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Ragiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zwerg

SOFTWARE COMPLEXITY
AND MAINTENANCE COSTS

hile the link between the dif-

ficulty in understanding computer software and the cost of maintaining it is appealing, prior

empirical evidence linking software complexity to software maintenance costs is relatively weak

[21]. Many of the attempts to link software complexity to maintainability are based on

experiments involving small pieces of code, or are based on analysis of software written by

students. Such evidence is valuable, but several researchers have noted that such results must

be applied cauticusly to the large-scale
commercial application systems that
account for most software main-
tenance expenditures [13, 17]. Further-
more, the limited large-scale research
that has been undertaken has
generated either conflicting results or
none at all, as, for example, on the
effects of software modularity and soft-
ware structure [6, 12]. Additionally,
none of the previous work develops
estimates of the actual cost of complex-
ity, estimates that could be used by
software maintenance managers to
make the best use of their resources.
While research supporting the
statistical significance of a factor is, of
course, a necessary first step in this
process, practitioners must also have
an understanding of the practical
magnitudes of the effects of complex-
ity if they are to be able to make
informed decisions.

This study analyzes the effects of
software complexity on the costs of
Cobol maintenance projects within a
large commercial bank. It has been
estimated that 60 percent of ail busi-
ness expenditures on computing are
for maintenance of software written
in Cobol [16]. Since over 50 billion

lines of Cobol are estimated to exist
worldwide, this also suggests that
their maintenance represents an in-
formation systems (IS) activity of
considerable economic importance.
Using a previously developed eco-
nomic model of software mainte-
nance as a vehicle [2], this research
estimates the impact of software
complexity on the costs of software
maintenance projects in a traditional
IS environment. The model employs
a multidimensional approach to
measuring software complexity, and
it controls for additional project fac-
tors under managerial control that
are believed to affect maintenance
project costs.

The analysis confirms that soft-
ware maintenance costs are signifi-
cantly affected by software complex-
ity, measured in three dimensions:
module size, procedure size, and
branching complexity. The findings
presented here also help to resolve
the current debate over the func-
tional form of the relationship be-
tween software complexity and the
cost of software maintenance. The
analysis further provides actual dol-
lar estimates of the magnitude of this

impact at a typical commercial sile.
The estimated costs are high enough
to justify strong efforts on the part of
software managers to monitor and
control complexity. This analysis
could also be used to assess the costs
and benefits of a class of computer-
aided software engineering (CASE)
tools known as restructurers.

Previous Research and
conceptual Model

Software manienance and complexity.
This research adopts the ANSI/IEEE
standard 729 definition of mainte-
nance: modification of a software
product after delivery to correat
faults, to improve performance or
other attributes, or to adapt the
product to a changed environment
[28]. Research on the costs of soft-
ware maintenance has much in com-
mon with research on the costs of
new software development, since
both involve the creation of working
code through the efforts of human
developers equipped with appropri-
ate experience, tools, and techniques.
Software maintenance, however, is
fundamentally different from new
systems development in that the soft-
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ware maintenance must interact with
an existing system. The goal of the
current research is to identity the
factors atfecting the assimilation pro-
cess and thereby increase (decrease)
the amount of effort required to per-
form the maintenance task. In par-
ticular, the current research focuses
on measuring the impact of the exist-
ing source code aspects believed to
affect the amount of effort required.

Basili defines software complexity
as “ ... a measure of the resources ex-
pended by another system while interact-
ing with a piece of software. If the inter-
acting system is people, the measures are
concerned with human efforts to compre-
hend, to maintain, to change, lo test, elc.,
that software” [4, p. 232]. Curtis et al.
similarly define this concept as psy-
chological complexity: “Psychological
complexity refers to characteristics of soft-
ware which make it difficult to under-
stand and work with” [15, p. 96]. Both
of these authors note that the lack of
use of structured programming tech-
niques is believed to increase the cog-
nitive load on a software maintainer.
In the current research this will sim-
ply be referred to as software com-
plexity, with the focus being on cor-
rectable software complexity (i.e.,
complexity that results from specific
syntactical choices made by the de-
veloper).

Factors that increase maintainer
effort will increase project cost, since
maintenance costs are most directly a
function of the professional labor
component of maintenance projects.
Therefore, this research is designed
to measure the impact of aspects of
software complexity of the existing
system that affect the cost of mainte-
nance by increasing or decreasing
the amount of maintainer effort to
comprehend the software, while con-
trolling for project factors that may
also affect performance. Given the
growing economic importance of
maintenance, several researchers
have attempted to validate hypothe-
ses relating to complexity. However,
researchers have not been able to
empirically test the impact of com-
plexity on maintenance effort while
controlling for additional factors
known to atfect costs, such as project
size and maintainer skill [19, 31].
The main research objective in this
article is investigating the relation-

ship between existing software com-
plexity and maintenance costs. How-
ever, in order to properly
understand this relationship, the ef-
fects of project factors will be con-
trolled for. Figure 1 presents a sim-
plified view of the conceptual model
that will be tested in this research.

Modularization. Researchers have
employed many measures in at-
tempts to operationalize the concept
of software complexity. The consen-
sus is that there is no single best met-
ric of software complexity [5, 13, 27].
However, two main concepts have
emerged—modularity and branch-
ing.

Schneidewind estimates that 75- o
80% of existing software was pro-
duced prior to significant use of
structured programming [28]. A key
component of structured program-
ming approaches is modularity, de-
fined by Conte et al. as “the pro-
gramming technique of constructing
software as several discrete parts”
(13, p. 197]. Structured program-
ming proponents argue that modu-
larization is an improved program-
ming style, and therefore, the
absence of modularity 1s likely to be a
significant  practical problem. A
number of researchers have at-
tempted to empirically validate the
impact of modularity on either soft-
ware quality or cost with data from
actual systems (see Table 1).

In terms of positive impacts of
greater modularity, perhaps the first
widely disseminated field research in
this area was by Vessey and Weber
[30]. They studied repair mainte-
nance in Australian and U.S. data
processing organizations and used
subjective assessments of the degree
of modularity in a large number of
Cobol systems. In one data set they
found that more modular code was
associated with fewer repairs; in the
other data set no effect was found. In
a later study, Korson and Vaishnavi
[24] conducted four experiments
comparing the time required to
modify two alternative versions of a
piece of software, one modular and
one monolithic. In three of the four
cases the modular version was signif-
icantly easier to modify.

