
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2004-03-30

P-51 An Open Source Game Engine for Naval
Education and Training

Darken, Rudy; Lewis, Ted; Johnson, Erik; McDowell, Perry;
Kapolka, Andrzej; Sullivan, Joe

http://hdl.handle.net/10945/59781

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



  

An Open Source Game Engine for 
Naval Education and Training 

Dr. Rudy Darken
Dr. Ted Lewis
Erik Johnson

Perry McDowell
Andrzej Kapolka
CDR Joe Sullivan

P-51

Presented to the 
Navy Workforce 
Research and 

Analysis Conference
30 March 2004



  

Problem

Markets other than the gaming industry (e.g. 
Department of Defense) want access to 
gaming technologies
 i.e. console hardware, engines, content creation

 … however …
Gaming console market consists of closed 

stovepipes all with the same business model
 no opportunity for other markets (DoD) to benefit



  

Opportunity

Break the existing business model by 
supplying gaming hardware and software to 
non-traditional gaming customers

Commoditize gaming hardware and engines 
using open source and standards

Leverage first-mover advantage to dominate 
content creation and applications
 Order of magnitude speed-up in development 

time
 Order of magnitude decrease in development 

costs



  

Motivation

 The Navy wants the use of gaming technologies 
for education and training on an enterprise scale

 Invest once, standardize on an architecture, (a 
game engine) and enable reuse of content 
across many applications -- independent of the 
application developer

however
 The business model of the gaming market is 

based on profit from game titles -- this does not 
work for the Navy

 Game engines are extremely costly* and usage 
fees must be paid with each revision 

* Can be anywhere from $300,000 to $1.5M for a full featured 
engine



  

P-51 Strategy

 Commoditize gaming engines and console 
hardware using open source and standards

 Leverage first-mover advantage to standardize 
content creation and applications
 Order of magnitude speed-up in development time
 Order of magnitude decrease in development costs

 Pay non-recurring development costs ONCE
 Pay recurring costs via maintenance model (e.g. Redhat)

 Motivate tool makers to participate
 Motivate prime contractors to adopt
 Motivate programs to endorse
 Motivate OSS community to contribute



  

Hardware

Scenario Editor

Level EditorScript Language

Components

API

Level Designer

Tools Application Game Engine

Development Box 
(Professional 
developers)

Delivery Box
(Users)

Coders Artists

Trainee / Trainer / 
Analyst

COMMODITIZ
E

TOOLS & 
APPLICATIONS

New business model is 
here

Only pay for content, not 
tools



  

The Product

P-51 Game Engine
 OpenGL (OpenSceneGraph)
 Linux / Win32 compatible
 Any Linux-compatible 

hardware
 XML Interfaces

Linux/Win32

PC, Mac, Game Console

Application / Game

P-51 Game Engine

OpenGLXML

Open Source Libraries

P-51 is a 
thin layer 
API that 
unifies 
several 

other open 
source 

libraries

Gentoo 
open 

source 
bootabl
e Linux 
kernel



  

Networking

 Interoperability through web services
 Open architecture MMOG solution

P-51 MMOG Service

Web Services
P-51 Client

P-51 Client P-51 Client

P-51 Client

Linux



  

Challenges

Maintenance Costs
 Funded annually, or ...
 Redhat model -- let developers pay for support as needed

Updates and Release Control
 Managed similar to how OSDL* manages Linux

Licensing Costs
 None -- P-51 is open and it stays open

Standardization
 Work with NIST to determine specification -- evolve over lifetime of P-51
 We will not create standards but will embrace and specify open standards for 

Navy use

Interoperability
 XRTI included (open source RTI: http://www.movesinstitute.org/~npsnet/xrti)
 MMOG features planned

Reusability
 All standard interfaces, XML, SOAP (for web services), OpenFlight 
 All developers have access to all source code

* Open Source Development Labs (Linus Torvalds works there)



  

