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Abstract
System of interest (SoI) failures can sometimes be traced to an unexpected behavior occurring

within another system that is a member of the system of systems (SoS) with the SoI. This article

presents a method for use when designing an SoI that helps to analyze an SoS for unexpected

behaviors from existing SoS members during the SoI’s conceptual functional modeling phase of

system architecture. The concept of irrationality initiators—unanticipated or unexpected failure

flows emitted fromone system that adversely impact an SoI,which appear to be impossible or irra-

tional to engineers developing the new system—is introduced and implemented in a quantitative

risk analysismethod. Themethod is implemented in the failure flow identification andpropagation

framework to yield a probability distribution of failure paths through an SoI in the SoS. An example

of a network of autonomous vehicles operating in a partially denied environment is presented to

demonstrate the method. The method presented in this paper allows practitioners to more easily

identify potential failure paths and prioritize fixing vulnerabilities in an SoI during functional

modeling when significant changes can still bemadewithminimal impact to cost and schedule.
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1 INTRODUCTION

In spite of extensive efforts undertaken during the design of systems,

system failures continue to occur regularly. This is demonstrated

by a multitude of system failure examples making headline news.

Over a period of 52 years (1957-2009), there were over 400 publicly

documented mission failures in the space industry, including satellites,

crewed spacecraft, and rockets.1 Since the introduction of the com-

mercial airline industry, there have been a reported 154 984 deaths as

the result of 26 152 accidents.2 According to Ref. 3, there have been a

total of 25major dam failures documented, 16 of which have occurred

in the last 50 years. The nuclear power industry has observed over 200

significant failures, several of which have resulted mitigations exceed-

ing one billion U.S. dollars.4 Recent events in the aviation industry5

emphasize that failures occur even in newly designed systems with

strong regulatory oversight. In short: systems routinely fail regardless

of system type, purpose, age, design approach used, industry, or the

era in which it was designed and built. Regardless of our best design

and analysis of systems, we as practitioners and researchers continue

to be surprised by emergent (unpredicted, unexpected, discounted,

or seemingly illogical or irrational) system failures. While we would

like to believe that the systems we design will behave exactly how

we predicted and observed during the design and testing portion of

the systems engineering process, the literature and the popular press

show that this is often not true.

Within the context of system failures, harmful emergent system

behaviors have been observed in engineered systems for many

decades.6 Over time, more simple-to-understand emergent system

behaviors have been corrected for and are no longer a significant

issue.7 However, efforts to systematically understand the underlying

causes of the emergent behaviors and design systems to minimize

the potential for harm have only been undertaken in the last few

decades.8,9 The majority of industry work and academic research has

focused on events that have previously been observed, and expected

and predictable events.10 As a result of efforts to address such events,

modern systems are much less likely to fail from single point failures

or from commonly occurring failures caused by multiple component

failures; such failures have largely been identified and corrected.11,12

The failures that are now observed in systems are often as a result

of multiple failure events occurring together to develop an emergent
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systembehavior that has previously not been predicted or observed,13

or which had been ruled out through previous analysis as unlikely to

occur.14 For example, a recent collision on Singapore’s Mass Rapid

Transit system resulted in 38 injuries and was a result of a series

of unexpected interactions across multiple systems and subsys-

tems in the signaling system that led to a series of undetected and

progressively degraded operation conditions.15

We believe that if the systems engineering community wishes to

continue to increase the robustness, resilience, interoperability, and

survivability of system of systems (SoSs) in an effort to improve the

probability of an SoS completing its mission successfully, a better

understanding of how failures are initiated in system of interest (SoIs)

by other members of an SoS that lead to SoI failure is needed. Already,

there have been some efforts that begin to address the problem with

most focusing on the more cost-effective conceptual phase of system

engineering when architectural trade-off studies of potential system

architectures are conducted and before significant component design

work has begun.16 For instance, there is a proposedmethod to analyze

SoS early on in the design cycle via SoS modeling.17 There are many

different ways to model SoS, such as the functional basis for engi-

neering design (FBED)18 functional modeling taxonomy, which can be

used tomake functional architectures. A better understanding of what

potential failure events have a higher likelihood of occurrence can help

determine priorities formitigating such potential failure events.19 One

way tomodel potential failure events is touse functionalmodels topre-

dict the likelihood of failure of a system.20 An SoS architecture can be

iterated many times until an acceptable system failure probability has

been reached.21 Using methods such as the family of methods devel-

oped from failure flow identification and propagation (FFIP),20,22–25

failure propagation can be assessed at a functional level through a

system. Probabilistic risk assessment (PRA)methods can also be useful

to understand system failure propagation, especially for systems with

high redundancy and failure mitigation systems.10 Many of the above

mentioned methods and approaches fall under the umbrella of model-

based systems engineering, which has been heavily advocated by the

International Council on Systems Engineering among others for sev-

eral decades.26 The INCOSE Systems Engineering Book of Knowledge

also includes several relevant sections on safety engineering (including

several variations of hazard analysis) and reliability, availability, and

maintainability that help to improve SOSs in those respective areas.26

Within the systems engineering V model,27 the method presented

in this paper is specifically meant to be used in the system architecture

phase of design—near the front end of the V model. In specific, the

conceptual phase of system architecture where functional models are

being developed from requirements, design reference missions, and

other similar information28 is where the below introduced method

is targeted for use. The early conceptual functional modeling stage

of system architecture within the systems engineering process is an

opportune time to uncover potential unexpected or unanticipated

system behaviors, the corresponding initiating events in an SoI, and

their impacts on SoIs. Large changes to SoI system architecture can

be made at this stage without significant adverse impact on schedule

and budget.16 The conceptual phase of system architecture also often

precedes hazard analysis, failure modes effects and criticality analysis

(FMECA), PRA, and other similar methods of failure and risk analysis

although FFIP and uncoupled failure flow state reasoner (UFFSR) are

conducted on functional models during conceptual design.

The method presented in this paper is intended for use on SoS and

SoI typically used by the U.S. Department of Defense (DoD), such as

groups of autonomous vehicles operating in an SoS configuration;

adaptive force packages that include surface vessels, underwater

assets, airplanes, autonomous vehicles of a variety of types, and other

related systems operating as an SoS (often in support of a mission

objective and in relation to mission engineering29); forward operating

base complexes where ground vehicles, living quarters, maintenance

depots, munitions storage, autonomous vehicles, and other systems

are present and can be considered an SoS; and other similar systems.

While the method we present below may be useful for other SoSs,

such as microgrids, cyber SoS (eg, fully software-based SoS—note: the

previous examples that are within the scope of this method do include

cyber-physical elements and are not excluded from consideration),

and primarily human-based SoS (eg, a company of soldiers and their

equipment) among other examples, this is not the primary focus of our

presented method. Further, while irrational behaviors of humans can

be incorporated to some extent in the method through the FBED flow

set, our primary focus is explicitly not on human-system interaction

but instead is primarily on the systems themselves.

In spite of the significant advances made in understanding how

failures propagate through SoIs and SoS, SoI failure events caused by

other systems within the SoS are often still missed.30–32 As far as we

are aware, the analysis how one or more systems within an SoS can

behave in unpredicted or unanticipated ways that result in initiating

failure events in an SoI are not being well analyzed within existing

failure analysis methods during conceptual functional modeling during

the system architecture phase of systems design for the specific types

of SoS mentioned above. Thus, there currently exists no practicable

way for practitioners to identify and analyze potential system unan-

ticipated or unpredicted system behaviors within an SoS that create

failure initiating events in an SoI.

1.1 Specific contributions

This article contributes an analysis method that helps the practitioner

consider irrational system behavior of member systems within an

SoS and their impacts on an SoI in the form of “irrationality initators”

(failure initiating events caused by unanticipated or unpredicted sys-

tem behaviors—described in detail in the methodology section). The

method is intended to be used in early systemmodelingwhere concep-

tual functional architectures are developed. An analysis of potential

effects (ie, themethod) caused by “irrational systembehaviors” (system

behaviors that are unanticipated or unpredicted by the SoI systems

engineers—described in detail in the methodology section) originating

in one or more systems and adversely affecting the SoI through “irra-

tionality initiators” is conducted using several techniques. The result

of the analysis can then be used to further develop and refine the SoI

system architecture to improve SoI robustness to irrational system

behaviors.
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2 BACKGROUND AND RELATED WORK

The method developed in this article relies upon several bodies of

work, including systems modeling, failure analysis, and probability

assessment. This section provides background and discusses related

efforts of relevance to themethod presented here.