Card et al. [12] reached the oppo-
site conclusion. They tested the im-
pact of module size and strength (co-
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hesion) on programming effort,
measured as programmer hours per
executable statement. They found
that effort decreased as the size of
the module increased. However, ef-
fort decreased as strength increased,
but increases in strength were associ-
ated with decreases in module size.
They concluded that nothing defini-
tive could be stated about the impact
of module size. A study by An et al.
[1] analyzed changed data from two
releases of Unix. They found the
average size of unchanged modules
(417 lines of C) was larger than that
of changed modules (279 lines of C).
Unfortunately, they did not provide
any analysis to determine if this dif-
ference was statistically significant.

An alternative hypothesis is that
modules that are either too large or
too small are unlikely to be optimal.
If the modules are too large they are
unlikely to be devoted to single pur-
pose. If the modules are too small,
then much of the complexity will re-
side in the interfaces between mod-
ules and therefore they will again be
difficult to comprehend. In contrast
to the unidirectional studies cited
previously, a few researchers have
suggested the possibility of bidirec-
tional effects. For example, Conte et
al. note that : “The degree of modulari-
zation affects the quality of a design.
Over-modularization s as undesirable as
undermodularization”™ |13, p. 109]. In
an analysis of secondary data, Bowen
compared the number of source lines
of code (SLLOC)/module with a set of
previously proposed maximum de-
sirable values of two well-known met-
rics, McCabe's V(G) and Halstead’s N
[10]. He concluded that the optimal
values of SLOC/module ditfered
across languages, but that all were
much lower than the Department of
Defense’s (DoD)’s) proposed standard
of 200 SLOC/module. In his sugges-
tions for future research, he notes
the following:

More research is necessary to derive and
validate upper and lower bounds for mod-
ule size. Module size lower bounds, or
some equivalent metric such as coupling,
have been neglected; however they are just
as significant as upper bounds. With just
a module size upper bound, there is no
way to dissuade the implementation of
excessively small modules, which in turn
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introduce inter-module complexity, com-
plicate software integration testing, and
increase computer resource overhead. [10,
p. 331]

Boydston undertook a study of
completed systems programming
projects at IBM whose main purpose
was to gain greater accuracy in cost
estimation [11]. One additional anal-
ysis he performed (p. 155) was to at-
tempt to estimate the optimum
SLOC/module ratio for new code,
based on the hypothesis that “Com-
plexity of programming increases as the
lines of code per module and the number
of modules to interface increase.” In
other words, extremes of either a
very small number of large modules
or a very large number of small mod-
ules would both be unlikely to be op-
timal. His regression analysis devel-
oped multiple, nonlinear functions
of work-months as a function of the
number of new modules, with SLOC
held constant. He concludes that
Y.L as a project gets larger, the addi-
tional complexity of larger modules has to
be balanced by the increasing complexity
of information transfer between modules”
(p- 159). However, his model does
not control for any noncode factors.

While not examining maintenance
cost directly, Lind and Vairavan ob-
tained empirical evidence supporting
the hypothesis of a nonextreme opti-
mum value for module size (i.e., that
the best-sized modules were those
that were neither too big nor too
small) [25]. They analyzed the rela-
tionship between the change rate
(number of changes per 100 lines of
code, a surrogate for cost) vs. a dis-
crete  (categorical)  lines-of-code-
based variable. Their five discrete
SLOC categories were 0—50, 50—100,
100-150, 150-200, and 200+. They
found that minimum change rates
occurred in the 100 to 150 range, a
result they describe (p. 652) as indi-
cating the “. . . program change density
declines with increasing metric values up
to a certain minimum value . . . beyond
this minimum value, the program change
density actually increases with an increase
in the value of the metrics.”

The results of these previous stud-
ies can be summarized as follows.
Researchers testing for unidirec-
tional results (i.e., that either smaller
modules or larger modules were bet-

1 1 e

ter) have found either contradictory
results or none at all. Other research-
ers have suggested that a U-shaped
function exists, that is, modules that
are either too small or too large are
problematical. In the case of many
small modules, more intermodule
interfaces are required. In the case of
a few large modules, these modules
are less likely to be devoted to a sin-
gle purpose.' However, researchers
who suggest the U-shaped curve
hypothesis provide either limited
data or none at all linking size and
cost. In general they also do not pro-
vide a model for determining the
optimum module size.?

The most recent research includes
an earlier study at the current re-
search site where 35 application sys-
tems were analyzed to develop a basis
tor selecting among dozens of candi-
date software metrics that the re-
search literature has suggested [32].
Figure 2 shows the relationship
among the three software levels
identified in this research. An appli-
cation system has M modules. In turn,
each module m has N,, procedures.
Table 2 provides the definitions for
these levels.

Previous research investigating a
large number of proposed software
complexity metrics has found them
to be variations on a small number of
orthogonal dimensions [27]. An
analysis of software complexity met-
rics at this research site identified
three major groups: procedure-level
modularity, module-level modular-
ity, and branching [32]. Despite their
apparent similarities, previous re-
search has suggested that the two
kinds of modularity represent inde-
pendent aspects of software com-
plexity [14]. A commercial static code
analyzer was used to compute these
metrics. Given the high levels of cor-
relation within (but not across) com-

'nterfaces are relevant because they have been
shown to be among the most problematical
components of programs [6]. Modules not de-
voted to a single purpose have been shown to
result in a larger number of errors and there-
fore higher amounts of repair maintenance,
which can be interpreted as increased cost [12,
30].

2Boydston [11] does extrapolate from his data
set to suggest a specific square root relationship
between number of new lines of code and num-
ber of modules for his Assembler and PLS lan-
guage data.
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plexity metric groups, a representa-
tive metric from each group was
selected, based in part on the ease
with which it could be understood by
software maintenance management
and its ease of collection. This ap-
proach has been recommended by
previous research [27].

The first metric is the average size
in executable statements of a mod-
ule’s procedures (PROCSIZE).
There is an almost universal ten-
dency to associate large procedure
size with poor procedure-level mod-
ularity. However, intuitively, neither
extreme is likely to be effective. 1t
modules are broken into too many
small procedures, complexity could
rise, and in this case increasing the
average procedure size would be
expected to be beneficial.

