic noise interferometry relies on the fundamental
property of diffuse wave fields, which are generated by a
large number of independent sources in a time-invariant
medium, to retain coherence at ranges large compared to
wavelength. In this paper, we investigated the effect of ocean
non-stationarity on the empirical Green’s functions that are
retrieved from cross-correlations of diffuse ambient and
shipping noise. Rapid temporal changes in the environment
lead to a frequency-dependent loss of coherence of noise and
suppress deterministic features in noise cross-correlations.
We quantified the effect of time-dependent environmental
perturbations on the ray and normal-mode components of
the empirical Green’s functions that are measured in noise
interferometry experiments. When the noise averaging time
is large compared to the representative time scales of random
or periodic environmental perturbations, prediction of the
resultant coherence loss and phase distortions proved to be
closely related to the problem of calculation of the mean
field as previously studied in the theory of waves in random
media. Equation (4) shows that the environmental informa-
tion retrievable from measured cross-correlations of diffuse
noise is contained in the Green’s function of the mean field

rather than in the deterministic Green’s function in the aver-
age (non-perturbed) medium.

In the coastal ocean, the time-dependent processes most
relevant to acoustic noise interferometry are changes in the
ocean surface geometry. Coherence losses due to ocean sur-
face dynamics are described by Eqs. (13)–(15) and (24).
When horizontal separation of receivers is large compared to
coastal ocean depth, ocean tides are found to contribute
much more to the noise coherence loss than wind waves
with comparable amplitudes. The coherence loss is found to
have a markedly different range dependence than attenuation
due to sound absorption. Equation (23) provides a quick esti-
mate of the frequency, below which noise interferometry can
be used for passive acoustic remote sensing of the coastal
ocean.

Understanding and prediction of the effects of ocean
nonstationarity on the empirical Green’s functions is instru-
mental in planning noise interferometry experiments and
interpretation of their results. Further research is necessary
to determine whether one can take advantage of the coher-
ence loss in noise cross-correlations to characterize, in a sta-
tistical sense, oceanographic processes with times scales that
are shorter than the averaging time necessary for emergence
of empirical Green’s functions from two-point correlations
of diffuse noise.
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