Systems modeling is a family of techniques used to develop

models of systems for the purposes of system representation and

simulation. Many system modeling techniques are available to the

practitioner, such as the Integrated Computer Aided Manufacturing

(Icam) DEFinition for Function Modeling (IDEF0) language33 that

has seen significant use in the systems engineering community. The

Universal Modeling Language and its offspring, the System Modeling

Language,34–36 are seeing increased usage especially within the

DoD. Other modeling languages, such as Refs. 37 and 38,are also

available and with varying levels of adoption. This article uses the

FBED18,39 functional hierarchical modeling language to represent

systems. The FBED models system functions and flows where func-

tions defined are the actions that a system can take (eg, transport

energy, convert rotational energy to electrical energy, etc) and flows

are defined as material, energy, or signal moving within the system

(eg, energy-chemical, signal-control-discrete, etc), into or out of a

system boundary, or between systems in the case of an SoS. The FBED

function and flow taxonomies are each decomposed into primary,

secondary, and tertiary categories where each deeper level has an

increased level of specificity. System components are abstracted to a

functional level to give engineers the freedom to consider functionality

of a system without being locked into a specific component architec-

ture. The abstraction of functions from components and the derivation

of component solutions from functions is a well understood and

established practice from the original and subsequent development

of FBED.40 FBED is an established National Institute of Standards

standard that helped to unify several disparate efforts in functional

modeling for engineering design.18,39 This places FBED as a modeling

language primarily suited for conceptual modeling. However, we have

observed FBED being used to analyze existing designs as well.

Failure analysis is performed to understand how a system may

degrade or fail primarily during operation although the analysis can

also be performed for other phases of the system life cycle, such as

maintenance. Failure modes and effects analysis (FMEA)41 and its

extension, FMECA,42 are heavily used in private industry43 and in

the DoD, where MIL-STD-882E prescribes FMECA to conduct hazard

analysis.44 FMEA calculates a risk priority number (RPN) by multiply-

ing the probability of a failure event happening, the ability to detect

the event before it happens, and the severity of the event on 1-10

scales with the RPN being on a 1-1000 scale to prioritize the order in

which potential failure events should be mitigated. However, FMEA

and FMECA are ill-suited to identify emergent system behaviors, such

as multiple component failures that lead to a system-level failure and

that have not been observed before in operating systems.45,46

PRA combines fault tree analysis47 and event tree analysis48

to produce failure event sequences that generally include multiple

components or subsystem failures in sequence to cause a system-level

failure. Initiating events are the probability of an event occurring that

initiates a potential system failure.49 However, valid initiating events

can be erroneously discounted as being possible or are sufficiently

beyond prior experience of engineers conducting the PRA that such

initiating events can fail to be included in the analysis.30,31

Cut-sets are produced by PRA, which can then be used to analyze

failure events that require multiple events to occur to lead to failure

(usually system failure although failure can be defined differently

depending upon the application).50 The production of cut-sets is often

truncatedwhen the probability of an event occurring falls below a pre-

determined threshold.51 This can occasionally lead to low probability

but high consequence failure events from being missed in analysis

conducted using PRA.52

Unpredicted or unanticipated system behavior can occur in sys-

tems for many different reasons.53 A significant body of research has

been developed to understand unanticipated or unpredicted system

behaviors54–56 and address such system behaviors through increasing

system robustness and resiliency to both external and internal failure

initiating events.57–59 However, we have found scant evidence of work

being done to understand unexpected or unpredicted system behavior

within the context of an SoS.

Several efforts have beenmade to combine functionalmodeling and

failure analysis, such as a method of developing FMEAs for functional

models.60 The FFIP method20,22 uses a probabilistic approach to

analyze functional models for failure propagation. In recent years,

FFIP has been extended with methods, such as the UFFSR24 that

evaluates failure flows that do not travel along nominal flow pathways,

TABLE 1 Comparison of existing risk, reliability, safety, and relatedmethods presented to identify gaps in existing methodologies

Method capability Proposedmethod PRA FMEA/FMECA FFIP Hazard analysis Nan et al.

Identifies all irrationality initiators Y N N N N N

Identify failure propagation paths within
system

Y Y N Y N Y

Quantifying failure probability outcomes Y Y Y N Y Y

Iterate functional model with results Y N N N N N

Propagate uncoupled failure flows Y N N N N N

Note: Note that instead of referencing multiple hazard analyses, the term hazard analysis encompasses the intent of the methods enclosed in MIL-STD-
882E.44 Examples methods include preliminary hazard analysis (PHA), functional hazard analysis (FHA), system hazard analysis (SHA), subsystem hazard
analysis (SSHA), Nan et al., etc. Note that irrationality initiators are described in detail in the methodology section. In short: an irrationality initiator is an
initiating event in an SoI that is induced by another systemwithin the SoS behaving in an unpredicted or unanticipatedmanner.
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and a functional Bayesian approach to developing prognostic and

health monitoring subsystems that can detect incipient failures while

they still can be corrected.23 In the FFIP family of methods, initiating

events are developed in a similar way to initiating events in PRA, which

leads to unexpected or unpredicted initiating events often not being

considered. The FFIP family of methods produces cut-sets similar to

those developed by PRA and handles truncation of analysis in a similar

manner.59

Nan et. al. developed amethod of analyzing supervisory control and

data acquisition (SCADA) systems and the systems under the SCADA’s

control in critical infrastructure to identify vulnerabilities. Themethod

investigates inderdependencies of four types, including physical, cyber,

geographic, and logic. However, Nan et al. does not conduct the analy-

sis at the functional level of system architecture nor is it an exhaustive

flow-basedmethod of identifying potential initiating events.61

3 METHODOLOGY

The method presented in this section has been developed specifically

for use during conceptual design of a system that is part of an SoSwhen

architectural trade-off studies are performed. Significant alterations

in a system’s design at this stage of the design process are relatively

inexpensive to perform and take relatively little time to implement.

A high-level flow chart is provided in Figure 1 to graphically show the

five steps of themethodology.

Note that a demonstration of the method is provided in the Case

Study and Results section of this article (Section 4). We have omitted

examples within theMethodology section and instead direct the inter-

ested reader to the Case Study and Results section. It should also be

noted that the case study is a fictionalized case study and is intended

only to demonstrate themethodology presented in this section.

3.1 Model the systemswithin the SoS

The first step is to model the SoI within the SoS and their connections

to one another. FBED18 is our preferred functional modeling method

and is used throughout this article. However, many equally valid meth-

ods are available.34–38 In concert with developing functional models,

physical component solutions to functions can be developed. Having

component solutions to functions (either a one to one correlation or

a many to one correlation if component solutions have not been down

selected yet) at this stage in the design process allowsmapping ofwhat

happens when a physical component fails to the function it fulfills. An

example of a function to component mapping is the function transfer

liquid, which may be fulfilled by the component pipe or the component

canal among other possible component solutions.

3.2 Identify potential irrational system behaviors

Based on observations in the literature and in our professional prac-

tices, we propose considering emergent system behaviors that were

not previously predicted or were discounted as being highly unlikely

to be what we term “irrational system behaviors.” We further refine

the definition of irrational system behaviors as unexpected behaviors

within a system that emit potential failure initiating events that other

systems within an SoS may in turn receive as inputs and thus cause

failures in the other systems. In short: irrational system behaviors are

system behaviors that have not been previously observed or predicted

(no prior knowledge or discounted as being a potential threat) by other

systems within an SoS, and have not been analyzed through routine

means of system simulation and hazard/failure analysis.