Module length, in executable
statements (MODLSIZE) was  se-
lected as the metric of module-level
modularity [5].*> The effect of this
complexity metric is expected to de-
pend on the application systems
being analyzed. As discussed in the
survey of previous research, it is gen-
erally believed that large modules
will be more difficult to understand
and modify than small ones, and
maintenance costs will be expected to
increase with average module size.
As with procedures, however, a sys-
tem can be composed of too many
small modules. If modules are too
small, a maintenance project will
spread out over many modules with
the attendant interface problems.
Therefore, complexity could de-
crease as module size increases. Thus
two specific research hypotheses con-
cerning modularity are proposed:

HypotHESsIs 1. Controlling for other fac-
tors known to affect software maintenance
costs, the costs will depend significantly on
average procedure size as measured by
PROCSIZE, with costs rising for appli-
cations whose average procedure size is
either very large or very small.

Hyroruesis 2. Controlling for other fac-
tors known lo affect software maintenance
costs, the costs will depend significantly on
average module size as measured by
MODLSIZE, with costs rising for appli-
cations whose average module size is el-

#This metric was found to be uncorrelated with
PROCSIZE (Pearson correlation coefficient =
10y,
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ther very large or very small.

Branching. Previous work has sug-
gested  that constructs
(branching) are expected to have a
significant impact on comprehension
[15]. Structured programming is a
design approach that limits pro-
gramming constructs to three basic

control

means of branching through a piece
of software. Because it is difficult to
comply with these structures using
the GOTO syntax found in older
programming languages, this ap-
proach is sometimes colloquially re-
ferred to as GOTO-less program-
ming. A review of work in this area
before 1984 was conducted by Vessey
and Weber [31]. While few negative
results have been found, they note
the absence of signiticant results is as
frequent as a finding of positive re-
sults. They attribute this outcome, in
part, to the researchers’ not having
adequately controlled for other fac-
tors. They also note the difficulty of
achieving such control, particularly
in nonlaboratory real-world settings.

More recently, Gibson and Senn
have investigated the impact of soft-
ware structure using a laboratory
experiment [17]. They found that
more structured versions of the same
piece of software required less time
to maintain on average. They also
found that maintainers’ subjective
assessments of the complexity of the

Module M

\

Procedure (m,Nm)

existing systems were not very accu-
rate, a result they attribute to the
maintainers’ inability to separate task
complexity from existing systems
complexity. They recommend using
objective measures of systems com-
plexity to remedy this defect. How-
ever, the expected results from their
experiments did not hold in all cases.
In addition, as noted by the authors,
laboratory experimentation is not a
substitute for field research: “Further
research is needed to determine whether
the relationships observed in this tightly
controlled experiment exist n live set-
tings” (p. 357). In particular, labora-
tory experimentation is unlikely to
provide estimates of the actual cost
impacts of ill-structured programs in
commercial settings.

In a recent pilot study of seven
maintenance projects on Fortran and
Pascal-based real-time systems, Gill
and Kemerer found that maintainer
productivity decreased as existing
systems increased, as
measured by complexity density, a

complexity

size-adjusted measure of branching
complexity [I8]. However,
model does not control for any
noncode factors. The authors also
note the need to validate these results
on a larger sample of commercial
systems. Therefore, the question of a
negative impact of excessively com-
plex branching on maintenance costs
has only limited empirical support,
and there is a need for further re-
search.

In the current research the initial
candidate metric chosen for branch-
ing was the proportion of the execut-
able statements that were GOTO

their
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statements  (GOTOSTMT).  This
branching metric is normalized for
module size, so that it would not be
confounded with MODLSIZE. This
metric is also a measure of module
divisibility, since the degree to which
a module can be divided into small
and simple procedures depends di-
rectly on the incidence of branching
within the module. Highly divisible
modules (modules with low values of
GOTOSTMT) should be less costly
to maintain, since a maintainer can
deal with manageable portions of the
module in relative 1solation.

While the density of GOTO state-
ments (GOTOSTMT), like other
candidate control metrics examined,
is a measure of divisibility,” it does
not distinguish between more and
less serious structure violations. A
branch to the end of the current
paragraph, for example, is unlikely
to make that paragraph much more
difficult to comprehend, while a
branch to a ditferent section of the
module may. However, none of the
existing structure metrics examined
clearly differentiate between the two
cases. In addition, the modules ana-
lyzed have a large incidence of
GOTO statements (approximately 7
per 100 executable statements). If
only a relatively small proportion of
these seriously affect maintainability
then the GOTOSTMT metric may
be too noisy a measure of branching
complexity. At this research site over
half of the GOTOs in these modules
(19 GOTOs out of 31 in the average
module) are used to skip to the be-
ginning or end of the current para-
graph. Such branches would not be
expected to contribute noticeably to
the difficulty of understanding a
module (in most high-level languages
other than Cobol they would prob-
ably not be implemented by GOTO
statements). Therefore, a metric
such as GOTOSTMT, which does
not distinguish between these and
the approximately 40% less benign
branch commands, will be unlikely to
be managerially useful.

To avoid this problem, a modified
metric was computed, GOTOFAR,
which is the density of the GOTO

Each GOTO command makes a module more
difficult to understand by forcing a program-
mer to consider multiple portions of the mod-
ule simultaneously.



Researchers Language Dependent variable Conclusions "
1983 Vessey and Weber Cobol # of Repairs Unidirectional {p
1984 Bowen Algol, CMS, and McCabe, Halstead Suggests two-way relationship
others metrics
1984 Boydston Assembler, PLS Effort Suggests two-way relationship
1985 Card, et al. Fortran Effort Unidirectional {}
1986 Korson and Pascal Effort Unidirectional 1
Vaishnavi
1987 An, et al. Change data Unidirectional {}
1989 Lind and Vairavan Pascal, Fortran Normalized change data Suggests two-way relationship

Table 2. Source code definitions

Definition

Application
system

A set of modules assigned a common name by the research site, typically performing a
coherent set of tasks in support of a given department and maintained by a single team.
References to this term refer only to the source code, not 1o the JCL. ‘Application’ or
‘system,” if used separately, mean the same thing."

Module

A named, separately compilable file containing Cobol source code. A module will
typically, though not necessarily, perform a single logical task or set of tasks. INCLUDE
modules and COPY files were the only modules not included, since they contain only
Cobol source code but not the headers that allow it to be run on its own.

Procedure

The range of a PERFORM statement. For example, if paragraphs are labeled
sequentially, the statement PERFORM D THRU G invokes the procedure consisting of
paragraphs D, E, F, G, and the paragraphs invoked by these paragraphs.