P-51 Status

Currently uses the following open source libraries:
 FL: GUI widgets
 freetype: Fonts
 osg (osgDB, osgGA, osgParticle, osgProducer, osgSim, 

osgText, osgUtil): Scene graph, file loading, particle systems
 Producer: Window handling, keyboard/mouse input, threads, 

timers
 RTI-NG 1.3v6: HLA communication
 isense: Tracker input
 PLIB js: Joystick input
 PLIB sg: Math types
 PLIB ul: Byte order conversion, other utilities
 sigslot: Boost signals-and-slots library
 tinyxml: XML parsing



  

Timeline and Costs

 Targeted release date for version 1.0
 November 2004 (I/ITSEC)

 Prototype project
 Shipboard fire fighting?
 Intelligence simulations? (for CENNAVINTEL)
 Homeland Security Games

 Estimated costs
 Initial staffing

 Four full-time P-51 engineers
 $200,000 x 4 = $800,000

 Four full-time artists and modelers
 $175,000 x 4 = $700,000



  

Associated Risks

 Support from the fleet
 P-51 will only succeed if it has buy-in from a large user base

 Self-supporting
 P-51 must eventually be self-supporting. It should not rely on 

NETC or any other sponsor for recurring costs.
 Evolving standards

 P-51 must be reviewed repeatedly for changes in requirements 
and standards. Is this compatible with P-51 being self-supporting?

 We cannot create new standards (didn’t work for Ada and won’t 
work here either), but will specify P-51 to adopt open standards 
instead

 Separation of content from presentation
 P-51 must support standard data file formats for separating 

content from the engine. Level editing must be included in the 
end product.



  

Business Case

Give away P-51 Game Engine (it stays open!)
Support, maintenance, training, supplied via Redhat model
Motivate non-Navy (and non-DoD) usage and participation -- 

share development costs through OSS
$1.5M to $2.5M over two years to steady state

 Run-time engine, fully developed API
 Linux kernel / Win32 compatible
 Development tools, level editors, content creation

Next steps
1. Specification -- NIST/NETC/NPS participation
2. Comparison to alternatives -- e.g. Epic Unreal
3. Prototype development
4. P-51 development and documentation



  

Why should I adopt P-51?

 No lock-in
 Full open standard compliant
 Maximize reusable content

 Cross platform
 Runs on anything the Linux kernel runs on
 Capable of running on game consoles

 No visible operating system
 Ease of use

 Content creation tools

 Make it flexible, hi-performance, and 
inexpensive



  

Contact Information

Rudy Darken (Principal Investigator)

darken@nps.navy.mil
831-656-7588

Erik Johnson (Lead Engineer)

rejohnso@nps.navy.mil
831-656-2967

Perry McDowell (Content Developer)

mcdowell@nps.navy.mil
831-656-7591



  

Demo of Firefighting Trainer 
Built with P-51

mailto:darken@nps.navy.mil
mailto:rejohnso@nps.navy.mil
mailto:mcdowell@nps.navy.mil


  

Additional Information

Most of the information on the 
following slides was presented by 
other speakers at the Training 
Technology Session of NWRA.  
However, it is included here for 
completeness.



  

What does the M&S industry 
want?

 Low-cost, hi-performance hardware
 Ease of use … Marine-proof
 Scalability, interoperability
 Cheap run-time environments

 No run-time licensing costs
 Powerful, inexpensive content creation

 Rapid database development, scenario 
editing

 Stable tools and APIs
 Reusable content



  

What does the Navy want?

 Compatibility with low-cost, hi-performance hardware
 Off the shelf PCs and console components

 Ease of use … Marine-proof
 Scalability, interoperability
 Cheap run-time environments

 No run-time licensing costs -- massive deployment of 
applications

 Powerful, inexpensive content creation
 Rapid database development, scenario editing

 Stable tools and APIs
 Separation of content from presentation -- reusability!

 Low entry costs, and low recurring/maintenance costs
 Flexibility -- No vendor lock-in!

 Standardize Navy-wide for maximum reuse



  

Ecosystem

How to beat Microsoft and Sony?
 Focus on niche market -- DoD M&S

 Ground simulation?