An example of potential irrational system behavior is a compressed

air delivery network SoS with a compressor, an air cleaning system,

a distribution system, and multiple compressed air use systems (eg,

venturi chillers, pneumatic solenoid valves, pneumatic rotary motors,

pneumatic cylinders, etc). While the SoS is designed with the expecta-

tion that contaminants such as water and compressor oil may bypass

the air cleaning system and would then be caught by filters on the

compressed air use systems, the SoS is not designed for and does not

expect the compressor to deliver corrosive gas. Such an irrational

system behavior may occur, for instance, because of an acetylene tank

unexpectedly venting near the compressor’s air intake. This may lead

F IGURE 1 High-level overview of the proposed
methodology
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tomultiple failure events in the systems that receive compressed air in

the SoS as unexpected corrosion occurs.

While an argument can bemade that our definition of irrational sys-

tem behavior could also be described as unexpected or unanticipated

system behavior, we specifically use the word “irrational” to call prac-

titioners’ attentions to this phenomenon. In our professional practice,

onmultiple occasions, we have observed senior systems engineers and

subject matter experts caught off guard by failure events caused by

other systems than the SoI (SoI–the system being designed to enter

an existing or proposed SoS) within an SoS. Within the context of SoS,

many practitioners we have discussed the concept of irrational system

behavior have their own stories of other systems within an SoS behav-

ing completely irrationally and impacting their SoIs when compared

with the practitioners’ understanding of how the other systems should

behave. We have personally witnessed in several industries that, in

spite of (a) excellent requirements, interface management strategies,

and comprehensivework products, and (b) outstanding hazard, failure,

reliability, and related analyses, irrational system behaviors continue

to occur that impact SoIs. While it may appear that irrational system

behaviors occur with high frequency, it is important to be clear that

these are in fact rare events. However, the consequences of irra-

tional system behaviors are significant enough to warrant study and

development of themethodology presented in this article.

Even when logical and probabilistic approaches for analyzing an

SoI within the SoS are used, the approaches often fail to uncover

potential emergent SoI system behaviors that are initiated by

irrational system behaviors of other systems within the SoS. The

aforementioned issue happens in spite of extensive guidance on

searching for potentially overlooked initiating events.30,62 In cases

where potential failure scenarios caused by irrational system behav-

iors have been identified, organizations that conduct system failure

and risk analysis can sometimes discount such scenarios and not

rigorously analyze the potential outcomes.63,64 The problem of not

identifying or discounting identified emergent system behaviors is

compounded as SoS are developed by connecting multiple systems

together. As the number of systems in an SoS increases, the likelihood

of irrational system behaviors increases. Irrational system behaviors

can occur in one or more systems within an SoS.65–67 In short, SoS can

have irrational system behaviors that may result in severe negative

outcomes to individual systemswithin an SoS or to the entire SoS.

One specific goal of thiswork is to identify irrational systemsbehav-

iors. In order to identify these behaviors, it is useful to understand

how systems can behave irrationally. The study of irrational behavior

began with investigating irrational behavior of people such as in the

context of economic models.68,69 Irrational behavior of people (also

often called irrationality) can take different forms and have different

causes, such as visceral reactions70 to events, psychosis,71 actions

taken under duress,72 or even intentional irrationality.73,74 Engineers

are no exception to irrational behavior; design engineers can appear to

behave irrationally in their risk-based design decisions although such

irrationality can sometimes be explained by the individual personal

utility function of a specific engineer.75 While some argue that humans

are the only true source of irrational system behaviors, we are using

the phrase “irrational system behavior” in a different context, as

described above. However, examining the context of irrational behav-

ior of humans is useful in conceptualizing how systems can appear

to behave irrationally to an outside observer or even to the subject

matter expert of the system behaving irrationally.

Decision theory and utility theory have been used to help under-

standhowpeople can appear tobehave irrationally,76–81 including how

neural systems work82,83 Through the application of utility and deci-

sion theory, it is now possible to develop system models that deviate

from the expected value theorem and instead match a specific utility

function of either an individual or an organization.84 We contend

that (much like humans) while a system may appear to be behaving

irrationally to an outside observer, the system’s utility functionmay be

different from the observer’s expectation. In other words, the system

is behaving normally based on its own internal utility function but

appears to an external observer to be behaving irrationally.

From our proposed definition of irrational system behavior devel-

oped above, we further refine the definition of irrational system

behavior to specifically refer to functional flows that exit a system

boundary being unreasonable or illogical when compared to expected

and previously experienced system behavior. We define unreasonable

or illogical behavior as deviation from preprogrammed behaviors and

rational expectations;85 unresponsiveness to incentives;74 and/or

deviation from self-interest, self-preservation, and/or SoS self interest

and preservation.86 We further refine the definition of irrational

system behavior in the context of this article to specifically be a failure

flow class20,22 that exits a system boundary and that would not nor-

mally be anticipated through common failure analysis techniques, such

as hazard analysis,87 FMEA and the related FMECA,41 PRA,10FFIP,20

UFFSR,24 and other similar methods. Thus, irrational system behavior

produces potential initiating events for the SoI within an SoS. Another

way to conceptualize irrational system behavior is that it is similar

to Black Swan events as described by Taleb13,88 although irrational

system behavior is focused specifically on failure initiating events,

while Black Swan events generally refer to system-level failure.

An initiating event is an event that initiates an incipient failure

within an SoI that may propagate through the SoI until (a) the SoI has

failed, (b) the SoI is operating in a stable but degraded condition, (c) the

SoI recovers to a nominal operating state after a period of degraded

performance, or (d) the SoI mitigates the incipient failure. Initiating

events are used in PRA, FFIP, and other quantitative failure and risk

analysis methods. While standard procedures are available to identify

potential initiating events that may affect a system,49 a practitioner

may discount initiating events that are outside of prior experiences

with a system or that seem irrational.30–32

We propose supplementing existing methods of identifying initi-

ating events (eg, Ref. 49) by introducing the concept of irrationality

initiators, which we define as irrational system behavior within an SoS

that creates initiating eventswithin an SoI. In otherwords, irrationality

initiators are caused by irrational system behavior of one or more sys-

tems within an SoS that emit unexpected system boundary-crossing

failure flows. The failure flows become irrationality initiators when

they encounter the SoI in the SoS. Irrationality initiators may follow
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nominal flow paths between systems such as a data link between two

systems or irrationality initiators may affect the SoI by propagating via

uncoupled flow paths.24 We distinguish irrationality initiators from

failure flows that turn into ordinary initiating events to specifically

denote that irrationality initiators are initiating events originating out-

side of the SoI and caused by irrational system behavior of other sys-

tems within the SoS. Irrationality initiators are not caused by the envi-

ronment and do not include expected and/or understood failure flows

from other systems within the SoS that are already captured through

existing methods of initiating event analysis. As is the case with ordi-

nary initiating events, an irrationality initiator may also cause a failure

to propagate through an SoI and may result in one of several system

end states, including partially failed or degraded performance of the

SoI; failure of the SoI; after an initial period of disruption, the SoI recov-

ers to anominal state; or anominal SoI state. To reiterate, in the context

of an SoS, an SoI acquires irrationality initiators from other systems

within the SoS. It should be noted that an SoI receiving irrational ini-

tiatorsmay in turn generate its own irrational system behaviors, which

may turn into irrationality initiators in other systemswithin the SoS.

Based on the proposed definitions of irrational system behavior

and irrationality initiators developed above, we propose the following

approach, as shown in Figure 2, to identify irrationality initiators. The

approach starts with all potential flows from the FBED flow set18,39

before reducing down to potential flows that may happen within a

specific SoS.

• Step 2, Part 1: Start with all secondary and tertiary flow descriptions

from FBED. Each flow may conceivably be an irrationality initiator

coming from a generic black box system within an SoS. From a con-

ceptual standpoint, it is irrelevant if a failure flow is being emitted by

a function or a linked componentwithin themodels—in this step, the

failure flows are considered to be emitted from a black box system

model. Note that the use of the abstracted FBED flows is intentional;

abstracting away from physical components and subsystems to the

functional level can help practitioners to consider potential new ini-

tiating event sources that otherwise may bemissed.

• Step 2, Part 2: Remove all flows from the list of potential irrationality

initiators that are alreadymodeled as initiating events throughother

failure analysis methods, such as FFIP and PRA.