Paragraph ¢

The smallest addressable unit within a piece of Cobol sofiware. A sequence of
Cobol-executable statements preceded by an address/identification label.

statements that extend outside the
boundaries of the paragraph and
that can be expected to seriously
impair the maintainability of the
software.? Since the automated static
code analyzer was not able to com-
pute this metric, it was computed
manually. Due to the large amount
of data collection effort and analysis
this computation required, the met-
ric was manually computed by a sin-
gle analyst for a random sample of
approximately 50 modules per appli-
cation system. This random sample
consisted of approximately 1,500
modules in total, or approximately
30% of all modules in the total data
set.”

Therefore, the third research hy-

*This is believed to be similar in concept to Gib-
son and Senn’s [17] elimination of “long jumps
in code (GOTOs).”

pothesis is:

Hyroruests 3. Controlling for other fac-
tors known to affect software maintenance
costs, software maintenance costs will de-
pend  significantly on the density of
branching as measured by GOTOFAR,
with costs rising withincreases in the inci-
dence of branching.

Table 3 summarizes the software
complexity variables used in the
model. Figure 3 presents the full
conceptual model.

Project  factors.” The research
model has two main components,

®A later sensitivity analysis regression using
GOTOSTMT instead of GOTOFAR lends cre-
dence to the belief that the excluded branch
commands represent a noise factor. The esti-
mated effect of GOTOSTMT had the same rel-
ative magnitude as that of GOTOFAR, but the
standard error of the coefficient was 4 times as
large.

4 For unidirectional test, “{}” indicates that
greater modularity (more, smaller modules}
improved performance and “J" indicates that
less modularity (fewer, larger modules) im-
proved performance. Several of the analyses in
these unidirectional studies also found no sig-
nificant results in either direction. A two-way
relationship is one in which both positive and
negative deviations from optimal module size
reduce performance.
b Application systems can be described as being
composed of ‘programs,” but the current re-
search has analyzed the data at a finer level of
detail, the module, and the program construct
has not been used in the current research.

“The possibility exists, in Cobol, that proce-
dures will overlap. (e.g., PERFORM D THRU
G and PERFORM E THRU ] will have at least
E, F, and G in common,) This research followed
previous work by Spratt and McQuilken in de-
fining the union of overlapping procedures to
be a single procedure to prevent double count-
ing [29]. Such overlaps were relatively rare at
this site, however, with the result that this re-
search design decision results in no practical
difference. Spratt and McQuilken use the term
“components” instead of procedures, but the
latter term will beused throughout this article-

4 This construct is not used directly in this re-
search, but is defined here as it is used in the
definition of procedure.
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one consisting of factors related to
existing source code complexity, and
one of controllable project factors
that are believed to affect mainte-
nance costs. While the current re-
search focuses on assessing the effect
of software complexity on mainte-
nance costs, it is necessary to control
for project factors (such as task size
and the skill of the developers)
known to affect these costs [19, 31].
The most significant of these is the
size of the maintenance task. Exclud-
ing task size or other relevant factors
would result in a misspecification of
the model and incorrect inferences
about the impact of software com-
plexity on costs.® To control for this
factor and for other project factors
known to affect costs, the research
began with a previously developed
economic model of software mainte-
The collection
procedures and model development
are described in detail in [2] and [22].
They will only be summarized here.

nance. initial data

Basic maintenance cost model. This
model adopts the standard cost
model formulation developed in the
software engineering literature [3,
9]:

Effort = {(Size, Other Cost Drivers)

Table 4 summarizes the measures
of the maintenance function used
based on the model developed in [2].
The unit of analysis for this model is
the project as defined by the research
site. Each maintenance project has its
own task requirements and its own
budget. Table 5 shows the project
factors that are included in the
model for each project. The output
of the software maintenance process
is the modified system, and therefore
measures of the size of the additions
and changes need to be included in
the model. Measures of size in a

“This section draws heavily on work presented

in [2].

*It should be noted that this research’s inclusion
of factors other than complexity militates
agamnst finding any staustical effect resulting
from complexity, in contrast to previous re-
search that examines the eftect of complexity
without controlling for other tactors. While the
model presented does not possess undesirable
multicollinearity, no empirical model of this
type has factors that are completely orthogonal.
Therefore, inclusion of the other factors par-
tially reduces any eftect found for the complex-
ity factors, making this a conservative test of the
complexity h_\‘p()lhrse&

maintenance context are the size of
the portions of the system that were
added or changed by the mainte-
nance project. While SLOC added or
changed is the most widely used
measure of size, function points (FPs)
added or changed are gaining in ac-
ceptance [3]. FPs have an additional
advantage of including a measure of
task complexity.?

The SKILL variable is important,
as previous research has found large
differences in ability between top-
rated developers and poorer ones
[9]. All maintainers in the organiza-
tion at the research site are rated on a
numerical scale, and the measure
used in the model is the percentage
of hours that were charged to the
project by staff who were highly
rated. The SKILL variable is often
neglected in research due to the
practical difficulties involved in col-
lecting these data. These practical
difficulties include the fact that for-
mal personnel ratings may not always
be available, and, even if collected by
the organization, may not be made
available to researchers for confiden-
tiality reasons. For the current work
strict control over these data were
guaranteed to the research site by the
researchers.

A personnel-related variable dis-
tinct from ability is LOWEXPER [9,
20]. Even a good developer is at a
disadvantage when faced with an
unfamiliar system, as time must be
expended in comprehending the
software and becoming familiar with
it.

METHOD, the use of a structured
analysis and design methodology, is
meant to increase developer perfor-
mance. However, previous research
has shown that such methods add
costs in the short term at this site [2].
QUALITY may also be important, as
it has been suggested that doing a
careful job of error-free program-
ming will cost more than a rushed
job, although benefits will be realized
in the long term. Conversely, some
researchers believe that careful and
systematic programming may not

“This should not be confused with the applica-
tion software complexity that is the focus of this
research. Task complexity in FPs includes such
factors as whether the project will be held to
above average rehability standards, or whether
the operational system will run in a distributed
environment.
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take longer, with some even arguing
that it should be less expensive. The
measure used here was one of opera-
tional quality, the degree to which
the system operates smoothly after
the maintenance project’s changes
are placed into production. The
measure was generated from data on
abnormal ends and user problem
reports collected on an ongoing basis
by the research site. Data from the
two-month period following imple-
mentation were compared with data
from the previous 12 months’ trend.
Statistically deviations
from the previous mean resulted

significant

above or below average operational
quality ratings [22]. The RESPONSE
variable is included as there has been
some evidence that fast-turnaround
environments enhance developer
performance, an effect that is likely
to be seen in maintenance work as
well.