 Motivate tool makers to participate
 Motivate prime contractors to adopt
 Motivate programs to endorse
 Motivate OSS community to 

contribute



  

Existing Business Models

TURNKEY SYSTEMS

FlightIG (MultiGen-Paradigm)
Evans & Sutherland

MetaVR
CG2 Mantis

TURNKEY SYSTEMS

FlightIG (MultiGen-Paradigm)
Evans & Sutherland

MetaVR
CG2 Mantis

RUN-TIME TOOLS

MultiGen-Paradigm Vega
CG2 VTree

SGI Performer
VisKit

RUN-TIME TOOLS

MultiGen-Paradigm Vega
CG2 VTree

SGI Performer
VisKit

GAME ENGINES / GAMES

Epic Unreal
Gamebryo (formerly NetImmerse) NDL 

GAME ENGINES / GAMES

Epic Unreal
Gamebryo (formerly NetImmerse) NDL 

OPEN SOURCE

OpenSceneGraph
Crystal Space 3D

Nebula Device

OPEN SOURCE

OpenSceneGraph
Crystal Space 3D

Nebula Device

CONTENT CREATION

IT Spatial
SimWright

Lockheed Martin, Boeing

CONTENT CREATION

IT Spatial
SimWright

Lockheed Martin, Boeing

CONTENT CREATION TOOLS

MultiGen-Paradigm Creator
Discreet 3D Studio Max

Terrex TerraTools

CONTENT CREATION TOOLS

MultiGen-Paradigm Creator
Discreet 3D Studio Max

Terrex TerraTools



  

Existing Business Models

TURNKEY SYSTEMS

FlightIG (MultiGen-Paradigm)
Evans & Sutherland

MetaVR
CG2 Mantis

TURNKEY SYSTEMS

FlightIG (MultiGen-Paradigm)
Evans & Sutherland

MetaVR
CG2 Mantis

RUN-TIME TOOLS

MultiGen-Paradigm Vega
CG2 VTree

SGI Performer
VisKit

RUN-TIME TOOLS

MultiGen-Paradigm Vega
CG2 VTree

SGI Performer
VisKit

GAME ENGINES / GAMES

Epic Unreal
Gamebryo (formerly NetImmerse) NDL 

GAME ENGINES / GAMES

Epic Unreal
Gamebryo (formerly NetImmerse) NDL 

OPEN SOURCE

OpenSceneGraph
Crystal Space 3D

Nebula Device

OPEN SOURCE

OpenSceneGraph
Crystal Space 3D

Nebula Device

CONTENT CREATION

IT Spatial
SimWright

Lockheed Martin, Boeing

CONTENT CREATION

IT Spatial
SimWright

Lockheed Martin, Boeing

CONTENT CREATION TOOLS

MultiGen-Paradigm Creator
Discreet 3D Studio Max

Terrex TerraTools

CONTENT CREATION TOOLS

MultiGen-Paradigm Creator
Discreet 3D Studio Max

Terrex TerraTools

Pro: You get a full working 
system

Con: Any change will cost 
you. Full vendor lock-in

Pro: Powerful, runs on 
cheap hardware

Con: High entry price, 
proprietary lock-in

Pro: Can be open file 
formats

Con: High price, not 
applications

Pro: Support, 
documentation

Con: Proprietary lock-in, 
run-time costs, licensing

Pro: Free!
Con: Poor support and 

documentation, usually 
low-level tools only

Pro: Can be open file 
formats, absolutely 
necessary in the 
development process

Con: Can be expensive

These 
are part 
of the 

solution, 
but must 

be 
integrate
d to work 
efficientl

y


	An Open Source Game Engine for Naval Education and Training
	Problem
	Opportunity
	Motivation
	P-51 Strategy
	Components
	The Product
	Networking
	Challenges
	P-51 Status
	Timeline and Costs
	Associated Risks
	Business Case
	Why should I adopt P-51?
	Contact Information
	Demo of Firefighting Trainer Built with P-51
	Additional Information
	What does the M&S industry want?
	What does the Navy want?
	Ecosystem
	Existing Business Models
	Slide 23