• Step 2, Part 3: Identify any potentially impossible candidate irra-

tionality initiators that cannot be emitted by the generic black box

system. Before eliminating a candidate irrationality initiator, the

practitioner must attempt to identify ways that the irrationality ini-

tiator may be able to be generated even if it is highly implausible

or unlikely. For instance, almost any material can produce spectral

emissions thatwould normally be unexpectedwith sufficient energy

applied to thematerial.

• Step 2, Part 4: Assign probabilities of occurrence to each of the irra-

tionality initiators remaining on the list. We advocate that practi-

tioners follow initiating event probability guidance from PRA, such

as Refs. 10 and 49.

Now that potential irrationality initiators within an SoS that may

impact the SoI have been identified and probabilities assigned, the

flow paths by which the irrationality initiators enter the system must

be defined. Irrationality initiators may be introduced to a system

along nominal flow paths or along non-nominal flow paths, such as

the uncoupled failure flow paths advanced in the UFFSR method.24

Additions to or modifications of the failure model for a systemmay be

necessary to sufficiently capture irrationality initiator entry points.

3.3 Analysis of potential irrationality initiators

The next step in the method is to conduct failure analysis on the SoI

using the identified potential irrationality initiators. We advocate

for and use in the case study the FFIP family of failure analysis tools

to conduct failure analysis on the SoI. In order to produce a more

accurate analysis of potential irrationality initiators using FFIP and

F IGURE 2 Steps to developing irrationality
initiators
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related tools, we recommend that the analysis be performed using

data collected from the proposed physical architecture that solves the

functional architecture of the SoI.

The number of potential failure scenarios, often called “cut-sets” in

PRA and sometimes in FFIP, resulting from the analysis of irrationality

initiators, is directly related to thenumberof irrationality initiators and

the functionalmodel of the SoI. Each irrationality initiatormayproceed

along many different flow paths in an SoI, causing functional failure

along the way, which in turn may lead to system failure. The number of

potential failure scenariosmay further be expanded by havingmultiple

potential component solutions available for specific functions before

down-selection of component solutions has been conducted.

While probabilities for specific irrationality initiators were calcu-

lated in a prior step in the method, there are several options for how

irrationality initiators are analyzed based on what type of analysis

results a practitioner is interested in reviewing. These include an

uninformative prior and an informative prior. Further, irrationality

initiators that are either independent or dependent can be consid-

ered to provide additional insights into potential irrational failure

scenarios, such as when multiple irrationality initiators often occur

together. Informative and uninformative priors, and independent and

dependent irrationality initiators may be combined together. Further

explanation immediately follows:

3.3.1 Uninformative and informative priors

In order to understand the sensitivity of an SoI to irrationality initia-

tors, the uninformative prior sets all irrationality initiators to the same

probability of occurrence. It should be noted that using the uninforma-

tive prior approachdoes not allow for direct comparisonof resultswith

other FFIP results. The results are specifically useful to understand

what high severity failure outcomes are present that otherwise may

be truncated during computation. The uninformative prior method

can also be used to perform a sensitivity analysis on the irrationality

initiators by changing their probabilities and comparing results. This

may help to identify irrationality initiators that are not particularly

sensitive to changes in their probabilities of occurrence and may also

identify specific irrationality initiators that warrant extended scrutiny

to ensure a higher degree of accuracy and realism in the probability

statistics.

In contrast to the uninformative prior that uses arbitrarily assigned

probabilities to determine potential low probability but very severe

outcomes and to examine irrationality initiator probability sensitivity,

the informative prior uses probabilities of occurrence that were

already developed in a previous step of the methodology and that

are based in reality. This allows for direct comparison of irrationality

initiator-derived failure scenario probabilities with failure scenario

probabilities produced from FFIP.

In the event that a probability was unable to be developed previ-

ously because of a lack of information, we suggest using a probability

value that is 3x the highest probability of the highest known irra-

tionality initiator probability. Using a 3x higher probability may help

to ensure that any potential high consequence failure scenarios are

identified and will help to motivate the development of a better

estimation of the probability. If a failure scenario of a particular

irrationality initiator that used the 3x higher probability is sufficiently

probable, then this indicates the irrationality initiator probability

needs to be better understood. However, if no failure scenarios are

within a few orders of magnitude of the most likely failure scenario,

then this is an indication that there is likely no further refinement of

that irrationality initiator’s probability. It is worth noting that we do

not advocate for setting the multiplier higher than 3x for irrationality

initiators without well-founded probabilities. While such an approach

would almost certainly highlight every single potential failure scenario

caused by the irrationality initiator in question, setting the irrationality

initiator probability needlessly high without a rigorous analysis to

back up the choice is likely to overwhelm a user of this method with

many failure scenarios that masquerade as being of high likelihood

while in reality being of vanishingly small probability. This in turn

may lead to much wasted time and effort to disprove all of the failure

scenarios. The suggestion of a 3x multiplier is based on our prior

professional experience as risk analysts and reliability engineers and

from examining the sensitivity of several failure models to which we

have access to changing initiating event probabilities.Whilewe believe

the 3x multiplier is a good starting point, we recommend that systems

engineering practitioners carefully examine the sensitivity of their

own systems to initiating event probabilities and make adjustments as

warranted and using their professional engineering judgment.

We recommend that both the informative and uninformative prior

methods are used to analyze irrationality initiators in the SoI. The

uninformative prior can shed light on potential high consequence

failure scenarios that otherwise may be missed and can also be used

to perform sensitivity studies on the irrationality initiators. The infor-

mative prior quantifies failure scenarios in a way that can be directly

compared with standard FFIP results. This may help practitioners to

prioritize wheremoney and time is spent tomitigate potential issues.

3.3.2 Independent and dependent irrationality initiators

In almost every implementation of FFIP that we have encountered, ini-

tiating events are exclusively considered to be independent from each

other. The same is true in many PRA analyses. However, we suspect

based on our professional practice and observations that irrationality

initiators may have a higher likelihood of being dependent upon one

another to some extent. In other words, if one irrationality initiator

occurs, then it is more likely that another will occur at the same time.

We propose that irrationality initiators should be modeled both as

independent and dependent events. By analyzingmultiple irrationality

initiators as single events, a practitioner can gain insight into scenarios

where a system in an SoS begins emitting many irrationality initiators.

This may help to identify “worst case scenarios” where completely

unanticipated emergent system behaviors occur due to the SoI receiv-

ing several irrationality initiators at once. Recent research on external

initiating events for autonomous robotic systems has indicated that

unique emergent system behaviors not predicted by other research
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methods can be caused by several external initiating events simultane-

ously occurring and interacting with one another inside of an SoI.59,89

We suggest that all possible irrationality initiator-dependent com-

binations be investigated. For example, in the case of three irrationality

initiators [A, B, C], the following initiator-dependent combinations

should be investigated: [A & B], [A & C], [B & C], and [A, B, & C]. A gen-

eralized formula to determine the number of dependent combinations

is shown by Equation (1). Note that the formula intentionally subtracts

1 to acknowledge that the baseline case of no irrationality initiators

being present in the SoI is assumed to have been previously assessed.

2n − n − 1 (1)

We recommend going through the the informative and uninforma-

tive prior analysis steps as described previously with the dependent

irrationality initiators. In the case of the informative prior, we recom-

mend conducting a thorough probability analysis of each dependent

combination. However, we recognize that this may be very difficult to

complete with any level of accuracy. In cases where analysis cannot

or is not completed for dependent combinations, we suggest using

the highest single probability of any of the irrationality initiators in

the dependent combination. In effect, this approach uses an OR logic

probability calculation, which we believe is a conservative approach

in this case. In many practical implementations of various types of risk

analysis (eg, PRA, FFIP, etc), the initiating event probabilities are often

assumed to be independent from each other, and in scenarios where

two initiating events occur simultaneously is generally considered

extremely unlikely. However, observation of improbable events occur-

ring with startling regularity suggests that perhaps the assumption

that initiating events are almost always independent is not entirely

valid.88 Thus, without having a better understanding of the true

likelihood of a specific dependent combination occurring, the highest

probability of an irrationality initiator within the dependent combi-

nation is an appropriate and conservative approach. Table 2 shows an

TABLE 2 Comparison of methods of analysis for dependent and
independent and informative and uninformative approaches to
irrationality initiators

Method

Direct
comparison
with FFIP
possible

Identify high
consequence but
potentially low
probability
outcomes

Analyze several
irrationality
initiators at
once

Independent
uninformative
prior method

No Yes No

Dependent
uninformative
prior method

No Yes Yes

Independent
informative
prior method

Yes No No

Dependent
informative
prior method

No No Yes

overview of the informative and uninformative, and the independent

and dependent priors and the benefits and limitations of each.