Based on the software economics
literature the effects of these factors
are believed to be proportional,
rather than absolute [3, 9]. Thus they
are weighted by project size, either
FP added or changed or SLOC
added or changed, depending on
whether they are thought to be asso-
ciated more strongly with the anal-
ysis/design phase or with the coding/
testing phase of the project [2]. Skill
and application experience are
weighted by FPs, as it was believed
their impact would be felt most
strongly  during  analysis/design,
where the greatest amount of lever-
age from capability and experience
would be obtained. Use of the struc-
tured analysis/design methodology is
also clearly associated with the analy-
sis and design phase, measured here
by FPs. Operational quality was
weighted by SLOC, as the types of
errors represented by the opera-
tional quality measure used reflect
poor coding technique and/or insuf-
ficient testing. Response time was
also weighted by SLOC, as it seems
more relevant to coding/testing activ-
ities than to analysis/design work,
since the latter is not dependent on
access to machine cycles. Finally, all
complexity measures are weighted by
SLOC, since the impact of existing
code complexity would be felt most
strongly during coding/testing rather
than analysis/design. As noted ear-
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Figure 3. Software maintenance
project cost model

Procedure
size

Software
comprehension

Module
size Software
maintenance
project costs

Branching Project factors

Table 3. Software complexity variables

Variable

Measurement References

PROCSIZE Average size of a A count of the number of noncomment [32]
module’s SLOC in a module divided by the number
procedures of procedures

MODLSIZE Average size of A count of the number of noncomment [5, 32]

an application’s
modules

SLOC in the application divided by the
number of modules.

GOTOFAR Density of the A normalized count of the GOTO

nonbenign
GOTO
statements

statements which extend outside the
boundaries of the paragraph

Table 4. Costdrivers

Activity

Measured by

Mediated by

Analysis/
design

Function points (FPs)
added or changed by
the project

Maintainer application experience
Structured analysis/design methodology use

Maintainer skill

Coding/testing

Source lines of code
(SLOC) added or
changed by the project

Application source code complexity (3 measures)

Operational quality
Hardware response time

lier, any collinearity that may exist
between the weighted complexity
metrics and other independent vari-
ables that have been weighted by
SLOC will cause the model to under-
estimate the significance of the com-
plexity metric variable. Therefore,
the following analysis is a conserva-
tive test.

Statistical Model and Results
The previous section described the
selection of the variables in the
model, including both the existing
source code complexity variables and
the project factors. In this section,
tollowing a brief description of the
research site, the statistical model
and its results are presented, fol-
lowed by tests of the research hy-
potheses.

The Data
lected at a major regional bank with a
large investment in computer soft-
ware. The bank’s systems contain
over 18 million lines of code. Almost
all are written in the Cobol program-
ming language, and are running on
large IBM mainframe computers.
The software is organized into large
application systems (e.g., demand
deposits), which have an average size
of 226,000 SLOC.'" Some of the
bank’s major application systems
were written in the mid-1970s and
are generally acknowledged to be
more poorly designed and harder to
maintain than recently written soft-
ware.

research  site. were col-

"Mean = 226 KSLOC, standard deviasion =
185 KSLOC, min = 54 KSLOC, max = 702
KSLOC.

Given that Cobol and IBM are the
most widely used software and hard-
ware in commercial information sys-
tems (IS), this software environment
appears to be a typical commercial
data processing environment. Thus,
the research results should apply to
other commercial environments,
especially those with financial ser-
vices transaction processing systems.
The projects analyzed were homoge-
neous in that they all modified Cobol
systems, and therefore the results are
not confounded by the effects of
multiple programming languages.

Sixty-five software maintenance
projects from 17 major application
systems were analyzed. These proj-
ects were carried out between 1985
and 1987. An average project took
about 1,000 hours (at an accounting

COMMUNICATIONS OF THE AcM November 1993/Vol 36, No.11 81
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Table 5. Maintenance model project factor variables (2]

Name Variable Measurement References
HOURS Effort Number of hours charged to the project. This information [3]
was obtained from the project billing files, which were [9]
collected contemporancously with the project.
Fp Task The number of function points added or changed by the [3]
magnitude maintenance project.
and task
complexity
SLOC Task The number of source lines of code added or changed by [9]
magnitude the maintenance project.
SKILL Maintainer The percentage of developer hours billed by the most [9]
skill highly skilled (by formal management evaluation) class of
developers. This variable is distinct from the following
one, which depends on the developer’s experience with
a specific application system.
LOWEXPER Maintainer The extensive use (over 90% of hours billed to the [9, 20]
application project) of developers lacking experience with the
experience application being modified. (A binary variable.)
METHOD Structured The use of a structured design methodology (a binary (2]
analysis/ variable). This is expected to have an adverse effect on
design single-project performance, although it is meant to reduce
method use costs to the organization in the long run.
QUALITY Operational A measure (on a three-point scale of low/average/high [2, 22]
quality quality) of the degree to which the completion of the
project was followed by a change in the number of
operational errors. This measure was based on
information obtained from the site’s error logs.
RESPONSE Hardware The availability of a fast-turnaround programming [9, 20]
response environment. (A binary variable.)
time

cost of $40 per hour) and added or
changed approximately 5,000 SLOC.

Statistical Model. The statistical
model is described by:

HOURS = B, + B,*FP +
Bo*SLOC + B3*FP*FP +
B4*SLOC*SLOC +
Bs*FP*SLOC +
Be*FP*SKILL +
B*FP*LOWEXPER +
Bs*FPEMETHOD +
Bo*SLOC*QUALITY +
B10*SLOC*RESPONSE +
B11*SLOC*PROCSIZE +
B12*SLOC*PROCSIZE? +
B13*SLOC*MODLSIZE +
BL4*SLOC*MODLSIZE? +
Bis*SLOC*GOTOFAR + ¢

This model, without the five com-
plexity terms (the terms associated
with parameters B8, through 8,5},
has been previously validated at the
research site. The relationships be-
tween maintenance costs and proce-

dure size and between maintenance

costsand modulessize are expected to
be U-shaped, rather than monotone,
with costs beinglowest for some opti-
mal size and higher for larger or

smaller sizes. The squared terms

PROCSIZE? and MODLSIZE?® are

included to model this effect.