3.3.3 Specific guidance onmodeling implementationwith

FFIP

We envision the method presented in this article to be used in concert

with a quantitative failure analysis technique, such as FFIP and PRA.

While conducting a failure analysiswith either technique iswell under-

stood and documented in the literature, there are a few differences

and caveats to be aware of when using irrationality initiators. As

mentioned above, uninformative priors cannot be directly compared

to FFIP failure scenarios. However, informative priors can. Dependent

combinations of irrationality initiators can be compared with FFIP

results as long as they are not using uninformative priors.

Within the family of tools developed around the FFIPmethodology,

each individual function’s response to all potential failure flows is

modeled. Results of a function receiving a failure flow can include: (a)

reduction, increase, or stoppage of nominal flows leaving the function;

(b) failure flows passing through the function and continuing on along

nominal or non-nominal flow paths; (c) failure flows being arrested

or rejected by the function and the function continuing to operate

nominally; (d) new failure flows being output by the function; or (e)

some combination of the above. A probability is developed for each

potential outcome which is then used to develop and calculate the

probability of specific failure sequences.

Irrationality initiators may enter a system through two flow path

types that cross the system boundary: nominal flow paths and non-

nominal flow paths. In the case of nominal flow paths, the core FFIP

method can be used to model how an irrationality initiator initiates a

failure that moves through a system. In the case of a non-nominal flow

path, the UFFSR methodology24 that extends FFIP is useful. UFFSR

can model uncoupled failure flow paths where a failure flow “jumps”

into or out of a system, or between functions in a system where no

nominal flow path exists. Because of this ability, UFFSR is particularly

useful when modeling irrationality initiators where they may enter

an SoI through non-nominal flow paths. Recent events, such as the

Deepwater Horizon, show that failure flows do not always travel

along the nominal flow path and may jump between unconnected

systems.90

In summary, several analyses may be performed on irrationality

initiators depending upon the needs of the practitioner. We suggest

using all of the above approaches but acknowledge that there will be

specific instances where it may be appropriate to only use some of the

approaches. Implementing the analysis can be done in FFIP and with

the UFFSR extension to FFIP.

3.4 Analyze results of irrationality initiator failure
scenarios

After developing failure scenarios specific to irrationality initiators in

the previous section, the results can now be analyzed to understand

the potential impacts of irrational system behavior on an SoI in an SoS.
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The independent uninformative prior results can be used to identify

high consequence failure scenarios and to identify irrationality initia-

tors that are sensitive to changes in their probability values. These

results can be used to identify potential areas to invest more effort

in further developing knowledge of a specific irrationality initiator.

Potential high consequence failure scenarios identified through the

independent uninformative prior may also point to areas in the model

where further development and scrutiny is warranted. The dependent

uninformative prior failure scenario results provide similar informa-

tion as described in the above paragraph but with focus on dependent

combinations of irrationality initiators.

Failure scenario results from the independent informative prior can

be compared directly with FFIP results (if using the FFIP methodology

as the underlying failure analysis method). A comparison of the results

of the independent informative prior with FFIP results can reveal if

irrationality initiators are a significant or dominant contributor to

probability of system failure. Failure scenario results of the indepen-

dent informative prior can also be added to FFIP results to produce a

combined analysis that gives a more holistic view of potential SoI sys-

tem failure scenarios. It is important to maintain a list of irrationality

initiators that were assigned a generic probability of occurrence due

to no realistic probability being available–failure scenarios associated

with these specific irrationality initiators may be disproportionately

represented high in the results.

For both the informative and uninformative priors, the dependent

irrationality initiator combinations may provide insight into “worst

case scenarios,” where many irrationality initiators are emitted from

one or more systems within an SoS and impact the SoI at the same

time. An additional concern that may be uncovered from analyzing

dependent irrationality initiator combinations is a situation where

one or more irrationality initiators have passed into the SoI boundary

but the SoI continues to function normally. A subsequent irrationality

initiator that otherwisemay have not caused the SoI to suffer a system

failure could now cause the weakened SoI to fail. A practical example

of this effect is a failed emergency brake in a car where the braking

functionality is not available in an emergency stopping situation if the

primary brakes have failed. The car can still brake under nominal oper-

ating conditions but the car will be unable to brake (excluding engine

braking, which may or may not be available depending on specifics

of the car configuration) if the primary braking system also suffers a

failure.

3.5 SoI design iteration

The insights that the analyses provide can then be used by practition-

ers to help guide improvements to an SoI to increase its robustness

to irrationality initiators. Improving robustness of the SoI within an

SoS can help to improve the reliability of the overall SoS and the

likelihood that the SoS will complete its mission. While an SoS will

never be without risk of failure due to a member system behaving

irrationally, failure risk can be sufficiently reduced to be manageable

and acceptable through careful analysis and improvement of the

constituent systems (eg, the SoI).

Following a thorough analysis of the results of the irrationality

initiator analysis method presented in this article, changes to the SoI

can be made to help prevent the irrational system behaviors of one

system from adversely impacting the SoI and SoS. There are many

options to protect an SoI from irrational system behaviors of another

system within the SoS. For instance, protection can be implemented

against uncoupled irrationality initiators.91 Redundant systems and

subsystems92,93 can be added to provide higher reliability. Sacrificial

subsystems or systems59 can be added to route failure flows caused by

irrationality initiators to a location where they can do the least harm.

Robustness and resilience of the SoI16,94,95 can be improved to better

deal with inputs to the SoI that go beyond the design basis of the SoI.

Changing SoI configuration or location can be used to decrease the

likelihood of irrationality initiators from occurring.96

After sufficient redesign of the SoI has been completed, themethod

can be iterated upon to verify that irrationality initiator risk of failure

to the SoI and SoS has decreased to an acceptable level. If the risk of

SoI failure or SoS failure has not adequately decreased, further design

iterations are necessary. Once a system engineer or designer is satis-

fied that the SoI architecture is sufficiently robust against irrationality

initiators caused by another member of the SoS behaving irrationally,

the SoI architecture can be locked and the system engineering

process can continue to move forward in the systems engineering

process.

4 CASE STUDY AND RESULTS

In this section, we present a simplified and fictionalized case study to

demonstrate themethod. The case study SoS and SoI is representative

of real systems in operation and/or being designed (such as Ref. 97 and

others), although certain details and contexts have been changed to

more clearly demonstrate the method and protect sensitive system

information. However, the system models and other details remain

representative of several existing fielded SoS and SoI. The case study

is only to be used for illustrative purposes and to demonstrate the

method presented in this article; no engineering conclusions on

existing or proposed SoS and SoI can be drawn from the case

study without a practitioner first conducting their own thorough

analysis.

In the case study, an SoS that delivers sensitive supplies from a

logistics supply depot to a forward position has been operating for

some time. The SoS uses a small fleet of autonomous vehicles to

move supplies between the depot and the forward position through a

partially denied environment98 where there is poor and intermittent

global positioning system coverage, and other navigational aids, such

as way-point navigation beacons and celestial navigation, are unavail-

able. The autonomous vehicles have limited ability to track their

own positions internally and must receive regular position updates

to prevent excessive drift. To overcome a lack of positioning data,

the autonomous vehicles receive positioning information via a series

of radar stations that are able to localize the autonomous vehicles.

Two-way communications for command and control is also provided
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F IGURE 3 SoS general physical configuration. Note that this figure is representative of a Department of Defense Architecture Framework
(DoDAF) 2.0 High-Level Operational Concept Graphic (OV-1)101

via the radar stations and links back to the logistics supply depotwhere

a control station is located. The radar stations are configured in a nodal

network. The location of the radar stations is not optimal due to the

topography of the area and hostile forces active in the area. Radar and

communications coverage does overlap in some areas and is desirable,

but much of the route the autonomous vehicles take only has single

radar station coverage. The supplies are sufficiently sensitive that if

positioning information is lost for more than 3 min or if a sufficiently

large deviation from the expected path is detected, it is assumed that

the autonomous vehicle may have been captured by hostile forces and

both the vehicle and the supplies aboard are destroyed.99,100 As long

as the autonomous vehicles remain on their intended path, there is no

threat of capture by hostile forces.

The existing autonomous vehicles in the SoS are reaching the end

of their service life and a defense contractor is developing a new fleet

of autonomous vehicles (the SoI for the case study) to begin service.

The radar stations and the control station are manufactured by other

contractors. The SoS integration is handled by another contractor, as

is often the case in defense SoS. While the defense contractor has an

understanding of how the other systems in the SoS are supposed to

operate and behave, the defense contractor desires to have a better

picture of potential threats to the SoI from irrational system behaviors

of the other systems. The defense contractor plans to use the knowl-

edge gained from investigating irrationality initiators to improve the

robustness and reliability of the SoI during the conceptual phase of

system architecture where functional models are being developed,

which will increase the likelihood of SoS mission success. Figure 3

shows the general SoS configuration.

4.1 Model the systemswithin the SoS

The defense contractor chose to use a functional modeling approach

and FFIP as the underlying failure analysis tool for the irrationality

initiator analysis. A model of the SoS is shown in Figure 4. Note that

nominal flow paths are shown in the figure. An FFIP analysis of failure

scenarios for the SoS and SoI has already been performed. Further,

system solutions to functions within the SoSmodel have been chosen.

A simplifiedSoI (thenewautonomousvehicles) systemmodel devel-

opedwith the FBED functional taxonomy is shown in Figure 5. An FFIP

analysis was conducted and the five most likely failure scenarios are

shown in Table 3. The FFIP family of methods examines how failures

move through a system from an initiating event through to either fail-

ure of the system (often defined by failure of a critical function or func-

tions and/or by a failure flow exiting the system boundary) or to ter-

mination of the failure flow without the failure flow causing system

failure.20,22,24 The probability of the failure outcome is calculated from

theprobability that the failure flow (a) initiates, (b) passes througheach

function, and (c) causes the system to fail and/or emit a failure flow.

Each failure scenario that FFIP identifies is treated as an independent

sequence of events from every other failure scenario similar to how

many implementations of PRA treat cut-sets as independent from one

another for the purposes of the associated probability statistics. Addi-

tionally, much like PRA, FFIP scenario outcome probabilities can be

added together to understand the overall probability of system failure.

The defense contractor has defined failure of the SoI (the autonomous

vehicles) as the cargo not reaching its final destination, which may

occur from the cargo being damaged, captured, destroyed, or lost.
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F IGURE 4 SoS top-level model withmajor systems and flows between systems identified. Note that Data is used in place of the
Signal-Control-Discrete flow type. RADAR is used in place of the Energy-Electromagnetic flow type. Both substitutions have beenmade for ease
of understanding for readers who are not intimately familiar with FBED. Two autonomous vehicle systems (the SoIs) are shown in typical flow
connection configurations where one ormore radar stations are connected to the autonomous vehicles

F IGURE 5 Simplified SoI (the new autonomous vehicle systems) functional model. Many functions and flows have been excluded from or
simplified in this functional model for brevity and ease of understanding the case study. The dashed border indicates the system boundary

4.2 Identify potential irrational system behaviors

The next step is to identify potential irrational system behaviors

that other systems might undertake in the SoS. For the purposes of

this case study, we are narrowing our focus specifically to the radar

stations. In a full analysis using the method presented in this article,

each member system in the SoS would be analyzed and all results

would be used throughout the analysis.

First, the full list of secondary and tertiary flows from FBED is

examined, as seen in Table 4. Next, the flows already represented

in the FFIP analysis conducted previously (Table 3) are struck from

consideration (shown in Table 4 by a horizontal strike-through line).

The third step is to validate that each remaining flow is somehow

possible to occur and remove from consideration any flows that are

absolutely impossible. This is represented in Table 4 by flows being

crossed out. Validation of the flows can be conducted in a variety

of different ways that the practitioner finds suitable to the task and

with a variety of different levels of fidelity. For instance, a workbook

could be developed for each flow similar to what is done for individual

initiating events in a nuclear PRA model.102 The flows that remain are

the irrationality initiators for the system. The final step is to develop

probabilities of occurrence for each irrationality initiator. Again,

there are a variety of ways these probabilities could be developed

depending on the specific situation. For instance, guidance is provided

in the nuclear power industry for the development of new initiating

events,102 resources are available in MIL-STD-882E to estimate

reliability of components and systems,44 and other methods are also

available.32

As an example of identifying irrationality initiators, we will now

examine the Signal-Status-Auditory (ie, noise) flow to determine if the

flow should be carried forward as an irrationality initiator for further

analysis. First, the flow is checked to verify that it was not already

captured in the FFIP analysis (Table 3). Then, the flow is analyzed to

determine its potential to reach the SoI (the new autonomous vehicles

that are under development). However, based on the physical layout of

the system, the SoI will never come close enough to the radar station
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TABLE 3 Truncated list of highest probability of failure FFIP
results from the SoI on a per unit basis

Failure propagation pathway Probability

Signal-Control-Discrete, Channel-Transmit,
Signal-Process, Convert Electrical Energy to
Mechanical Energy, Channel-Guide-Rotate

1.2E-3/day

Provision-Supply, Signal-Process,
Signal-Control-Discrete, Channel-Export,
Provision-Store-Contain

2.7E-3/day

Signal-Control-Discrete, Channel-Transmit,
Signal-Process, Channel-Export,
Provision-Store-Contain

3.7E-4/day

Energy-Mechanical, Channel-Guide-Rotate,
Convert Electrical toMechanical Energy,
Provision-Supply, Signal-Process,
Channel-Export, Provision-Store-Contain

1.4E-5/day

Signal-Process, Channel-Transmit,
Provision-Supply, Convert Electrical to
Mechanical Energy, Channel-Guide-Rotate

5.4E-5/day

for a noise generated by the radar station to impact the SoI. The

distance is too great for the loudest sound possible to be generated by

the radar station (eg, the radar station’s fuel source being detonated)

to reach the SoI with sufficient intensity to become an irrationality

initiator. Thus, the Signal-Status-Auditory flow can be struck from the

table of candidate irrationality initiators (Table 4). Had the flow not

been struck from the list of candidate irrationality initiators, the next

step would have been to quantify the likelihood of occurrence.

It should be noted that understanding if an irrational behavior-

induced failure flow under consideration for an SoI irrationality

initiator is not initially well understood, significant databases of

information exist in a variety of industries, which may aid systems

engineers to better understand the situation. For instance, the nuclear

power industry maintains significant databases of component part

failures spanning many decades.103 The petroleum industry maintains

similar databases.104 Mishap reports from similar systems to the SoI

may also be useful.11

After careful analysis, three flows remain as viable irrationality

initiators, including: Signal-Control-Analog, Material-Solid-Object,

and Energy-Electromagnetic-Solar, as shown in Table 4. To illustrate

how these three flows were determined to be irrationality initiators,

we will briefly focus on the Material-Solid-Object flow. The Material-

Solid-Object flow represents part or all of a radar station rolling off the

side of a mountain where it was placed and physically impacting the

SoI. While this may seem far-fetched, we have observed similar events

in our own professional practices. Several causes of this irrationality

initiator were identified such as a small landslide causing the radar

station to fall down the mountain, hostile forces rolling the radar off

the side of the mountain, abnormally high winds ripping one of the

communications dishes off of the radar station and blowing it down

the mountain, and other equally outlandish causes that nevertheless

cannot be completely ruled out. Next, analysis was conducted to

determine the probability of the Material-Solid-Object irrationality

initiator occurring. It was found to have a relatively high probability

TABLE 4 Irrationality initiators are developed from the FBED
functional taxonomy flow set

Note: The three primary classes are material, signal, and energy. The sec-
ondary and tertiary classes have increasing levels of specificity. Note that
not all flows are represented at the tertiary level in FBED and some flows
may have several representations at the tertiary level. The flows that have
been identified as irrationality initiators in the case study are not struck out.
Probability of occurrence has been developed for the irrationality initiators
as explained in the text above. Refer toRefs. 18 and39 for additional details
regarding the FBED flow set
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F IGURE 6 SoI (the new autonomous vehicle system under development) high-level functional model with a potential irrationality initiator
failure scenario indicated by the dashed orange line. The SoI fails when the failure flow caused by the irrationality initiator reaches the
Provision-Store-Contain (Cargo) function via the Channel-Export function, which results in the cargo being destroyed

TABLE 5 Irrationality initiator-dependent combinations for the SoI
(new autonomous vehicle system) on a per unit basis

Dependent grouping Probability

Signal-Control-Analog AND
Energy-Electromagnetic-Solar AND
Material-Solid-Object

1E-2/day

Signal-Control-Analog AND
Energy-Electromagnetic-Solar

1.7E-3/day

Signal-Control-Analog ANDMaterial-Solid-Object 1E-2/day

Energy-Electromagnetic-Solar AND
Material-Solid-Object

1.2E-2/day

of occurrence based on frequent windstorms observed in the area

and topographic features in the area, which may tend to funnel debris

down themountains and into the path of the SoI.