In this model project costs (mea-
sured in developer HOURS) are pri-
marily a function of project size,
measured in FPs and in SLOC. To
model the known nonlinearity of
development costs with respect to
project size, not only FP and SLOC
are included, but also their second-
order terms. This approach is ex-
pected to result in a high degree of
multicollinearity among the size vari-
ables (the terms associated with pa-
rameters B, through Bs) which will
make the interpretation of their co-
efficients difficult [3]. The multicol-
linearity among the size variables,
however, is not of concern for exam-
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ining the current research hypothe-
ses relating to the impact of complex-
ity, since the complexity variables are
not collinear with the size variables.
Table 6 presents the summary statis-
tics for this data set. The values given
for the complexity metrics are appli-
cation system averages. The model
was estimated using ordinary least
squares (OLS) regression, since the
OLS assumptions were satisfied in
the context of the estimation. The
statistical results from two-tailed tests
are presented in Table 7 with the
complexity metric variables in bold
type. The summary statistical results
are as follows:

F]:,_49 = 28.63 (p < 000]), R? =
89.76%, Adjusted R? = 86.62%.

Although not all project factor van-
ables are significant for this sample,
none of the project factor variables
are eliminated in order to achieve a
more parsimonious fit. The interest
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in the current research is in assessing
the marginal impact of adding the
complexity metrics to an earlier ver-
sion of the model (see [2]). The
Belsley-Kuh-Welsch multicollinearity
diagnostics (see [8]) indicated that
the complexity metrics are not signif-
icantly confounded with the other
regression variables. Thus, their co-
efficients may be interpreted with
relative confidence. Also the residu-
als and the absolute residuals were
uncorrelated with size. The lauer
result supports the homoskedasticity
assumption in regression analysis.
The former supports the decision to
model the complexity effects in the
regression as proportional ones
rather than use the unweighted met-
rics alone. If the complexity effects
were not proportional to project
magnitude, use of the weighted met-
rics would cause the model to overes-
timate the costs of large projects, re-
sulting in  residuals negatively
correlated with size.

Tests of the research hypotheses. Hy-
pothesis 1 was that maintenance costs
would be significantly affected by
procedure size. This general hypoth-
esis is confirmed by an F-test on the
joint effect of the two PROCSIZE
terms:

P(Ho:  B11 = B12 = 0) < 0.0001 as
F2_4g = 1420

A U-shaped relationship between
PROCSIZE and software mainte-
nance costs was hypothesized, and
the data confirm this relationship,
given that the two coefficients are
significantly different from zero and
that the linear term is negative and
the squared term is positive. The
minimum of the U-shaped curve
may be computed by dividing the
negated coefficient of the linear term
by twice that of the quadratic term.'!
At this site the minimume-cost proce-
dure size was computed to be
(0.0106/(2%0.00012)) = 44  execut-
able statements PROCSIZE (See
Table 7). This value is very close to
the mean (43) and to the median (40)
for this organization. However, indi-
vidual applications vary in average
PROCSIZE from 13 to 87 executable
statements.

""This can easily be seen by differentiating with
respect to x the quadratic equation y = ax + bx%,
and setting dy/dx = 0 which yields x = —a/2b.
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As is often the case in this type of
estimation there was a high degree of
multicollinearity between the linear
term and the quadratic term. This
means that the estimates of the two
individual coefficients (and hence
the minimum point) are to be taken
with caution. To test the robustness
of this calculation the analysis was
repeated using a model that replaced
the linear and quadratic PROCSIZE
terms with two linear variables, rep-
resenting positive and negative devi-
ations from a conjectured optimum
respectively.'® This model was re-
peatedly estimated using a different
conjectured optimum value each
time. The results consistently showed
cost increases resulting from devia-
tions in either direction from the
minimum  point. This sensitivity
analysis supports the results shown in
Table 7 suggesting a bidirectional
(U-shaped) relationship.

Hypothesis 2, that costs increase
for both large or small values of
MODLSIZE, was not supported, as
the conditions described in the dis-
cussion for PROCSIZE were not met.
Since the coefficients for both the
linear and quadratic MODLSIZE
variables are in the same direction,
they are likely picking up each oth-
er’s effects, and therefore the indi-
vidual t-test values are low. However,
a hypothesis that maintenance costs
are not significantly affected by mod-
ule size can be rejected:

P(Hop:  Bis = Bi1a = 0) =0.0076 as
F2,49 = 5.39
which supports the notion that

MODLSIZE, as suggested by previ-
ous research, is a variable worthy of
managerial attention. A similar in-
sight is obtained from a simplified
version of the model that excludes
the MODLSIZE? term. There the
coefficient for the SLOC
*MODLSIZE term = —.00012, t=
—3.32 (p = .0017). This result can be
interpreted in the traditional way,
that is, the effect at this site tended to

be linear over the observed range of

module sizes (controlling for project
factors) with costs decreasing as
module size increases.'?

It should be noted, however, that

"*This can be seen as measuring the relation-
ship as a 'V’ rather than a ‘U’
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while these data do not support a
U-shaped relationship, they are not
necessarily inconsistent with such a
hypothesis. The observed linear rela-
tionship is consistent with the data
falling on the downward sloping arm
of this U, with the possibility that
costs would again begin to rise had
sufficiently large modules been avail-
able. Therefore, if there is a
U-shaped relationship, the turning
point appears to be outside the range
of data collected at this site. Further
empirical work at other research sites
will be required for this alternative
interpretation to be verified.

Hypothesis 3 was that mainte-
nance costs would be significantly
affected by the density of branch in-
structions within the modules. This
hypothesis is confirmed.

P(Hy: Bis = 0) = 0.0021 as
3.25.

Lyy =

Software maintenance costs are seen
to increase linearly with an increase
in the number of long GOTO state-
ments, as defined earlier.

Implications for Software
Maintenance Management
Through the preceding analysis the
effect of software complexity on soft-
ware maintenance costs has been es-
timated. While it is a firmly estab-
lished article of conventional wisdom
that poor programming style and
practices  increase  programming
costs, little empirical evidence has
been available to support this notion.
Consequently, efforts and invest-
ments meant to improve program-
ming practices have relied largely on
faith. The current research has ex-
tended an existing model of software
maintenance and used it as a vehicle
to confirm the significance of the
impact of software complexity on
project costs and to estimate its mag-
nitude.