A simplified FFIP failure analysis model is shown in Figure 6 of the

SoI (the new and under development autonomous vehicle system).

The orange dashed lines indicate one failure flow sequence moving

through the system at the functional level. The irrationality initiator

initially crosses the system boundary the system along a non-nominal

flow path before traveling along nominal flow paths to eventually

cause system failure. Additional development work not shown here

was completed on the system models to allow for analysis of the

irrationality initiator failure scenarios to be conducted.

4.3 Analyses of potential irrationality initiators

After developing the SoI system models and identifying the irrational-

ity initiators, analysis can be conducted on the SoI using the four

approaches outlined in the methodology section above (independent

and dependent irrationality initiators, uninformative and informative

priors uninformative prior). The three irrationality initiators and their

potential dependent combinations are shown in Table 5. A subset of

the results of analysis conducted using the FFIP family of tools with

the irrationality initiators is shown in Table 6.

4.4 Analyze results of irrationality initiator failure
scenarios

Failure scenarios produced from the independent uninformative prior

approach’s sensitivity analysis show a high sensitivity to change in

probability values for the Energy-Electromagnetic-Solar irrationality

initiator. This is a strong indication that additional resources should

be dedicated to evaluating the Energy-Electromagnetic-Solar irra-

tionality initiator to ensure the probability of occurrence is realistic

and conservative.

The dependent uninformative prior approach indicates that the

three irrationality initiators occurring at the same time result in a

much higher probability of system failure than other combinations

of irrationality initiators produce. This indicates that an SoI system

redesignmay be needed to specifically protect against this scenario.

The Signal-Control-Analog irrationality initiator was identified as a

significant contributor to SoI system failure based on the independent

informative prior approach. This information can be used by a systems

engineer to make a decision on dedicating more resources toward

mitigating potential SoI system failures caused by this particular

irrationality initiator.

As with the earlier dependent uninformative prior results, the

dependent informative prior approach points toward the combination

of all three irrationality initiators has the potential for signifi-

cant SoI system failure events. However, because a more realistic

probability of occurrence is being used as part of the calculations, the

probability of the SoI system failure scenarios is lower than results

from the original FFIP analysis. In spite of this, the failure scenario out-

comes of the irrationality initiator combinations are significant enough

that a systems engineermay still wish to verify the probabilities before

deciding to discount the result.
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TABLE 6 A subset of failure scenarios caused by the irrationality initiators as developed through analysis using FFIP and relatedmethods

Failure propagation pathway Probability

Independent uninformative prior method

Energy-Electromagnetic-Solar, Provision-Supply 4.3E-3/day

Energy-Electromagnetic-Solar, Provision-Store-Contain 2.6E-3/day

Material-Solid-Object, Channel-Guide-Rotate 1.2E-3/day

Material-Solid-Object, Channel-Export, Provision-Store-Contain 5.2E-4/day

Signal-Control-Analog, Channel-Transmit, Signal-Process, Channel-Export, Provision-Store-Contain 1.3E-4/day

Dependent uninformative prior method

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar ANDMaterial-Solid-Object,
Channel-Export, Provision-Store-Contain

4.2E-2/day

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar, Channel-Guide-Rotate 3.6E-3/day

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar, Channel-Export, Provision-Store-Contain 8.7E-4/day

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar, Provision-Store-Contain 5.9E-5/day

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar, Signal-Process, Convert Electrical to
Mechanical Energy, Channel-Guide-Rotate

3.3E-5/day

Independent informative prior method

Signal-Control-Analog, Channel-Transmit, Signal-Process, Channel-Export, Provision-Store-Contain 4.2E-4/day

Signal-Control-Analog, Channel-Transmit, Signal-Process, Provision-Supply, Convert Electrical to
mechanical Energy, Channel-Guide-Rotate

6.3E-4/day

Material-Solid-Object, Channel-Export, Provision-Store-Contain 7.2E-5/day

Material-Solid-Object, Channel-Guide-Rotate 8.4E-5/day

Signal-Control-Analog, Channel-Transmit, Provision-Supply, Convert Electrical toMechanical Energy,
Chanel-Guide-Rotate

2.9E-6/day

Dependent informative prior method

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar ANDMaterial-Solid-Object,
Channel-Export, Provision-Store-Contain

5.2E-4/day

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar, Channel-Guide-Rotate 8.3E-5/day

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar, Channel-Export, Provision-Store-Contain 7.2E-5/day

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar, Provision-Store-Contain 5.1E-5/day

Signal-Control-Analog ANDEnergy-Electromagnetic-Solar, Signal-Process, Convert Electrical to
Mechanical Energy, Channel-Guide-Rotate

3.3E-5/day

Note: The failure scenarios shown in the table are the highest probability for each of the fourmethods (independent uninformative prior, dependent uninfor-
mative prior, independent informative prior, and dependent informative prior)

Once this step has been completed, the systems engineer must

evaluate the SoI and SoS requirements to determine if specific risk,

reliability, and other relevant requirements have been satisfied in light

of the above analysis. If the requirements have been satisfied, then the

systems engineer can exist the method. However, if the requirements

have not been satisfied as evidenced by the above analysis, then the

systems engineer should proceed to the final step in themethodology.

4.5 SoI design iteration

Now that the results of the method have been analyzed, a redesign

of the SoI can be conducted to improve system reliability in the face

of irrational system behaviors of other systems that the SoI interacts

within the SoS. Many resources exist for practitioners to conduct

redesign efforts.16 After a redesign has been completed, a new analy-

sis should be conducted to verify the success of the redesign effort.We

omit further redesign efforts from the case study here in the interest

of brevity.

5 DISCUSSION AND FUTURE WORK

The method we present in this article raises several topics worthy

of discussion. This section reviews the benefits of the method as

well as limitations and drawbacks. Several questions of philosoph-

ical importance to users of the method are also covered. Based on

these discussion points, we present some potential future research

directions to further improve upon themethod.

As has been mentioned above, the four analyses (independent

informative prior, dependent informative prior, independent uninfor-

mative prior, and dependent uninformative prior) each yields unique

insights that may be useful to a practitioner (see Table 2 for a sum-

mary). We advocate that each of the four analysis methods be used

during an irrational system behavior analysis but we also recognize

that such analysis may be too computationally expensive for very

complex systems or may be too time intensive for very large SoS. The

uninformative prior approaches help the practitioner to understand

sensitivity to changes in probability of occurrence of irrationality
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initiators and to discover potentially significant failure scenarios,

which could otherwise be truncated as being of too low of probability.

The informative prior approaches produce failure scenarios that can

be compared directly to failure scenarios produced by FFIP. Further,

the failure scenarios can be added to the list of failure scenarios

that FFIP produces to give a more complete view of how an SoI may

fail. Treating irrationality initiators as independent events versus

dependent events allows a practitioner to investigate both situations

where only one irrationality initiator occurs and cases where multiple

irrationality initiators occur simultaneously. Looking at combinations

of irrationality initiators may help to find emergent system behaviors

that otherwise would have been missed because any one irrationality

initiator on its own might not have caused the failure to occur. Future

work may include conducting a detailed comparison of existing risk,

reliability, failure, safety, and other related analyses with the method

presented in this paper from the specific perspective of dependent

priors. This may help to reveal gaps in the understanding of how

emergent system behaviors occur due to several irrationality initiators

being dependent upon one another in ways that have not previously

been fully characterized.

The process of identifying and validating irrationality initiators

as being possible, and of developing realistic probabilities, can be

very challenging. However, it is not too dissimilar to the process

that is done for new nuclear power plant risk analysis to develop

initiating events.102 Where the method presented in this paper to

develop irrationality initiators differs from other established meth-

ods of developing initiating events is that irrationality initiators by

their very nature are rare events that either have not been seen

before or have been discounted as being likely enough to occur to

include in analysis. In this case, it can be a vexing problem to develop

realistic probabilities that are validated with any sort of quantita-

tive data. However, we believe that even with these limitations, the

method is useful enough for practitioners to adopt. The insights

gained could help to improve SoI and SoS reliability and robust-

ness by improving constituent systems’ (eg, the SoI) responses to

irrationality initiators.

No explicit guidance has been provided in this method on how to

deal with humans in an SoI or the SoS, other than the fact that they can

explicitly be modeled into the functional and physical models in FFIP.

While this might be sufficient, we recognize that in many situations

humans are the most likely point of failure. Humans tend to behave

in a manner that was not anticipated or expected.56,64,105–107 The

flows from FBED do contain human flows (eg, human energy) that can

be used to begin to develop irrationality initiators that are human

caused. However, acts of commission,108,109 acts of malice,31,110

and acts of irrationality, insanity, or calculated instability111,112 are

not well represented in existing human reliability analysis methods.

Further work is needed to more accurately assess potential irra-

tionality initiators caused by humans and is beyond the scope of

this article.

A potential computational benefit of the irrationality initiator

approach is breaking potential loop-backs in the analysis of failure

events. Loop-backs are a significant challenge in SoS that have a

high number of interconnections, and in systems with a large num-

ber of connections between functions.113 Transforming irrational

failure flows exiting a system into irrationality initiators enter-

ing an SoI helps to isolate the flows as a source of loop-backs in

the analysis.

The FFIP family of methods is similar to PRA in that it can be very

computationally expensive (taking many computational resources for

long periods of time) to analyze large, complex SoIs. Truncation, as

discussed in the background and related work section, is heavily used

in this situation to reduce computational expense and time require-

ments. The computational requirements for the method presented in

this paper are on par with FFIP and PRA methods in computational

expense. Further fundamental research in computational efficiency

of probabilistic-based analysis methods is needed to reduce com-

putational expense of the method presented in this paper and many

other methods, such as FFIP and PRA. It is beyond the scope of this

research to quantitatively benchmark computational performance of

themethod presented above.

FFIPwasused throughout themethodology and case study sections

in this article.However,wehaveundertakenan initial proof-of-concept

study, which shows favorable results for implementing the method in

PRA. Themain challenge in a PRA implementation is building out event

trees and failure trees that can accept irrationality initiators. Existing

event trees and fault trees may not sufficiently capture what happens

in a systemwhen an irrationality initiator is introduced.

The issue of cost-effectiveness of implementing this method is an

open question that remains to be resolved not only for this method,

but also for the larger world of risk and failure analysis, reliability

analysis, and safety engineering.114 Safety engineering is generally

viewed as a cost center rather than a profit center. In our profes-

sional experience, and in the experience of safety engineers we have

discussed this issue with, it is rare to quantify savings from safety

analysis. From our discussions with leading system safety engineers

around the world who are affiliated with INCOSE,114 the issue of

justifying safety engineering is largely driven by regulatory compli-

ance. Certain well-known engineering ethics examples, such as the

Ford Pinto,115 highlight the situation that faces systems engineers and

high-level management and indicate a need for further study of this

important topic.

Note that we have intentionally omitted discussion of uncer-

tainty in this article. Methods of understanding and quantifying

uncertainty in probabilistic-based methods116–119 are appropriate to

implement in the method presented above. Including uncertainty

in probabilistic calculations may present interesting decision

points in an analysis conducted using the methodology presented

above.

In summary, the method introduced in this article provides a way

for practitioners to begin identifying “unknown unknowns”120 that

may result in SoI and/or SoS failure. While there are some chal-

lenges in implementing the method, especially with regard to down-

selecting the irrationality initiators and developing realistic probability

statistics, the method produces useful results that can influence the

design of an SoI. As far as we are aware, analyzing all potential failure
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flows that enter an SoI within an SoS in the context of irrational system

behavior is a novel approach.

One area of future expansion of the work is a validation of the

method presented here that uses controlled experiments conducted

with systems engineers to compare our method with existing method-

ologies to determine if our method improves SoI and SoS outcomes.

This proposed effort is likely a significant undertaking requiring a

large participant pool participating in lengthy controlled experiments

to achieve sufficient replicates, which will help to gain statistical

significance of the results. Other potential validation methods for new

system design methodologies, such as the mechanical design theory

and methodology (DTM) community’s Validation Square method,121

are not yet universally accepted by either the DTM community or the

systems engineering community.

The analysis technique presented above that uses the informative

and uninformative priors, and the dependent and independent irra-

tionality initiators, may be a useful starting point to further investigate

how emergent behaviors are initiated in complex systems.Whilemany

systems have significant analysis and resources dedicated to inde-

pendent initiating events, less work is done to investigate dependent

events. In our professional practice, we have observed this is because

of the assumed relative rarity of dependent initiating events. However,

as many of the independent initiating events are now being effectively

addressed in design, dependent initiating events appear to us to be

becoming more important. Informative and uninformative priors may

also prove a very fruitful area of future research to help discover

high consequence, low probability initiating events that warrant

more attention and that may be discounted or truncated in analysis

methods, such as PRA.

Another potential fruitful line of future research is reversing

the analysis to start with assuming the SoI is behaving irrationally.

The analysis would then focus on the SoI’s impact within the rest

of the SoS. Insights from this approach may show system designers

how to reduce the likelihood of specific irrational failure flows from

exiting the SoI and potentially adversely affecting other systems. This

may help to improve the probability of an SoS successfully completing

its mission.

Focusing on human behaviors in an SoS that may cause irrationality

initiators may be a productive area of future research. The human

factors literature may provide a good starting point for further

investigations.122–125 The psychology and related literature on irra-

tional human behaviors may also be useful.126,127 There is also some

research in the engineering design community regarding functional

analysis of human errors.128

Somemay find the usage of the term “irrational” to be controversial.

Other terms, such as “unexpected” and “not accounted for,” may be

more palatable for some readers. However, we have specifically

retained the term “irrational” to call attention to the issue that the

method presented above addresses. Until methodologies are devel-

oped that can automatically identify an exhaustive list of potential

system behaviors including behaviors that we have termed “irrational”

and behaviors that no one has either hypothesized or observed, we

believe that the use of the word “irrational” is appropriate.

6 CONCLUSION

This article introduces the concept of irrationality initiators as a

method to improve failure analysis while developing conceptual

functional models of an SoI in an SoS. Irrationality initiators allow

practitioners to closely examine potential irrational system behaviors

by other systems within an SoS that could have negative effects on

the SoI. This may result in discovering new and unexpected system

vulnerabilities. Once a failure scenario has been found that poses a

significant threat to the SoI’s continued operation or an SoS com-

pleting its mission (due to the failure of the SoI), a practitioner can

undertake a redesign of the SoI to make it more robust and reliable.

Multiple iterations of the method can result in potentially significant

improvements in the likelihood that an SoI remains functional in spite

of irrational system behaviors from other systems in the SoS and also

increases the likelihood that the SoS completes its intended mission.

Four different irrationality initiator analysis techniques are introduced

in this paper, including dependent and independent irrationality

initiators and uninformative and informative priors. Each analysis

technique provides a unique and useful perspective on potential

emergent system behaviors and potential consequences caused by the

irrationality initiators. While we demonstrated the method using FFIP

and its associated extensions, the method shows promise for being

useful with PRA as well. Other quantitative risk analysis methods may

also prove to be compatible with irrationality initiators.
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