This model provides managers
with estimates of the benefits of im-
proved programming practices that
can be used to justify investments
designed to improve those practices.
Given these data and estimates relat-

“With this simplified model it is noteworthy
that while concern over modularity typically
focuses on large modules, at this site the systems
that cost more to maintain tended to have mod-
ules that were too small.
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Table 6. Maintenance project summary statistics (65 projects)
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Variable Stand. Deviation
HOURS 937 718 130 3342
FpP 118 126 8 616
SLOC h416 7230 50 31060
SKILL 65 34 0 100
LOWEXPER .66 A48 0 1
METHOD 32 A7 0 1
QUALITY 2.06 58 1 3
RESPONSE .65 48 0 1
MODLSIZE 681 164 382 1104
PROCSIZE 43 18 13 87
GOTOFAR 0.024 0.016 0.0 0.07

Table 7. Regression resuits

Variable Coefficient
Intercept ] 333 0 4.96 0001
Project size

FP 1 3.152 .554 1.98 0533
SLOC 2 0.342 3.448 5.01 .0001
FP*FP 3 .009 774 2.80 0072
SLOC*SLOC 4 —2.8E-6 —.743 -0.92 3614
FP*SLOC 5 —.0001 —.439 -1.29 2026
Project Environment

FP*SKILL 6 049 —.64 —3.48 0011
FP*LOWEXPER 7 J22 .02 0.18 8578
FPFMETHOD 8 1.764 228 3.03 0039
SLOC*QUALITY 9 027 575 274 0085
SLOC*RESPONSE 10 =.019 196 —1.17 L2486
Software complexity

SLOC*PROCSIZE 11 —-.0106 —5.404 —4.85 .0001
SLOC*PROCSIZE? 12 .00012 3.708 5.30 .0001
SLOC*MODLSIZE 13 —-.00011 -.774 -1.36 1815
SLOC*MODLSIZE? 14 —4.4E-10 -.077 -0.09 9279
SLOC*GOTOFAR 15 1.317 401 3.25 0021
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ing software complexity and costs,
the form of the model allows infer-
ence about the productivity of soft-
ware maintainers. Productivity is typ-
ically defined as the ratio of output to
input. Since the model controls for
task size (output) variables on the
RHS (right-hand size), any LHS (left-
hand size) increases in required in-
puts that are associated with in-
creases in complexity can be inter-
preted as decreases in productivity.
Therefore, the model results may be
interpreted to mean that increased ex-
isting software complexity significantly
decreases the productivity of software
maintainers. This result accords with
strongly held intuition. The current
research also provides actual esti-
mates of the magnitude and signifi-
cance of this effect, results that have
generally not been available, particu-
larly for commercial applications in-
volving actual maintenance activities
and controlling for project factors
believed to affect productivity.

This model enables managers to
estimate the benefits of improving
software development and mainte-
nance practices, and to justify invest-
ments designed to improve those
practices. In the following illustrative
computations, the impact of a one-
standard dewviation change in the
value of each of the complexity vari-
ables is computed for a project of
5416 SLOC (the site mean) with av-
erage complexity values. The effects
of PROCSIZE on HOURS is esti-
mated in the regression model as fol-
lows:
0.00012#PROCSIZE**SLOC —
0.0106*PROCSIZE*SLOC

Solving this equation once for the
mean value of PROCSIZE (43) and
once for a one-standard deviation

increase in PROCSIZE (to 61), and
then subtracting the first result from

Table 8. Estimated costimpacts

Mean, std. dev.

PROCSIZE 43, 18

\ —— 1 11 e

the second results in a difference of
183.28 hours, or an increase of 20%
of the average project cost of 937
hours. A similar calculation for a
decrease of one standard deviation in
PROCSIZE (to 25) is 25%.'4 The cal-
culations for MODLSIZE and
GOTOFAR are similar, and the re-
sults are shown in Table 8.

Another way to use the results of
the model for managerial planning is
to estimate the aggregate cost impact
to the organization of software com-
plexity. To do this a manager might
postulate the following question:
What would be the estimated cost
savings if the more complex systems
were improved, not to some optimal
level, but merely to the current aver-
age level of all systems?

The measurement of the individ-
ual systems and the model can be
used to develop such an estimate.
The first step is to note that the cur-
rent actual projects have an average
cost of 937 hours. The second step is
to modify the data set in the follow-
ing manner: test each of the three
complexity variables for each of the
65 projects to determine whether it is
of higher complexity than average. If
it is, replace that value with the aver-
age complexity value. If not, leave it
unchanged. Once this transforma-
tion of the data is complete, the
model is used to estimate the cost of
hypothetical projects based on the
transformed data, which gives a pre-
dicted cost of 704 hours for an aver-
age project, a 2% savings over the
actual situation.

In order to determine the esti-
mated dollar value to the organiza-
tion of this reduction in complexity, a
“back-of-the-envelope” calculation of
the estimated aggregate possible sav-

“Note that these results are not symmetric as
the site mean is not identical to the optimum
value.

11 e Tt e e s 11

ings can be done. Two assumptions
are necessary for this calculation to
be valid, (1) that the projects studied
represent a typical mix (believed to
be the case), and (2) that mainte-
nance projects represent 70% of the
budget (also true for this site). The
result is that improving the site’s
more poorly written systems, not to
optimality, but merely to the level of
the site’s average complexity, could
result in an aggregate savings of
more than 17% (.25 *.7) of the ap-
plications software budget, which at
this site translates into a savings of
several million dollars in the year fol-
lowing such an improvement.

These quantified impacts of
complexity can help software mainte-
nance managers make informed
decisions regarding preferred mana-
gerial practice. For example, one
type of decision that could be aided
by such information is the purchase
of CASE tools for code restructuring.
The benetits of these tools have gen-
erally had to be taken on faith. The
current analysis, however, indicates
that the magnitude of the economic
impact of software complexity is suf-
ficiently great that many organiza-
tions may be able to justify the pur-
chase and implementation of CASE
tools for code restructuring on the
basis of these estimated benefits.

More generally, a common belief
in the long-term importance of good
programming practice has not been
powerful enough to stand in the way
of expedience when “quick-and-
dirty” programming has been per-
ceived to be needed immediately. An
awareness of the magnitude of the
cost of existing software complexity
can combat this tendency. The cost
of software complexity at this re-
search site is the legacy of the prac-
tices of previous years.

Taken together, these ideas show

Impact of a 1 std. dev. variation . . .

. in hours

183, 238

. as a % of total

20%, 25%

MODLSIZE

681, 164

98

10%

GOTOFAR .024, .016

114

12%
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how, through the use of the model
developed here, managers can make
decisions today on systems design,
systems development, and tool selec-
tion and purchase that depend on
system values that will affect future
maintenance. This model can be a
valuable addition to the traditional
exclusive emphasis on software de-
velopment project schedules and
budgets because it allows for the esti-
mation of full life-cycle costs. Given
the significant percentages of sys-
tems resources devoted to mainte-
nance, improving managers ability
to forecast these costs will allow them
to be properly weighted in current
decision making.

As with any empirical study, some
limitations of these research results
must be observed. The results were
found to exist in a site which, due to
its size, software tools, hardware
tools, and application type, is typical
of a large number of commercial IS
applications, particularly financial
transaction processing systems. How-
ever, additional studies at other sites,
especially maximally dissimilar sites
with applications such as real-time
command and control applications
should be done before claims can be
made about the overall generalizabil-
ity of these results. Also, values of
specific parameters, such as the opti-
mal number of SLOC/module, are
likely to differ with programming
languages,l5 particularly nonthird-
generation languages.

In summary, this research sug-
gests that considerable economic
benefits can be expected from adher-
ence to appropriate programming
practices. In particular, aspects of
modern programming practice, such
as the maintenance of moderate pro-
cedure size and the avoidance of long
branching, seem to have great bene-
fits. The informed use of tools or
techniques that encourage such prac-
tices should have a positive net bene-
fit.

concluding Remarks
This study has investigated the links
between software complexity and

'*Although it is interesting to note that the opti-
mal value of statements/module found here for
Cobol code, 44, is similar to the maximum size
heuristic used at Toshiba in Japan for Fortran
code, 50 (See [26], pp. 45-52.

software maintenance costs. On the
basis of an analysis of software main-
tenance projects in a commercial
application environment, it was con-
firmed that software maintenance
costs are significantly affected by the
levels of existing software complex-
ity. In this study, software mainte-
nance costs were found to increase
with increases in the complexity of a
system’s implementation, as mea-
sured by its average procedure size,
average module size, and its branch-
ing complexity.

Historically, most models of soft-
ware economics have focused on new
development. Therefore, they have
not used software complexity met-
rics. After controlling for project fac-
tors believed to affect maintenance
costs, the analysis at this site suggests
that high levels of software complex-
ity account for approximately 25%
maintenance costs or more than 17%
of total life-cycle costs. Given the ex-
tremely high cost of maintenance in
commercial applications, the neglect
of software complexity is potentially
a serious omission.

The results presented here are
based on a detailed analysis of main-
tenance costs at a site judged to be
typical of traditional transaction pro-
cessing environments. These types of
environments account for a consid-
erable percentage of today’s software
maintenance costs. Based on this
analysis, the aggregate cost of poor
programming practice for industry
as a whole is likely to be substantial.

Appendix A.

Data Collection and Analysis in
a Commercial Maintenance
Environment

The main body of this research pres-
ents a generalizable model that has
been estimated in a specific environ-
ment. Researchers and practitioners
who are interested in validating this
work in other environments will
need to follow a series of three steps:
data requirements analysis; metrics
selection; data modeling and inter-
pretation.

Data requirements analysis begins
with determining the research goals
that will drive the modeling process.
This is, in many ways, the most criti-
cal of the three steps. In the current
research the focus was on measuring
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the impact of complexity on mainte-
nance productivity, and therefore
the data requirements included cost
(effort), project size, application
complexity, and other nonsize proj-
ect factors (See Figure 2 in the
text.)’ Each of these may require
multiple metrics, as was done in the
current research. In particular, the
use of the two size variables and their
second order terms in the current
model, while requiring additional
observations, does allow for a better
fit of the data.

There are a number of sources for
use in determining an appropriate
set of complexity metrics from the
universe of available metrics, for ex-
ample, the work by Basili and Weiss
[7]. Despite the large number of met-
rics proposed in the literature, most
of them are highly correlated and a
relatively small number will cover the
major identified dimensions. In the
current work the emphasis has been
on metrics that reflect the adherence
(or its lack) to structured program-
ming precepts, and that are relatively
easy for maintainers to understand
and use.

Finally, it is very important not o
lose sight of the need to collect data
on the other project factors. These
factors are likely to have a significant
impact on the results, and failure to
include them is likely to result in a
misspecified model. The appropriate
measures are likely to be highly site-
specific, but the general areas are
likely to include project size (in a
maintenance environment, function-
ality added or changed), staffing,
process or tool variables, and project
quality. A data site that has already
devoted some time to formal project
cost estimation is likely to have a
head start on what the important fac-
tors are likely to be.

Once the data requirements are
determined, great care must be taken
in data collection to ensure the data
accurately represent the project ex-
perience. (Some of these issues are
discussed in [23].) Generally speak-
ing, ex post collection of metrics is
often difficult, and the final sample
size will typically be significantly

5In other environments the center of the inves-
tigation might be on other areas, such as defect
detection and prevention, which would gener-
ate a different list.



smaller than the iniual universe of
projects selected. This phenomenon
should be taken into account when
outlining the scope of the research
effort, and, in particular, when speci-
tying the model. A significant
amount of effort will need to be de-
voted to initial data collection, both
on the part of the research team and
on team members {from the project
being studied, in order to locate and
verity data on completed projects.
Organizations that follow a disci-
plined methodology in their software
development and maintenance will
generally have more success at col-
lecting these data than organizations
that do not.

Given careful attention to the ear-
lier steps, model estimation can pro-
ceed quite directly. The general form
of the model used in the current re-
search, a multiplicative formulation,
is a general model that can be ex-
pected to be applicable in a wide vari-
ety of software engineering settings.
Interpreting the model results can
proceed as described in the main
text. Feedback of these results to the
participants at the data site is a criti-
cal step as a check to ensure that
there are no extramodel factors in-
fluencing the results. Additionally,
this feedback can help to ensure that
the results of the model are actually
used to modify and improve the pro-
cess of software maintenance at the
site.
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